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Abstract. This article analyzes the relationship between off-season tropical cyclone (TC) 11 

frequency and climate variability and change for the Pacific and Atlantic Ocean basins. TC track 12 
data was used to extract the off-season storms for the 1900-2019 period. TC counts were 13 
aggregated by decade and the number of storms for the first six decades (pre-satellite era) was 14 
adjusted. Mann-Kendall non-parametric tests were used to identify trends in decadal TC counts 15 
and multiple linear regression models (MRL) were used to test if climatic variability or climate 16 
change factors explained the trends in off-season storms. MRL stepwise procedures were 17 
implemented to identify the climate variability and change factors that explained most of the 18 
variability in off-season TC frequency. A total of 713 TCs were identified as occurring earlier or 19 
later than their peak seasons, most during the month of May and in the West Pacific and South 20 
Pacific basins. The East Pacific (EP), North Atlantic (NA) and West Pacific (WP) basins exhibit 21 
significant increasing trends in decadal off-season TC frequency. MRL results show that trends 22 
in sea surface temperature, global mean surface temperature, and cloud cover explain most of 23 
the increasing trend in decadal off-season TC counts in the EP, NA, and WP basins. Stepwise 24 
MLR results also identified climate change variables as the dominant forces behind increasing 25 
trends in off-season TC decadal counts, yet they also showed that climate variability factors like 26 
El Niño-Southern Oscillation, the Atlantic Multidecadal Oscillation, and the Interdecadal Pacific 27 
Oscillation also account for a portion of the variability. 28 
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1.  Introduction  34 

Increasingly, scientific evidence has shown a link between tropical cyclones (TC) and global 35 
warming, especially following the dramatic rise in both the intensity and frequency of storms during 36 
the first two decades of the present century (Goldenberg et al., 2001; Holland and Webster, 2007). 37 
Scientific studies (Landsea, 2005; Emanuel, 2005; Trenberth and Shea, 2006; Trenberth, 2007) are 38 
not in agreement as to whether sea surface temperatures have a measurable effect on the frequency 39 
of tropical cyclones and other studies (Camargo and Sobel, 2005;  Nogueira and Kim, 2007; Mahala 40 
et al., 2015; Zhao et al., 2018]  have evaluated cyclonic activity on a time scale longer than 41 
interannual and have associated it with variability in the El Niño Southern Oscillation (ENSO), the 42 
Atlantic Multidecadal Oscillation (AMO) and the Interdecadal Pacific Oscillation (IPO). However, 43 
little is known about the changes in the frequency of off-season TCs, storms that occur before and 44 
after the peak TC season months, and their connections to climate variability and change.  45 

A number of recent papers (Wang and Lee, 2008; Knutson et al., 2010; Emanuel, 2013) have 46 
documented global increases in the proportion of very intense cyclones as well as latitudinal trends 47 
in maximum tropical cyclone (TC) intensity, which are consistent with future climate projections. A 48 
detailed review of the behavior of TCs (Walsh et al., 2019) concluded that it remains uncertain 49 
whether past changes in TC activity have exceeded the variability expected from natural causes, 50 
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while concerns remain about the temporal homogeneity of the best record (Landsea et al., 2006; 51 
Mann et al., 2007). Another study (Mann et al., 2009) found that recent increases in the frequency 52 
of intense TCs in the North Atlantic (NA) were the product of reinforcing effects, such as La Niña-53 
like climate conditions and relative tropical Atlantic warming. Yet, no study has focused on 54 
examining changing trends in off-season TC frequency and its relation to natural variability or 55 
climate change. 56 

A synthesis (Christensen et al., 2013) of the then-available regional projections of future TC 57 
climatology for 2081–2100 in relation to 2000–2019, for a business as usual emissions scenario 58 
similar to A1B, shows that worldwide the consensus projection was for decreases in TC numbers by 59 
approximately 5–30%, increased frequency of Category 4 and 5 storms between 0 and 25%, an 60 
increase by a small percentage in the typical maximum intensity of life, and an increase in TC 61 
rainfall amounts by 5–20%. Nevertheless, it is clear that there is great uncertainty about these 62 
projections. Such projections do not consider changes in off-season TC development in any of the 63 
basins where TCs form 64 

Several climatic reconstructions have been performed (Bradley et al., 2006; Mann et al., 2009) 65 
using proxy data by collecting sediments from the impact of hurricanes in the period 500–1850 and 66 
then calculated estimates from the statistical model of the activity of tropical cyclones based on 67 
modern instrumental weather indexes for the period (1851–2006). In analyzing these results and 68 
comparing them with the cyclone seasons fixed by the World Meteorological Organization, the 69 
hurricane season (tropical depressions, tropical storms and hurricanes) in the Atlantic Ocean was 70 
fixed as June 1 to November 30 in 1960, yet we observe a significant variability in off-season TC 71 
occurrence before/after the hurricane season after the 1960s.  72 

Even though it not uncommon for TCs to develop outside of their peak TC season months, there is a 73 
need to examine trends in the number of storms that are forming during low activity months.  The 74 
formation of the extratropical storm Andrea on May 20, 2019 marks the decade of 2010 as that with 75 
the greatest number of tropical cyclones in the Atlantic Ocean before or after the hurricane season 76 
dates established by official bodies like the World Meteorological Organization (WMO) and the 77 
National Oceanic and Atmospheric Administration (NOAA). The frequency of TCs in the North 78 
Atlantic basin has been found to be influenced by fluctuations in teleconnections such as ENSO and 79 
AMO (Trenberth et al., 2006; Nogueira et al., 2013). However, human-induced climate change 80 
manifested as higher sea surface temperatures (SST) and increasing evaporation rates in the tropical 81 
and sub-tropical North Atlantic basin could also be related to the higher frequency of off-season 82 
tropical or extratropical cyclone occurrences in more recent decades. That increasing trend in SSTs 83 
in the Atlantic and other ocean basins and its relation to out off-season TC occurrences during the 84 
last century has not been thoroughly examined by the scientific community. 85 

This study aims to determine if off-season TCs have increased in their frequency since the 1900 and 86 
if that increment in the number pre and post off-season storms could be associated with normal 87 
climatic variability or climate change. The total number of out off-season TCs per decade for the 88 
North Atlantic (NA), West Pacific (WP), East Pacific (EP) and South Pacific (SP) ocean basins 89 
where analyzed to determine if any of the basins experienced an increase in the number of off-90 
season tropical/extratropical cyclones over time that could be associated to climatic variability or 91 
climate change. The Indian Ocean basins were not included in this analysis due to limited data 92 
availability. Ocean basins that were found to have statistically significant trends were then analyzed 93 
further with multiple liner regression models (MRL) and regression stepwise procedures to 94 
determine if climate variability or change factors could explain increasing trends in off-season TC 95 
frequency over time.  96 

 97 
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2.  Data 98 

Six-hourly TC track data for all storms across all ocean basins were obtained from the  International 99 
Best Track Archive for Climate Stewardship (IBTrACS) (Knapp et al., 2018) and all TCs that 100 
occurred at or after 1900 were extracted. The TC tracks were then then extracted for the northern 101 
hemisphere basins that include the East Pacific (EP), the North Atlantic (NA) and the West Pacific 102 
(WP) and for the southern hemisphere basin in the South Pacific (SP) (Fig 1a).  The off-season TCs 103 
were then aggregated by decades in order to identify decadal variability or trends in total storm 104 
counts at the individual basin scales. Off-season TCs were defined as storms that occurred in the 105 
three months before and after the six-month period of peak cyclone activity in the basin.  106 

The monthly frequency of TCs for each basin were analyzed for the entire period and based on that 107 
analysis we determined that off-season TCs that occurred during the three months (Mar-Apr-May) 108 
before June 1st were pre-season and the three months (Dec-Jan-Feb) after November 30th were post-109 
season in the northern hemisphere basins (NA, EP and WP) In the southern hemisphere, the three 110 
months before (Aug-Sep-Oct) November 1st were classified as pre-season and the three months 111 
(May-Jun-Jul) after April 30th were classified as post off-season in the southern hemisphere basins 112 
(SP) (Fig 1b). Pre-season and post-season decadal time-series for the Northern/Southern hemisphere 113 
and individual basins were then constructed to calculate the total number of TCs per-decade from 114 
1900 to 2019.  115 

The climate variability indexes of ENSO (Niño 3.4), AMO (Trenberth et al., 2019) were 116 
respectively obtained from the National Oceanic and Atmospheric Administration (NOAA) 117 
Physical Sciences Lab and the National Center for Atmospheric Research. The IPO index was 118 
obtained from the NOAA Physical Sciences Laboratory (Henley et al., 2015). The variables 119 
associated with anthropogenic climate change used in this study were sea surface temperature 120 
(SST), global mean surface temperature (GMST) and cloud cover (CC). SST data were obtained 121 
from the HadISST1 1° reconstruction, GMST data were accessed from the GISTEMP v4 and CC 122 
data was acquired from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS)  123 
v2.5, all for the 1900-2019 period. The CC estimates from ICOADS are obtained from voluntary 124 
observing ships that report CC in octas (eighths) ranging from 0 (completely clear sky) to 8 125 
(completely overcast). These CC estimates are known to be temporally and spatially heterogenous 126 
with relatively high observational errors in some areas, yet increases in ocean coverage for clouds 127 
after the 1900 have been noted in the latest ICOADS 3.0 release [Eastman et al. 2011, Freeman et 128 
al. 2016; Aleksandrova et al. 2018]. A decadal average was calculated for all of the climate 129 
variability and change variables to use them as predictors of decadal TC total counts (Table 1).  130 

Table 1. Tropical cyclone, climate change and variability variables used in this study.  
  

  Abbreviations  Units  

Tropical Cyclone Counts TCs Decadal Total Counts 
 
Climate Change Variables    

 
Sea Surface Temperature  SST ° 
Global Mean Surface Temperature  GMST ° 
Cloud Cover  CC Oktas 

 
Climate Variability Variables    

 
El Niño Southern Oscillation  ENSO 3.4 °SST anomalies index 

Interdecadal Pacific Oscillation IPO °SST anomalies index 

Atlantic Multi-decadal Oscillation  AMO °SST anomalies index 
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3.  TC Adjustment Method 131 

TC counts before 1966 (pre-satellite era) are incomplete (Mann et al., 2007; Landsea, 2007) since a 132 
lot of storms that didn’t make landfall weren’t recorded, so in order to make any comparisons 133 
between the earlier and later decades, the series for each basin need to be adjusted accordingly. 134 
Another issue related to pre-satellite era TC track data is the undercount of weaker tropical 135 
depressions, since the detection and classification of those weaker storms that showed poor 136 
organization was probably more difficult before 1966 (Moon et al., 2019). The average landfall 137 
percentage of TCs were calculated for the periods 1900-1965 (pre-satellite) and 1966-2019 (satellite 138 
era and new TC monitoring technologies available) in order to determine the share of storms that 139 
made landfall in both periods. The percentage of landfalling TCs is expected to be higher in the 140 
1900-65 period since a higher number of storms that remained over the ocean were not reported, so 141 
the landfall percentage of the pre-satellite period is then adjusted so that it matches the 1966-2019 142 
post-satellite period.  143 

To obtain the estimated number of missing TCs for the 1900-65 period, the number of total storms 144 
in the pre-satellite period is increased until its landfall percentage is equal to the one in the post 145 
satellite era. The total number of additional TCs that resulted in the landfall percentages between the 146 
two periods to be the same or near equal are then divided by the 7 decades of the pre-satellite era 147 
and then the number of extra storms for each decade is multiplied by the percentage of off-season 148 
storms for each basin and that resulting number is then added then  to each of the individual decades 149 
between 1900 and 1969. In a previous study (Landsea, 2007), this method was applied to adjust TC 150 
counts in the North Atlantic to determine if the basin has experienced an increasing trend in annual 151 
TC frequency since the 1900, and its results show that after adjusting the tropical storm counts no 152 
trends were found.   153 

Here we show how this TC series adjustment method was applied to the total TC count for the NA 154 
basin for the 1900-2019 period . First, we calculate the landfall percentage for the pre-satellite  period 155 
1900-65 by dividing the number of landfalling TCs (LFTCs) with the total number of storms (TTCs) 156 
and multiply by 100 to get the landfall percentage, check the equations below: 157 
 158 

 (𝐿𝐹𝑇𝐶𝑠 /𝑇𝑇𝐶𝑠)  ∗  100 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: (479/610) ∗ 100 =  78.5% 
(1) 

 159 
 160 

Then calculate landfall % for the period post-satellite period 1966-2019,  161 
 162 

 (𝐿𝐹𝑇𝐶𝑠 /𝑇𝑇𝐶𝑠)  ∗  100   

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: (583/844) ∗ 100 =  69.1% 
(2) 

 163 
 164 
Then artificially increase the number of TCs (+83 for the NA basin) until the landfall % of the 1900-165 
65 period is equal to landfall % of the 1966-2019:  166 
 167 

 𝐿𝐹𝑇𝐶𝑠 / (𝑇𝑇𝐶𝑠 +  𝐴𝑑𝑑𝑇𝐶𝑠)  ∗  100 

 𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 479/ (610 + 83) ∗ 100 =  69.1% 
(3) 

 168 
 169 

Then calculate the percentage (OffP) of off-season TCs (OffTCs) by dividing it by total number of 170 
TCs: 171 
 172 

 (𝑂𝑓𝑓𝑇𝐶𝑠 /𝑇𝑇𝐶𝑠)  ∗  100 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒 ∶  (67/1454) ∗ 100 =  4.61% 
(4) 
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 173 
Then divide additional TCs (83) by the number of decades between 1900 and 1969 (7) and then 174 
multiply by the off-season TC percentage (.0461) 175 
 176 
 177 

 (𝐴𝑑𝑑𝑇𝐶𝑠/𝐷𝑒𝑐𝑎𝑑𝑒𝑠)  ∗  𝑂𝑓𝑓𝑃 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: (83/7)  ∗  .0461 =  0.54 

 

(5) 

 178 
In the case of the NA, we determined that by using the above TC series adjustment method the basin 179 
would get an additional  0.54 off-season TCs for each of the seven decades that go from the 1900 to 180 
1969. Finally, the additional 0.54 TCs per decade will be divided between pre and post off-season 181 
TCs by multiplying the added storms with the respective percentage of pre/post off season cyclones: 182 
 183 

 𝐷𝑒𝑐𝑂𝑓𝑓𝑇𝐶𝑠 ∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒/𝑃𝑜𝑠𝑡 𝑆𝑒𝑎𝑠𝑜𝑛 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 0.54/0.62 =  0.33 𝑎𝑛𝑑 0.54/0.38 = 0.21 
(6) 

 184 
The pre off-season decades of the NA basin before 1970 will get an additional 0.33 TCs and the 185 
post off-season decades will get 0.21 more storms. This off-season TC adjustment method was 186 
applied to the other five basins. It is important to note that this TC adjustment method has been only 187 
implemented in the NA basin and that this study is the first attempt to apply technique in other 188 
ocean basins. This adjustment method is in no way capable of detecting all TCs that formed before 189 
the satellite era, yet it offers us the opportunity to estimate missed storms by comparing the TC 190 
landfall percentage of the pre- and post-satellite eras.  191 
 192 
4. Statistical Methods & Models 193 

 194 
Mann-Kendall (MK) tests for trends (Mann, 1945; McLeod, 2005) were applied to all the off-195 

season TC decadal series for all basins in order to determine if the frequency of storms has increased 196 
or decreased over time. This test has the advantage of not assuming any special form for the 197 
distribution function of the data, while having a power nearly as high as their parametric equivalents 198 
and that is why its use is highly recommended by the World Meteorological Organization (Hipel and 199 
McLeod, 2005).  200 
 201 

The decadal series that were then found to have a significant trend based on the MK results were 202 
then furtherly analyzed by applying a series of multiple linear regression models (MLR). MLR were 203 
used to model the decadal count of off-season TCs for basins that showed increasing or decreasing 204 
trends in storm numbers to test if covariates associated with climatic variability and climate change 205 
explained off-season TC frequency. MLR attempts to model the relationship between two or more 206 
explanatory variables and a response variable by fitting a linear equation to observed data.  207 
 208 

Three different MLR models were run for each off-season TC series that exhibited a statistically 209 
significant trend, one MLR model with the climate change variables (SST, GMST & CC) as 210 
predictors, another model with just the climate variability factors (ENSO, AMO & IOD) and a final 211 
model with all of the variables included. Then the three MLR models (pre-season, post-season and 212 
off-season) were run for each of the basins with increasing trends in off-season TCs, the best models 213 
(highest adjusted R-squared and lowest p-value) were then selected for each of the series. The MLR 214 
models were run in The R Project for Statistical Computing using the biglm package.   215 

  216 
Finally, stepwise selection MLR models were used to identify the climate variability or change 217 

factors making the most statistically significant contributions to off-season increasing TC frequency. 218 
Here we use stepwise selection which is a combination of the forward and backward procedures where 219 
you start with no predictors, then sequentially add the most contributive predictors. After adding each 220 
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new variable, it removes the variables that no longer provide an improvement in the model fit (James 221 
et al., 2014; Bruce and Bruce, 2017). The MLR and stepwise for the off-season TC count series for 222 
each of the basins with significant increasing trends were run in The R Project for Statistical 223 
Computing using the MASS package (Venables and Ripley, 2002).  224 

5.  Results & Discussion  225 

When analyzing the number of TCs for all basins for the 1900-2019 period we found that 713 226 
off-season storms occurred during that time, most during the months of May (NH pre-season and SH 227 
post-season) with 430 and December (NH post-season) with 341 (Figure 1a, 1b). When looking at 228 
the count of off-season TCs per basin we found that as expected the West Pacific (611) and South 229 
Pacific (85) accounted for 81.3% of all off-season storm occurrences. When grouping the basins 230 
between northern and southern hemispheres, we find that 89% of all off -season TCs occurred north 231 
of the equator for the 1900-2019 period (Figure 1a, 1b). The North Atlantic and East Pacific basins 232 
were found to be the ones with the lowest numbers of off-season TCs when compared to the other 233 
two Pacific basins.  234 

 235 

 236 

Figure 1. Tracks of all out off-season TCs (a) and the number of storms per month for the WP (b), 237 
SP (c), EP (d) and NA (e) basins for the 1900-2019 period. 238 
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As shown in Figure 2, even after adding the estimated missing storms before the 1970 decade, 239 
most basins experienced their highest number of out off-season TCs (pre or post) in decades at or 240 
after 1960-69. The 1960-69 decade for the northern hemisphere basins (WP, NA and EP) was found 241 
to be the one with the highest number of pre off-season TCs with 69 and the 1950-1959 decade was 242 
identified as the one with the most post off-season storms with 68 (Figure 2a, 2b, 2c and 2d). When 243 
examining TC counts for all basins individually, we found that the NA and EP basins had their most 244 
active decades after 1970 and that the WP and SP basins experienced their highest storm count decade 245 
after 1960 (Figure 2c, 2d). It is important to note that these results already reflect the additional TCs 246 
that were added to the pre-satellite era.  247 
 248 

 249 

Figure 2. Adjusted decadal count of all observed and estimated off-season TCs for the WP (a), NA (b), EP (c) 250 
and SP (d) ocean basins for the 1900-2019 period. 251 

The Mann-Kendall non-parametric tests for trends for all basins show that three basins exhibited 252 
statistically significant increasing trends in adjusted decadal off-season TC counts for the 1900-2019 253 
period (Table 2). The basins with statistically significant increasing trends for the entire time period 254 
were the EP (pre and off-season), NA (pre, post and off-season) and the WP (pre, post and off-season). 255 
The EP basin shows an increasing trend in pre- and off-season TCs that is more evident from the 256 
1950s to the present (Figure 2d), while the increasing trend in the NA basin can be observed from the 257 
1970s to 2019. The NA and EP basins also exhibit positive trends when the analysis is done only 258 
considering the post satellite era, yet the results are not statistically significant (Table 2)  259 
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The increasing trend in off-season TCs in the WP basin is more evident from the 1900 to 1969 260 
(Figure 2a), which was during  the pre-satellite era where missing TCs were added to the series. 261 
However, a negative trend is found in the WP basin if the decadal counts are analyzed from the 1960s 262 
to the present, yet those results were not statistically significant. In the post-satellite era in the WP 263 
basin, the 1990-1999 decade was identified as the one with most off-season TCs, however the two 264 
following decades exhibited a decreasing trend. The EP and NA basins show significant increasing 265 
trends in off-season TC counts (Table 2). Opposites to the trends identified in the WP basin, the EP 266 
and NA also show increasing decadal counts after the 1960s and 1970s. The SP basin also exhibited 267 
a positive Tau coefficient, yet it was statistically insignificant for the entire period and the post-268 
satellite era (Figure 2d).  269 

 270 
Table 2. Results of Mann-Kendall trend tests for the 1900-2019 period for all ocean basins 
where TCs form. 
  

Trends for the 1900-2019 period  

Pre TCs Tau S P-value Post TCs Tau S P-value Off TCs Tau  S P-value 

EP 0.746 0.002 EP 0.098 0.723 EP 0.679 0.004 

NA 0.572 0.015 NA 0.485 0.042 NA 0.554 0.016 

SP 0.048 0.889 SP 0.015 1.000 SP 0.061 0.836 

WP 0.554 0.016 WP 0.485 0.034 WP 0.534 0.019 

Trends for the 1960-2019 period 

EP 0.596 0.158 EP 0.414 0.338 EP 0.69 0.085 

NA 0.596 0.158 NA 0.645 0.119 NA 0.6 0.132 

SP 0.596 0.158 SP -0.2 0.707 SP -0.06 1 

WP -0.467 0.259 WP -0.6 0.132 WP -0.69 0.085 
 

 Significant trends in bold. 

 271 
MLR models were run on the basins that exhibited statistically significant (< 0.05) increasing 272 

trends in decadal total off-season TC counts over time and here we report the best models for each of 273 
the series. The MLR results show that the statistically significant increasing trends in TC frequency 274 
for the EP (pre and off-season) and WP basins is best explained by climate change factors SST, GMST 275 
and CC in both the normal and detrended series at the 0.05 significance level (Table 3). Climate 276 
change factors accounted for 56% (pre-season) and 52% (off-season) of the increasing trend in TC 277 
counts for the EP basin. In the WP basin climate change factors explained 55% (pre-season), 64% 278 
(post-season) and 68% (off-season) of the trends in off-season TCs, yet lower R squares were found 279 
when the analysis was done with the detrended series. Increasing trends in SSTs, GMST and moisture 280 
(CC) outside of the prime months of tropical storm development could promote better conditions for 281 
higher off-season TC occurrences (Klozback, 2006; Hansen et al., 2010).  282 
 
Table 3. Best multiple linear regression models (MLR) for basins with statistically 
significant increasing trends in off-season TCs with detrended climate indices. 

Model Adj. R² Adj. R² Det. Factors  p-val. p-val Det. 

EP pre-season 0.563 0.444 SST, GMST & CC 0.021 0.038 
      

EP off-season 0.522 0.472 SST, GMST & CC 0.030 0.024 
      

NA pre-season 0.481 0.496 SST, GMST & CC 0.041 0.022 
      

NA post-season 0.427 0.247 ENSO & AMO 0.130 0.057 
      

NA off-season 0.384 0.406 SST, GMST & CC 0.070 0.010 
      

WP pre-season 0.551 0.462 SST, GMST & CC 0.020 0.000 
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WP post-season 0.645 0.478 SST, GMST & CC 0.000 0.023 
      

WP off-season 0.689 0.481 SST, GMST & CC 0.005 0.017 

 283 

The climate variability factors (ENSO, AMO & IOD) did not exhibit statistically significant 284 
relationships with increasing off-season TC counts, which shows that natural variability does not 285 
explain the incrementing number of storms in the EP and WP basins.  MLR model results for the 286 
NA basin also showed the climate change variables accounting for 48% (pre-season) and 38% (off-287 
season) of the increasing trend in TCs (Table 3). However, the MLR model results for the post-288 
season months in the NA basin showed that the climate variability variables (ENSO & AMO) 289 
accounted for 42% (25% in the detrended) of the increasing trend in TCs, yet the model was not 290 
found to be statistically significant in both the normal and detrended series. It is well known that 291 
cold phases of ENSO (La Niña) and warm phases of AMO tend to be associated with higher TC 292 
frequency in the North Atlantic ocean (Tang and Neelin, 2004; Briggs, 2008) and this could explain 293 
why those teleconnections were  found to have the most significant influence on post-season TC 294 
frequency in the NA basin. When the MLR results of the original and detrended series are compared 295 
(Table 3), we find that the models with the detrended series exhibit lower R squares than the MLR 296 
models with the original series, yet those models were still found to be statistically significant 297 
which suggests that the correlation between off-season TCs and climate change factors is strong 298 
even after decadal trends are removed.  299 

Stepwise MLR model results showed that climate change factors (SST, GMST & CC) were among 300 
the selected variables that explained most of the increasing trend in off-season TCs for all basins 301 
analyzed (Table 4). In the EP basin, SST, ENSO, and CC, accounted for 69% (pre-season) and 65% 302 
(off-season) of the increasing trend in TCs. In the NA basin, the stepwise procedure selected CC as 303 
the sole climate change factor that explained 52% (pre-season) and 40% (off-season) of the rising 304 
frequency in TC counts. However, CC & AMO were selected as the variables that explained (43%) 305 
most of the variability in TC frequency during the post-season months in the NA basin. Stepwise 306 
procedure results for the WP basin show that climate change and variability factors were selected as 307 
the best predictors of TC frequency, with GMST and CC accounting for 57% (pre-season), CC, 308 
GMST, ENSO and IPO explaining 72% (post-season) and 74% (off-season) of the variability of 309 
TCs.  310 

Table 4. Stepwise multiple linear regression models (MLR) for basins with 
statistically significant increasing trends in off-season TCs. 
  

Model R-squared Adjusted R² Factors  p-value 

EP pre-season 0.777 0.694 SST, ENSO & CC 0.005 
     

EP off-season 0.747 0.652 SST, ENSO & CC 0.008 
     

NA pre-season 0.569 0.526 CC 0.004 
     

NA post-season 0.687 0.427 CC & AMO 0.098 
     

NA off-season 0.460 0.406 CC 0.015 
     

WP pre-season 0.655 0.578 GMST & CC 0.008 
     

WP post-season 0.826 0.726 CC, GMST, ENSO & IPO 0.008 
     

WP off-season 0.839 0.747 CC, GMST, ENSO & IPO 0.006 

 311 

The EP experienced a steady increase in off-season TC total counts from 1900 to 2019 at a rate 312 
of 1.1 additional storms per decade. The decadal off-season total TC count series for the EP basin 313 
closely resembles the increasing trend in average SSTs and CCs (Fig 3a, 3c). When the EP off-season 314 
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TC tracks are examined, it shows that most storms have formed in areas that have experienced 315 
statistically significant increasing trends in SST and CC, yet no changes in track or genesis location 316 
were detected over time. (Fig 3d, 3e). The correlation between off-season TCs in the EP basin and 317 
ENSO is not as clear as the one between SST and CC, with some mostly warm ENSO decades like 318 
the 1990-1999 exhibiting lower storm counts and other periods with cooler phases dominating 319 
showing a higher number of cyclones. When SST patterns for areas in the EP basin where TCs 320 
develop are examined over time, we find that most tropical/sub-tropical ocean waters have 321 
experienced a statistically significant increasing trend in ocean surface temperatures from 1900 to 322 
2019 (Fig 3d). Similar to other studies (Hansen et al., 2010), we find that the EP tropical ocean 323 
surfaces have increased by 0.051 degrees C° per decade. When CC patterns are  examined, we find 324 
that it has also experienced a statistically significant increasing trend in some areas in the EP basin 325 
(Fig 3e).  326 

 327 

 328 

Figure 3. Decadal TC counts for the EP off-seasons and decadal average SSTs (a), decadal TC counts for 329 
the EP off-seasons and decadal average ENSO 3.4 (b), decadal TC counts for the EP off-seasons and 330 
decadal average Correlation between Time and Dec-May averaged CC (c), correlation between Time and 331 
Dec-May averaged SST (C°) and the off-season TC tracks for the 1900-2019 period (d) and correlation 332 
between Time and Dec-May averaged CC (oktas) and the off-season TC tracks for the 1900-2019 period.  333 

The decadal off-season total TC count series for the NA basin closely resembles the 334 
increasing trend in average SSTs and CCs (Fig 4a, 4c). The NA decadal series shows a steady increase 335 
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in off-season TC total counts from 1900 to 2019 at a rate of 0.7 additional storms per decade and an 336 
SST increasing trend of 0.055 C° per decade. Both the average decadal SST and CC series coincide 337 
with the peaks and valleys in off-season TC counts for the NA basin, with the 1950-1959 showing a 338 
high number of storms associated with high mean SSTs and CCs while the drop in storm counts in 339 
the 1960-1969 decade matches a drastic drop in ocean surface temperatures (Figures 4a, 4c). The off-340 
season TC tracks in the NA basin also formed in areas that exhibited increasing trends in SST and 341 
CC, however no changes in track or genesis location were detected over time (Figure 4d, 4e). Even 342 
though average SSTs increase to 0.135 C° per decade from 1970 to 2019, off-season TC total counts 343 
went down in the 1990-1999 and 2010-2019 decades, with the decade in between (2000-2009) 344 
exhibiting the highest number of off-season TCs (14) of all decades examined. However, it is 345 
important to note that 5 out of the 6 decades with the most off-season TCs in the NA basin occurred 346 
after the 1970s.  347 

 348 
When North Atlantic SSTs are examined in areas where TCs form, we found that ocean surface 349 

temperatures have increased at a rate of 0.055 degrees C° per decade for the off-season months of 350 
Dec-March (Fig 4d). When CC patterns are  examined, we find that it has also experienced a 351 
statistically significant increasing trend of 0.06 oktas (eighths of the sky that are covered in clouds) 352 
per decade in the North Atlantic basin since the 1900 (Figure 4e). If the NA pre/post off-season series 353 
is modified to begin in the 1960s, we find that SSTs have increased at a decadal rate of 0.082 C° per 354 
decade  at a rate of 1.2 additional storms per decade. Overall, these results suggest that increasing 355 
trends in SSTs, which also drive increasing trends in evaporation rates associated with high CCs, are 356 
the physical mechanisms behind most of the recent increase in the total number of out of season TCs 357 
in the NA basin. The correlation between off-season TCs in the NA basin and AMO is not as clear as 358 
the one between SST and CC, with some warm AMO phases between 1930-1959 exhibiting lower 359 
storm counts while some cooler phases (1970-89) showing a higher number of cyclones. 360 
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 361 

Figure 4. Decadal TC counts for the NA off-seasons and decadal average SSTs (a), decadal TC counts for the 362 
NA off-seasons and decadal average AMO (b), decadal TC counts for the NA off-seasons and decadal average 363 
Correlation between Time and Dec-May averaged CC (c), correlation between Time and Dec-May averaged 364 
SST (C°) and the off-season TC tracks for the 1900-2019 period (d) and correlation between Time and Dec-365 
May averaged CC (oktas) and the off-season TC tracks for the 1900-2019 period (e).  366 
 367 

The decadal off-season total TC count series for the WP basin closely resembles the increasing 368 
trend in GMST (Fig 5a). However, the WP basin experienced the highest count of off-season TCs in 369 
the 1960-69 decade, not in the more recent decades like the EP and NA basins. More importantly, if 370 
trend analysis for off-season TC counts is done from 1960-2019 in the WP basin, we find a none 371 
statistically significant decreasing trend. However, it is important to note that four out of the five 372 
decades with most off-season TCs in the WP basin occurred after 1960. However, the 2010-2019 373 
decade was identified as the period with the lowest total number of off-season TCs even though 374 
increasing trends in mean SST, GMST and CC continued (Fig 5a, 5d and 5e). Off-season TC tracks 375 
in the WP basin also correlate spatially with areas that show increasing trends in SST and CC (Fig 376 
5d, 5e), yet no changes in TC genesis or tracks were identified over time. The decreasing number of 377 
off-season TCs in the last two decades coincided with a negative phase of the IPO, which suggests 378 
that TC frequency in the WP basin is influenced by fluctuations in the IPO (Fig 5c), whose recent 379 
negative phase since 1998 resembles La Niña–like SST anomaly patterns (Zhao et.al, 2018). Even 380 
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though most of the variability in off-season TC frequency in the WP basin can be explained by climate 381 
change trends in GMST, SST and CC, the rest of the variance in TCs is account by fluctuations in the 382 
IPO and ENSO teleconnections. 383 
 384 

 385 
Figure 5. Decadal TC counts for the WP off-seasons and decadal average SSTs (a), decadal TC counts for the 386 
WP off-seasons and decadal average AMO (b), decadal TC counts for the WP off-seasons and decadal average 387 
Correlation between Time and Dec-May averaged CC (c), correlation between Time and Dec-May averaged 388 
SST (C°) and the off-season TC tracks for the 1900-2019 period (d) and correlation between Time and Dec-389 
May averaged CC (oktas) and the off-season TC tracks for the 1900-2019 period (e). 390 
 391 

Studies that have examined TC frequency overall have found increases in the number of most 392 
intense hurricanes [Wang and Lee, 2008; Knutson et al., 2010; Emanuel, 2013], yet no clear trend has 393 
been found when lower intensity TCs have been examined [Landsea, 2007]. The results of other 394 
studies show that there is no overall agreement on the relationship between SSTs and TC frequency 395 
(Landsea, 2005; Emanuel, 2005; Trenberth and Shea, 2006; Trenberth, 2007), yet some  have found 396 
strong associations between TC variability and ENSO, AMO and IPO [Camargo and Sobel, 2005;  397 
Nogueira and Kim, 2007; Mahala et al., 2015; Zhao et al., 2018]. In this study we analyzed off-season 398 
TCs and our results differ from those that have found no trend in overall TC frequency, since we 399 
found decadal increasing trends in the NA and EP basin in both the pre and post-satellite eras. The 400 
results presented here suggest that climate change trends like increasing SSTs and more favorable 401 
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moisture environments (CC) between the months of Dec to May in the NA and EP basins seem to be 402 
the major factors behind decadal increasing trends in off-season TCs.  403 
 404 

6.  Summary and concluding remarks  405 

The frequency of TCs that developed outside of their prime season months were analyzed to 406 
determine if trends in higher storm totals in the Pacific and Atlantic Ocean basins were associated 407 
with natural variability, climate change or both. Adjusted off-season decadal TC total counts for six 408 
ocean basins were analyzed for the 1900-2019 period in order to determine if the number of storms 409 
have been increasing over time. Mann-Kendall tests for trends were done and the basins that exhibited 410 
statistically significant increasing trends were then furtherly analyzed using multiple linear regression 411 
models and stepwise procedures to determine if those trends could be explained by fluctuations 412 
associated with climate variability, climate change trends or a combination of both.  413 

 414 
 The main results of this study suggest that decadal total off-season (pre/post) TC counts have 415 

significantly increase over time since the 1900 in the East Pacific (EP), North Atlantic (NA) and West 416 
Pacific (WP) basins. The EP and NA basins exhibited statistically significant increasing trends even 417 
if the analysis was done from the 1960s instead of the 1900. The WP basin showed an overall 418 
increasing trend in the total number of off-season TCs per decade, yet if the analysis is done from the 419 
1960s to the present, no statistically significant increasing trend is found. However, the three basins 420 
that reflected an overall increase in decadal off-season TC frequency had their most active decades 421 
after the 1970s.  422 

 423 
Results from the best multiple linear regression (MLR) models show that the increasing decadal 424 

count of off-season TCs has been found to be strongly associated with climate change trends in sea 425 
surface temperature (SST), global mean surface temperature (GMST) and cloud cover (CC) in all 426 
three basins (EP, NA and WP). The MLR model where climate variability variables (ENSO and 427 
AMO) explained most of the variance in off-season TC counts was in the storm decadal counts for 428 
the post-season months of the NA basin.  429 

 430 
Results of the MLR stepwise procedures showed that the selected variables that accounted for 431 

most of the variability in off-season TCs for the EP basin were SST, CC and ENSO, while CC (pre-432 
season and off-season) and AMO (post-season) were chosen as the best variables for the NA basin. 433 
The stepwise procedure identified the climate change trends in GMST and CC, and fluctuations in 434 
ENSO and IPO as the variables that accounted for most of the variability in decadal off-season total 435 
TC counts in the WP basin,  436 
 437 

The findings of this study suggest that trends in SST, GMST and CC associated with climate 438 
change are not only altering the frequency (Klotzbach, 2006; Saunders and Lea, 2006; Hansen et al., 439 
2010) and intensity of TCs that develop during the peak months of the season, they are also altering 440 
the total number of storms that form in the off-season months (Dec-May), especially in the EP and 441 
NA basins. The results of this study have important implications for the NA and EP basins, if off-442 
season TCs have been increasing in frequency since the 1900 we can expect that this trend associated 443 
with climate change would continue in future decades. This increasing number of off-season TCs 444 
could potentially impact societies in their path during times of the year when storms are least 445 
expected, possibly increasing environmental and economic impacts in areas that are already 446 
experiencing the effects of climate change exacerbated phenomena.  447 

 448 
One of the main limitations of this work was the inclusion of tropical depressions in the off-449 

season TC analysis. If data on TC intensity were widely available for all off-season TCs, it would 450 
have been possible to exclude weaker tropical depressions from the analysis since the detection and 451 
classification of those storms was more difficult in the pre-satellite era. Other limitations of this study 452 
include the issues of worst data quality in the pre-satellite era, the problem of applying a universal 453 
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missed TC adjustment method to all basins analyzed and the lack of information on TC intensity for 454 
many storms, especially in the pre-satellite era.  455 
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