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Abstract.

We examine the group dynamic of African easterly waves (AEW) generated in a realistic, spatially non-homogeneous
African easterly jet (AEJ) using an idealized general circulation model. Our objective is to investigate whether the limited zonal
extent of the AEJ is an impediment to AEW development. We construct a series of basic states using global reanalysis fields
and initialize waves via transient heating over West Africa. The dominant response is a localized, near-stationary wavepacket
that disperses upstream and downstream. The inclusion of a crude representation of boundary layer damping stabilizes the
waves in most cases, consistent with other studies in the past. In some basic states, however, exponential growth occurs even in
the presence of damping. This shows that AEWs can occasionally emerge spontaneously. The key result is thatthe-wavepaeket
iratmostatheases remains, whether triggered by an external forcing or generated internally, the wavepacket can remain within
the AEJ for multiple wave periods instead of being swept away. Drawing from other studies, this also suggests that even the
damped waves can grow if coupled with additional sources of energy such as moist convection and dust radiative feedback.
The wavepacket in the localized AEJ appears to satisfy a condition for absolute instability, a form of spatial hydrodynamic
instability. However, this needs to be verified more rigorously. We conclude that the limited zonal extent of the AEJ is not an
impediment. Our results also suggest that the intermittent nature of AEWs is mediated, not by transitions between convective

and absolute instability, but likely by external sources such as propagating equatorial wave modes.

1 Introduction

African easterly waves (AEWSs) are the dominant synoptic-scale feature of the summer-time West African monsoon (WAM).
The AEW stormtrack extends across the southern and northern sides of the mid-tropospheric African easterly jet (AEJ). Burpee
(1972) showed that the climatological basic state over North Africa is associated with a reversal in the meridional gradient of
potential vorticity (PV), satisfying the necessary condition for mixed baroclinic-barotropic instability (Charney and Stern,
1962). He proposed that AEWSs are the result of small amplitude disturbances growing on the unstable basic state. In this
viewpoint, AEWs amplify at the expense of the background reservoir of zonal kinetic energy and zonal available potential
energy (e.g., Hsieh and Cook, 2005). Calculations made using field campaign data have generally supported this notion (e.g.,
Norquist et al., 1977; Reed et al., 1977). Furthermore, the fastest growing (or slowest decaying) normal modes of the AEJ in

idealized numerical models appear to have wavenumber and frequency that are close to observed AEWs (e.g., Rennick, 1976;
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Simmons, 1977; Thorncroft and Hoskins, 1994; Leroux and Hall, 2009). In this regard, hydrodynamic instability has been a

useful model to account for the existence of AEWs.
1.1 Ciriticisms of linear normal mode instability

In the recent past, the applicability of linear normal mode instability to AEWs has been questioned. Two main criticisms
have been put forth. The first one concerns the impact of viscous damping. Hall et al. (2006) showed that AEW growth
rates were reduced, or even reversed, by what they take to be realistic levels of damping in an idealized general circulation
model. They contended that an AEJ, that is otherwise super-critical to inviscid normal modes, may be stabilized by boundary
layer damping. The second criticism concerns the localized nature of the AEJ. As shown by Dickinson and Molinari (2000)
» the climatological meridional gradient reversal of PV associated with the AEJ during July-October spans around 60-707.
of longitudes. Some studies have claimed that the zonal extent of the AEJ, and the implied region of instability, is too short
to sustain wave growth. Thorncroft et al. (2008) estimated that the AEJ length is no more than twice the wavelength of an
AEW. They efaimed-argued that the limited extent of the AEJ and the stabilizing effect of damping would preclude unstable
modes from emerging spontaneously out of background noise. This-asserti as ¢ ¢ : —These
two lines of argument led Thorncroft et al. (2008) to suggest that large amplitude triggers are necessary for the generation of
AEWs.

Whereas Hall et al. (2006) and Thorncroft et al. (2008) used a climatological basic state, Leroux and Hall (2009) used
the same model but with 336 different states derived from global reanalysis data. While many of their basic states showed no
development, some showed growing waves. They reiterated the conclusion of Thorncroft et al. (2008) regarding the importance
of external triggers for AEWs. They also concluded the growth rate of waves was most consistently related, not necessarily
to the strength of the AEJ, but to the vertical wind shear associated with it. In a related study, Leroux et al. (2010) showed
that external triggers from extratropics can also account for AEW activity. The triggering hypothesis for AEWs is now widely
accepted view of AEW formation. Yet, it should be noted that there is little doubt that observed and modeled waves appear to
be sustained by baroclinic and barotropic energy conversions from the background state of the atmosphere over North Africa

(e.g., Norquist et al., 1977; Thorncroft and Hoskins, 1994; Hsieh and Cook, 2007). How does that occur within a zonall
limited AEJ? We attempt to address this question.

1.2 The-antifrietionrole-of-Destabilization by moist convection and dust aerosol forcing

While the results of Hall et al. (2006) and Leroux and Hall (2009) have spurred the adoption of the viewpoint that AEWs
need an external trigger, at least two critical aspects of the dynamics are missing in their simulations. FheirFirst, their model
had no interactive moist convection. The AEW stormtrack region of North Africa is home to frequent and intense mesoscale
convective systems (e.g., Laing et al., 1999; Fink and Reiner, 2003; Laing et al., 2011). It has been shown that moist convection
is essential to account for observed AEW structure and strength (e.g.. Mass, 1979; Schwendike and Jones, 2010; Hsieh and
Cook, 2008; Mekonnen and Rossow, 2011; Berry and Thorncroft, 2012b; Janiga and Thorncroft, 2014; Tomassini et al., 2017,
Russell et al., 2020). Both time-mean and transient moist convection act to destabilize AEWs (Russell and Aiyyer, 2020).
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Although it can be argued that the basic states used by Hall et al. (2006) and Leroux and Hall (2009) have some imprint of
time-mean convection, the lack of wave-coupled moist convection severely underestimates their potential growth rate.

Second, AEWs are also subject to strong aerosol radiative forcing associated with the Saharan mineral dust (SMD) (e.g.,
Karyampudi and Carlson, 1988). There is increasing evidence that SMD can lead to AEW amplification (Jones et al., 2004;
Ma et al., 2012). Grogan et al. (2016) showed that the radiative forcing associated with SMD can enhance the eddy available
potential energy (EAPE) such that AEW growth rates can be significantly amplified relative to dust-free conditions. Using
analytical solutions and model simulations, Nathan et al. (2017) showed that even a sub-critical AEJ, wherein the background
PV gradient is single-signed, can yield AEWs that are destabilized by the SMD. They showed that the radiative-dynamical
feedback due to SMD can offset the low-level damping.

Taken together, it can be argued that the antifriction-destabilizing behaviour of moist convection and dust radiative forcing
should be an important consideration while addressing the first of the two criticism of linear normal mode instability. This does
not imply that finite amplitude triggers have no role to play. Instead, it simply means that they are not necessary as claimed by
Hall et al. (2006). It is certainly plausible that disturbances induced by large convective outbreaks and extratropical intrusions
can project on the normal modes, yielding weak, but finite amplitude waves that can then exponentially grow via dust-radiative
instability and moist convection. This will crucially depend on how much the external forcing projects on the scale of AEWs.
Indeed, Thorncroft et al. (2008) found that the waves in their model were much weaker than observations even though the
amplitude of the forcing was of a reasonable scale, representing the action of multiple mesoscale convective systems. They

also recognized that coupling with moist convection was needed to account for observed wave amplitudes.

2 Objective and background

As noted earlier, in the recent past, two arguments against linear normal mode instability have been put forth. The first one
regarding the stabilizing effect of frictional damping been addressed in several studies, as discussed above, by including the
effects of moist convection and dust radiative radiative-forcing. The second criticism regarding the limited zonal extent of the
instability is yet to be convincingly examined. Our objective is to address it by elucidating a key property of the wavepackets

generated in the localized AEJ.

2.1 AEW Wavepacketspackets

Past studies have established that AEW wavelength ()), and westward phase speed (c,,) are about 3000 km and 10 m sis;lm

respectively. Estimating the zonal extent (L) of the AEJ to be around 2], an approximate residence time is:
T, A — ~ — & 7 days. ey
c

The argument that the AEJ is too localized (e.g., Thorncroft et al., 2008; Leroux and Hall, 2009) essentially is the statement that
a week’s time is not sufficient for normal modes to emerge out of background noise. However, an important consideration that

is missing from this viewpoint is that the reference speed here should reflect the group propagation instead of the phase. This
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notion is not new. It has been demonstrated convincingly that extratropical baroclinic eddies are best modeled as modulated
wavepackets and their dynamics are intimately tied to their group propagation (e.g., Pierrehumbert, 1984; Mak and Cai, 1989;
Orlanski and Katzfey, 1991; Chang et al., 2002; Swanson, 2007). Following this lead, Diaz and Aiyyer (2013a) and Diaz and
Aiyyer (2013b) showed that composite AEWs in global reanalysis fields appeared as dispersive wavepackets.
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Figure 1. Time-longitude-Hovmoller diagram of eddy kinetic energy (J kg™ ) from ERA+ERAI for July-August for the year (a) 2006 at 650
hPa, averaged over 5to-+5-°N-15°N and (ab) and-2008 at 925 hPa, averaged over 15t0-25-°N-25°N¢b).

Figure 1 shows time-tongitide-Hovmoller slices of eddy kinetic energy (EKE) at two different levels. The left panel shows
650 hPa EKE averaged over 5—15°N for 2006. The right panel shows 925 hPa EKE averaged over 15-25°N for 2008. EKE is
calculated using 2-10 day band-pass filtered winds from the European Centre for Medium-Range Weather Forecasts (ECMWF)
interim reanalysis (ERA{ERAI). These two levels highlight the northern and southern AEW stormtracks. Both panels of
Fig—Figure 1 show distinct wavepackets that appear to disperse upstream and downstream. The key observations are (i) the
wavepackets are co-located with the AEJ, which extends from about 30°W-30°E ;-(c.f., Figure 3), and (ii) the group speed is
stgnifieantly-much smaller than the phase speed. With the group speed as the reference propagation metric, we can estimate

the residence time as:
L 2\
Tg ~— ) —, (2)

Cg G4

and with ¢, << ¢;,, we have

Tg >> Tp. 3)



105 This relation states that the residence time is mediated by the group propagation dynamic. Ia-the-ease-of-For a slowly propa-
gating wavepacket, this-it indicates that even a localized AEJ can support growth by the combined effects of the jet instability,
moist convection and SMD radiative forcing. In subsequent sections, we explore the structure of the AEW wavepacketpacket’s
group speed and the implication for its instability.

An important caveat should be recognized in relation to Figure 1. We have interpreted it as a pure AEW packet. In nature

110 however, a variety of tropical and extratropical systems ranging from synoptic (e.g., equatorial waves, breaking extratropical

waves) to intraseasonal (the Madden-Julian Oscillation) can modulate the amplitude of AEWs (e.g. Matthews, 2004; Leroux and Hall, 2009

- This modulation could. in principle, present itself like the dispersion of a linear wavepacket if it leads to preferential
amplification on one side of the packet. In a related issue, Aiyyer et al. (2012) showed that cloud signatures associated with
tropical cyclones can artificially project on to a wide range of eastward and westward propagating equatorial modes as a result

115 of the filtering in the wavenumber-frequency domain. The use of an idealized numerical model, wherein the main response
is the AEW_ stormtrack, mitigates some of this concern and provides an independent assessment of the relevance of group
dynamics for observed AEW packets.

2.2 Spatial Instability

Using a local kinetic energy budget, Diaz and Aiyyer (2013a) showed that upstream energy dispersion allowed new devel-
120 opment within the lagging edge of a slowly propagating AEW wavepacketpacket. Their results also suggested the intriguing
potential for the AEJ to support absolute instability, a form of spatial hydrodynamic instability (e.g., Pierrehumbert, 1984;
Huerre and Monkewitz, 1990). Herein, both temporal and spatial growth play a role in the development of disturbances. The
instability can be classified as either absolute or convective, with the delineation arising due to two possibilities when a distur-

bance is introduced within an unstable plane-parallel jet (Briggs, 1964; Pierrehumbert, 1984; Dunkerton, 1993).

125 — A developing wavepacket grows and disperses upstream and downstream of its excitation point. Any fixed point in
the domain eventually experiences exponential growth. This situation represents absolute instability and a conceptual

illustration for easterly flow in shown in Figure 2a.

— A developing wavepacket continues to grow but is unable to spread sufficiently upstream and is swept away by the flow
such that a fixed point sees growth followed by decay in wave amplitude. This situation represents convective instability

130 and a conceptual illustration for easterly flow in shown in Figure 2b.

When the region of instability is zonally confined, a wavepacket that is unable to disperse upstream will cease to grow after
it exits this region. On the other hand, with both upstream and downstream dispersion, an absolutely unstable wavepacket can
continue to grow at all subsequent times. If the basic state cannot support any development, it is deemed stable. It is also
possible that a basic state that is unstable under inviscid conditions can be stabilized by damping (e.g., Hall and Sardeshmukh,

135 1998). In the atmosphere, sources of damping include boundary layer friction, radiative and convective damping. Thus, in the

presence of damping, the growth rate from either of the two spatial instabilities can be reduced or reversed. This is shown
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Figure 2. Absolute (a,c) and convective (b,d) instability conceptually represented in the z-¢ plane for an unstable easterly flow. If Cy =0
within the cone, then there is both upstream and downstream development, and the flow is absolutely unstable (a). Otherwise, the flow is
convectively unstable (b). If the growth of the wavepacket is sufficiently damped as in (c) and (d), the amplitude of the wavepacket will

eventually decay to zero, resulting in weaker waves and a shorter lived wavepacket. Adapted from Diaz and Aiyyer (2015).

in the conceptual diagrams in Figures 2c,d. We will refer to these situations as damped absolute and convective instabilities
respectively.

Diaz and Aiyyer (2015) examined the stability of zonally uniform version of the climatological AEJ using direct numerical
simulations. In their model, a stationary spreading and growing wavepacket persisted for several days, even with moderate
parameterized damping. They estimated the total group velocity (Cy) following the method described in Orlanski and Chang

(1993). In the lieu of a rigorous analytical determination of spatial instability, the heuristic approach (e.g., Orlanski and Chang,
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1993) as adapted for easterly waves by Diaz and Aiyyer (2015) is useful:

(C’g)min <0< (Cg)max = absolute instability, and

(Cy) i < (Cy) ... <0 = convective instability. “)

Based on the analysis of their simulations, Diaz and Aiyyer (2015) claimed that a zonally uniform representation of the AEJ
was absolutely unstable. Given that moist convection and dust radiative effects can be additional sources of destabilization, this

it suggests that absolute instability may be a viable mechanism for the existence of AEWs.
2.3 Hypotheses

Several aspects of the results of Diaz and Aiyyer (2015) ought to be explored further. First, their AEJ did not capture the
streamwise inhomogeneity of the observed jet. Second, they only considered a single climatological basic state. They also
speculated that the basic states used in Thorncroft et al. (2008), Hall et al. (2006), and Leroux and Hall (2009) were convectively
unstable. This is yet to be confirmed. Additionally, Fig—t-alse-Figure 1 highlights the intermittent AEW activity. Since AEWs
tend to propagate in groups, this-yields-it results in alternate periods of enhanced and reduced synoptic activity. For example
during 2006, two distinct wavepackets can be seen starting around July 14 and August 19, with maximum activity just west of
-15°E. Although Fig-Figure 1 shows only two selected examples, such interspersed episodes of enhanced AEW activity are
commonly observed each year. It is of interest to identify factors that mediate this episodic nature of AEW wavepacketspackets.

Based on the preceding discussions, we identify two questions and attendant hypotheses to address our objective.

1. How do persistent AEW wavepackets-packets develop in the zonally localized AEJ?

Hypothesis: AEW persistence is related to the generation of a nearly stationary wavepacket within a realistic, localized
AE]J. This specifically addresses the concern raised in previous studies (e.g., Thorncroft et al., 2008; Leroux and Hall,

2009).

We note that one of the hallmarks of absolute instability is a wavepacket that disperses upstream and downstream,
with a zero group speed somewhere in the packet. However, a formal determination of absolute instability requires the
investigation of the dispersion relationship in the complex plane (e.g., Pierrehumbert, 1984; Dunkerton, 1993). Since that
is beyond the scope of this effort, we do not make a formal claim of absolute instability. As in Diaz and Aiyyer (2015),

but with a fully varying background flow, we only present a heuristic analysis based on direct numerical simulations.

2. What mediates the vacillation of the-episodesAEW activity?

Hypothesis: A slowly varying background flow alternates aperiodically in time between supporting stationary and trav-

eling wavepackets, leading to the AEW episodes.

In the context of spatial instability, this-it posits that AEW episodes are mediated by transition between the nature of

the instability of the background state (i.e., absolute — convective; and convective — absolute). This also suggests the
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possibility that intermittent AEW activity may be related to an internal mechanism involving the instability of the AEJ

in addition to previously suggested external sources of forcing.

It should be noted that issue of variability of AEW activity mediated by external mechanisms has been examined in several
past studies. Leroux et al. (2011) determined that extratropical disturbances from the North Atlantic stormtrack can influence
AEW activity. Others have documented the impact of equatorial Kelvin waves and the Madden Julian oscillation on the in-
traseasonal modulation of AEWs (e.g. Matthews, 2004; Leroux and Hall, 2009; Ventrice et al., 2011; Alaka and Maloney,
2012, 2014). While moist convection has been shown to be important to evolution of AEWs, in the spirit of retaining only
essence of the dynamics, we do not explicitly account for its feedback in our approach. We test these hypotheses by employing

an idealized general circulation model.

3 Primitive Equation Model

We use the the University of Reading multilevel primitive equation model configured as described in Hall et al. (2006). We
choose this model for several reasons. It is the same model that was used in related studies discussed earlier (Thorncroft et al.,
2008; Leroux and Hall, 2009; Leroux et al., 2011). By using a consistent model and experimental approach, we can not only
build upon their work but also provide clarification and novel interpretation of their results. We provide below some information
on the model configuration for completeness.

The model has a horizontal spectral resolution of T31 for 10 equally spaced sigma levels. The full nonlinear equations for
tendencies of temperature, vorticity, divergence and log(surface pressure) are integrated using a semi-implicit time step of 22.5
minutes. A VO diffusion is implemented for the momentum and temperature fields. As in Hall et al. (2006), low-level damping
is also applied to the momentum and temperature fields, intended as a modest representation of near-surface turbulent heat
and momentum transfer. The damping rates in the lower levels linearly decrease from the surface over 0.8 < ¢ < 1.0 with an
average e-folding time scale of 2 days for momentum and 4 days for temperature. In the free atmosphere (o < 0.8), damping
time scales are 10 days for momentum and 30 days for temperature. In addition, we also damp the areas of the globe poleward
of 30° in both hemisphere-hemispheres to preclude development in the extratropical stormtracks.

Since the model equations are not linearized about a fixed state, a standard approach to maintaining a time-invariant basic
state was implemented by Hall et al. (2006). Herein, a forcing term is added to the equations that collectively represent the
effects of diabatic heating and transient effects needed to maintain the basic state. The data for the basic state are taken from
the National Center for Environmental Prediction/Department of Energy (NCEP/DOE AMIP II) Reanalysis (Kanamitsu et al.,
2002).

3.1 Wave forcing

To excite waves in the AEJ, we force the model with a pulse of localized heating following the method of Thorncroft et al.

(2008). The heat source (H) is placed at 15°N, 20°E and is switched off after 24 hours into the simulation. This heating is
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meant to represent the latent heat release associated with several MCSs, and is defined as

Hycos? (ZL) r<rg
H = 27y (5)

0 r> 7o,

where r is the horizontal radius and r( is the horizontal bounding radius of the heating with a distance of 5° longitude and

latitude. Hy is the deep convective profile from Thorncroft et al. (2008) defined as:

Hy= gsin(wa). (©6)

1, corresponding to a peak rain rate of 20 mm day~'. The

The vertically integrated heating rate for this heating is 5 K day™
initial heating is scaled by a factor of 10~ to ensure consistency with linearization about a fixed basic state. The resulting
perturbations are later scaled up by the same factor for display.

To reiterate, we use the same method of initiating waves in a fixed basic state as was done by Thorncroft et al. (2008) and
Leroux and Hall (2009) to specifically address the concerns raised by them. Our conclusions are not sensitive to the choice of
a wave maker in the model. We have forced the model with red noise and other localized perturbations (e.g., finite amplitude

Gaussian vortex) and reach the same conclusion as presented in subsequent sections.
3.2 Simulations
All simulations span 100 days. To quantify wave amplitude, we use the standard definition of eddy kinetic energy (EKE):

1
Ke(x,y,a,t)zivw, @)

where v represents the perturbation velocity field. We define a quantity 3 as the ratio:

(K]

B($>U7t) = loglo ma (8)

where the square brackets denote averaging over over 5-20°N and K, is the maximum EKE within the first 24 hours. 3 is
not a growth rate but rather a convenient measure of the strength of the wavepacket at any given time relative to the energy
input by the initial transient thermal forcing. We use it to classify the longevity of wavepackets. If 3 < —1 at the lagging edge
within the first 20 days, it is classified as short-lived. If 8 > —1 for longer than 20 days but less than the full 100 days of
the simulation, it is classified as intermediate-lived, and if it 5 > —1 for the full simulation, it is classified as long-lived. This
method of classification does not require that the fastest growing or slowest decaying normal mode to be isolated within the

simulation period. We examine the evolution of wavepackets in the following 779-three basic state configurations:

— climatologieal-Climatological basic state: June-September mean over 1987-2017.

- individual-Individual basic states: These were created using 15-day averages, with 5 day-overlap, for the same period as

above. This yields 775 distinct basic states. Within each year, they represent slow and continuously evolving background



flow. This approach of using a sequence of basic states taken from the reanalysis data is similar to Leroux and Hall
(2009) who examined a series of basic states taken from global reanalysis. However, their focus was on global temporal

growth rates of waves, and they did not perform any spatial diagnostics of the AEW swavepacketspackets.

- ensemble Ensemble averaged basic states: Out of the 775 individual basic states, subsets based on wavepacket longevity
235 are averaged to create 3 additional basic states. These correspond to the ensemble-averaged short, intermediate, and

long-lived basic states.

— In total, the model is run 779 times with different basic states derived as above.

4 Results

Each simulation results in one distinct wavepacket. Of those, 521 (67%) are short-lived, 135 (17%) are intermediate-lived, and

240 116 (15%) are long lived (Table 1). For brevity, we focus on the results from the climatological and ensemble-averaged basic

states.
Number Percentage
Short-lived 521 67
Intermediate-lived 135 17
Long-lived 116 15

Table 1. Categories of wavepackets from the 775 simulations.
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Figure 3. Climatelogieal-JJAS 1987-2017 averaged climatological zonal winds (7 < —6 m s~ ! shaded and negative values dashed) for: (a)
o = 0.65 level and (b) latitude-height cross section averaged over —+5-+te-15°W-15°E.
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Figure 4. Streamfunction (interval 1 x 10° m? s~! with negative values dashed) and horizontal wind vectors at o = 0.85 (left) and 0.65

(right) showing the wave response within the climatological composite basic state for days 5, 11, 17, and 23 from top to bottom.

4.1 Climatological Basic State

We begin with the response to transient heating imposed on the climatological basic state. Figure 3 shows the basic state
zonal winds at o = 0.65 and a latitude-height cross-section averaged over 15°W-15°E. The panels show the zonally localized
245 AEJ peaking around 12-15°N and around 600 hPa along the vertical. The monsoon westerlies are located near the surface.
In-The outcome of this simulation is consistent with Thorncroft et al. (2008). During the first two days of the simulation, the
fixed-heating produces a baroclinic vortex directly where it is applied. Subsequently, eonsistent-with-Thorneroftet-al-(2008)

;-a series of perturbations resembling observed AEWs emerges. Figure 4 shows the resulting perturbation streamfunction at
o = 0.85(~ 850 hPa) and 0.65(= 650 hPa) on days 5, 11, 17, and 23. The individual phases propagate westward, but the
250 wavepacket remains nearly stationary and slowly decays. Figure 5a shows a Hevmeler-Hovmoller diagram of the EKE,

11
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averaged over 5-20°N during the first 40 days of this simulation. The EKE falls below 10% of its initial value by day 20.

Therefore, we classify the resulting wavepacket within the climatological basic state as short-lived.

a) EKE o =0.85 & 5-20N b) B o =0.85 & 5-20N
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Figure 5. Time-longitude-Hovmoller diagram of EKE (a, J kg™') and S (b) at o = 0.65 resulting from fixed-heating on the JJAS 1987-2017
composite basic state averaged over 5-20°N. Note the difference in times shown between (a) and (b). The black detsemicircle at time 0 days

represents the location of the initial heating perturbation.

Figure 5b illustrates the parameter 3 calculated using Eg-Equation 8 for the full duration of the simulation. It shows elearly
that even though the wavepacket was decaying, it was not swept out of the region, and its structure persisted near 0°E. This sug-
gests that the ground-relative group speed was zero within the wavepacket, which is one of the conditions associated with abso-
lute instability (Equation 4). Importantly, as often seen in observations (c.f. Figure 1 here; and Diaz and Aiyyer, 2013a, 2015)
, the AEW wavepacket-packet is stationary within the AEJ over West Africa. Calculations of energy budget confirm that
barotropic and baroclinic energy conversions from the basic state are both sources of EKE (not shown). However, the presence
of damping in the model leads to the eventual decay of the wavepacket. This is consistent with the picture of damped absolute

instability (Figure 2c).
4.2 Wave responses for the ensemble averaged categories

We now consider the ensemble-average basic states for the short, intermediate and long-lived wavepackets. The zonal winds
at 0 =0.65 and a height-latitude cross section for the three basic states are shown in Figure 6. The basic-state AEJ gets
progressively stronger and shifts equatorward moving from short to long lived wavepackets. The jet in the former reaches a
peak of about 9 m s~* and in the latter about 10 m s—1. As the AEJ is more directly above the surface westerlies and stronger
in the long-lived basic state, both horizontal and vertical wind shear are enhanced as compared to the other two basic states

(Figure 6). Therefore, we anticipate that both barotropic and baroclinic conversion rates will be highest in this basic state. Each
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Figure 6. Zonal winds (< —6 m s~ * shaded with negative values dashed) at o = 0.65 (left column) and latitude-height cross section averaged

over -15 to 15°E (right column) for the short-, intermediate-, and long-lived basic states.

of these basic states yield quite similar reversals in the meridional PV gradient (not shown) which are capable of supporting the
development of AEWs through mixed barotropic-baroclinic instability. Consistent with it, energy budgets confirm barotropic
and baroclinic energy conversions from the basic state (not shown).

As in the climatological case, each ensemble-average basic state generates a series of disturbances that resemble AEW pack-
ets. Figure 7 shows short-lived response for days 5-23, separated by roughly one wave-period. On day 5, the streamfunction
field shows waves with horizontal tilt consistent with barotropic instability. The wavepacket has its peak amplitude around 0°E.
On day 11, the amplitude has dropped substantially, and by day 23, the streamfunction fails to reach the minimum contour used
in the figure. Figure 8 shows the evolution of the intermediate-lived wavepacket. The streamfunction on day 5 closely resem-
bles the same for the short-lived wavepacket but with greater amplitude. This suggests that the basic state for intermediate-lived
wavepacket permits larger growth rates. By day 11, the wavepacket is still present but has undergone some damping, although
not nearly to the same extent of the short-lived wavepacket. On day 17, the wavepacket persists but is weaker. By day 23, the

AEW packet has further diminished. Figure 9 shows shows the evolution of the long-lived wavepacket. As opposed to the short
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Figure 7. Streamfunction (interval 1 x 10° m? s~! with negative values dashed) and horizontal wind vectors at o = 0.85 (left) and 0.65

(right) showing the wave response within the short-lived basic state for days 5, 11, 17, and 23 from top to bottom.

and intermediate lived wavepackets, this one continues to grow at all subsequent times after initiation. The waves are tilted
upshear in both the horizontal and vertical planes, indicating barotropic and baroclinic energy conversions.

Hevmoller- Hovmo"ller diagrams for EKE and 3 for these three simulations are shown in Figure 10. The former is shown
for the first 30 days while the latter for the full 100 days of the simulation. The location of the center of the transient heating
is shown using a black dot. The EKE panels for the short and intermediate-lived cases show damped wavepackets while the
long-lived panel shows an amplifying wavepacket. Owing to the logarithmic definition of 3, we can elearly-see the behavior
of the wavepackets long after the transient heating. Initially, the response is a baroclinic vortex that projects on a wide range of
modes. Some of those are advected out of the localized region of instability and damped. In the short-lived case, the wavepacket
that remains is much weaker and is not sustained by barotropic-baroclinic energy conversions against the imposed frictional

damping. This is illustrated by the progressively negative values of 5 within the vicinity of 0°E. After 60 days, the wavepacket
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Figure 8. Streamfunction (interval 1 x 10° m? s~! with negative values dashed) and horizontal wind vectors at o = 0.85 (left) and 0.65

(right) showing the wave response within the intermediate lived basic state for days 5, 11, 17, and 23 from top to bottom.

amplitude is indistinguishable from noise in the model. In the intermediate-lived simulation, the damping does not diminish the
wavepacket as quickly. As a result, the wavepacket is visible throughout its lifetime. However, the EKE drops below 10% of its
original value by day 40. The long-lived case elearly-shows a growing, expanding wavepacket. By the end of the simulation,
its amplitude reaches two orders of magnitude higher than its initial value.

Another illustration of the behavior of the wavepackets in the three simulations is presented in Figure 11. Here, the stream-
function (o = 0.65 level), averaged over 10-20°N, is plotted against longitude for selected times. Note the different ranges for
the ordinate in the three panels. Taken together with Figure 10, it is evident that the wavepacket in all three simulations remains
remains nearly stationary. In the short and intermediate-lived cases, the leading and lagging edges of the AEW packet slowly

seem to be collapsing towards O°E. They resemble the conceptual diagram for damped absolute instability shown in Figure 2c.
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Figure 9. Streamfunction (interval 1 x 10° m? s~! with negative values dashed) and horizontal wind vectors at o = 0.85 (left) and 0.65

(right) showing the wave response within the long-lived basic state for days 5, 11, 17, and 23 from top to bottom.

On the other hand, the amplification and expansion of the wavepacket in the long-lived case resembles the conceptual diagram
for absolute instability shown in Figure 2a.
Figure 12 shows the the global averaged EKE and its growth rate, with the latter defined as:

1 0K,
K. ot

In each simulation, the transient response to the fixed-heating forcing causes an initial spike in EKE, followed by a period of
adjustment after the heating is switched off. As expected, the short and intermediate-lived wavepacket growth rates are negative
owing to the stabilization effect of the imposed friction. The long-lived case shows exponential growth. It appears that 20 days
of simulations is sufficient to reach this steady growth rate and signifies the emergence of the dominant normal mode for the

localized jet.

16



310

a) SL, EKE o =0.85 & 5-20N b) IL, EKE o =0.85 & 5-20N
c
o
kS|
£
o
el
o
£
3]
=
[
w
>
©
©
0.02 006 01 014 0.18 0.02 0.06 0.1 0.14 0.18 0.22 0.26 0204 0608 1 1214 16
d) SL, B o = 0.85 & 5-20N e)lL, f o =0.85 8 5-20N fLL, B o =0.85 & 5-20N
5 80 80
=
£ |
5 60 60
el
o
= 1
5 40 40
= ]
©
w
)
- 20 20 - —]
0 , 0 M—— e
60W 0 60E 60W 0 60E
5-4-3-2-101 23 45 5-4-3-2-1012 3 405 5-4-3-2-101 23 415

Figure 10. Time-longitade-Hovmoller diagram of EKE (top) and 3 (bottom) at o = 0.65 resulting from fixed-heating on the short- (a,d),
intermediate- (b,e), and long-lived (c,f) composite basic states averaged over 5-20°N. The black dot represents the location of the initial

heating perturbation.

4.3 Group speed

Diaz and Aiyyer (2015) adapted the method of Orlanski and Chang (1993) to calculate the group speed across their simulated
wavepackets. We write it for the zonal group speed as follows:

[ (ua® +T.U) dpdA

Cs [[Tedpdd

€))

where u,, is the perturbation zonal ageostrophic wind, p is pressure, A is the area, &’ is the perturbation geopotential, U is the
basic state zonal wind, and T, is the total eddy energy, which was defined by Orlanski and Katzfey (1991) as the sum of the
eddy kinetic energy and the eddy available potential energy:
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Figure 11. Streamfunction (10° m? s™') averaged over 10-20°N at ¢ = 0.65 and plotted as a function of longitude for selected days for

short- (a), intermediate- (b), and long-lived (c) simulations. Each day’s streamfunction is offset along the ordinate for visualization.

Te:lv.v_(aimﬂ;» (10)
20, dO/dp

where v is the perturbation velocity, «, is the time mean specific density, © is the potential temperature, O is its horizontal
average and 6 is the perturbation potential temperature. As written above, C includes the contribution of both the ageostrophic
geopotential flux and the energy transport by the background flow. To apply Equation 9 to our model output, we integrate over
latitudes 5°S —30°N in the meridional direction, half-wavelengths in the zonal direction, and the entire depth of the model in
the vertical direction. The group speed is further averaged over days 30-35 for display. Figure 13 shows the calculation for
the climatological and the three ensemble-averaged basic states. In all four cases, the group speed is westward on the leading
edge, eastward on the lagging edge, and vanishes somewhere in between. For the short-lived case this happens at 30°W, for
intermediate-lived around 10°W, and the long-lived around 0°E. Owing to upstream and downstream dispersion, portions of
the wavepacket remain within the region of instability. Thus, the condition for inviscid absolute instability for easterly mean
flow (Equation 4) is satisfied in all four ensemble-averaged basic states. The inclusion of damping stabilizes three of them.
However, In-in light of our earlier discussion regarding the destabilizing role of moist convection and SMD, the wavepacket’s
group dynamic provides a means for a persistent structure and amplification that can overcome damping via coupling with

these additional energy sources.
4.4 Sensitivity to sponge region

The simulation for the long-lived case shows an exponentially growing stationary wavepacket. Since the model is global, and
allows for reentry of waves, it is of interest to examine whether this affects the growth rate. A standard approach to minimizing
re-entrant waves is to include a sponge region of damping (e.g., Dunkerton, 1993). We repeat our simulation for the long-

lived case by imposing additional damping outside 60°W—-60°E. The growth rate and the structure of the wavepackets for this
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Figure 12. Time-series of the globally averaged EKE (top, J kg™ ') and growth rates (bottom, day ') resulting from the fixed-heating
anomaly on the short- (a,d), intermediate- (b,e), and long-lived (c,f) basic states. The mean growth rate, averaged over the last 50 days of the

simulation, is shown by the dashed line.

simulation are shown in Fig-Figure 14. A comparison with Fig—H-and-Fig—Figure 11 and Figure 13 shows that the outcome,
with and without the sponge region, are similar. This result provides confidence that the wavepacket response and amplification

is-are not dependent on reentering waves. This-It also points to the possibility of the existence of a mode that is characterized
by local absolute instability. FhisThe evidence that we have provided for absolute instability is, however, reeds-to-be-confirmed
more-rigoroushy—

circumstantial. A rigorous analysis (e.g. Pierrehumbert, 1984; Dunkerton, 1993) is needed to confirm its applicability.

4.5 Examples of Convective Instability Wavepackets

When we examine each of the 775 simulations individually, we find that the majority of them satisfy the criterion for inviscid
absolute instability as given in Equation 4. However, most of them are stabilized by damping and fall under the short-lived
category. Only 22 cases satisfy the criterion for inviscid convective instability with westward group speed over the entire

wavepacket. We now briefly show two examples: one for the basic state taken from the 15 day average centered on August

19



345

350

a) JUAS 1987-2017 Days 30:35 b) SL Days 30:35

4.0
4.0
Q
E
= 201 2.0
‘©
°
Q
> 0.0 0.0
o
=]
o
S 20
2 2.0
3
°
4.0
4.0
e o SEMIE R s I
60W 45W 30W 15W 0 15E 30E 45E 60E B0W 45W 30W 15W 0 15E 30E 45E 60E
c)IL Days 30:35 d)LL Days 30:35
10
6.0
Q
E
> 30 - 51
©
o
3
> 00 0
o
=]
o
S 30
s S
O
°
6.0
10 ]
T T T T T T T T T T T T T T
60W 45W 30W 15W 0 15E 30E 45E 6OE 60W 45W 30W 15W O 15E 30E 45E 60E

Figure 13. Total group velocity (m s ') averaged over days 30—35 of the simulation for the four basic states as marked on the panel: Fhe-(a)
the JJAS long-term climatology, (b) short-lived (SL), (ac) ~intermediate-lived (IL), and (d) long-lived (LL). C, is evaluated from Equation 9,

integrated over half-wavelengths in the zonal direction, from -5 to 30°N meridionally, throughout the model depth in the vertical direction.

15, 1995, and the other on September 4, 2006. The perturbation streamfunction (o = 0.65 level) for these two simulations are
shown in Figure 15. In both cases, the resulting wavepacket after 5 days looks quite similar to the short-lived composite case.
However, over time, the wavepacket slowly moves beyond the coast of West Africa and is damped. The growth rates for these
two cases are similar to the short-lived basic state simulations (not shown). The HovmoHler-Hovmd'ller diagrams for EKE and
the 3 parameter look similar to the short-lived case (not shown). However, the total group velocity (Figure 16) shows uniformly
negative values. This indicates that that the entire wavepacket propagates downstream. Note that we average the group velocity
over days 15-20 in this case —TFhis-is-because the wavepacket is mostly advected out of the region of instability after this period.
In the absence of damping, the wavepacket would experience growth as long as it remains within the area of instability. Once
it exits the region, it will cease to experience growth. However, as seen in Figure 15, the presence of damping stabilizes the

wavepacket, and it decays after initiation even while passing through the unstable region associated with the AEJ.
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Figure 14. Results for the long-lived wavepacket simulation with added sponge region: (a) time-series of the globally averaged EKE (J
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selected days.

5 Discussion

The objective of this work is to examine some characteristics of wavepackets generated within the AEJ. In part, this-it is
motivated by previous studies that have questioned the ability of the zonally localized AEJ to support growing AEWs (e.g.
Thorncroft et al., 2008; Leroux and Hall, 2009). Our work is guided by two hypotheses that we test using an idealized model.

Following the method used by Thorncroft et al. (2008) and Leroux and Hall (2009), we examine the response to transient
heating within the AEW stormtrack using an idealized general circulation model. We begin with a climatological basic state
and then a series of 15-day average states. Out of the 775 simulations, 67% of the wavepackets are short-lived, 17% are
intermediate-lived, and 15% were long-lived. The basic states thatresultin-each-of-the-three-for these categories are further
combined to yield three-ensemble-averaged states and three additional simulations are performed. In all three simulations,
a nearly stationary wavepacket ensues and is located over west Africa. The short and intermediate-lived wavepackets are
eventually damped but the long-lived wavepackets remain unstable. The group velocity for these three wavepackets, and indeed
most of the basic states considered here, are found to be westward on leading edge and eastward on the lagging edge of the
wavepacket. Only 22 cases showed uniformly westward group velocity across the wavepacket.

All ensemble-averaged basic states considered here are associated with reversal in potenttal-vertietty-PV gradients, and thus
satisfy the criterion for inviscid barotropic-baroclinic instability. Consistent with that, the wave structures exhibit upshear tilt
in horizontal and vertical planes. As expected, both barotropic and baroclinic conversions of energy from the basic state to
the waves are found (not shown). The scope of the present work does not include a detailed examination of the differences in

the basic state to account for the wavepacket behavior. Nonetheless, we note that the long-lived basic state had more vertical
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Figure 15. Streamfunction (interval 1 x 10° m? s~* with negative values dashed) showing the wave response within the basic state formed

by the 15-day average centered around August 15, 1995 (left column) and September 4, 2006 (right column).

and horizontal shear associated with the AEJ as compared to the short-lived basic state. As seen in Figure 6, the AEJ in the
long-lived basic state is stronger and is more directly located above the surface monsoon westerlies. This yietds-corresponds
375 to stronger horizontal and vertical wind shear and eonsistent-with increased barotropic-baroclinic energy conversions—This-is

refleeted-in-the-, yields higher growth rate of the long-lived wavepacket (Figure 12).

We used the same experimental method as Thorncroft et al. (2008) and Leroux and Hall (2009) in order to maintain consistency
and connections with previous related studies. The fact that the majority of basic states appear to be stabilized by the imposed
damping agrees with Hall et al. (2006) and Leroux and Hall (2009). In the absence of spontaneous generation of AEWs, large

380 amplitude external triggers may be necessary as proposed by Thorncroft et al. (2008). However, as noted in section 1.2, recent
work has shown that even a sub-critical AEJ may be destabilized by dust aerosol radiative effect (Nathan et al., 2017) and that

moist convection has a major impact in maintaining and amplifying AEWs (Russell et al., 2020). Even triggered waves will fail
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Figure 16. Total group velocity (m s~ ') averaged over days 15-20 of the simulations for the August 15, 1995 basic state (fefta) and the
September 4, 2006 basic state (rightb).

to amplify if additional sources of destabilization are not present. Indeed, Thorncroft et al. (2008) found that the waves in their
simulation were much weaker compared to observations even though the external forcing was of reasonable strength. The
385 recognized that the triggered waves need to be coupled with moist convection in order to match the observed amplitudes in

nature. While we have not accounted for interaction with precipitating moist convection and dust aerosol forcing, several other
studies have documented their role in destabilizing AEWs (Berry and Thorncroft, 2012a; Schwendike and Jones, 2010; Janiga and Thornct

Returning to our motivating hypotheses and questions, our results suggest that the background flow over west Africa supports

390 near-stationary wavepackets. Furthermore, wavepacket diagnostics indicate that the heuristic condition for inviscid absolute in-
stability (e.g., Orlanski and Chang, 1993; Diaz and Aiyyer, 2015) is satisfied. This is the case not only for the climatological

state but also for the majority of individual basic states from June-September 1987-2017. Most of our simulations produce only
short-lived AEW packets, indicating that damping ean-stit-(in the absence of dust radiative or moist convective feedbacks) can
stabilize an otherwise super-critical jet. Occasionally, however, the amplification via hydrodynamic instability does overcome

395 damping and leads to exponential growth. Importantly, in nearly all cases, the wavepacket remains within the area of insta-

bility over west Africa, thereby increasing the potential for interaction with moist convection and SMB-dust aerosols that are

ubiquitous here.

400 do not discount the role of large amplitude triggers of local or remote origin. If these externally forced disturbances project

on to the AEW modes, they can lead to subsequent amplification mﬂﬁeAEJWHdé&maaMes%&bmﬁﬁﬂwfewdedJeﬁf
Mmmst convection and dust radiative feedback.
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Our results suggest a complementary mechanism for AEW origin that relies on upstream energy dispersion. If we take the
view that the group dynamic of AEWs favors a near-stationary wavepacket within the AEJ, then, the barotropic-baroclinic

energy conversions associated with the jet, moist convection and dust radiative effects can lead to rapid amplification. The

potential for the AEJ to be absolutely unstable despite the damping — as noted for a subset of the basic states — also raises
the possibility that AEW packets can be generated spontaneously within the AEJ and persist for multiple wave periods until

nonlinear effects become prominent. The key result is thateven-theugh-the-instability-iszonallylocalized; the AEW-wavepacket
» Whether the packet its triggered by an external forcing or generated internally, it is not swept awayout of the region of
instability. This addresses the criticism regarding-that the limited zonal extent of the AEJ may be an impediment to AEW
growth.

Our second hypothesis that intermittent activity of AEWs may be mediated by transition between convective and absolute
instability of the basic states is not supported by the results. Fhis-is-beeatse-we-We find that convective wavepackets are rela-
tively infrequent in our simulations. This-It may be a limitation of our modeling framework, but nonetheless the implication is
that the intermittent nature of AEW activity is likely set externally. Equatorial Kelvin waves and the Madden Julian Oscillation
have been shown to modulate AEW activity (e.g. Matthews, 2004; Leroux and Hall, 2009; Ventrice et al., 2011; Alaka and
Maloney, 2012, 2014). These external intraseasonal oscillations can modify the background thermodynamic profile and lead
to episodes of enhanced and suppressed AEW activity by altering the AEW growth rates.

While our direct numerical simulations suggest the potential applicability of absolute instability, afermal-analytical-or
semi-analytical-our evidence must be considered circumstantial. A formal investigation of the spatial instability of the AEJ is
warranted. A caveat of our findings is that we use a highly simplified representation of the atmosphere and neglect the feedback
with precipitating moist convection and dust radiative feedback on the dynamics of the wavepackets. It is likely that they may
play an important role in modifying the nature of spatial instability of AEW packets. This remains to be explored further. In
addition, our simulations do not represent modulation of AEWs by external phenomena such as the Madden Julian Oscillation,
convectively coupled Kelvin wayes or breaking extratropical baroclinic waves. The impact of these externally imposed source
of wave forcing on the group dynamics of AEWs also needs to be examined.

6 Conclusion

We find that the background flow over North Africa supports an upstream and downstream dispersing wavepacket that is located
within the AEJ. The implication is that, no matter what the source of the initial perturbations may be — spontaneous development
or external triggers —— the wavepacket is not swept out of the localized region of instability. As-a-resutConsequently, AEWs

have the opportunity to develop further despite-damping;-as-shown-inprevious-studies-via-baroclinic-and-baretropie-via energy
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conversions from the jet and the-destabilizing-effeets-of-destabilization by moist convection and dust radiative forcing as shown
in previous studies. Our work has shown the importance of the group propagation dynamic for the instability of AEWs.
7 Data availability

The reanalysis data used here can be obtained from the European Center for Medium-Range Weather Forecasts ECMWF;
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim/. The data documentation is provided in Dee et al.
(2011). The code for the University of Reading IGCM can be obtained from http://www.met.reading.ac.uk/~mike/dyn_models/
igem/.
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