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Abstract. Meridional atmospheric transport is an important process in the climate system and has implications for the availabil-

ity of heat and moisture at high latitudes. Near-surface advection of cold and warm temperature over the ocean in the context of

extratropical cyclones additionally leads to important air-sea exchange. In this paper, we investigate the impact of these air-sea

fluxes on the stable water isotope (SWI) composition of water vapour in the Southern Ocean’s atmospheric boundary layer.

SWIs serve as a tool to trace phase change processes involved in the atmospheric water cycle and, thus, provide important5

insight into moist atmospheric processes associated with extratropical cyclones. Here we combine a three-month ship-based

SWI measurement data set around Antarctica with a series of regional high resolution numerical model simulations from the

isotope-enabled numerical weather prediction model COSMOiso. We objectively identify atmospheric cold and warm tempera-

ture advection associated with the cold and warm sector of extratropical cyclones, respectively, based on the air-sea temperature

difference applied to the measurement and the simulation data sets. A Lagrangian composite analysis of temperature advection10

based on the COSMOiso simulation data is compiled to identify the main processes affecting the observed variability of the

isotopic signal in marine boundary layer water vapour in the region from 35° S to 70° S . This analysis shows that the cold and

warm sectors of extratropical cyclones are associated with contrasting SWI signals. Specifically, the measurements show that

the median values of δ18O and δ2H in the atmospheric water vapour are 3.6 ‰ and 23.2 ‰ higher during warm than during

cold advection. The median value of the second-order isotope variable deuterium excess d, which can be used as a measure of15

non-equilibrium processes during phase changes, is 5.9 ‰ lower during warm than during cold advection. These characteristic

isotope signals during cold and warm advection reflect the opposite air-sea fluxes associated with these large-scale transport

events. The trajectory-based analysis reveals that the SWI signals in the cold sector are mainly shaped by ocean evaporation.

In the warm sector, the air masses experience a net loss of moisture due to dew deposition as they are advected over the rel-

atively colder ocean, which leads to the observed low d. We show that additionally the formation of clouds and precipitation20

in moist adiabatically ascending warm air parcels can decrease d in boundary layer water vapour. These findings illustrate the

highly variable isotopic composition in water vapour due to contrasting air-sea interactions during cold and warm advection,
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respectively, induced by the circulation associated with extratropical cyclones. SWIs can thus potentially be useful as trac-

ers for meridional air advection and other characteristics associated with the dynamics of the storm tracks over interannual

timescales.25

1 Introduction

Ocean evaporation is the most important source of atmospheric water vapour and it impacts mid-latitude and polar atmospheric

and ocean dynamics. Strong ocean evaporation can lead to the intensification of extratropical cyclones (e.g. Yau and Jean, 1989;

Uotila et al., 2011; Kuwano-Yoshida and Minobe, 2016) and polar lows (Rasmussen and Turner, 2003) and to changes in at-

mospheric (Neiman et al., 1990; Sinclair et al., 2010) and ocean static stability, for example in cyclone-induced cold ocean30

wakes (Chen et al., 2010) or by inducing deep water formation at high latitudes (Condron et al., 2006; Condron and Renfrew,

2013). The strength of ocean evaporation in the extratropics is strongly modulated by the large-scale atmospheric flow. Ocean

evaporation averaged across extratropical cyclones is similar to the ocean evaporation in the North Atlantic (Rudeva and Gulev,

2010) and the Southern Ocean (Papritz et al., 2014). But there are large differences in ocean evaporation between the cold and

warm sectors of extratropical cyclones, which are regions within cyclones of equatorward and poleward air mass transport,35

respectively. The equatorward advection of dry and cold air in the cold sector of extratropical cyclones leads to a large air-sea

moisture gradient and strong large-scale ocean evaporation (Bond and Fleagle, 1988; Boutle et al., 2010; Aemisegger and

Papritz, 2018), while weak ocean evaporation or even moisture fluxes from the atmosphere to the ocean, i.e. dew deposition,

are observed ahead of the cold front in the warm sector (Fleagle and Nuss, 1985; Persson et al., 2005; Bharti et al., 2019). In

polar regions close to the sea ice edge, cyclones induce the advection of cold and dry air over the open ocean leading to cold40

air outbreaks and strong ocean evaporation (Papritz et al., 2015). Thus, the large-scale meridional advection modulates air-sea

interactions, especially in the storm track regions.

The opposite direction of surface fluxes in the cold and warm sector of extratropical cyclones impact the marine boundary layer

(MBL) stability and moisture budget. In the cold sector, positive sensible heat fluxes lead to a low atmospheric stability and a

high MBL height (Beare, 2007; Sinclair et al., 2010). In idealised model simulations, the strongest ocean evaporation is seen45

directly behind the cold front in the region of subsiding dry air (Boutle et al., 2010). Dew deposition on the ocean surface has

been observed ahead of the cold front (Persson et al., 2005) and in warm sectors during the passage of extratropical cyclones

over cold ocean regions (Neiman et al., 1990). Negative sensible heat fluxes in the warm sector lead to a high boundary layer

stability and shallow MBLs (Beare, 2007; Sinclair et al., 2010). The net freshwater flux between the ocean and atmosphere is

the sum of ocean evaporation and precipitation. In the warm sector, important precipitation occurs in the region of the warm50

conveyor belt - a moist, coherent, ascending airstream in front of the cold front (Browning, 1990; Madonna et al., 2014; Pfahl

et al., 2014). Frontal precipitation, often related to the warm conveyor belt, can affect the surface moisture fluxes in both sectors

of extratropical cyclones (Catto et al., 2012).

The characteristic surface freshwater fluxes in the cold and warm sector of extratropical cyclones are schematically summarised

in Fig. 1. Air-sea moisture fluxes in the form of ocean evaporation and dew deposition are caused by a thermodynamic dis-55
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Figure 1. Schematic of air-sea interactions in (a) the cold and (b) the warm sector of an extratropical cyclone. E denotes ocean evaporation

and, if directed downward, dew formation and P denotes precipitation. hs is the relative humidity with respect to sea surface temperature

and ∆Tao the difference between the air and sea surface temperature. For details see text.

equilibrium between the ocean and atmosphere, which can be expressed by the relative humidity with respect to sea surface

temperature hs = qa
qs(SST ) , where qa is the specific humidity of the atmosphere and qs(SST ) the saturation specific humidity

at sea surface temperature (SST). qs is temperature-dependent and increases with increasing temperature Ta. In the cold sector,

where dry and cold air is advected over a relatively warm ocean surface, the air-sea temperature difference ∆Tao = Ta−SST
is negative and hs is low due to a low qa and a relatively high qs. Therefore, the air in the cold sector is generally undersaturated60

with respect to the ocean and, thus (intense) ocean evaporation is expected (Fig. 1a). Negative surface freshwater fluxes can be

observed in the cold sector due to precipitation. The horizontal advection in the cold sector of extratropical cyclones is referred

to as cold temperature advection in the following. In contrast, in the warm sector, warm air is advected over a relatively colder

ocean surface (referred to as warm temperature advection in the following). Under these environmental conditions, ∆Tao is

positive and hs is high due to a high qa relative to qs. Therefore, the near-surface air in the warm sector can be close to satura-65

tion or oversaturated with respect to the potentially cold ocean surface, leading to weak ocean evaporation or dew deposition

(Fig. 1b). Furthermore, precipitation associated with the warm conveyor belt leads to moisture fluxes from the atmosphere to

the ocean.

Despite their important role in the atmospheric moisture budget, only few and regionally limited measurements of ocean

evaporation and dew deposition are available, because of the extensive set of measurements needed (Pollard et al., 1983; Flea-70

gle and Nuss, 1985; Holt and Raman, 1990; Neiman et al., 1990; Persson et al., 2005; Bharti et al., 2019). Many studies

on air-sea moisture fluxes in extratropical cyclones rely on model simulations (e.g. Nuss, 1989; Beare, 2007; Sinclair et al.,
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2010; Boutle et al., 2011). Further insight into the strength of ocean evaporation can be gained by ship-based measurements of

humidity and of stable water isotopes (SWIs) in water vapour, which provide near-surface water vapour characteristics. SWI

measurements can be used to better understand the importance of various moist processes including ocean evaporation, dew75

deposition and precipitation for the MBL moisture budget. The relative abundance of heavy and light isotopes in the different

water reservoirs is altered during phase-change processes due to isotopic fractionation. The abundance of the heavy isotopo-

logues 2H1H16O and 1H18
2 O is expressed by the δ-notation (δ2H and δ18O, respectively) (Dansgaard, 1964), which is defined

as the isotopic ratio R of the concentration of the heavy isotopologue to the concentration of the light isotopologue (here-

after named isotope) 1H16
2 O relative to an internationally accepted standard isotopic ratio (the Vienna standard mean ocean80

water, VMSMOW2; with 2RVSMOW2=1.5576·10−4 and 18RVSMOW2=2.0052·10−3): δ2H[‰] = (
2Rsample

2RVSMOW2·2 −1) ·1000 and

δ18O[‰] = (
18Rsample

18RVSMOW2
− 1) · 1000. There are two types of isotopic fractionation: equilibrium fractionation, which is caused

by the difference in saturation vapour pressure of different isotopes, and non-equilibrium fractionation, which occurs due to

molecular diffusion, e.g. during ocean evaporation. A measure of non-equilibrium fractionation and, thus, diffusive processes

such as evaporation or dew deposition is the second-order isotope variable deuterium excess d, defined as d=δ2H−8·δ18O.85

During a diffusive process, a positive anomaly in d develops in the phase towards which the flux is directed (e.g. the atmo-

sphere during ocean evaporation), while a negative d anomaly can be observed in the other, reservoir phase (e.g. rain droplets

during below-cloud evaporation). If the moisture reservoir is large and well-mixed, which can be assumed for the ocean during

ocean evaporation, the impact of isotopic fractionation on the isotopic composition of the reservoir can be neglected. Air-sea

net moisture fluxes occur due to non-equilibrium conditions at the atmosphere-ocean interface and, therefore, d can be used as90

a tracer of air-sea interactions.

Previous studies have shown, that d in MBL water vapour negatively correlates with hs (Uemura et al., 2008; Pfahl and Wernli,

2008; Bonne et al., 2019; Thurnherr et al., 2020), which reflects the differing strength of ocean evaporation and, thus, non-

equilibrium fractionation in different hs-environments. So far, studies focused on environments with low hs, where positive d

in atmospheric water vapour has been observed due to strong ocean evaporation (Gat et al., 2003; Uemura et al., 2008; Gat,95

2008; Pfahl and Wernli, 2008; Aemisegger and Sjolte, 2018). In extratropical cyclones, such low hs-environments with high d

are expected in the cold sector, corresponding to areas of strong large-scale ocean evaporation (Aemisegger and Sjolte, 2018,

and Fig. 1a). An opposite signal in d, i.e. d close to or below 0, is expected in the warm sector, where dew deposition or weak

ocean evaporation occurs (Fig. 1b). Only few measurements of negative d in atmospheric water vapour have been reported

(Uemura et al., 2008; Bonne et al., 2019; Thurnherr et al., 2020), which have been related to weak ocean evaporation (Uemura100

et al., 2008) and deposition of water vapour on sea ice (Bonne et al., 2019). However, to our current knowledge there is no

study that investigated the processes leading to the d-hs relationship in MBL water vapour in high hs-environments.

Modelling of SWIs in the atmospheric branch of the water cycle helps to identify which moist processes influence the isotopic

composition of water vapour. The incorporation of SWIs into numerical climate and weather models (Joussaume et al., 1984;

Yoshimura et al., 2008; Blossey et al., 2010; Risi et al., 2010b; Werner et al., 2011; Pfahl et al., 2012) allows to study the105

impact of different moist atmospheric processes on the SWI-evolution of atmospheric water vapour. Such model simulations

also provide a spatial context to measurement data and the basis for the definition of various useful Eulerian and Lagrangian
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diagnostics. Recently, in situ SWI observations have been used to compare the representation of the hydrological cycle in

general circulation models equipped with water isotopes, showing large differences in the performance of the 3 atmospheric

general circulation models ECHAM-wiso, LMDZiso and isoGSM (Steen-Larsen et al., 2017). Detailed insights into the inter-110

action of weather systems and SWIs can be obtained from the isotope-enabled Consortium for Small-Scale Modelling model

COSMOiso (Pfahl et al., 2012). Lagrangian studies based on COSMOiso simulations have shown that δ2H and d in near-surface

water vapour are strongly influenced by ocean evaporation and, over land, by evapotranspiration and mixing with moist air,

while liquid and mixed phase cloud formation contributes to the δ2H- and d-variability (Aemisegger et al., 2015; Dütsch et al.,

2018). The importance of different air mass origins and pathways of airstreams for the SWI evolution during frontal passages115

has been illustrated using a COSMOiso simulation in the Mediterranean Sea (Lee et al., 2019). Idealised COSMOiso simu-

lations of an extratropical cyclone showed that the meridional advection of air in the cold and warm sector strongly shape

the characteristic high δ values in the warm and low δ values in the cold sector (Dütsch et al., 2016, see also Fig. 1). In their

idealised model study, isotopic fractionation during ocean evaporation was switched off, such that air-sea interaction processes

did not affect their simulated δ2H-contrast between the cold and warm sector. It is, therefore, not known yet how important120

air-sea interactions are in shaping the high δ values in the warm sector and the low δ values in the cold sector of extratropical

cyclones (see also Fig. 1).

In this study, we aim to address the following two questions analysing three-month ship-based SWI measurements in the

Southern Ocean in combination with high resolution regional COSMOiso simulations covering the measurement period with

the goal to better understand the influence of air-sea interactions on the isotopic composition of water vapour in the MBL:125

1. What are the characteristic SWI signals in cold and warm sectors of extratropical cyclones, respectively?

2. How do the differing air-sea freshwater fluxes in the cold and warm sectors of extratropical cyclones affect the isotopic

variability of the MBL water vapour?

This paper is structured in the following way: In Sect. 2, the measurements, simulations and Lagrangian diagnostics are de-

scribed. An objective identification of cold and warm temperature advection is introduced in Sect. 3. Thereafter, the temperature130

advection regimes during ACE are discussed (Sect. 4.1), the measured SWI signals are related to the cold and warm tempera-

ture advection in the cold and warm sector of extratropical cyclones, respectively (Sect. 4.2), and the evolution of the isotope

signals along COSMOiso trajectories is analysed for trajectories from the cold and warm sector, respectively (Sect. 4.3).

2 Data

This study combines meteorological and SWI measurements from the Antarctic Circumnavigation Expedition (ACE), which135

took place from 21 December 2016 to 19 March 2017 in the Southern Ocean (Walton and Thomas, 2018; Schmale et al.,

2019, Sect. 2.1), with COSMOiso simulations and ERA-Interim reanalysis data from the European Centre for Medium-Range

Weather Forecasts (ECMWF) (Sect. 2.2). The Lagrangian methods used for the analysis are described in Sect. 2.3.
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2.1 Measurement data

Different measurement data sets from ACE were used in this study:140

1. During ACE (see cruise track in Fig. 2), continuous measurements of SWIs using a Picarro cavity ring-down laser

spectrometer were conducted at a height of 13.5 m a.s.l. above the ocean surface on board the Russian research vessel

Akademik Tryoshnikov. A detailed description of the SWI data set (setup and post-processing) can be found in Thurnherr

et al. (2020).

2. A merged SST product (Haumann et al., 2020), that is a combination of in situ measurements using an Aqualine Ferrybox145

system and, where no in situ measurements are available, of the daily optimum interpolation SST satellite product from

the Advanced Very High Resolution Radiometer (AVHRR) infrared sensor (version 2; AVHRR-Only; Reynolds et al.,

2007).

3. Air temperature, air pressure and relative humidity are used from the automated weather station operated onboard

(Landwehr et al., 2019).150

4. Rainfall and snowfall rates along the ship track are derived from continuous micro rain radar (MRR) measurements. The

rainfall rate (Gehring et al., 2020) is computed from the drop size distribution estimated from the MRR Doppler spectra

at the 100-200 m a.s.l. range gate as explained in Peters et al. (2005). During time periods with a melting layer close to

the surface, the rainfall rate is strongly overestimated by our method. These periods of a low melting layer (<200 m a.s.l.)

are masked for the analysis in this study. The snowfall rates are calculated from the MRR effective reflectivity at the 400155

m a.s.l. range. The effective reflectivity along with the Doppler velocity and the spectral range are derived from the raw

Doppler spectra using the algorithm of Maahn and Kollias (2012). In order to estimate the snowfall rate, we use the Z-S

relationship derived by Grazioli et al. (2017) based on the measurements at Dumont-D’Urville station. We assume that

the snowfall measurements at this location (on an island near Adelie Land) provide a good approximation of the snowfall

microphysical properties observed during ACE.160

5. To study the vertical structure of the MBL, radiosonde measurement are used (Gorodetskaya et al., 2021). iMET ra-

diosondes were deployed during ACE measuring pressure, air temperature, relative humidity and the GPS location. The

radiosondes were launched once or twice per day and at higher frequency for specific events.

All data is used at an hourly time resolution, except for the radiosondes which were launched at specific times with vertical

profile measurements available at 1 s resolution.165

2.2 Model data

2.2.1 ERA-Interim reanalysis data

Six-hourly data from the ERA-Interim reanalyses (Dee et al., 2011) from December 2016 to March 2017 are used for the anal-

ysis of cold and warm temperature advection (see Sect. 3) during ACE over the entire Southern Ocean. The data is interpolated
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Figure 2. Domains of the nine COSMOiso simulations (see also Table 1). The ACE ship track is indicated by a bold line, coloured differently

for the three legs of the expedition.

to a 1° horizontal grid and 60 vertical levels. Due to fewer observational data in the Southern Hemisphere compared to the170

Northern Hemisphere, the model fields are expected to have a higher uncertainty in the Southern Hemisphere. Nonetheless,

the 4D-var data assimilation system by the ECMWF to compile the ERA-Interim reanalysis shows good performance in the

Southern Hemisphere (Dee et al., 2011; Nicolas and Bromwich, 2011) and the uncertainties due to assimilation errors have

been shown to be minor (Nicolas and Bromwich, 2011).

Based on the ERA-Interim reanalyses, cyclone frequencies were calculated using a 2D cyclone detection algorithm based on175

sea level pressure fields (Wernli and Schwierz, 2006; Sprenger et al., 2017). For the identification of the cyclones, pressure

minima are removed where the topography exceeds 1500 m. Furthermore, surface fronts were detected following Schemm

et al. (2015) using the following criteria: (i) the horizontal equivalent potential temperature gradient at 850 hPa has to be at

least 3.8 K (100 km)−1, and (ii) the fronts need to have a minimum length of 500 km.
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2.2.2 COSMOiso simulations180

The limited-area regional numerical weather prediction model COSMO (Steppeler et al., 2003) is used in its isotope-enabled

version COSMOiso (Pfahl et al., 2012) with two additional parallel water cycles for the heavy water molecules H18
2 O and

1H2H16O, which mirror the water cycling of H16
2 O. These additional water cycles are affected by the same physical processes

as the light water molecule, except for isotopic fractionation during phase change processes. COSMOiso has been previously

used to study various aspects of the regional atmospheric water cycle over Europe and the USA (Pfahl et al., 2012; Aemisegger185

et al., 2015; Dütsch et al., 2018; Christner et al., 2018; Lee et al., 2019). Here, nine COSMOiso simulations were conducted

in the Southern Ocean covering the ACE measurement time period. Since COSMOisois an isotope-enabled regional numerical

weather prediction model, global SWI data are needed for its initialization and for the boundary conditions. The simulations

were initialised and driven at the lateral boundaries by output from an ECHAM5-wiso simulation, which was nudged 6-hourly

to temperature, surface pressure, divergence and vorticity of ERA-Interim reanalysis data (Werner et al., 2011; Butzin et al.,190

2014). The wind in the COSMO domain was spectrally nudged to the ECHAM5-wiso above 850 hPa to keep the meteorol-

ogy within the COSMOiso domain as close as possible to the reanalysis. The ECHAM5-wiso fields are available 6-hourly

with a spectral resolution of T106 (corresponding to 125 km grid spacing in meridional direction) and 31 vertical levels. The

COSMOiso simulations were performed at a horizontal resolution of 0.125°, corresponding to ∼14 km, with 40 vertical levels

and explicit convection. The explicit convection setup is preferred over using the deep convection parametrisation even at a195

resolution of 0.125°. Simulations with the COSMO model over Europe have been shown to represent the hydroclimate more

realistically in this setup (Vergara-Temprado et al., 2019). Furthermore, isotope-enabled simulations over the Southern Ocean

with explicit convection revealed a reduced strength of vertical mixing and more realistic vertical isotope profiles than simu-

lations with parametrised convection (not shown, see also results from Jansing, 2019, with parametrised convection). Hourly

outputs of the COSMOiso simulations are used for the analysis. The model domains have an area of approximately 50° x 50°200

and were shifted along the ACE track, such that the entire expedition route was covered by the 9 simulations in space and

time (see Fig. 2). Isotopic fractionation during surface evaporation is parameterized with the Craig–Gordon model (Craig and

Gordon, 1965) using a wind speed independent formulation of the non-equilibrium fractionation factor (Pfahl and Wernli,

2009). The isotopic composition of the ocean surface water is prescribed at a constant value of 1 ‰ for δ2H and δ18O, which

is relatively high for the southern part of the ACE cruise track (Xu et al., 2012), but we expect that this has minor effects for205

the purposes of this study. For a detailed description of the physics and isotope parameterisations in the COSMOiso model see

Doms et al. (2013) and Pfahl et al. (2012), respectively. For terrestrial surfaces, a one-layer surface snow model with equilib-

rium fractionation during snow sublimation and a multi-layer soil model (see supplement of Christner et al., 2018) is used.

The specifications of each model run are summarised in Table 1. The first week of each run is used as spin-up time and is

not included in the analysis. For comparison with the ACE measurements, the lowest model level of the different variables is210

bi-linearly interpolated along the ACE track. This corresponds approximately to the height of the inlet on the ship. During time

periods, when two model runs overlap in time and space, one of the runs is chosen in such a way that the individual cold and
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Table 1. Specifications of COSMOiso model simulations. The columns center and width refer to the center and width of the simulation

domain. The column time window shows the time period over which trajectories were calculated for the respective simulation. In column

trajs, the total number of trajectories arriving during cold and warm temperature advection (total) and the percentage of these trajectories

included in the analysis based on the explained moisture fraction threshold (% incl.) are shown for each model simulation.

simulation
start

[at 0 UTC]

end

[at 0 UTC]

center

[° S, ° E]

width

[° lat, ° lon]
time window

trajs

[total, % incl.]

leg1_run1 13 Dec 2016 12 Jan 2017 47, 18 50, 50 21 Dec 2016 - 1 Jan 2017 1271, 87.1

leg1_run2 24 Dec 2016 23 Jan 2017 47, 73 50, 50 2 - 12 Jan 2017 629, 97.6

leg1_run3 3 Jan 2017 2 Feb 2017 52, 130 50, 50 13 - 26 Jan 2017 776, 90.3

leg2_run1 12 Jan 2017 11 Feb 2017 61, 151 50, 50 27 Jan - 8 Feb 2017 731, 92.3

leg2_run2 28 Jan 2017 27 Feb 2017 61, -154.4 50, 50 9 - 14 Feb 2017 265, 100.0

leg2_run3 1 Feb 2017 3 March 2017 61, -100 50, 50 15 - 23 Feb 2017 373, 80.2

leg3_run1 16 Feb 2017 18 March 2017 52, -80 47.5, 56.25 24 Feb - 1 March 2017 289, 87.5

leg3_run2 21 Feb 2017 23 March 2017 62, -25 50, 50 2 - 13 March 2017 904, 96.1

leg3_run3 1 March 2017 31 March 2017 47, -5 50, 50 14 - 23 March 2017 516, 80.0

warm temperature advection events are extracted entirely from one single model run.

2.3 Backward trajectories and moisture sources215

Seven-day air parcel backward trajectories are calculated using the Lagrangian analysis tool LAGRANTO (Wernli and Davies,

1997; Sprenger and Wernli, 2015) based on the three-dimensional 1-hourly wind fields from the COSMOiso simulations. The

trajectories were launched every hour along the ACE track at pressure levels in 10 hPa-steps between the surface and the MBL

top as identified by COSMOiso. Trajectories were analysed until they left the model domain and for the time windows of

each model run as indicated in Table 1. Several variables were interpolated along the trajectory positions, including the SWI220

concentrations such that the evolution of the SWI composition during the air mass transport can be analysed. Only trajectories

starting within the MBL are used for the trajectory analysis in Sect. 4.3.

Moisture sources of the MBL water vapour along the ACE track were calculated using the moisture source diagnostic devel-

oped by Sodemann et al. (2008) adjusted to identify the moisture sources of water vapour (Pfahl and Wernli, 2008) using the

seven-day COSMOiso backward trajectories in a setup as in Aemisegger et al. (2014). In short, this method considers the mass225

budget of water vapour in an air parcel. Moisture uptakes are registered whenever the specific humidity along an air parcel

trajectory increases. The weight of each uptake depends on its contribution to the specific humidity of the trajectory upon

arrival. If precipitation occurs (i.e. a decrease of specific humidity along the trajectory happens) after one or several uptakes,
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the weight of all previous uptakes is reduced proportionally to their respective contribution to the loss. The moisture source

conditions identified for each trajectory are subsequently weighted by the air parcel’s specific humidity at the arrival in the230

boundary layer. This is done for different variables that are relevant for characterizing the moisture source conditions, such as

the time of uptake, the latitude and the water vapour’s isotopic composition. More details on the moisture source identification

algorithm is provided in the supplement. For the COSMOiso analyses in Sect. 4, only trajectories, for which at least 70% of

the moisture upon arrival can be explained by moisture uptakes along the trajectories, are used. This corresponds to 90% of

all trajectories arriving during cold and warm temperature advection along the ACE track (see also Table 1) and explains the235

origin of, on average, 86% of the moisture upon arrival.

The entrance time of the trajectories into a cold or warm sector before arrival at the measurement site is defined as the time

when the trajectory enters the cold or warm sector (identified as explained in Sect. 3) without leaving the cold or warm sector,

respectively, afterwards for more than 12 hours before arrival. The 12 h criteria is used to avoid that the entrance time is affected

by short residence times outside of the sector.240

3 Objective identification of cold and warm temperature advection

During the meridional advection of air masses in the cold and warm sector of extratropical cyclones, temperature advection oc-

curs due to cold air, that is advected equatorward, and warm air, that is transported poleward. Temperature advection is defined

as −u ·∇T , where u is the velocity vector and T the air temperature. To calculate −u ·∇T , the spatial distribution of T is245

needed, which is usually not available from ship-based meteorological measurements. Since the advection of air masses leads

to a thermal imbalance between the ocean and the atmosphere, we use a simple identification method of temperature advec-

tion based on the air-sea temperature difference ∆Tao = T −SST , where T is taken at a suitable near-surface level. A specific

threshold of ∆Tao is chosen to define cold and warm temperature advection, respectively. In this study, we analyse situations, in

which the atmosphere and the ocean are not in thermodynamic equilibrium. Therefore, symmetric thresholds around an isother-250

mal near-surface stratification are chosen. Cold temperature advection is defined as time periods when ∆Tao <−1.0°C and

warm temperature advection when ∆Tao > 1.0°C. A zonal or weak advection regime is defined for −1.0°C<∆Tao < 1.0°C.

The effects of using different temperature thresholds to define the temperature advection regimes are discussed in Hartmuth

(2019).

Two-dimensional masks of cold and warm temperature advection events as identified by the proposed scheme in ERA-Interim255

using T at 10 m a.s.l. are shown exemplarily at 12 UTC 26 Dec 2016 in Fig. 3. The warm temperature advection masks cover

areas to the north-east of low pressure systems (indicated by minima in sea level pressure), which correspond to the warm

sectors of extratropical cyclones in the Southern Ocean (Fig. 3a). West of the low pressure systems, cold temperature advection

in the cold sectors can be seen. For example between 60° E and 90° E, the cold and warm sectors of a large low pressure system

(L1 in Fig. 3) are indicated by the cold and warm temperature advection masks. In this snapshot, areas of cold and warm tem-260

perature advection coincide with positive and negative ocean evaporation, respectively (Fig. 3b). Cold temperature advection is
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L1
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Figure 3. An example of cold and warm temperature advection events in the Southern Ocean at 12 UTC 26 Dec 2016 from ERA-Interim.

(a) Air-sea temperature difference ∆Tao using T at 10 m a.s.l. (colours). Grey contours show sea level pressure in 5 hPa intervals. (b) Ocean

evaporation E (colours) and surface cold (green contours) and warm (orange contours) fronts. Contours of ∆Tao=−1.0° C (blue, dashed)

indicate cold and of ∆Tao=1.0° C (red, solid) warm temperature advection events, respectively. Land areas and areas covered by at least 1%

sea ice are blanked. Additionally, the blanked sea ice areas are hatched. L1 and L2 mark cyclones discussed in the text.

associated with strong ocean evaporation. Weak ocean evaporation occurs mainly between the advection masks, and very small

or even negative moisture fluxes indicate dew deposition occurring in the warm sectors (see for example cyclone L2 between

60° W and 30° W in Fig. 3b). As expected, the surface fronts often mark the boundaries between the cold and warm sectors and,

thus, of the cold and warm temperature advection masks. The warm and cold fronts of the cyclone L2 delimit the warm sector265

along its southern edge following closely the temperature advection mask. In other cases, the surface fronts are not aligned

with the temperature advection mask. This is the case for the cyclone L1, where the cold front is within the warm temperature

advection mask and negative ocean evaporation is seen behind the cold front. This discrepancy between the surface fronts and

the temperature advection masks could be caused by differences in the identification schemes. The surface fronts are identified

using horizontal gradients in equivalent potential temperature at 850 hPa, while the advection mask is based on the contrast270

between T at 10 m a.s.l and SST. The focus on air-sea interactions in this study justifies the choice of an identification scheme

based on surface fields. Ocean evaporation aligns well with the advection masks confirming that the proposed identification
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Hobart

Punta
Arenas

Figure 4. Two-day backward trajectories calculated with COSMOiso wind fields for warm (orange) and cold (blue) temperature advection

events as identified using ∆Tao in COSMOiso along the ACE ship track (black, dashed line). The black dots denote the harbour stays at Cape

Town (ZA) on 21 December 2016, Hobart (AUS) from 19 to 22 January 2017, Punta Arenas (CL) from 22 to 26 February 2017, and again in

Cape Town on 19 March 2017.

scheme is useful for the investigation of air-sea fluxes. This scheme is a simple objective method and can be applied to model

simulations as well as measurement data. Other Eulerian features of extratropical cyclones, such as the cyclone centres, areas or

fronts, have been identified using automated identification schemes (e.g. Lambert, 1988; Hewson, 1998; Wernli and Schwierz,275

2006; Jenkner et al., 2010) and used to characterise the impact of extratropical cyclones on air-sea interactions (Papritz et al.,

2014; Aemisegger and Papritz, 2018). The temperature advection scheme presented here provides the possibility to study the

contrasting behaviour of air-sea interactions specifically in the cold and warm sectors of extratropical cyclones, respectively.

In this study, the cold and warm temperature advection scheme was applied (i) to the ACE measurements, which are used

for the characterisation of the isotopic signal in the cold and warm sectors, using the measured air temperature at 24 m a.s.l,280

and the merged SST product (see Sect. 2.1), (ii) to the ERA-Interim reanalysis, which is used for a characterization of cold

and warm temperature advection during ACE, using T at 10 m a.s.l., and (iii) to the COSMOiso data set, which is used to

study the relevant processes shaping the SWI signal in cold and warm sectors, using T at the lowest model level, which cor-

responds to approximately 10 m a.s.l. The higher level of air temperature used for the calculation of the measured advection

events leads to slightly higher frequencies in cold temperature advection and lower frequencies in warm temperature advection285

compared to the COSMOiso and ERA-Interim advection events, because lower air temperature is expected at higher altitude.

In COSMOiso, the median temperature difference between the lowest model level at 10 m a.s.l. and the second lowest model

level at 35 m a.s.l. is 0.25 [0.19,0.29] °C (the brackets denote the [25,75] percentile range). Using the temperature at 35 m a.s.l.

instead of 10 m a.s.l leads to an increase in total hours of cold temperature advection by 13% and a decrease of warm tem-

12



perature advection by 9% along the ACE track. Nonetheless, the difference between 10 m and 24 m a.s.l. air temperature is290

fairly small and the advection frequencies in COSMOiso and ERA-Interim are similar to the advection frequencies in the mea-

surements. The choice of air temperature altitude mainly changes the length of the advection events by a few hours. Overall,

the identified cold and warm temperature advection events using COSMOiso agree well with the measurements and represent

similar environmental conditions (see also Sect. 4.2). The COSMOiso backward trajectories along the ACE track show further

that the identified cold and warm temperature advection events generally refer to situations of northward and southward flow,295

respectively (Fig. 4). We conclude, that the proposed identification scheme is adequate to study the impact of meridional air

mass advection on air-sea moisture fluxes in measurements and simulations.

4 Results

4.1 Temperature advection regimes and their vertical structure during ACE300

a) Occurrence frequencies of the advection regimes over the Southern Ocean

In order to characterise the temperature advection regimes, the frequency of the advection regimes at each grid cell (referred

to as occurrence frequency in the following) and the associated air-sea moisture fluxes (i.e. the mean values associated to each

advection regime) are calculated in the region south of 30° S for the period from December 2016 to March 2017. The spatial

patterns of cold temperature advection, warm temperature advection, and zonal flow south of 30 oS in the ACE summer (Dec305

2016 - March 2017, Fig. 5) are in general agreement with the December - March climatology over the period 1979-2018 (see

supplement Figure S1). Therefore, we will focus on the occurrence frequencies of temperature advection during ACE in the

following. Cold temperature advection, warm temperature advection and zonal flow occur with different frequencies south of

30° S (Fig. 5). Zonal flow is the most frequently occurring advection regime (54 %), the median air-sea fluxes lie in between

the values for cold and warm temperature advection and the net air-sea moisture flux is close to zero. Therefore, we will mainly310

discuss cold and warm temperature advection in the following, which occur with frequencies of 32% and 14 %, respectively.

Each temperature advection regime, thus, occurs frequently and represents an important large-scale flow situation of the atmo-

spheric dynamics over the Southern Ocean. In the following, the large-scale flow environment and freshwater fluxes associated

with cold and warm temperature advection are discussed separately.

Cold temperature advection occurs during the meridional transport of cold air over a relatively warmer ocean surface in the cold315

sector of extratropical cyclones. High occurrence frequency of cold temperature advection of up to 60% is seen in a latitudinal

band north of 40° S , equatorward of regions with high cyclone frequencies in all three ocean basins (Fig. 5a). In these areas, the

cold sectors of extratropical cyclones pass over regions with anomalously warm SSTs, that are higher than the zonal mean SST

(Fig. 6). For instance in the southeastern Indian Ocean, the two zonal SST maxima at 20° E and 60° E north of 40° S overlap

with the local frequency maxima of cold temperature advection. In these regions, hot spots of large-scale ocean evaporation320

occur frequently and are associated with the warm ocean western boundary currents along the continents (Moore and Renfrew,
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Figure 5. Mean occurrence frequencies of cold and warm temperature advection (a,c) and the associated ocean evaporation (b,d) from

December 2016 to March 2017 using ERA-Interim. Contours in (a,c) show the cyclone frequencies of 10, 20, 30 and 40% (from white to

black, respectively). Blue dashed lines in (b,d) show mean surface precipitation in the respective flow category at levels of 0.06, 0.18, 0.24,

and 0.3 mm h−1 (from light to dark blue, respectively). The grey thick line in (a,c) shows the ACE ship track with the observed occurrences

of cold (white points) and warm (black points) temperature advection events during ACE. Land areas and areas covered by at least 50% sea

ice are blanked. Additionally, the blanked sea ice areas are hatched and bounded by pink contours.
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2002; Aemisegger and Papritz, 2018). Cold temperature advection also frequently occurs along the Antarctic coast in the Ross

Sea, Weddell Sea and across the Amery Ice shelf. These areas correspond to regions of frequent cold air outbreaks in summer

(Papritz et al., 2015). During cold air outbreaks, which are often induced by extratropical cyclones, cold and dry air is advected

over a relatively warm ocean. In the same regions along the Antarctic coast, strong large-scale ocean evaporation events occur,325

of which more than 80% are driven by extratropical cyclones (Aemisegger and Papritz, 2018). Strong evaporation is therefore

expected to occur during cold temperature advection and surface evaporation during cold temperature advection is found to be

positive with a mean value and standard deviation of 0.08± 0.05 mm h−1 (Fig. 5b), increasing towards the equator due to the

SST-dependence of ocean evaporation. Small amounts of rainfall are associated with cold temperature advection (mean value

of 0.05± 0.04 mm h−1) and are mainly due to shallow convection behind the cold front. The net air-sea moisture flux during330

cold temperature advection is from the ocean into the atmosphere (Fig. 5b).

Warm temperature advection frequently occurs in a few areas in the Southern Ocean where warm air is transported over a

relatively colder ocean. Warm temperature advection hot spots of up to 50% occurrence frequency can be observed north of

the region with highest cyclone frequency and south of the band of high cold temperature advection occurrence frequency

(Fig. 5c). These regions are associated with the warm sectors of extratropical cyclones along the Southern Ocean storm track,335

in which warm and moist air is advected polewards. Furthermore, warm temperature advection occurs along the eastern coast

of South America and at 150oW in the South Pacific, which are regions of anomalously cold ocean waters (Fig. 6). The iso-

lated hot spot in the Pacific is connected to the location of the oceanic polar front, which has its northernmost position between

55 oS and 60 oS in the Pacific Ocean around 150 oW (Moore et al., 1999). The advection of terrestrial and/or subtropical air

over the cold Malvinas current along the Argentinian coast leads to frequent warm temperature advection along the east coast340

of South America. During warm temperature advection, surface evaporation is low or negative with a climatological mean of

0.00±0.02 mm h−1 (Fig. 5d). Furthermore, warm temperature advection is accompanied by precipitation with a climatological

mean of 0.16±0.14 mm h−1. Thus, there is a net flux of moisture from the atmosphere into the ocean during warm temperature

advection.

345

b) Advection regimes along the ACE track

Specifically along the ACE track, the occurrence frequencies of the three advection regimes differ from the occurrence fre-

quencies in the entire Southern Ocean. In the ACE measurements, 59% of all advection events were zonal, 27% cold and 14%

warm temperature advection events (see black and white dots in Fig. 5a,b). The frequency of cold temperature advection events350

along the ACE track is approximately 6% lower than in the climatology for the region south of 30 oS (Fig. 5a). The ACE track

was close to Antarctica only in the Pacific, which means that cold air outbreaks in the Atlantic and Indian Ocean, where the

ACE track was mostly located in areas with zonal and warm temperature advection, are undersampled (see also Fig. 5). Warm

temperature advection events were mainly encountered in the South Indian and Atlantic Ocean. Therefore, insight from the

ACE data set on warm temperature advection is representative for these two ocean basins around Antarctica.355
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Figure 6. Deviations of the sea surface temperature from the zonal mean from December 2016 to March 2017 using ERA-Interim. Land areas

and areas covered by at least 50% sea ice are blanked. Additionally, the blanked sea ice areas are hatched and bounded by pink contours.

The largest difference in the identification of cold and warm temperature advection between the measurements and COSMOiso

is observed during leg 2 (compare orange trajectories in Fig. 4 and black dots in Fig. 5). Two warm temperature advection

events are identified during leg 2 in COSMOiso, which were categorised as zonal flow using the measurements. During these

two events, air is advected northwards from Antarctica towards the ship’s position. The large positive ∆Tao in COSMOiso

could be caused by adiabatic warming during the descent in a katabatic wind event. These two warm temperature advection360

events thus differ from a typical warm temperature advection event as generally observed along the ACE track in the warm

sector of an extratropical cyclone.

Although zonal flow events dominated, a total measurement time of 462 h during cold and 238 h during warm temperature

advection, respectively, is available, which provides an observational data set that is large enough to statistically analyse the

typical isotope signature associated with these events.365
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Figure 7. Scatterplots of 1-hourly ACE measurements vs. interpolated values from COSMOiso simulations at the lowest model level along

the ACE ship track of (a) d, (b) δ18O, (c) δ2H, (d) hs, (e) air-sea temperature difference ∆Tao, and (f) specific humidity q coloured by ∆Tao

from COSMOiso. Points with contradicting cold and warm temperature advection classification between the measurements and simulations

are marked with black crosses. The R value of the Pearson correlation for each variable is shown in the bottom right of the panels.

c) Vertical temperature profiles and precipitation

The strongly differing environmental conditions during cold and warm temperature advection, as seen in the ERA-Interim

composite analysis (Fig. 5), can also be observed in the ACE measurements. A distinctively different hs during cold compared

to warm temperature advection was observed (see e.g. Fig. 7d) with a median value of 70.9% during cold and 96.9% during370

warm temperature advection, respectively. This is in agreement with the results from the ERA-Interim composites, which show

the strongest positive air-sea moisture fluxes in the cold temperature advection regime and low or negative fluxes in the warm

temperature advection regime.

The vertical temperature profiles also differ strongly between cold and warm temperature advection. Radiosoundings during

cold temperature advection show a conditionally unstable MBL up to 130 hPa a.s.l. (Fig. 8). With a median surface pressure375

of 988 hPa, this corresponds to a median MBL top at 848 hPa. During warm temperature advection, the median profile from

radiosoundings shows a stable MBL starting from the surface. The individual soundings during warm temperature advection

are very diverse. Most of them show a strong temperature inversion below 50 hPa a.s.l., which corresponds to a MBL top at
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Figure 8. Skew-T -log-p-diagram of air temperature relative to the surface air temperature from radiosoundings (thin lines) during cold (blue)

and warm (red) temperature advection events. The y-axis shows the pressure relative to the surface pressure. The thick lines and error bars

show the median and standard deviation in every 15 hPa pressure bin. The dots show the median profiles from COSMOiso for the same cold

and warm temperature advection events as sampled by the radiosoundings.

930−960 hPa, indicating a shallow MBL. The entire MBL is, thus, influenced by the opposite air-sea heat fluxes and resulting

mixing processes during cold and warm temperature advection.380

As indicated by the ERA-Interim climatology (Fig. 5b,d), precipitation characteristics differ between cold and warm tem-

perature advection. The precipitation rates along the ACE track (derived from MRR measurements) show that during cold

temperature advection, rainfall (> 0 mm h−1) occurred during 25% and snowfall during 14% of the time. The median value

of the rainfall rate was 0.16 mm h−1 and for the snowfall rate 0.04 mm h−1. During warm temperature advection, rainfall was

present 32% of the time and no snowfall occurred, leading to a smaller total precipitation occurrence frequency than during385

cold temperature advection. However, precipitation during warm temperature advection was more intense with a median value

of 0.31 mm h−1. Surface precipitation in ERA-Interim (Fig. 5b,d) and COSMOiso (not shown) shows larger median values for

cold and warm advection, but qualitatively agrees with the observed rainfall intensities with typically heavier precipitation

during warm than cold temperature advection. The reasons for the mismatch between the observed and modeled precipitation

amounts include (i) limitations of the microphysical scheme used in numerical weather models, specifically for mixed-phase390

clouds, (ii) uncertainties in the micro-rain radar derived precipitation amounts, and (iii) discrepancies between point measure-

ments (as provided by the radar) and the model’s grid-averages. Nevertheless, overall we assume that the simulated precipitation

statistics are fairly realistic. Even though precipitation during cold temperature advection is less intense, it occurs more often

resulting in a larger input of precipitation into the ocean. The larger precipitation totals during cold compared to warm temper-
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ature advection events is mainly due to the difference in the average geographical extent of the two advection regimes. Cold395

temperature advection generally occurs over much larger areas than warm temperature advection, which is usually confined to

the warm sectors of extratropical cyclones which leads to shorter sections of warm temperature advection along the ship track,

respectively (black dots in Fig. 5b).

Overall, the observed environmental conditions during ACE are in agreement with the climatological composite analysis of

cold and warm temperature advection based on ERA-Interim. In the next Sections, we will discuss the isotopic signature dur-400

ing cold temperature advection, warm temperature advection and zonal flow (Sect. 4.2) and the processes shaping the differing

isotopic signature of MBL water vapour during cold and warm temperature advection (Sect. 4.3).

4.2 Observed and simulated SWI composition during the different advection regimes

a) ACE observations

To identify the characteristic SWI signal during cold and warm temperature advection, the measured isotope and environmental405

variables during ACE are analysed with respect to the different temperature advection regimes. The distributions of δ2H, δ18O

and d during warm temperature advection, cold temperature advection and zonal flow are shown in Fig. 9. For all isotope

variables, the distributions associated with the cold and the warm temperature advection regime are significantly different

when applying a Wilcoxon rank-sum test (p <0.01). The mode of the d distribution during cold temperature advection is

6.3 ‰ higher than during warm temperature advection. The median d during cold temperature advection is 6.1 ‰ compared410

to −0.3 ‰ during warm temperature advection. The distribution of δ2H and δ18O are similar with median values 27.9‰ and

3.8‰ higher during warm compared to cold temperature advection, respectively. The mode of the distributions is higher by

34.0 ‰ for δ2H and 4.2 ‰ for δ18O during warm than during cold temperature advection. The median and mode of the zonal

flow lie in between the respective values of the cold and warm temperature advection distributions for all isotope variables.

As already shown in previous studies (Uemura et al., 2008; Pfahl and Wernli, 2008; Steen-Larsen et al., 2014b; Benetti et al.,415

2015; Bonne et al., 2019; Thurnherr et al., 2020), d in the MBL is anti-correlated with the near-surface relative humidity. In

the ACE measurements, d and hs negatively correlate with a Pearson correlation of -0.73. During cold temperature advection,

the atmosphere is undersaturated (low hs), and during warm temperature advection close to saturation or oversaturated (hs ≥
100%, Fig. 7d). Therefore, contrasting atmosphere-ocean moisture fluxes, which can even be of opposite sign, can be associated

with cold and warm temperature advection. The ACE measurements confirm the expected contrasts in the isotopic signature420

and the close link of d and hs also in oversaturated conditions.

b) COSMOiso simulations

From the air-sea fluxes associated with the different temperature advection regimes, we expect the MBL to be strongly influ-

enced by ocean evaporation during cold temperature advection whereas dew deposition on the ocean surface plays a major role425

in shaping the observed isotopic composition of water vapour during warm temperature advection. To better understand how

19



Figure 9. Box plots showing median (black horizontal line in box), interquartile range (boxes), mode (black dots) and [5,95]-percentile range

(whiskers) of (a) δ18O, (b) δ2H and (c) d from ACE measurements (solid lines, dark colours) and COSMOiso simulations at the lowest model

level (dashed lines, light colours) during cold temperature advection (blue), zonal flow (grey) and warm temperature advection (orange).

the observed anomalies in the isotope signals form during cold and warm temperature advection, the isotopic composition as

well as other environmental variables are analysed along the ACE track using COSMOiso simulations. For 1% of all 1-hourly

measurement points of legs 1-3, the classification of cold and warm temperature advection according to the COSMOiso simu-

lations disagrees with the observed classification (see black crosses in Fig. 7). These measurement points and their associated430

trajectories are excluded from the following analysis. The very low ∆Tao <−5.0°C and very high ∆Tao > 7.0°C in the ACE

measurements are not seen in COSMOiso (Fig. 7e). These instances belong to a katabatic wind event and a vertical dry intru-

sion event for which COSMOiso did not correctly simulate the meteorology. These events are included in the analysis as the

identification of cold or warm temperature advection agrees in the model and the measurements.

The simulated isotope variability is in agreement with the measurements with a Pearson correlation coefficient ρ of 0.75 for435

δ2H, 0.69 for δ18O and 0.67 for d (Fig. 7). COSMOiso reasonably reproduces the measured SWI variability and composition

20



during ACE. The same qualitative distribution of cold and warm temperature advection SWI signal is seen with a shift in δ2H

and δ18O towards negative values for all temperature advection regimes and a shift in d towards positive values during cold

temperature advection and zonal flow compared to the measured composition during ACE (Fig. 9). This difference specifically

during conditions with important contributions of water vapour to the MBL by ocean evaporation could be caused by too strong440

vertical mixing in the COSMOiso simulations. This effect could also lead to the slightly lower specific and relative humidity

in the simulation compared to the measurements (Fig. 7d,f). The vertical temperature gradient in the MBL can be used as a

measure of vertical mixing. During cold advection, the vertical temperature structure in the MBL is generally simulated well

by COSMOiso (Fig. 8). The simulated median vertical temperature profile shows a temperature inversion around 150 hPa a.s.l.,

which lies above the inversion in the measured profiles at 130 hPa a.s.l. This supports the hypothesis that COSMOiso has too445

strong vertical mixing as a higher inversion height implies more mixing. Furthermore, too strong entrainment at the MBL in

COSMOiso could also contribute to the observed difference in SWIs during cold temperature advection. These findings show

that the environmental conditions during cold temperature advection, i.e. during conditions of strong ocean evaporation, are

not well reproduced in COSMOiso. The simulated median temperature profile during warm advection shows, in accordance

with the measured profile, a stable MBL. Due to the model’s vertical resolution, very strong temperature inversion in the ra-450

diosoundings are not represented in the simulated profiles. This is most likely the reason for the negative temperature bias in

the simulated profiles during warm advection.

A further reason for the differences between the measurements and simulations could originate from the formulation of

non-equilibrium isotopic fractionation in COSMOiso. Using a weaker, wind-independent formulation of the non-equilibrium

fractionation factor by Merlivat and Jouzel (1979) (in the smooth regime at 6 m s−1) instead of the currently used formulation455

by Pfahl and Wernli (2009) in COSMOiso simulations with parametrised convection leads to a decrease of d by, on average,

2 ‰, on the lowest model level over the ocean surface (Jansing, 2019). The larger negative bias in δ18O compared to δ2H in

COSMOiso could also be explained by too strong non-equilibrium fractionation using the formulation by Pfahl and Wernli

(2009). However, the simulations using the formulation by Merlivat and Jouzel (1979) also show a decrease in d variability

above oceanic areas (Jansing, 2019). As we are interested in the processes shaping the SWI variability in the MBL, the for-460

mulation by Pfahl and Wernli (2009) is more adequate to use here as the SWI variability in the measurements and simulations

agrees well.

To better understand the difference in SWIs between measurements and COSMOiso simulations, further studies are needed

such as the detailed analysis of case studies based on extensive 3D-data sets as, for example, collected during the Iceland

Greenland Seas Project (Renfrew et al., 2019). Even though near-surface simulated and measured isotope signals do not agree465

everywhere, the COSMOiso simulations capture the observed variability of the isotopic composition and provide similar dis-

tributions of isotope variables as the observations for the three advection categories. These simulations will thus be used for

an assessment of the relevant processes shaping the isotopic composition of water vapour in the MBL during cold and warm

temperature advection.

470
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4.3 Formation of isotope anomalies during cold and warm temperature advection

During transport, the specific humidity of air masses varies due to different moist atmospheric processes such as ocean evapo-

ration, dew deposition, cloud formation, and below-cloud evaporation. These processes might alter the isotopic composition of

the water vapour substantially between the moisture source and the point of measurement. With a Lagrangian composite anal-

ysis of cold and warm temperature advection events, we aim to assess the relative importance of these processes in shaping the475

SWI composition of water vapour in the MBL. One way to analyse how such moist processes during transport affect the SWI

composition of the air mass is to compare the air mass’ properties at the moisture source and upon arrival at the measurement

site (Fig. 10). The weighted mean of the moisture source properties of the MBL water vapour along the ACE track is computed

using 7-day backward trajectories from 3D COSMOiso wind fields and is compared to the properties of the trajectories at the

arrival and at the driest point in terms of specific humidity along the back-trajectories.480

a) Cold temperature advection

For cold temperature advection, the weighted mean moisture uptake time is 37 [26,48] h (the numbers in the brackets denote

the [25%,75%] percentile range) before the air parcels arrived at the measurement site (Fig. 10e). The air parcels enter the cold

sector 49 [31,91] h before arrival and, thus, the bulk of the moisture of the cold air is taken up in or shortly before entering the485

cold sector. After the uptake, small changes in δ2H, δ18O and d between the moisture source and the arrival are seen (Fig. 10a),

suggesting that other post-evaporation processes such as cloud formation or interaction with precipitation have a limited impact

on the observed isotope composition at the ship location. δ2H, and to a smaller extent δ18O, show a weak increase from the

moisture source until arrival (Fig. 10b,c), while the air moves equatorwards (Fig. 10d and the cold temperature advection

trajectories in Fig. 4). This isotopic enrichment might be due to the weaker equilibrium fractionation at higher SST closer to490

the arrival, which leads to higher δ18O and δ2H in the evaporated water vapour. A much stronger increase in δ2H and δ18O is

seen between the minimum q along the 7-day backward trajectories, which has a median value of 1.3 g kg−1, and the moisture

source, where q has a median value of 2.7 g kg−1, showing how strongly the advected SWI signal in the MBL water vapour is

changed by the moisture uptake. A similar median d can be observed at the minimum q, the moisture source location and at

the ship’s position, while the moisture source location shows a wider interquartile range than the other two locations along the495

trajectories. The higher variability in d at the moisture source compared to the location of minimum q could be caused by the

large variability in ocean evaporation and air temperature at the moisture source locations for water vapour arriving along the

ACE track (not shown). Furthermore, d at the moisture source is the median of the weighted mean conditions of all moisture

uptakes, which can spread over a large region. This leads to a wider distribution of d at the moisture source then for d along

the ACE track. Overall, the isotopic composition of water vapour in the cold sector is strongly affected by the moisture uptake500

within the sector, which overwrites the advected SWI signal.

To better understand these changes between the isotopic composition at the moisture source and the point of measurement, the

temporal evolution of the isotopic composition and other environmental variables are analysed along the backward trajectories
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Figure 10. Box plots with information derived from COSMOiso trajectories for cold (blue) and warm (orange) temperature advection events.

Boxes show median (black horizontal line in box), interquartile range (boxes) and [5,95]-percentile range (whiskers) of (a) d, (b) δ18O, (c)

δ2H and (d) latitude φ at minimum specific humidity along the trajectories (minq), the moisture source site (ms) and ship location (ship), (e)

the weighted mean moisture uptake time before arrival (uptake) and the entrance time into the cold and warm sectors (sector), and (f) the

specific humidity fraction explained by the moisture source attribution.
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Figure 11. Composites of COSMOiso trajectories showing time series along trajectories from cold (blue) and warm (red) temperature

advection events, respectively, of median values of (a) d, (b) δ18O, (c) δ2H, (d) surface evaporation (E), (e) latitude (φ), (f) pressure (p), (g)

specific humidity (q), (h) the sum of cloud and ice water content (qc+qi), and (i) the sum of rain and snow water content (qr+qs). Cold and

warm temperature advection events are only considered over open ocean (no sea ice, land fraction<0.1 in COSMOiso). Shadings denotes the

[25,75] percentile range and vertical lines show the median time step when the trajectories enter the cold (blue line) and the warm sector (red

line). Furthermore, median values are shown for trajectories experiencing no surface precipitation upon arrival (total surface precipitation

Rtot <0.01 mm h−1; dashed lines) and for those with surface precipitation upon arrival (Rtot >0.01 mm h−1; dotted lines).

for the 4 days before arrival.

505
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b) Temporal evolution of SWI signals along cold advection trajectories

The temporal evolution of the median d, δ18O and δ2H along the backward trajectories in the cold sector shows a continuous

increase (Fig. 11a-c). These changes occur simultaneously with an increase in ocean evaporation, an equatorward movement

and descent of the air (Fig. 11d-f). The strongest changes in d can be observed in the cold sector during the last 48 hours before

arrival, when the air masses are closest to the ocean surface and the ocean evaporation and specific humidity increase strongly510

(Fig. 11d,g). The changes of the isotopic composition along the trajectories can be described by two stages. During the first

stage, only δ2H and δ18O increase and d stays constant. In this period until approximately 40 h before arrival, the increase in

the δ-values might be mainly caused by mixing during the descent with air masses at lower altitudes with higher δ values and

a similar d as the descending air masses, which does not affect d but leads to an increase in δ18O and δ2H. The second stage

starts once the trajectories are closer to the sea surface and within the cold sector, where E and d increase strongly. During515

this second stage, the air masses are more strongly influenced by ocean evaporation and, thus, non-equilibrium fractionation,

which leads to an increase in δ18O and δ2H as well as d. Additionally to ocean evaporation, precipitation-related processes

such rain evaporation, cloud formation or the equilibration of rain droplets with the surrounding water vapour might affect the

isotopic composition of water vapour (Risi et al., 2010a; Aemisegger et al., 2015; Graf et al., 2019). To analyse the effect of

precipitation on the water vapour isotopic composition of the air parcels, the median properties along precipitating (surface pre-520

ciptiation >0.01 mm h−1) and non-precipitating (surface preciptiation ≤0.01 mm h−1) trajectories upon arrival are calculated

based on the simulated surface precipitation in COSMOiso. The air masses arriving in the cold sector are weakly influenced by

cloud and precipitation-related processes (Fig. 11h,i and compare dashed and dotted blue lines in Fig. 11a-i). Precipitating air

parcels arriving during cold temperature advection upon arrival, have a lower d, higher δ values and a lower pressure, which

decreases upon arrival, compared to non-precipitating cold temperature advection trajectories. Overall, the difference between525

the precipitating and non-precipitating trajectories in the cold sector is small and lies within the [25,75] percentile range for

all variables in Fig. 11. Therefore, the positive anomalies in d due to ocean evaporation in the cold sector are not substantially

altered by precipitation-induced changes in the isotopic composition of the MBL water vapour.

The small difference between precipitating and non-precipitating cold temperature advection events can also be observed

in the vertical SWI profiles along the ACE ship track, which show a slightly lower d and higher δ-values during precipitating530

than non precipitating events throughout the MBL (Fig. 12a-c). Over all cold temperature advection trajectories, the equivalent

potential temperature (Θe) within the MBL indicates well-mixed conditions (Fig. 12d) and a strong influence of ocean evap-

oration on the MBL moisture budget. This is reflected in the SWI profiles which show constant values in d, δ18O and δ2H in

the lower MBL. In the upper MBL, δ18O and δ2H show a weak decrease, which progresses further above the MBL height,

implicating vertical mixing of free tropospheric air into the MBL. Even though ocean evaporation is the main process affecting535

the MBL isotopic composition, cloud processes might affect the region around the MBL top, where d has its minimum values.

This minimum occurs above the region of highest cloud and ice water content (qc + qi, Fig. 12e) and rain and snow water

content (qr +qs, Fig. 12f). A minimum of d at the MBL top has been observed in measurements of SWIs and several processes

where discussed such as evaporation of cloud and rain droplets (Sodemann et al., 2017; Salmon et al., 2019). A further process
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which could induce low d in water vapour close to the MBL top is cloud formation during decreasing temperatures such as for540

example during a moist adiabatic ascent. The condensation of water vapour in an environment with decreasing air temperature

leads to a decrease in d in the remaining water vapour due to the temperature dependency of equilibrium fractionation (see also

Appendix A). More detailed studies of these processes comparing measurements, e.g. on board aircrafts, and model simula-

tions are needed to better understand the processes involved in these low d values at the MBL top.

545

c) Warm temperature advection

For warm temperature advection, the weighted mean moisture uptake occurs 49 [40,61] h before arrival, while the air parcels

enter the warm sector much later at 20 [11,30] h before arrival (Fig. 10e). Therefore, the air parcels take up moisture upstream

of the warm sector of an extratropical cyclone, generally in a region with cold temperature advection and sometimes in a re-

gion of zonal flow. Similar to cold temperature advection, the isotopic composition at minimum q along the 7-day backward550

trajectories with a median value of 3.2 g kg−1 is strongly altered due to ocean evaporation at the moisture source, where the

median value of q is 5.8 g kg−1. In contrast to the cold sector, not only δ18O and δ2H, but also d increases from minimum q

to the moisture source location. This increase in median d could be caused by a stronger median increase in latitude between

minimum q and the moisture source during warm temperature advection compared to cold temperature advection (Fig. 10d).

Median d changes by −10‰ from the moisture source to arrival, revealing that the isotopic composition of the water vapour555

can be strongly modified in the warm sector, for example due to cloud formation, precipitation or dew deposition. The strength

in d-decrease between the moisture source and measurement location depends on the residence time in the warm sector. There

is a weak trend (ρ=0.31) towards a stronger decrease in d with an increase in residence time in the warm sector (not shown).

For a residence time of, for example, 40 h in the warm sector, there is a decrease in d of 11‰ between the moisture source

and the arrival at the measurement site. During warm temperature advection, the air moves poleward from the moisture source560

(Fig. 10d and warm temperature advection trajectories in Fig. 4) and shows a weak increase in δ18O from the moisture source

to the point of measurement along the ship track. δ2H stays at a similar median value, but shows a wider distribution upon

arrival compared to the moisture source. Analogously to the cold temperature advection analysis, the temporal evolution of the

isotopic composition and other environmental variables along the 4-day backward trajectories are analysed in the following to

identify the main process affecting SWIs in the warm sector.565

d) Temporal evolution of SWI signals along warm advection trajectories

For warm temperature advection, δ-values increase along the trajectories before the air masses arrive in the warm sector.

Within the warm sector, in the last 20 hours before arrival, the δ-values start to decrease, with δ2H starting earlier than δ18O

(Fig. 11b,c). The d already starts decreasing around 60 h before arrival. During the decrease in d outside of the warm sector,570

the air masses descend and ocean evaporation decreases while there is only a small increase in q (Fig. 11f,g). Furthermore, the

movement of the air masses changes from equatorward to poleward (Fig. 11e). Therefore, this episode of decreasing d outside
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Figure 12. Composites of vertical profiles from COSMOiso showing the median of (a) d, (b) δ18O, (c) δ2H, (d) θe, (e) the sum of cloud and

ice water content (qc + qi), and (f) the sum of rain and snow water content (qr + qs) for cold (blue) and warm (red) temperature advection

events along the ACE ship track. The shading denotes the interquartile range. Furthermore, the median vertical profiles for conditions with

(dotted lines) and without (dashed lines) surface precipitation are shown for warm and cold temperature advection. On the y-axis the height

relative to the boundary layer height is shown, where 1 denotes the height of the boundary layer (black dashed line).
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of the warm sector could be due to weaker non-equilibrium fractionation during ocean evaporation. During the d-decrease

within the warm sector, the air parcels stay at the same altitude or ascend slightly, while E is close to zero or changes sign

implying dew formation. The median precipitation, which consists of rainfall for 98% of all precipitation events, and cloud575

and ice water content increase shortly before arrival of the warm temperature advection trajectories. The evolution of d and the

δ-values shows that two different processes can lead to the observed decrease in d in the warm sector. After the entrance into the

warm sector, d and E decrease, while δ18O and δ2H increase. This stage is dominated by dew deposition and non-equilibrium

processes during dew deposition might lead to the observed changes in SWIs. Shortly before arrival, δ18O and δ2H also start

decreasing. At this stage, dew deposition as well as the interaction of water vapour with cloud and rain droplets affect the iso-580

topic composition of the water vapour. d in cloud droplets is low during the precipitation events in the warm sector (not shown).

Therefore, an exchange between cloud droplets and the surrounding water vapour could lead to a decrease in d. Nonetheless,

the vertical profiles during warm temperature advection along the ACE track do not show lower d in regions of high qc + qi

(Fig. 12a,e). The median vertical d profile as well as the profile for precipitating and non-precipitating events show lowest d

close to the surface implying that surface-related processes such as dew deposition are most important in forming negative d585

anomalies in the warm sector. To better understand the changes in SWIs in the warm sector, the temporal evolution of SWIs in

water vapour during the moist processes in warm sector needs to be described using a mechanistic physical approach. A study

is in preparation describing the temporal evolution of the isotopic composition of water vapour with single physical process

models.

Even though dew deposition is the most important process in the lower MBL leading to the decrease in d during warm tem-590

perature advection, further processes might be important in the upper MBL. The median values along the precipitating and

non-precipitating trajectories show small differences to the median values along all trajectories. There are lower d values in the

warm sector for precipitating than for non-precipitating trajectories, which are in accordance with lower E along the precipi-

tating trajectories. Nonetheless, these differences lie within the [25,75] percentile range for all variables in Fig. 11a-g implying

that precipitation upon arrival has a small impact on the SWI evolution of air parcels in the warm sector. A specific difference595

can be observed for precipitating and non-precipitating air masses in the vertical profiles. The non-precipitating profiles show

a minima of d close to the surface and a stagnation in d-increase with height in the upper MBL (Fig. 12a). The minimum close

to the surface is most likely related to dew deposition similar to the precipitating trajectories. The stagnation in the upper MBL

does not correspond to a region of enhanced precipitation or cloud occurrences upon arrival. Therefore, this weaker increase in

d in the upper MBL might have been caused by upstream processes as for example the moist adiabatic ascent of the air parcel600

and subsequent cloud formation similar to the d minimum at the MBL top in the cold sector. Due to the diverse Lagrangian

history of the different warm temperature advection events, detailed case studies are needed to study such upstream processes

and to understand how important the advection of low d signals in the upper MBL are.

In summary, the analysis of the isotopic composition during cold and warm temperature advection in COSMOiso simulations

shows that ocean evaporation and dew deposition are the main processes affecting SWIs in water vapour in the MBL over605

Southern Ocean. The impact of local precipitation on the SWIs in the MBL is small compared to the anomalies induced by

air-sea interactions. Still, negative d anomalies can be seen in the upper MBL and might be caused by cloud and precipitation-
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related processes. The ACE measurements confirmed that the SWI signals in the lower MBL along the ACE ship track were

adequately simulated in COSMOiso, but cannot be used to verify the Lagrangian analysis. The importance of the described pro-

cesses, such as cloud formation and below-cloud processes, during moisture transport needs more detailed future studies which610

include the comparison of measurements and model data in the upper MBL and campaigns including upstream measurements

of the air mass properties.
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5 Discussion and Conclusions

The aim of this study was to systematically quantify the contrasting isotopic composition in MBL water vapour in the cold and

warm sectors of extratropical cyclones in the Southern Ocean, and to identify the main processes that are responsible for these615

signals. In order to address these objectives in a robust way, i.e., by averaging over many cold and warm sectors, the following

prerequisites were indispensable: (i) a method to objectively identify cold and warm sectors of extratropical cyclones that can

be applied to ship measurements as well as to reanalysis data (here we used a simple approach focusing on air-sea tempera-

ture differences due to cold and warm temperature advection, respectively; Hartmuth, 2019); (ii) an extended data set of SWI

measurements available from the three-month Antarctic Circumnavigation Experiment in 2016/2017 (Thurnherr et al., 2020),620

which contains observations from 29 cold and 18 warm advection events corresponding to 462 h and 238 h of data, respectively;

and (iii) simulations with the high-resolution, SWI-enabled numerical weather prediction model COSMOiso which allows the

calculation of air parcel trajectories and studying the processes affecting SWI signals along the flow (Pfahl et al., 2012). The

simulated SWI signals agree well with the ship-based measurements, in particular, in terms of the observed variability in δ18O,

δ2H and d at the synoptic time scale, enabling the joint analysis of observations and simulations. Only the combination of these625

diagnostic, observational and modelling elements made it possible to provide a portrayal of the characteristic SWI signals as-

sociated with warm and cold advection events and their underlying physical processes.

The analyses in this study show that the cold and warm sectors of extratropical cyclones are associated with contrasting iso-

topic signals in MBL water vapour. The main conclusions can be summarized as follows, separately for situations with cold

and warm temperature advection, i.e. for cold and warm sectors of extratropical cyclones, respectively.630

– In the cold sector, negative δ18O- and δ2H-anomalies (i.e. deviations from the campaign mean) and positive d-anomalies

occurred together with low hs and a deep and unstable MBL. The trajectory analysis based on COSMOiso simulations

showed that during cold temperature advection, the moisture uptake due to ocean evaporation occurs typically 26−48 h

before arrival of the considered air parcels at the measurement site. This moisture originates from ocean evaporation635

mainly within the cold sector itself, and ocean evaporation is the main process that shapes the isotopic composition of

the measured water vapour. Moreover, ocean evaporation in the cold sector influences the SWI composition of the entire

MBL leading to an increased vertical gradient of δ2H and δ18O between the MBL and the free troposphere.

– In the warm sector, positive δ18O- and δ2H-anomalies and negative d-anomalies were observed during meteorological

conditions with high hs and a shallow and stable MBL. Processes shaping the SWI composition during warm temperature640

advection as identified using COSMOiso simulations are more diverse than during cold temperature advection. The air

parcels enter the warm sector typically 11−30 h before arrival at the measurement site, which generally occurs after the

moisture uptake that is most prominent in the time window 40−61 h before arrival. Therefore, the uptake of moisture

that ends in the warm sector happens outside of the warm sector in a region of cold temperature advection and affects

the isotopic composition of the air parcels with an increase in δ2H, δ18O and d. In addition, within the warm sector,645

the air parcels encounter a net loss of moisture due to two main processes. First, air-sea interactions in the form of dew
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deposition leads to a negative d-anomaly and positive δ18O- and δ2H-anomalies. Second, the formation of clouds and

precipitation in ascending air parcels decreases d in water vapour. Thus, in summary, the characteristic SWI signals

associated with the warm sector are shaped by both, the processes during moisture uptake outside the warm sector, in a

context of cold advection, and subsequent dew and cloud formation within the warm sector.650

So far, only few studies have discussed the occurrence of low d in MBL water vapour on synoptic timescales. Kurita et al.

(2016) analysed SWI measurements in MBL water vapour along the East Antarctic coast. They showed similar contrasting

SWI signals over the open ocean as observed in this study with low or negative d and high δ2H in poleward moving warm

air and high d and low δ2H in equatorward moving air of Antarctic origin. Furthermore, they showed that the δ2H variability

along the East Antarctic coast is linked to the southward movement of cyclones, which advect warm and moist air towards the655

Antarctic continent, potentially contributing to heavy precipitation (Gorodetskaya et al., 2014; Welker et al., 2014). We showed

here, that these contrasting SWI signals cannot only be found close to Antarctica, but throughout the Southern Ocean and that,

over the open ocean, the synoptic timescale variability of SWI signals is the result of strongly varying air-sea interactions

induced by the meridional advection of air masses within extratropical cyclones. The contrasting air-sea fluxes in cold and

warm sectors of extratropical cyclones have been observed in previous ship measurement campaigns, i.e., during pre-ERICA660

(Neiman et al., 1990) and FASTEX (Persson et al., 2005) in the North Atlantic.

Low or negative d in the boundary layer water vapour has also been observed over ice-covered areas due to the deposition

of water vapour on the snow surface (Bonne et al., 2019), where it can impact the isotopic composition of the surface snow

(Steen-Larsen et al., 2014a; Casado et al., 2018; Madsen et al., 2019). The here observed d-anomalies in the MBL over the

open ocean due to air-sea interactions during warm and cold temperature advection could also lead to changes in the isotopic665

composition of the ocean surface waters or, even more prominently, precipitation formed from these air masses. It is an impor-

tant implication of the results in this study that clouds forming in the cold sector of extratropical cyclones (typically shallow

convective cloud) and clouds forming in the warm sector (typically in the rapidly, slant-wise ascending warm conveyor belts)

rely on different SWI “starting conditions”, i.e. on vapour with contrasting SWI anomalies. A recent study (Aemisegger, 2018)

found a clear link between d in monthly precipitation in Reykjavik (Iceland) and the frequency and location of North Atlantic670

cyclones, which influences the location of strong ocean evaporation during cold temperature advection. It has yet to be studied

if and how air-sea fluxes in the context of warm temperature advection affect the isotopic composition of precipitation, for ex-

ample, in warm conveyor belts. Future collocated measurements of dew and fog over the ocean during warm advection events

will provide key insights into the coupling between clouds and their environments. Previous studies over land showed that the

time evolution of the isotopic composition of cloud droplets in fog was mainly driven by the moisture origin at large scales675

and the enrichment of the fog dependent on the occurrence of precipitation within the cloud (Spiegel et al., 2012a, b). Future

detailed studies of simultaneous cloud water, vapour, precipitation and dew over the ocean within near-surface clouds would

provide important empirical data for the validation of model isotope microphysics.

A previous, highly idealized study based on COSMOiso simulations without isotopic fractionation during ocean evaporation

(Dütsch et al., 2016) has shown that δ2H in the cold and warm sectors of extratropical cyclones are primarily affected by680

horizontal transport. Here, we confirm that the meridional large-scale transport of air strongly affects the isotopic composition
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of the MBL water vapour, based on observations and real-case simulations. In particular, δ18O and δ2H in water vapour in

the cold and warm sectors of extratropical cyclones are influenced by ocean evaporation at the moisture source. The moisture

uptake over the ocean surface leads to an increase in δ18O and δ2H and this SWI signal is only marginally changed during

transport to the measurement site. Surprisingly, and in contrast to δ18O and δ2H, d shows large variations after the moisture685

uptake in the warm sector indicating that d in the warm sector is not only influenced by the moisture source conditions, but

is changed substantially during transport. Therefore, the isotopic composition of water vapour in the MBL is mainly a signal

from air-sea interactions, such as ocean evaporation at the moisture source in the cold sector and dew deposition during trans-

port in the warm sector. The mechanisms leading to isotopic fractionation associated with ocean evaporation, dew deposition

and cloud formation as well as the relative contributions of these processes to the observed SWI variability in the cold and690

warm sector of extratropical cyclones will be analysed in future studies. Furthermore, the findings of this study are valuable

for further studies analysing meridional air mass advection and other characteristics associated with the dynamics of the storm

tracks over interannual timescales.

Data availability. The ACE data sets are published on the research data repository zenodo: https://zenodo.org/communities/spi-ace/. The695

radiosonde data sets is accessible with the doi 10.5281/zenodo.4382460 and the rainfall data set with the doi 10.5281/zenodo.3929289.

The COSMOiso simulations are published on the ETH research collection with the doi 10.3929/ethz-b-000445744. The snowfall data set is

available upon request (irina.gorodetskaya@ua.pt).
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Appendix A: Decrease in d due to condensation during a moist adiabatic ascent

The condensation of water vapour in an ascending air parcel leads to the formation of cloud droplets and changes the isotopic700

composition of the remaining atmospheric water vapour. This process can be modelled using a Rayleigh fractionation model

based on the temperature and moisture evolution of a moist-adiabatic ascent of an air parcel. Thereby it is assumed, that the

condensed cloud droplets do not interact anymore with the surrounding water vapour after condensation and are immediately

removed. This is a simplification of processes occurring during cloud formation, but it provides a first order understanding of

isotopic variations due to cloud formation.705

A Rayleigh model (Dansgaard, 1964) is used to estimate the effect of condensation during a moist adiabatic ascent on the

isotopic composition of water vapour, including the temperature dependency of equilibrium fractionation factor αe(T ) (Horita

and Wesolowski, 1994) and the transition from liquid to ice clouds as in Dütsch et al. (2017). An effective isotopic fractionation

factor αeff > 1 is defined, depending on temperature and the relative fractions of liquid and solid condensate during the moist-

adiabatic ascent: αeff = αe(T ) · fliq +αice · (1− fliq). fliq is 0 for T < 250.15 K and 1 for T > 273.15 K and a quadratic710

interpolation is used in between these temperatures to represent mixed phase clouds. αice > 1 is the equilibrium fractionation

factor in vapour with respect to ice (Majoube, 1971), adjusted for supersaturation over ice (Jouzel and Merlivat, 1984).

Figure A1 shows the Rayleigh fractionation during a moist adiabatic ascent, which is initiated at a temperature of 283.15 K, a

pressure of 1000 hPa and isotopic compositions δ2H0=−90.0 ‰ and δ18O0=−12.0 ‰ (which corresponds to d0=6 ‰). Four

different scenarios are calculated:715

1. Rayleigh fractionation with constant temperature and a step-wise loss of moisture (blue line).

2. Rayleigh fractionation along a moist adiabatic ascent, i.e. with temperature variations, assuming only liquid clouds (black

line).

3. same as 2., including ice cloud formation and the fractionation factor for vapour over ice (green line).

4. same as 3., including an adjustment of the ice fractionation factor due to ice supersaturation (orange line).720

All of these four scenarios show a depletion of δ18O and δ2H in water vapour with ongoing moisture loss. d in water vapour

decreases in the beginning for all scenarios. The decrease in d is small of a value around 1 ‰ for scenario 1 with constant

temperature and increases to values above the start value after the condensation of 75% of the humidity. In the other three

scenarios, there is a stronger decrease in d with minimum values of more than 6‰ below the starting value. This stronger

decrease in d is due to the temperature-dependency of the equilibrium fractionation factor, which increases more rapidly with725

decreasing temperature for 2H than for 18O (see 2αeff (18αeff )−1 in Fig. A1d). Thus, d in the remaining vapour decreases

with decreasing temperature. Scenario 3, which includes the equilibrium fractionation effects of the ice phase but neglects non-

equilibrium effects due to supersaturation, shows a weaker decrease in d. When including ice supersaturation, the evolution of

d follows a similar pattern as scenario 2 with only liquid cloud formation. Once the amount of heavy isotopes in the vapour

phase becomes very small, d increases by definition (due to the non-linearity of the δ-scale, see also Dütsch et al., 2017) for all730
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Figure A1. Modelled (a) δ2H, (b) d and (c) δ18O of water vapour (solid lines) and condensate (dashed lines) versus q during Rayleigh

fractionation with different model setups (see text for details). Furthermore, the ratio of 2αeff and 18αeff for each model setup as a function

of q and the liquid fraction for the two setups with ice cloud formation is shown (d).

scenarios. These 4 scenarios show that Rayleigh fractionation during a moist adiabatic ascent can lead to a substantial decrease

of d in water vapour.

34



Author contributions. HW, FA, and IT initiated the project. IT, MB, FA and HW discussed the day-to-day large-scale meteorology dur-

ing/after the ACE campaign based on forecast and analyses weather charts prepared by MB. IT performed the analyses and produced the735

figures. KH developed and evaluated the temperature advection diagnostic during her Master thesis, with contributions from IT and FA. MW

provided the ECHAMwiso global boundary data for the regional COSMOiso simulations. FA, LJ, and IT designed and prepared the setup for

the COSMOiso simulations performed during LJ’s Master thesis by LJ and IT at the Swiss National Supercomputing Centre (CSCS). IG, FA

and IT contributed to the production of the radiosonde data set. JG produced the rainfall data and IG the snowfall data. IT wrote the paper,

supported by FA and HW. All co-authors provided feedback to the manuscript.740

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. IT acknowledges funding by the Swiss Polar Institute and Dr Frederik Paulsen. ACE was a scientific expedition car-

ried out under the auspices of the Swiss Polar Institute, supported by funding from the ACE Foundation and Ferring Pharmaceuticals. MB

acknowledges funding from the Swiss National Science Foundation (grant no. 165941) and the European Research Council 485 (ERC)

under the European Union’s Horizon 2020 Research and Innovation program (project INTEXseas, grant agreement no. 787652). JG re-745

ceived financial support from the Swiss National Science Foundation (grant no. 175700/1). IG’s participation in ACE was supported by

ACE project 18 (PIs Katherine Leonard and Michael Lehning, EPFL) supported by grants from the SPI, the BNP Paribas Foundation,

and the Swiss National Science Foundation (grant PZ00P2_142684). IG also thanks FCT/ MCTES for the financial support to CESAM

(UIDP/50017/2020+UIDB/50017/2020) and FCT project ATLACE (CIRCNA/CAC/0273/2019) through national funds. The COSMOiso

simulations were performed at the Swiss National Supercomputing Centre (CSCS) with the small production projects sm08 and sm32. The750

authors acknowledge MeteoSwiss and ECMWF for the access to the ERA-Interim reanalyses and operational forecasts. We thank F. Martin

Ralph for co-funding the ACE radio soundings, Pascal Graf for his help during the planning of the sounding equipment and design and the

ACE team for the helping hands during the launchings. We thank the two anonymous reviewers for their constructive comments that helped

to improve the paper.

35



References755

Aemisegger, F.: On the link between the North Atlantic storm track and precipitation deuterium excess in Reykjavik, Atmos. Sci. Lett., 19,

19:e865, https://doi.org/10.1002/asl.865, 2018.

Aemisegger, F. and Papritz, L.: A climatology of strong large-scale ocean evaporation events. Part I: Identification, global distribution, and

associated climate conditions, J. Clim., 31, 7287–7312, https://doi.org/10.1175/JCLI-D-17-0591.1, 2018.

Aemisegger, F. and Sjolte, J.: A climatology of strong large-scale ocean evaporation events. Part II: Relevance for the deuterium excess760

signature of the evaporation flux, J. Clim., 31, 7313–7336, https://doi.org/10.1175/JCLI-D-17-0592.1, 2018.

Aemisegger, F., Pfahl, S., Sodemann, H., Lehner, I., Seneviratne, S. I., and Wernli, H.: Deuterium excess as a proxy for continental moisture

recycling and plant transpiration, Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, 2014.

Aemisegger, F., Spiegel, J. K., Pfahl, S., Sodemann, H., Eugster, W., and Wernli, H.: Isotope meteorology of cold front passages:

A case study combining observations and modeling: Water isotopes during cold fronts, Geophys. Res. Lett., 42, 5652–5660,765

https://doi.org/10.1002/2015GL063988, 2015.

Beare, R. J.: Boundary layer mechanisms in extratropical cyclones, Q. J. R. Meteorol. Soc., 133, 503–515, https://doi.org/10.1002/qj.30,

2007.

Benetti, M., Aloisi, G., Reverdin, G., Risi, C., and Sèze, G.: Importance of boundary layer mixing for the isotopic composition of surface

vapor over the subtropical North Atlantic Ocean, J. Geophys. Res. Atmos., 120, 2190 – 2209, https://doi.org/10.1002/2014JD021947,770

2015.

Bharti, V., Fairall, C. W., Blomquist, B. W., Huang, Y., Protat, A., Sullivan, P. P., Siems, S. T., and Manton, M. J.: Air-sea heat and momentum

fluxes in the Southern Ocean, J. Geophys. Res. Atmos., 124, 12 426–12 443, https://doi.org/10.1029/2018JD029761, 2019.

Blossey, P. N., Kuang, Z., and Romps, D. M.: Isotopic composition of water in the tropical tropopause layer in cloud-resolving simulations

of an idealized tropical circulation, J. Geophys. Res. Atmos., 115, https://doi.org/10.1029/2010JD014554, 2010.775

Bond, N. A. and Fleagle, R. G.: Prefrontal and postfrontal boundary layer processes over the ocean, Mon. Weather Rev., 116, 1257–1273,

https://doi.org/10.1175/1520-0493(1988)116<1257:PAPBLP>2.0.CO;2, 1988.

Bonne, J.-L., Behrens, M., Meyer, H., Kipfstuhl, S., Rabe, B., Schönicke, L., Steen-Larsen, H. C., and Werner, M.: Resolving the controls of

water vapour isotopes in the Atlantic sector, Nat. Commun., 10, 1632, https://doi.org/10.1038/s41467-019-09242-6, 2019.

Boutle, I. A., Beare, R. J., Belcher, S. E., Brown, A. R., and Plant, R. S.: The moist boundary layer under a mid-latitude weather system,780

Bound-Layer Meteorol., 134, 367–386, https://doi.org/10.1007/s10546-009-9452-9, 2010.

Boutle, I. A., Belcher, S. E., and Plant, R. S.: Moisture transport in midlatitude cyclones, Q. J. R. Meteorol. Soc., 137, 360–373,

https://doi.org/10.1002/qj.783, 2011.

Browning, K. A.: Organization of Clouds and Precipitation in Extratropical Cyclones, pp. 129–153, Am. Meteorolo. Soc., Boston, MA,

https://doi.org/10.1007/978-1-944970-33-8_8, 1990.785

Butzin, M., Werner, M., Masson-Delmotte, V., Risi, C., Frankenberg, C., Gribanov, K., Jouzel, J., and Zakharov, V. I.: Variations of oxygen-18

in West Siberian precipitation during the last 50 years, Atmos. Chem. Phys., 14, 5853–5869, https://doi.org/10.5194/acp-14-5853-2014,

2014.

Casado, M., Landais, A., Picard, G., Münch, T., Laepple, T., Stenni, B., Dreossi, G., Ekaykin, A., Arnaud, L., Genthon, C., Touzeau, A.,

Masson-Delmotte, V., and Jouzel, J.: Archival processes of the water stable isotope signal in East Antarctic ice cores, Cryosphere, 12,790

1745–1766, https://doi.org/10.5194/tc-12-1745-2018, 2018.

36

https://doi.org/10.1002/asl.865
https://doi.org/10.1175/JCLI-D-17-0591.1
https://doi.org/10.1175/JCLI-D-17-0592.1
https://doi.org/10.5194/acp-14-4029-2014
https://doi.org/10.1002/2015GL063988
https://doi.org/10.1002/qj.30
https://doi.org/10.1002/2014JD021947
https://doi.org/10.1029/2018JD029761
https://doi.org/10.1029/2010JD014554
https://doi.org/10.1175/1520-0493(1988)116%3C1257:PAPBLP%3E2.0.CO;2
https://doi.org/10.1038/s41467-019-09242-6
https://doi.org/10.1007/s10546-009-9452-9
https://doi.org/10.1002/qj.783
https://doi.org/10.1007/978-1-944970-33-8_8
https://doi.org/10.5194/acp-14-5853-2014
https://doi.org/10.5194/tc-12-1745-2018


Catto, J. L., Jakob, C., Berry, G., and Nicholls, N.: Relating global precipitation to atmospheric fronts, Geophys. Res. Lett., 39, L10 805,

https://doi.org/10.1029/2012GL051736, 2012.

Chen, S., Campbell, T. J., Jin, H., Gaberšek, S., Hodur, R. M., and Martin, P.: Effect of two-way air-sea coupling in high and low wind speed

regimes, Mon. Weather Rev., 138, 3579–3602, https://doi.org/10.1175/2009MWR3119.1, 2010.795

Christner, E., Aemisegger, F., Pfahl, S., Werner, M., Cauquoin, A., Schneider, M., Hase, F., Barthlott, S., and Schädler, G.: The climatological

impacts of continental surface evaporation, rainout, and subcloud processes on δD of water vapor and precipitation in Europe, J. Geophys.

Res. Atmos., 123, 4390–4409, https://doi.org/10.1002/2017JD027260, 2018.

Condron, A. and Renfrew, I. A.: The impact of polar mesoscale storms on northeast Atlantic Ocean circulation, Nature Geosci., 6, 34–37,

https://doi.org/10.1038/ngeo1661, 2013.800

Condron, A., Bigg, G. R., and Renfrew, I. A.: Polar mesoscale cyclones in the northeast Atlantic: Comparing climatologies from ERA-40

and satellite imagery, Mon. Weather Rev., 134, 1518–1533, https://doi.org/10.1175/MWR3136.1, 2006.

Craig, H. and Gordon, L.: Deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in: Proceedings of the Stable Isotopes

in Oceanographic Studies and Paleotemperatures, 1965.

Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16:4, 436–468, https://doi.org/10.3402/tellusa.v16i4.8993, 1964.805

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,

Bechtold, P., Beljaars, A. C. M., Berg, L. v. d., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L.,

Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Mor-

crette, J.-J., Park, B.-K., Peubey, C., Rosnay, P. d., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration

and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.810

Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D., Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P.,

and Vogel, G.: A description of the nonhydrostatic regional COSMO model. Part II: Physical parameterization, Deutscher Wetterdienst,

Offenbach, Germany, 2013.

Dütsch, M., Pfahl, S., and Wernli, H.: Drivers of δ2H variations in an idealized extratropical cyclone., Geophys. Res. Lett., 43, 5401–5408,

https://doi.org/10.1002/2016GL068600, http://doi.wiley.com/10.1002/2016GL068600, 2016.815

Dütsch, M., Pfahl, S., and Sodemann, H.: The impact of nonequilibrium and equilibrium fractionation on two different deuterium excess

definitions, J. Geophys. Res.: Atmos., 122, 12,732–12,746, https://doi.org/10.1002/2017JD027085, 2017.

Dütsch, M., Pfahl, S., Meyer, M., and Wernli, H.: Lagrangian process attribution of isotopic variations in near-surface water vapour in a

30-year regional climate simulation over Europe, Atmos. Chem. Phys., 18, 1653–1669, https://doi.org/10.5194/acp-18-1653-2018, 2018.

Fleagle, R. G. and Nuss, W. A.: The distribution of surface fluxes and boundary layer divergence in midlatitude ocean storms, J. Atmos. Sci.,820

42, 784–799, https://doi.org/10.1175/1520-0469(1985)042<0784:TDOSFA>2.0.CO;2, 1985.

Gat, J. R.: The isotopic composition of evaporating waters – review of the historical evolution leading up to the Craig–Gordon model,

Isotopes in Environmental and Health Studies, 44, 5–9, https://doi.org/10.1080/10256010801887067, 2008.

Gat, J. R., Klein, B., Kushnir, Y., Roether, W., Wernli, H., Yam, R., and Shemesh, A.: Isotope composition of air moisture over the Mediter-

ranean Sea: An index of the air–sea interaction pattern, Tellus B, 55, 953–965, https://doi.org/10.1034/j.1600-0889.2003.00081.x, 2003.825

Gehring, J., Thurnherr, I., and Graf, P.: Vertical profiles of Doppler spectra of hydrometeors from a Micro Rain Radar recorded

during the austral summer of 2016/2017 in the Southern Ocean on the Antarctic Circumnavigation Expedition (ACE).,

https://doi.org/10.5281/zenodo.3929289, 2020.

37

https://doi.org/10.1029/2012GL051736
https://doi.org/10.1175/2009MWR3119.1
https://doi.org/10.1002/2017JD027260
https://doi.org/10.1038/ngeo1661
https://doi.org/10.1175/MWR3136.1
https://doi.org/10.3402/tellusa.v16i4.8993
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/2016GL068600
http://doi.wiley.com/10.1002/2016GL068600
https://doi.org/10.1002/2017JD027085
https://doi.org/10.5194/acp-18-1653-2018
https://doi.org/10.1175/1520-0469(1985)042%3C0784:TDOSFA%3E2.0.CO;2
https://doi.org/10.1080/10256010801887067
https://doi.org/10.1034/j.1600-0889.2003.00081.x
https://doi.org/10.5281/zenodo.3929289


Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., and Van Lipzig, N. P. M.: The role of atmospheric rivers in

anomalous snow accumulation in East Antarctica, Geophysical Research Letters, 41, 6199–6206, https://doi.org/10.1002/2014GL060881,830

2014.

Gorodetskaya, I. V., Thurnherr, I., Tsukernik, M., Graf, P., Aemisegger, F., Wernli, H., and Ralph, F. M.: Atmospheric profiling data collected

from radiosondes in the Southern Ocean in the austral summer of 2016/2017 during the Antarctic Circumnavigation Expedition., 2021.

Graf, P., Wernli, H., Pfahl, S., and Sodemann, H.: A new interpretative framework for below-cloud effects on stable water isotopes in vapour

and rain, Atmos. Chem. Phys., 19, 747–765, https://doi.org/10.5194/acp-19-747-2019, 2019.835

Grazioli, J., Genthon, C., Boudevillain, B., Duran-Alarcon, C., Guasta, M. D., Madeleine, J.-B., and Berne, A.: Measurements of precipitation

in Dumont d’Urville, Adélie Land, East Antarctica, Cryosphere, 11, 1797–1811, https://doi.org/10.5194/tc-11-1797-2017, 2017.

Hartmuth, K.: The role of cold and warm air advection for the hydrological cycle in the South Indian Ocean, Master’s thesis, ETH Zurich,

Zurich, https://doi.org/10.3929/ethz-b-000437864, 2019.

Haumann, F. A., Robinson, C., Thomas, J., Hutchings, J., Pina Estany, C., Tarasenko, A., Gerber, F., and Leonard, K.: Physical and biogeo-840

chemical oceanography data from underway measurements with an AquaLine Ferrybox during the Antarctic Circumnavigation Expedition

(ACE)., https://doi.org/10.5281/zenodo.3660852, 2020.

Hewson, T. D.: Objective fronts, Met. Apps, 5, 37–65, https://doi.org/10.1017/S1350482798000553, 1998.

Holt, T. and Raman, S.: Marine boundary-layer structure and circulation in the region of offshore redevelopment of a cyclone during GALE,

Mon. Weather Rev., 118, 392–410, https://doi.org/10.1175/1520-0493(1990)118<0392:MBLSAC>2.0.CO;2, 1990.845

Horita, J. and Wesolowski, D. J.: Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical

temperature, Geochim. Cosmochim. Acta, 58, 3425–3437, https://doi.org/10.1016/0016-7037(94)90096-5, 1994.

Jansing, L.: Marine boundary layer stable water isotope variability in the Southern Ocean. An investigation using the regional COSMOiso

model, Master’s thesis, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-b-000438068, 2019.

Jenkner, J., Sprenger, M., Schwenk, I., Schwierz, C., Dierer, S., and Leuenberger, D.: Detection and climatology of fronts in a high-resolution850

model reanalysis over the Alps, Met. Apps, 17, 1–8, https://doi.org/10.1002/met.142, 2010.

Joussaume, S., Sadourny, R., and Jouzel, J.: A general circulation model of water isotope cycles in the atmosphere, Nature, 311, 24–29,

https://doi.org/10.1038/311024a0, 1984.

Jouzel, J. and Merlivat, L.: Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation, J. Geophys.

Res. Atmos., 89, 11 749–11 757, https://doi.org/10.1029/JD089iD07p11749, 1984.855

Kurita, N., Hirasawa, N., Koga, S., Matsushita, J., Steen-Larsen, H. C., Masson-Delmotte, V., and Fujiyoshi, Y.: Influence of

large-scale atmospheric circulation on marine air intrusion toward the East Antarctic coast, Geophys. Res. Lett., 43, 9298–9305,

https://doi.org/10.1002/2016GL070246, 2016.

Kuwano-Yoshida, A. and Minobe, S.: Storm-track response to SST fronts in the northwestern Pacific region in an AGCM, J. Clim., 30,

1081–1102, https://doi.org/10.1175/JCLI-D-16-0331.1, 2016.860

Lambert, S. J.: A cyclone climatology of the Canadian Climate Centre general circulation model, J. Clim., 1, 109–115,

https://doi.org/10.1175/1520-0442(1988)001<0109:ACCOTC>2.0.CO;2, 1988.

Landwehr, S., Thomas, J., Gorodetskaya, I., Thurnherr, I., Robinson, C., and Schmale, J.: Quality-checked meteorological data

from the Southern Ocean collected during the Antarctic Circumnavigation Expedition from December 2016 to April 2017.,

https://doi.org/10.5281/zenodo.3379590, 2019.865

38

https://doi.org/10.1002/2014GL060881
https://doi.org/10.5194/acp-19-747-2019
https://doi.org/10.5194/tc-11-1797-2017
https://doi.org/10.3929/ethz-b-000437864
https://doi.org/10.5281/zenodo.3660852
https://doi.org/10.1017/S1350482798000553
https://doi.org/10.1175/1520-0493(1990)118%3C0392:MBLSAC%3E2.0.CO;2
https://doi.org/10.1016/0016-7037(94)90096-5
https://doi.org/10.3929/ethz-b-000438068
https://doi.org/10.1002/met.142
https://doi.org/10.1038/311024a0
https://doi.org/10.1029/JD089iD07p11749
https://doi.org/10.1002/2016GL070246
https://doi.org/10.1175/JCLI-D-16-0331.1
https://doi.org/10.1175/1520-0442(1988)001%3C0109:ACCOTC%3E2.0.CO;2
https://doi.org/10.5281/zenodo.3379590


Lee, K.-O., Aemisegger, F., Pfahl, S., Flamant, C., Lacour, J.-L., and Chaboureau, J.-P.: Contrasting stable water isotope signals from

convective and large-scale precipitation phases of a heavy precipitation event in southern Italy during HyMeX IOP 13: A modelling

perspective, Atmos. Chem. Phys., 19, 7487–7506, https://doi.org/10.5194/acp-19-7487-2019, 2019.

Maahn, M. and Kollias, P.: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing, Atm. Meas. Tech., 5,

2661–2673, https://doi.org/10.5194/amt-5-2661-2012, 2012.870

Madonna, E., Wernli, H., Joos, H., and Martius, O.: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and

potential vorticity evolution, J. Clim., 27, 3–26, https://doi.org/10.1175/JCLI-D-12-00720.1, 2014.

Madsen, M. V., Steen-Larsen, H. C., Hörhold, M., Box, J., Berben, S. M. P., Capron, E., Faber, A.-K., Hubbard, A., Jensen, M. F., Jones,

T. R., Kipfstuhl, S., Koldtoft, I., Pillar, H. R., Vaughn, B. H., Vladimirova, D., and Dahl-Jensen, D.: Evidence of Isotopic Fractiona-

tion During Vapor Exchange Between the Atmosphere and the Snow Surface in Greenland, J. Geophys. Res. Atmos., 124, 2932–2945,875

https://doi.org/10.1029/2018JD029619, 2019.

Majoube, M.: Fractionnement en oxygene 18 et en deuterium entre l’eau et sa vapeur, J. Chim. Phys., 68, 1423–1436,

https://doi.org/10.1051/jcp/1971681423, 1971.

Merlivat, L. and Jouzel, J.: Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation, J. Geophys. Res. Oceans,

84, 5029–5033, https://doi.org/10.1029/JC084iC08p05029, 1979.880

Moore, G. W. K. and Renfrew, I. A.: An assessment of the surface turbulent heat fluxes from the NCEP–NCAR reanalysis over the western

boundary currents, J. Clim., 15, 2020–2037, https://doi.org/10.1175/1520-0442(2002)015<2020:AAOTST>2.0.CO;2, 2002.

Moore, J. K., Abbott, M. R., and Richman, J. G.: Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature

data, J. Geophys. Res. Oceans, 104, 3059–3073, https://doi.org/10.1029/1998JC900032, 1999.

Neiman, P. J., Shapiro, M. A., Donall, E. G., and Kreitzberg, C. W.: Diabatic modification of an extratropical marine cyclone warm sector by885

cold underlying water, Mon. Weather Rev., 118, 1576–1590, https://doi.org/10.1175/1520-0493(1990)118<1576:DMOAEM>2.0.CO;2,

1990.

Nicolas, J. P. and Bromwich, D. H.: Precipitation changes in high southern latitudes from global reanalyses: A cautionary tale, Surv. Geophys.,

32, 475–494, https://doi.org/10.1007/s10712-011-9114-6, 2011.

Nuss, W. A.: Air-Sea interaction influences on the structure and intensification of an idealized marine cyclone, Mon. Weather Rev., 117,890

351–369, https://doi.org/10.1175/1520-0493(1989)117<0351:ASIIOT>2.0.CO;2, 1989.

Papritz, L., Pfahl, S., Rudeva, I., Simmonds, I., Sodemann, H., and Wernli, H.: The role of extratropical cyclones and fronts for Southern

Ocean freshwater fluxes, J. Climate, 27, 6205–6224, https://doi.org/10.1175/JCLI-D-13-00409.1, 2014.

Papritz, L., Pfahl, S., Sodemann, H., and Wernli, H.: A climatology of cold air outbreaks and their impact on air–sea heat fluxes in the

high-latitude South Pacific, J. Clim., 28, 342–364, https://doi.org/10.1175/JCLI-D-14-00482.1, 2015.895

Persson, P. O. G., Hare, J. E., Fairall, C. W., and Otto, W. D.: Air–sea interaction processes in warm and cold sectors of extratropical cyclonic

storms observed during FASTEX, Q. J. R. Meteorol. Soc., 131, 877–912, https://doi.org/10.1256/qj.03.181, 2005.

Peters, G., Fischer, B., Münster, H., Clemens, M., and Wagner, A.: Profiles of raindrop size distributions as retrieved by microrain radars, J.

Applied Meteorology, 44, 1930–1949, https://doi.org/10.1175/JAM2316.1, 2005.

Pfahl, S. and Wernli, H.: Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean, J. Geophys. Res., 113,900

D20 104, https://doi.org/10.1029/2008JD009839, 2008.

Pfahl, S. and Wernli, H.: Lagrangian simulations of stable isotopes in water vapor: An evaluation of nonequilibrium fractionation in the

Craig-Gordon model, J. Geophys. Res. Atmos., 114, https://doi.org/10.1029/2009JD012054, 2009.

39

https://doi.org/10.5194/acp-19-7487-2019
https://doi.org/10.5194/amt-5-2661-2012
https://doi.org/10.1175/JCLI-D-12-00720.1
https://doi.org/10.1029/2018JD029619
https://doi.org/10.1051/jcp/1971681423
https://doi.org/10.1029/JC084iC08p05029
https://doi.org/10.1175/1520-0442(2002)015%3C2020:AAOTST%3E2.0.CO;2
https://doi.org/10.1029/1998JC900032
https://doi.org/10.1175/1520-0493(1990)118%3C1576:DMOAEM%3E2.0.CO;2
https://doi.org/10.1007/s10712-011-9114-6
https://doi.org/10.1175/1520-0493(1989)117%3C0351:ASIIOT%3E2.0.CO;2
https://doi.org/10.1175/JCLI-D-13-00409.1
https://doi.org/10.1175/JCLI-D-14-00482.1
https://doi.org/10.1256/qj.03.181
https://doi.org/10.1175/JAM2316.1
https://doi.org/10.1029/2008JD009839
https://doi.org/10.1029/2009JD012054


Pfahl, S., Wernli, H., and Yoshimura, K.: The isotopic composition of precipitation from a winter storm – a case study with the limited-area

model COSMOiso, Atmos. Chem. Phys., 12, 1629–1648, https://doi.org/10.5194/acp-12-1629-2012, 2012.905

Pfahl, S., Madonna, E., Boettcher, M., Joos, H., and Wernli, H.: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II:

Moisture origin and relevance for precipitation, J. Clim., 27, 27–40, https://doi.org/10.1175/JCLI-D-13-00223.1, 2014.

Pollard, R. T., Guymer, T. H., Taylor, P. K., Charnock, H., and Pollard, R. T.: Summary of the JASIN 1978 field experiment, Philos. Trans.

R. Soc. Lond. A, 308, 221–230, https://doi.org/10.1098/rsta.1983.0001, 1983.

Rasmussen, E. A. and Turner, J.: Polar lows: Mesoscale weather systems in the polar regions, Cambridge University Press, Cambridge,910

https://doi.org/10.1017/CBO9780511524974, 2003.

Renfrew, I. A., Pickart, R. S., Våge, K., Moore, G. W. K., Bracegirdle, T. J., Elvidge, A. D., Jeansson, E., Lachlan-Cope, T., McRaven,

L. T., Papritz, L., Reuder, J., Sodemann, H., Terpstra, A., Waterman, S., Valdimarsson, H., Weiss, A., Almansi, M., Bahr, F., Brakstad,

A., Barrell, C., Brooke, J. K., Brooks, B. J., Brooks, I. M., Brooks, M. E., Bruvik, E. M., Duscha, C., Fer, I., Golid, H. M., Hallerstig,

M., Hessevik, I., Huang, J., Houghton, L., Jónsson, S., Jonassen, M., Jackson, K., Kvalsund, K., Kolstad, E. W., Konstali, K., Kristiansen,915

J., Ladkin, R., Lin, P., Macrander, A., Mitchell, A., Olafsson, H., Pacini, A., Payne, C., Palmason, B., Pérez-Hernández, M. D., Peterson,

A. K., Petersen, G. N., Pisareva, M. N., Pope, J. O., Seidl, A., Semper, S., Sergeev, D., Skjelsvik, S., Søiland, H., Smith, D., Spall, M. A.,

Spengler, T., Touzeau, A., Tupper, G., Weng, Y., Williams, K. D., Yang, X., and Zhou, S.: The Iceland Greenland Seas Project, Bull. Am.

Meteorol. Soc., 100, 1795–1817, https://doi.org/10.1175/BAMS-D-18-0217.1, 2019.

Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.: Daily high-resolution-blended analyses for sea920

surface temperature, J. Clim., 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1, 2007.

Risi, C., Bony, S., Vimeux, F., Chong, M., and Descroix, L.: Evolution of the stable water isotopic composition of the rain sampled along

Sahelian squall lines, Q. J. R. Meteorol. Soc., 136, 227–242, https://doi.org/10.1002/qj.485, 2010a.

Risi, C., Bony, S., Vimeux, F., and Jouzel, J.: Water-stable isotopes in the LMDZ4 general circulation model: Model evaluation for

present-day and past climates and applications to climatic interpretations of tropical isotopic records, J. Geophys. Res. Atmos., 115,925

https://doi.org/10.1029/2009JD013255, 2010b.

Rudeva, I. and Gulev, S. K.: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data, Mon. Weather

Rev., 139, 1419–1446, https://doi.org/10.1175/2010MWR3294.1, 2010.

Salmon, O. E., Welp, L. R., Baldwin, M. E., Hajny, K. D., Stirm, B. H., and Shepson, P. B.: Vertical profile observations of water vapor

deuterium excess in the lower troposphere, Atmos. Chem. Phys., 19, 11 525–11 543, https://doi.org/10.5194/acp-19-11525-2019, 2019.930

Schemm, S., Rudeva, I., and Simmonds, I.: Extratropical fronts in the lower troposphere − global perspectives obtained from two automated

methods, Q. J. R. Meteorol. Soc., 141, 1686–1698, https://doi.org/10.1002/qj.2471, 2015.

Schmale, J., Baccarini, A., Thurnherr, I., Henning, S., Efraim, A., Regayre, L., Bolas, C., Hartmann, M., Welti, A., Lehtipalo, K., Aemisegger,

F., Tatzelt, C., Landwehr, S., Modini, R. L., Tummon, F., Johnson, J., Harris, N., Schnaiter, M., Toffoli, A., Derkani, M., Bukowiecki,

N., Stratmann, F., Dommen, J., Baltensperger, U., Wernli, H., Rosenfeld, D., Gysel-Beer, M., and Carslaw, K.: Overview of the Antarctic935

Circumnavigation Expedition: Study of Preindustrial-like Aerosols and their Climate Effects (ACE-SPACE), Bull. Am. Meteorol. Soc.,

100, 2260–2283, https://doi.org/10.1175/BAMS-D-18-0187.1, 2019.

Sinclair, V. A., Belcher, S. E., and Gray, S. L.: Synoptic controls on boundary-layer characteristics, Bound-Layer Meteorol., 134, 387–409,

https://doi.org/10.1007/s10546-009-9455-6, 2010.

Sodemann, H., Schwierz, C., and Wernli, H.: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diag-940

nostic and North Atlantic Oscillation influence, J. Geophys. Res., 113, D03 107, https://doi.org/10.1029/2007JD008503, 2008.

40

https://doi.org/10.5194/acp-12-1629-2012
https://doi.org/10.1175/JCLI-D-13-00223.1
https://doi.org/10.1098/rsta.1983.0001
https://doi.org/10.1017/CBO9780511524974
https://doi.org/10.1175/BAMS-D-18-0217.1
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.1002/qj.485
https://doi.org/10.1029/2009JD013255
https://doi.org/10.1175/2010MWR3294.1
https://doi.org/10.5194/acp-19-11525-2019
https://doi.org/10.1002/qj.2471
https://doi.org/10.1175/BAMS-D-18-0187.1
https://doi.org/10.1007/s10546-009-9455-6
https://doi.org/10.1029/2007JD008503


Sodemann, H., Aemisegger, F., Pfahl, S., Bitter, M., Corsmeier, U., Feuerle, T., Graf, P., Hankers, R., Hsiao, G., Schulz, H., Wieser, A.,

and Wernli, H.: The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: Insight into vertical

mixing processes from lower-tropospheric survey flights, Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017,

2017.945

Spiegel, J. K., Aemisegger, F., Scholl, M., Wienhold, F. G., Collett Jr., J. L., Lee, T., van Pinxteren, D., Mertes, S., Tilgner, A., Herrmann,

H., Werner, R. A., Buchmann, N., and Eugster, W.: Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not

size-dependent, Atmos. Chem. Phys., 12, 9855–9863, https://doi.org/10.5194/acp-12-9855-2012, 2012a.

Spiegel, J. K., Aemisegger, F., Scholl, M., Wienhold, F. G., Collett Jr., J. L., Lee, T., van Pinxteren, D., Mertes, S., Tilgner, A., Herrmann,

H., Werner, R. A., Buchmann, N., and Eugster, W.: Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud950

in central Europe (HCCT-2010), Atmos. Chem. Phys., 12, 11 679–11 694, https://doi.org/10.5194/acp-12-11679-2012, 2012b.

Sprenger, M. and Wernli, H.: The LAGRANTO Lagrangian analysis tool – version 2.0, Geosci. Model Dev., 8, 2569–2586,

https://doi.org/10.5194/gmd-8-2569-2015, 2015.

Sprenger, M., Fragkoulidis, G., Binder, H., Croci-Maspoli, M., Graf, P., Grams, C. M., Knippertz, P., Madonna, E., Schemm, S., Škerlak,

B., and Wernli, H.: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim, Bull. Am. Meteorol. Soc., 98,955

1739–1748, https://doi.org/10.1175/BAMS-D-15-00299.1, 2017.

Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K., Prié, F., Bayou, N., Brun, E., Cuffey, K. M., Dahl-Jensen,

D., Dumont, M., Guillevic, M., Kipfstuhl, S., Landais, A., Popp, T., Risi, C., Steffen, K., Stenni, B., and Sveinbjörnsdottír, A. E.: What

controls the isotopic composition of Greenland surface snow?, Clim. Past, 10, 377–392, https://doi.org/10.5194/cp-10-377-2014, 2014a.

Steen-Larsen, H. C., Sveinbjörnsdottir, Á. E., Peters, A. J., Masson-Delmotte, V., Guishard, M. P., Hsiao, G., Jouzel, J., Noone, D., Warren,960

J. K., and White, J. W. C.: Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on

500 days of in situ, continuous measurements, Atmos. Chem. Phys., 14, 7741–7756, https://doi.org/10.5194/acp-14-7741-2014, 2014b.

Steen-Larsen, H. C., Risi, C., Werner, M., Yoshimura, K., and Masson-Delmotte, V.: Evaluating the skills of isotope-enabled gen-

eral circulation models against in situ atmospheric water vapor isotope observations, J. Geophys. Res. Atmos., 122, 246–263,

https://doi.org/10.1002/2016JD025443, 2017.965

Steppeler, J., Doms, G., Schättler, U., Bitzer, H. W., Gassmann, A., Damrath, U., and Gregoric, G.: Meso-gamma scale forecasts using the

nonhydrostatic model LM, Meteorol. Atmos. Phys.„ 82, 75–96, https://doi.org/10.1007/s00703-001-0592-9, 2003.

Thurnherr, I., Kozachek, A., Graf, P., Weng, Y., Bolshiyanov, D., Landwehr, S., Pfahl, S., Schmale, J., Sodemann, H., Steen-Larsen, H. C.,

Toffoli, A., Wernli, H., and Aemisegger, F.: Meridional and vertical variations of the water vapour isotopic composition in the marine

boundary layer over the Atlantic and Southern Ocean, Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020,970

2020.

Uemura, R., Matsui, Y., Yoshimura, K., Motoyama, H., and Yoshida, N.: Evidence of deuterium excess in water vapor as an indicator of

ocean surface conditions, J. Geophys. Res., 113, D19 114„ https://doi.org/10.1029/2008JD010209, 2008.

Uotila, P., Vihma, T., Pezza, A. B., Simmonds, I., Keay, K., and Lynch, A. H.: Relationships between Antarctic cyclones

and surface conditions as derived from high-resolution numerical weather prediction data, J. Geophys. Res. Atmos., 116,975

https://doi.org/10.1029/2010JD015358, 2011.

Vergara-Temprado, J., Ban, N., Panosetti, D., Schlemmer, L., and Schär, C.: Climate models permit convection at much coarser resolutions

than previously considered, J. Clim., 33, 1915–1933, https://doi.org/10.1175/JCLI-D-19-0286.1, 2019.

41

https://doi.org/10.5194/acp-17-6125-2017
https://doi.org/10.5194/acp-12-9855-2012
https://doi.org/10.5194/acp-12-11679-2012
https://doi.org/10.5194/gmd-8-2569-2015
https://doi.org/10.1175/BAMS-D-15-00299.1
https://doi.org/10.5194/cp-10-377-2014
https://doi.org/10.5194/acp-14-7741-2014
https://doi.org/10.1002/2016JD025443
https://doi.org/10.1007/s00703-001-0592-9
https://doi.org/10.5194/acp-20-5811-2020
https://doi.org/10.1029/2008JD010209
https://doi.org/10.1029/2010JD015358
https://doi.org/10.1175/JCLI-D-19-0286.1


Walton, D. W. H. and Thomas, J.: Cruise Report − Antarctic Circumnavigation Expedition (ACE) 20th December 2016 − 19th March 2017,

Zenodo, Version 1, https://doi.org/10.5281/zenodo.1443511, 2018.980

Welker, C., Martius, O., Froidevaux, P., Reijmer, C. H., and Fischer, H.: A climatological analysis of high-precipitation events in

Dronning Maud Land, Antarctica, and associated large-scale atmospheric conditions, J. Geophys. Res. Atmos., 119, 11,932–11,954,

https://doi.org/10.1002/2014JD022259, 2014.

Werner, M., Langebroek, P. M., Carlsen, T., Herold, M., and Lohmann, G.: Stable water isotopes in the ECHAM5 general circulation model:

Toward high-resolution isotope modeling on a global scale, J. Geophys. Res. Atmos., 116, https://doi.org/10.1029/2011JD015681, 2011.985

Wernli, H. and Davies, H. C.: A Lagrangian-based analysis of extratropical cyclones. Part I: The method and some applications, Q. J. R.

Meteorol. Soc., 123, 467–489, https://doi.org/10.1002/qj.49712353811, 1997.

Wernli, H. and Schwierz, C.: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatol-

ogy, J. Atmos. Sci., 63, 2486–2507, https://doi.org/10.1175/JAS3766.1, 2006.

Xu, X., Werner, M., Butzin, M., and Lohmann, G.: Water isotope variations in the global ocean model MPI-OM, Geoscientific Model990

Development, 5, 809–818, https://doi.org/10.5194/gmd-5-809-2012, 2012.

Yau, M. K. and Jean, M.: Synoptic aspects and physical processes in the rapidly intensifying cyclone of 6–8 March 1986, Atmos.-Ocean, 27,

59–86, https://doi.org/10.1080/07055900.1989.9649328, 1989.

Yoshimura, K., Kanamitsu, M., Noone, D., and Oki, T.: Historical isotope simulation using reanalysis atmospheric data, J. Geophys. Res.

Atmos., 113, https://doi.org/10.1029/2008JD010074, 2008.995

42

https://doi.org/10.5281/zenodo.1443511
https://doi.org/10.1002/2014JD022259
https://doi.org/10.1029/2011JD015681
https://doi.org/10.1002/qj.49712353811
https://doi.org/10.1175/JAS3766.1
https://doi.org/10.5194/gmd-5-809-2012
https://doi.org/10.1080/07055900.1989.9649328
https://doi.org/10.1029/2008JD010074

