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Abstract. In south-eastern France, the Mediterranean coast is regularly affected by heavy precipitation events. On 14–15

October 2018, in the Aude department, a back-building quasi-stationary mesoscale convective system produced up to about

300 mm of rain in 11 h. At synoptic scale, the former hurricane Leslie was involved in the formation of a Mediterranean surface

low that channelled conditionally unstable air towards the coast. At mesoscale, convective cells focused west of a decaying cold

front, that became quasi-stationary, and downwind of the terrain. To investigate the roles of the moisture provided by Leslie,5

orography and evaporative cooling among the physical processes that led to the location and intensity of the observed rainfall,

numerical simulations are run at 1 km and 500 m horizontal resolutions and evaluated with independent near-surface analyses

including novel crowd-sourced observations of personal weather stations. Simulations show that, in a first part of the event, low-

level conditionally unstable air parcels found inside strong updraughts mainly originated from areas east of the Balearic Islands,

over the Mediterranean Sea, whereas in a second part, an increasing number originated from Leslie’s remnants. Air masses10

from areas east of the Balearic Islands appeared as the first supplier of moisture over the entire event. Still, Leslie contributed to

substantially moisten mid-levels over the Aude department, diminishing evaporation processes. Thus, the evaporative cooling

over the Aude department did not play any substantial role in the stationarity of the quasi-stationary front. Regarding lifting

mechanisms, the advection of conditionally unstable air by a low-level jet towards the quasi-stationary front, confined to

altitudes below 2 km, reactivated convection along and downwind of the front. Most of the air parcels found inside strong15

updraughts near the location of the maximum rainfall were lifted above the quasi-stationary front. Downwind of the Albera

Massif, mountains bordering the Mediterranean Sea, cells formed by orographic lifting were maintained by low-level leeward

convergence, mountain lee waves and a favourable directional wind shear; when terrain is flattened, rainfall is substantially

reduced. The location of the exceptional precipitation was primarily driven by the location of the quasi-stationary front and

secondarily by the location of convective bands downwind of orography.20

1 Introduction

Heavy precipitation events (HPEs), usually defined as events with daily rainfall exceeding 150 mm (Ricard et al., 2012), affect

all the coastal areas of the western Mediterranean region, often producing flash floods (Nuissier et al., 2008). Due to the large

societal impact of these events causing casualties and damage, they were extensively studied during the HyMeX programme
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extending from 2010 to 2020 (Ducrocq et al., 2016). Large rainfall amounts observed in time periods from few hours to several25

days during HPEs are the result of deep convection focusing over the same area. Convective organization often consists in

continuous convective cell renewal constituting quasi-stationary mesoscale convective systems (MCSs).

Ricard et al. (2012) built a climatology of HPE environments over the north-western Mediterranean area based on 3D-Var

ALADIN mesoscale analyses of a 5 yr period (2002–2006). With this climatology, synoptic situations favouring HPEs over

Languedoc-Roussillon, maritime part of the Occitanie region in southern France (Fig. 1), are now well known. At upper levels, a30

trough extends over the Iberian peninsula in a south-east–north-west orientation. This trough is associated with a cold low in the

middle and high troposphere and generally entails a diffluent south-westerly flow at upper levels. MCSs develop preferentially

northwards of a slow-evolving surface low located between the Iberian Peninsula and the Balearic Islands focusing a south-

easterly low-level jet (LLJ). The location and the deepening of the slow-evolving surface low is a key ingredient in focusing

convection over the same area and continuously initiating convection inside MCSs (Duffourg et al., 2016; Nuissier et al., 2016).35

The Mediterranean Sea supplies moisture – up to 60 % of the total air parcels moisture in previous HPEs according to water

budgets of Duffourg and Ducrocq (2013) – and heat to this low-level airflow through evaporation and heat exchange, which

both depend on the sea surface temperature (SST). Thus, abnormally warm SST can destabilize atmospheric lower levels

up to 2–3 km above sea level (a.s.l.) (Lebeaupin et al., 2006), modulating the intensity of convective precipitation. All these

ingredients favour a persistent LLJ transporting low-level conditionally unstable air parcels over the Gulf of Lion.40

Several mechanisms are responsible for lifting this conditionally unstable low-level marine flow, triggering convection over

the same area. First, the mountainous terrain bordering the Mediterranean shore leads to orographic lifting. Secondly, in the

lower levels of the atmosphere, mesoscale boundaries, when stationary, can lift air parcels over the same areas. Such stationary

boundaries can be fronts (Trapero et al., 2013), outflow boundaries of cold pools, local convergence lines, mesoscale pressure

troughs, among others. Lifting mechanisms include mechanical lifting in convergence areas and buoyancy differences between45

air masses. The action of these mesoscale boundaries is combined with the action of the terrain itself and explains why large

rainfall amounts are observed over the mountains as well as in the Mediterranean plains and over the sea (Duffourg et al.,

2018). Once convection initiated, the locations of these mesoscale boundaries and the amplitudes of their temperature, humidity,

pressure and wind speed gradients can be continuously modified by the MCS thanks to small-scale feedback mechanisms of the

convection to the environment (Duffourg et al., 2016). Cold pools, which are favoured by a dry or weak upstream low-level flow50

according to the idealized study of Bresson et al. (2012) over southern France, are affected by such feedback mechanisms. In

previous HPEs, dry air parcels at altitudes between 1 and 4 km a.s.l., when mixed to precipitation of the MCS, were humidified

and cooled through evaporation processes, forming vigorous downdraughts resulting in the formation or maintenance of cold

pools (Ducrocq et al., 2008; Duffourg et al., 2018).

Among these mechanisms, those at the origin of the HPE of the night of 14 to 15 October 2018, on which this article55

focuses, are studied. During that night, in the centre and north-west of the Aude department (Fig. 1), part of Languedoc-

Roussillon, rainfall accumulations over 200 mm in less than 12 h affected an approximately 60 km long and 10 km wide band

oriented south-east to north-west. Inside the band, an automatic rain gauge in Trèbes (Fig. 2) measured 295.5 mm in 11 h

including 243.5 mm in 6 h and 110.5 mm in 2 h. Météo-France volunteer observers measured 318.9 mm in Conques-sur-Orbiel
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and 306.6 mm in Cuxac-Cabardès with manual rain gauges in 2 days, probably fallen almost entirely in 12 h as 93 to 99 % of60

the 2-day rainfall fell in 12 h in nearby Météo-France automatic rain gauges. In the centre and north-western part of the band,

such 12 h rainfall accumulations were unprecedented in recent meteorological records and return periods were estimated over

100 yr. The orientation of the band, parallel to the small Trapel river catchment, led to a major flash flood in this catchment

in particular, overflowing and destroying bridges. It caused 15 fatalities, 75 injured and around 325 millions euros of damages

including C 256 M to insurable assets for around 29 000 insurance claims and C 69 M to non-insurable assets (Préfecture de65

l’Aude, 2018; Ayphassorho et al., 2019; French Insurance Federation, 2019; Petrucci et al., 2020). This episode is part of a

series of HPEs that occurred in October and November 2018 over the north-western Mediterranean and particularly affected

the Balearic Islands on 9 October (Lorenzo-Lacruz et al., 2019) and Italy on 27–30 October (Davolio et al., 2020).

As described by Kreitz et al. (2020) and Caumont et al. (2021), at large scale, a remarkable feature was the extratropical

transition of hurricane Leslie before landfall in the Portuguese coast on the evening of 13 October, one day before the HPE70

started. Transitioning hurricanes over the North Atlantic are known to disturb the midlatitude flow close or downstream of them,

causing or modifying the location and intensity of high-impact weather such as HPEs (Grams and Blumer, 2015; Pantillon et al.,

2015). As hurricanes can supply large amounts of moisture and because the moisture structure in the lower troposphere was

shown to play a key role in the timing and location of precipitation of previous HPEs (Lee et al., 2018), it is of interest to

quantify the amount of moisture supplied by Leslie to the convective system. At a smaller scale, largest rainfall accumulations75

were aligned along bands downstream of the Pyrenees relief. Within the bands, the largest accumulations were found west of a

quasi-stationary front and a quasi-stationary mesoscale trough. Because of the heavy convective rain observed west of this front,

evaporative cooling may have additionally cooled the west side of the front. This additional cold air may have caused a dynamic

feedback that contributed to the stationarity of the front. Similar dynamic feedback was described by Davolio et al. (2016) over

north-eastern Italy: in cases of upstream events, a cold-air layer formation preceded the convection onset and evaporation and80

sublimation of precipitation beneath the convective system were able to additionally cool this cold-air layer, which influenced

the propagation of this cold-air mass. Consequently, the goal of the article is to address the following questions raised by

Caumont et al. (2021): what were the roles of (i) the moisture provided by Leslie, (ii) the eastern Pyrenees relief and (iii) the

evaporative cooling in the physical processes that led to the location and intensity of the observed rainfall? Investigation of

these questions is carried out as follows. First, the case study is presented in Sect. 2. Numerical simulations of this HPE are85

described in Sect. 3. The realism of the reference simulation is evaluated in particular near the surface through a comparison

with independent analyses built from screen-level observations of standard and personal weather stations (Mandement and

Caumont, 2020) in Sect. 4. The reference simulation and a simulation to study the sensitivity to the terrain are used in Sect. 5

to investigate processes that led to the observed rainfall, in particular the role of Leslie. Then, the role of the cooling associated

with the evaporation of precipitation is evaluated in Sect. 6.90
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Figure 1. Map of south-western Europe. The bright square and the dashed black line correspond to the two grid-nested model domains.

Inside the bright square, terrain elevation from the parent model is shown; outside, it is the NASA visible blue marble image (from

https://visibleearth.nasa.gov). Solid black lines indicate French departments and country borders. Languedoc-Roussillon, a region includ-

ing Aude and Pyrenees-Orientales departments is shaded. The two little red stars, landmarks displayed in other figures, indicate from north

to south the locations of Villegailhenc and Trèbes, which are two towns that were affected by the HPE.

2 Case description

2.1 Synoptic-scale situation

Between 13 and 15 October, the synoptic situation over western Europe was disturbed by the remnants of hurricanes Leslie and

Michael (NOAA NESDIS, 2018), while the situation remained blocked over eastern Europe due to a quasi-stationary high at all

levels of the troposphere. At 500 hPa, on 13 October 12:00 UTC, a large trough extended from the west of Iceland towards the95

west of Portugal (Fig. 3b). The trough split and evolved in a cut-off low over Spain on 14 October 12:00 UTC (Fig. 3d), while

the remnants of former hurricane Michael generated a secondary trough at the rear of the cut-off. On 15 October 12:00 UTC

(Fig. 3f), this secondary trough merged with the existing cut-off low which slowed its eastward movement.

Near the surface, on 13 October 12:00 UTC (Fig. 3a), category 1 hurricane Leslie approached the Portuguese coast (NOAA

NWS National Hurricane Center, 2018a). Leslie brought a large amount of moisture at all levels of the troposphere: over large100

areas, water vapour mixing ratio exceeded 12 g kg–1 at 925 hPa (Fig. 4a), 7 g kg–1 at 700 hPa (not shown) and 2.5 g kg–1 at

500 hPa (not shown) according to ARPEGE analyses on 13 October 18:00 UTC. These values are in the upper range of mixing

ratios observed within the boundary layer over the Gulf of Lion by Di Girolamo et al. (2016) (8–15 g kg–1) or within the free
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Figure 2. Orography of the south Languedoc-Roussillon including the Aude department in the simulations (a) REF and (b) NOALB in which

the Albera Massif is removed. Solid black lines indicate French departments and country borders. Stars indicate towns which were affected

by the HPE: "V" is Villegailhenc, "T" is Trèbes, "Cu" is Cuxac-Cabardès and "Co" is Conques-sur-Orbiel. Red contours indicate mountain

massifs.

troposphere below 3 km above ground level (2–8 g kg–1) over the Balearic Islands by Chazette et al. (2016) during southerly

marine flows of the HyMeX SOP1. Leslie made landfall in Portugal between 21:00 and 22:00 UTC (NOAA NWS National105

Hurricane Center, 2018b) as a post-tropical cyclone. After landfall, Leslie’s MSLP low filled up quickly, and Leslie’s remnants

participated to extend towards south and increase the activity over Spain and France of the existing cold front on 14 October

(Fig. 3c). During the evening and the night of 14 to 15 October, around the cold front, in an area of deep convection, a low

rapidly deepened over the Mediterranean Sea, between the Balearic Islands and Valencia region (Fig. 3e). A trough formed and

extended this Mediterranean low towards Languedoc-Roussillon (Caumont et al., 2021). This low moved slowly northwards110

overnight which increased the MSLP gradient along the Languedoc-Roussillon coast. Consequently, the east–south-easterly

wind between the surface and 925 hPa strengthened (not shown). This resulting LLJ supplied significantly moist air from the

Mediterranean Sea (dashed lines in Figs. 4d-f).

In the meantime, on 14 October, the active part of the cold front located north of the Pyrenees (called CF1, Fig. 3c) moved

eastwards. CF1 decayed (precipitation along it decreased and almost stopped) as it moved east (not shown), while its near-115

surface mark in the form of a thermal gradient remained (Caumont et al., 2021). Then CF1 stopped in the middle of the Aude

department and became a quasi-stationary front, slightly west of the MSLP trough. Both CF1 and the MSLP trough remained

quasi-stationary between 22:30 UTC 14 October and 04:00 UTC 15 October (Caumont et al., 2021).

In the morning of 15 October, the north-eastwards advance of the slow-moving low and its associated cold front (CF2,

Figs. 3c,e) brought additional low-level moisture over Languedoc-Roussillon. This moisture originated from both Leslie’s120

remnants and a moist area over southern Spain (Fig. 4).
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Figure 3. Météo-France (a,c,e) surface and (b,d,f) 500 hPa analyses (Santurette and Joly, 2002) at (a,b) 12:00 UTC 13 October 2018, (c,d)

12:00 UTC 14 October 2018 and (e,f) 12:00 UTC 15 October 2018. Surface fronts are manually drawn using conventional observations,

satellite, radar images and short-term forecasts (instead of analyses due to availability time constraints). Mean sea level pressure (in hPa),

500 hPa geopotential height (in gpm) and temperature (in ◦C) are from the operational global model ARPEGE (Courtier et al., 1991) 6 h

forecast of the T – 6 h run (T: time of the chart). Surface (respectively altitude) low-pressure centres are indicated by "D" (resp. "B") and

high-pressure centres by "A" (resp. "H").
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Figure 4. ARPEGE analyses of water vapour mixing ratio and geopotential height (in gpm) at 925 hPa on 13 October 2018 at (a) 18:00 UTC,

on 14 October 2018 at (b) 00:00 UTC, (c) 06:00 UTC, (d) 12:00 UTC, (e) 18:00 UTC, and (f) on 15 October 2018 at 00:00 UTC. The

approximate location of moist air masses carried by Leslie (solid red line) or found over the Mediterranean Sea (dashed red line) are circled.

2.2 Mesoscale situation

At mesoscale, rain started over the Pyrenees-Orientales and Aude departments in the morning of 14 October. A first part of

the HPE began around 19:00 UTC 14 October: east of a large area of stratiform rain advected from Spain, two parallel lines

of convective cells formed (red arrows in Fig. 5a), starting over the Albera Massif and the eastern slopes of the Pyrenees, and125

rapidly became the active parts of a back-building MCS. The eastern line was more active than the western line: reflectivities

exceeded 40 dBZ at 21:35 UTC along the eastern line but remained below 40 dBZ along the western line (Fig. 5a). One shall

note that the Opoul radar (Fig. 5a), well covering the area, had a failure between 21:55 UTC 14 October and 06:05 UTC 15

October: observed reflectivities are likely underestimated in Figs. 5b-d particularly south of this radar.

At 23:00 UTC, Fig. 5b shows that convective cores fed the eastern line from its eastern flank and that reflectivities were130

particularly strengthened in the north-western part of the line, west of CF1. This organization in two lines was observed until

around 00:00 UTC. After 00:00 UTC, the eastern line orientation slightly turned anticlockwise and a third active line formed

(Fig. 5c) starting from the upstream slopes of the Corbières Massif. Reflectivities of all lines were still strengthened in their

north-western parts. At 02:00 UTC (Fig. 5c), an extended region of reflectivity > 12dBZ appeared over the Mediterranean

Sea showing the advance of the rain band associated with CF2. After 02:00 UTC, in a second part of the HPE, this rain band135

modified the MCS organization in lines observed until then: active cells with reflectivity above 40 dBZ were continuously

advected from the sea. Heavy rainfall persisted over the Aude department, strengthened in particular west of CF1 (Fig. 5d).
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Figure 5. Radar base reflectivity from Météo-France operational mosaic on 14 October at (a) 21:35 UTC, (b) 23:00 UTC and on 15 October

at (c) 02:00 UTC and (d) 05:05 UTC. Red arrows show the axes of continuous convective cell renewal and the movement of individual cells

shown by radar. "A" and "P" recall the location of the Albera Massif and the eastern slopes of the Pyrenees, respectively. Locations of CF1

and CF2 are indicated by bold black frontal symbols.

After 05:00 UTC, the large rain band associated with CF2 headed slowly north-eastwards and precipitation stopped around

07:00 UTC over the western part of the Aude department (around 09:00 UTC over the entire department, not shown).

Fig. 6a shows the resulting 24 h accumulated precipitation from the Standard and Personal Weather Stations (SPWS) AN-140

TILOPE quantitative precipitation estimate (QPE) at 1 km horizontal resolution blending radar and SPWS rain gauge observa-

tions, described by Caumont et al. (2021). Estimated accumulated precipitation reached 342 mm few kilometres south-west of

Trèbes, where an automatic rain gauge measured 295.5 mm and close to a personal weather station that measured 311 mm. The

line organization identified on radar observations resulted in two precipitation bands, referred to as eastern and western bands,

with the eastern band a little curved, due to the formation of the aforementioned third line between 00:00 and 02:00 UTC.145

The consequences were catastrophic near the precipitation maximum, because most of the rain fell in 6 to 12 h. Another local
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Figure 6. 24 h accumulated precipitation between 12:00 UTC 14 October and 12:00 UTC 15 October from the (a) SPWS ANTILOPE QPE,

(b) REF, (c) NOCOOL and (d) NOALB simulations. Solid black lines indicate French departments and country borders. Dotted black lines

indicate catchment limits of the Aude basin and its tributaries.

maximum of 317 mm was estimated over mountains, north-east of the bands but without reported consequences since hourly

precipitation accumulations remained moderate.

3 Numerical simulations

Simulations are performed with the non-hydrostatic numerical research model Meso-NH version 5.4.2 (Lac et al., 2018),150

extensively used to study Mediterranean MCSs (Bouin et al., 2017; Martinet et al., 2017; Duffourg et al., 2018).

3.1 Meso-NH configuration

A two-way interactive grid nesting is chosen in order to study the sensitivity to a modification of model physics only within

the child domain. A 960 × 900 km2 horizontal domain at 1 km resolution covering southern France and the north-western
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Mediterranean Sea is chosen for the parent domain and a 180 × 135 km2 horizontal domain at 500 m resolution centred over155

Aude is chosen for the child domain (Fig. 1). For both domains, configurations close to the AROME operational model (Seity

et al., 2011; Brousseau et al., 2016) are chosen to realistically simulate deep convection. The Gal-Chen and Somerville (1975)

height-based vertical coordinate is used with 89 stretched vertical levels from 5 m up to 23.75 km, including 33 levels below

2 km height. Simulations start on 14 October at 12:00 UTC and last 24 h, with initial and lateral boundary conditions of the

parent model given by AROME analyses every 3 h. Further details are given in Appendix A.160

3.2 Experiments

Three simulations are shown in the study. The first one is carried out to realistically simulate the rainfall observed during the

case and is called REF hereafter.

The second simulation, called NOALB, investigates the role of the Albera Massif on precipitation. The Albera Massif is

the easternmost Massif of the Pyrenees bordering the Mediterranean Sea (Fig. 2); its highest mountain is the Neulos peak165

which culminates at an altitude of 1256 m. Its altitude is 1023 m (respectively 1128 m) in the parent (resp. child) model. In

the 2018 Aude HPE, radar observations in Figs. 5a-c show that a large number of convective cells were continuously initiated

during several hours over the Albera Massif and remained aligned downstream. These observations support the occurrence of

quasi-stationary convective banding. Similar convective band generation was observed in the south-eastern flank of the Massif

Central by Miniscloux et al. (2001) and Cosma et al. (2002): rainfall bands were enhanced on the lee side of small-scale170

topography ridges. Cosma et al. (2002) showed in both idealized and real-case simulations that the extension of precipitation

lines downwind of orography resulted from (i) the formation of a mountain wave immediately downwind of the crest and

(ii) the lee-side convergence created by deflection around the obstacle. Sensitivity tests indicated that the structure (length,

width) and the intensity of the rain band were quite dependent on the upwind meteorological conditions and on the topographic

configuration. The strengthening of convection downstream of small-scale topographic structures due to lee-side convergence175

was also noted by Ricard (2005) during the 1995 Cévennes HPE, or Barrett et al. (2015) over the United Kingdom, combined

in that last case with thermally forced convergence. Also, the Albera Massif could have played a role on precipitation in

previous HPEs such as the 1999 Aude HPE described by Nuissier et al. (2008) and Ducrocq et al. (2008). In 1999, precipitation

remained stationary along a narrow line and the precipitation maximum was found 30 km east of the 2018 Aude HPE maximum,

downstream of the Albera Massif which was identified as one of the source of lifting (see parcel number 1 in Fig. 9 of Ducrocq180

et al., 2008). In NOALB, the Albera Massif (Fig. 2a, red solid lines) is flattened at a constant altitude of 25 m a.s.l., except west

of the massif in order to avoid an abrupt transition to higher terrain. West of the Albera Massif, terrain elevations are set to

gradually decrease at a rate of 40 m every km eastwards (4 % slope) until reaching 25 m a.s.l. Such transition is not necessary

north or south of the Albera Massif because terrain elevation is mainly below 25 m a.s.l. The topography resulting from these

changes is shown in Fig. 2b.185

The third simulation, called NOCOOL, investigates the role of the evaporation of raindrops in cooling the cold sector west

of CF1 and its influence on the movement of CF1. Indeed, because convective cells are formed or enhanced downstream of

CF1 (Fig. 5), enhanced evaporative cooling could serve to anchor CF1 at the same location since downdraughts of these cells
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do not destroy the frontal zone (Chappell, 1986). In NOCOOL, negative temperature tendency from evaporation of raindrops

is set to zero for the child model (black dashed square in Fig. 1), which allows us to quantify the impact of this process only190

over the area affected by the HPE.

4 Validation of the REF simulation

Since the initial conditions of REF are provided by the AROME analyses in which all conventional observations are assimilated,

there is little deviation from these observations at the initial time. At 12:00 UTC 14 October, comparison of REF fields on all

vertical levels to high resolution soundings of Nîmes, Barcelona and Palma (not shown, see Fig. 1 for the locations) reveal195

absolute bias (respectively root mean square error) of < 0.3K (resp. < 0.6K) in temperature, < 0.3g kg–1 (resp. < 0.8g kg–1) in

water vapour mixing ratio, < 0.5m s–1 (resp. < 1.9m s–1) in wind speed and < 7◦ (resp. < 16◦) in wind direction.

Because the stationarity of precipitation is correlated to the quasi-stationarity of a MSLP trough and a virtual potential tem-

perature (θv) gradient (Sect. 2.1), and because of the availability of near-surface observations that are not assimilated in the

AROME model, this section focuses on validating the REF simulation near the surface. Near-surface fields of the REF simula-200

tion are compared to independent SPWS analyses built from screen-level observations of SPWS described by Mandement and

Caumont (2020). Instead of directly comparing the two fields, to disentangle physical departures from departures due to both

gridding methods and model features that cannot be resolved by the observation network used in the SPWS analyses, REF

is interpolated in the same way as the SPWS analyses. This interpolation, called REF_SP, consists in replacing the value and

altitude of each weather station used in the SPWS analyses by the value and altitude of REF nearest grid point, keeping the205

exact same weights and gridding method. Thus, in this section, the REF_SP fields are compared to the SPWS analyses (the

REF fields are also shown to illustrate the method). For precipitation, REF is directly compared to the SPWS ANTILOPE QPE

since the horizontal resolution of radar observations used in the QPE is close to the horizontal resolution of REF.

Regarding rainfall accumulations, the REF simulation is able to reproduce the organization in two bands oriented south-east

to north-west (Figs. 6a,b) found in the QPE. Both bands, including local maxima, are located quite correctly. Along the eastern210

band, two local precipitation maxima are simulated: a first one north of the Trapel catchment with 338 mm and another one

with 331 mm at the same latitude but 7.3 km west of the 342 mm QPE maximum. Rainfall along the southern part of this eastern

band is underestimated. Along the western band, the local maximum is largely overestimated with 296 mm whereas the QPE

estimates 206 mm and in the southern part of the band, simulated rainfall amounts reach more than twice the observations.

In the upper right corner of Fig. 6b, the shape of the area affected by heavy rainfall and the maximum accumulated rainfall215

simulated (343 mm) are similar to QPE (317 mm estimated). Elsewhere, the REF simulation generally overestimates rainfall,

particularly over orography. These overestimations are substantial north and east of the local maximum indicated by the black

arrow (Fig. 6b) or over the Pyrenees mountains.

Regarding the timing of rainfall (not shown), REF simulates longer rain than observed over the Aude department, particularly

over its western part. The HPE begins at the same time as in observations, but the beginning of the second part (around220

05:00 UTC in REF) as well as the end of rainfall over the western part of the Aude department (around 10:00 UTC in REF) are
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Figure 7. Mean sea level pressure on 15 October at (a,b,c) 00:00 UTC and (d,e,f) 07:00 UTC from (a,d) the SPWS analysis, (b,e) REF_SP

and (c,f) the REF simulation. Solid black lines indicate French departments and country borders. Dashed white lines indicate the approx-

imate location of the MSLP trough. Analyses are not computed over the Mediterranean Sea, in white, because of the lack of near-surface

observations over sea.

delayed by 3 h; this delay reduces to 1.5 h regarding the end of rainfall over the entire Aude department (around 10:30 UTC in

REF).

Regarding the location of the MSLP trough, at 00:00 UTC, REF_SP (Fig. 7b) locates it slightly west compared to the SPWS

analysis (Fig. 7a). Then, the trough remains quasi-stationary in REF_SP until about 07:00 UTC (Fig. 7e), which reveals a time225

lag of approximately 3 h in the movement of the trough compared to the SPWS analysis.

Regarding the movement of CF1, whose location is indicated by the 19 ◦C θv isotherm, REF_SP simulates a quasi-stationarity

that begins around 21:00 UTC (22:30 UTC in the SPWS analysis) and ends around 07:00 UTC (04:00 UTC in the SPWS anal-

ysis) according to Figs. 8a,b. Thus, CF1 is quasi-stationary approximately 4.5 h longer in REF than in analyses.

Regarding the location where CF1 remained quasi-stationary, setting aside delays, REF_SP generally locates CF1 slightly230

further west than the SPWS analyses, but the westwards shift remains mostly below 10 km. Comparison between REF_SP

and REF (Figs. 8b,c) shows some small-scale movements of CF1 simulated by REF that cannot be reproduced in REF_SP,

indicating the magnitude of departures that cannot be seized by the SPWS analyses and thus should not be considered as

substantial. This small westward shift is confirmed by the comparison of 10 m height REF wind fields with near-surface
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Figure 8. Location of the 19 ◦C virtual potential temperature (θv) isotherm at 2 m height between 19:00 UTC 14 October and 09:00 UTC 15

October from (a) the SPWS analysis, (b) REF_SP and (c) the REF simulation. Terrain elevations above 750 m a.s.l. are shaded in grey. Red

stars are as in Figs. 1,2.

observations (not shown), comparison which also reveals that inland, between CF1 and the coast, REF slightly underestimates235

the wind speed and simulates south-eastern instead of eastern wind directions in some places.

Regarding θv gradient amplitude (not shown), at 23:00 UTC, REF_SP simulates a similar amplitude as the SPWS analyses

even if θv is 1 ◦C higher in REF_SP than in analyses on both sides of CF1. Between 23:00 and 04:00 UTC, west of CF1, θv

is simulated to decrease by less than 1 ◦C while analyses indicate a decrease of 2 ◦C, which show little differences between

simulation and observations.240

In summary, the REF simulation produces realistic near-surface fields in comparison with the SPWS analyses and scattered

wind observations. The main differences are substantial time lags in the stationarity of mesoscale boundaries: the MSLP trough

and CF1 remains quasi-stationary between 3 to 4.5 h longer over the Aude department in the REF simulation than in the SPWS

analyses. After 04:00 UTC, it results in an approximately 3 h delay in the movement of these mesoscale boundaries in REF

compared to analyses. This longer stationary period probably causes prolonged rainfall over the area that may explain some of245

the overestimations found. Also, the westerly shift of about 10 km found between REF and the SPWS analyses in the quasi-

stationary location of CF1 or the MSLP trough is correlated with the similar westerly shift found in the location of the heaviest

precipitation between REF and the SPWS ANTILOPE QPE. Keeping in mind these departures, the REF simulation is taken as

the reference in the following sections.
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5 Origin of the conditionally unstable air and lifting mechanisms250

This section investigates what mechanisms supply conditionally unstable air to the convective system, including studying

whether its moisture comes from areas that are particularly humidified by Leslie’s remnants. Trajectories and thermodynamic

properties of air parcels that contribute to the formation of the strongest convective cells in the REF simulation as well as those

of cold parcels located west of CF1 are described. Lifting mechanisms are also studied, in particular the role of the Albera

Massif. To carry out the investigation, a series of backward trajectories are computed using the Lagrangian trajectory tool255

of Gheusi and Stein (2002). It is based on the technique of Schär and Wernli (1993) in which three Eulerian passive tracers

are initialised with the initial grid point position and are advected online by the resolved and subgrid-scale wind; a review of

existing Lagrangian trajectory tools is given by Miltenberger et al. (2013). The starting point of the backward trajectories are

atmospheric columns with strong mid-level updraughts close to the location of the 24 h maximum rainfall. Inside each column,

40 air parcels taken every 2 vertical levels of the model from the second level (18 m height) to the 80th (about 13.5 km height)260

are followed and their trajectories are shown in the figures. Some trajectories (in grey in Fig. 9a) are not projected on vertical

sections either when vertical movements of the air parcels are of small amplitude around the Aude department, or when a

trajectory intersects the terrain along the projection axis because the terrain along the axis differs substantially from the one

along the trajectory.

5.1 First part of the HPE265

This part lasts approximately between 19:00 UTC 14 October and 05:00 UTC 15 October in the REF simulation. At 00:00 UTC

15 October, air parcels below 10 km a.s.l. found in the atmospheric column "D" (Fig. 9a) where a convective updraught is

simulated originate from 3 preferential directions. Backward trajectories simulated at the end of this first part, e.g. at 04:00 UTC

15 October (not shown), are similar to 00:00 UTC backward trajectories, showing that the latter are representative of this first

part.270

Parcels found under 800 m a.s.l. in "D", shown along the axis A–D, are inside the cold sector west of CF1, where virtual

potential temperature is below 21 ◦C (Fig. 9b). They originate from the west, mainly the south-east of the Bay of Biscay and

the north of Spain, following the same trajectory as CF1 (see Fig. 3c). They remain most of the time below 500 m a.s.l., and

some are slightly lifted near CF1 boundary.

Parcels found between 800 m a.s.l. and 7 km a.s.l. in "D", shown along the axis B–D, are ascending air parcels (Fig. 9c).275

These parcels originate from east and north-east of the Balearic Islands, over the Mediterranean Sea, away from the convective

system ahead of CF2 located between the Balearic Islands and the Pyrenees at 00:00 UTC (Fig. 10c). They are carried over the

Mediterranean Sea by the marine LLJ shown in Fig. 10b and remain at an almost constant altitude between 0 and 1.4 km a.s.l.

At 697 m height, the speed of this south-eastern LLJ exceeds 20 m s–1 between the east of the Balearic Islands and the Aude

department, up to 26 m s–1 near the Languedoc-Roussillon shore and inland. Such a wind speed transports quickly these air280

parcels: they travel from B to D (Fig. 9a) in approximately 12 h. When they reach the coast, some experience slight lifting over

the Albera Massif and the Corbières Massif but remain below 2 km a.s.l. They are finally lifted up to 6.5 km a.s.l. above CF1.
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Figure 9. (a) Horizontal projection of the 40 backward trajectories from air parcels taken inside the atmospheric column located in "D"

(43.25◦ N, 2.25◦ E) at 00:00 UTC 15 October in the REF simulation. Trajectories in colour are the ones projected in (b-d): their colour

varies according to the water vapour mixing ratio of the parcels. Other trajectories are in grey. Trajectories are computed until 12:00 UTC

14 October, except for parcels that reach domain boundaries before that time. (b-d) Vertical projections of backward trajectories along the

dashed black lines shown in (a) and corresponding cross sections of virtual potential temperature at 00:00 UTC 15 October. Each parcel is

projected on the section closest to its trajectory inland. Terrain is in black.
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Figure 10. REF simulation at 00:00 UTC 15 October of (a) equivalent potential temperature (θe) at 697 m height, (b) wind at 697 m height,

(c) MUCAPE with instantaneous precipitation rate and (d) wind at 2957 m height.

Over the Aude department, large wind convergence is simulated: horizontal wind speed brutally decreases from 26 m s–1 to

near 0 m s–1, leading to enhanced ascending movements along CF1.

These 19 air parcels shown in Fig. 9c originate from moist areas over the Mediterranean Sea (dashed lines in Fig. 4b): at285

14:00 UTC 14 October, they already have a mean water vapour mixing ratio of 9.1 g kg–1 (Tab. 1). Their water vapour mix-

ing ratio increase through their transport above the Mediterranean Sea by 1.3 g kg–1, reaching 10.4 g kg–1 at 20:00 UTC 14

October. During their lifting, between 22:00 and 00:00 UTC, they release moisture: their water vapour mixing ratio decrease

by an average of 4.0 g kg–1. Some of this moisture is released through condensation processes inside the convective clouds,

before some of the water condensates eventually precipitate. The high moisture and relatively warm temperatures in the area of290

origin of these parcels is shown in Fig. 10a by equivalent potential temperatures above 326 K at 697 m height. Consequently,
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Table 1. Mean water vapour mixing ratio (g kg–1) of air parcels originating from below 1500 m height along axes shown in Figs. 9,12 as a

function of time. Dash indicates that at least one parcel was out of the simulated domain at that time.

Trajectory Axis Number Time (UTC)

end (UTC) of parcels 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 07:00

00:00 Fig. 9c: B→ D 19 9.1 9.6 9.9 10.4 10.1 6.1

07:00 Fig. 12b: A→ B 7 – – – – – 8.6 9.8 10.4 5.3

air parcels carried by the LLJ are conditionally unstable: simulated most unstable convective available potential energy (MU-

CAPE) reaches 100 to 600 J kg–1 over Languedoc-Roussillon and 600 to 1200 J kg–1 over sea. The 3D convective available

potentiel energy (CAPE) field (not shown) indicates that highest CAPE values are mostly reached at the first model level (5 m

height), and decrease rapidly with height.295

The MSLP low that drives the LLJ is located in the area of light winds over Spain shown in Fig. 10b. North-east and east of

it, between the Balearic Islands and the Pyrenees, strong convective cells are triggered ahead of CF2. Several convective cells

are advected by the south–south-easterly mid-level wind towards Languedoc-Roussillon. Thus, in Fig. 9d some parcels above

7 km a.s.l., shown along the axis C–D, originate from the Mediterranean low and its associated front CF2. These parcels, from

altitudes between 1.8 and 5.5 km, have lower water vapour mixing ratios than parcels carried by the LLJ. Some of these parcels300

are lifted over the Pyrenees mountains and one is lifted over CF1.

REF simulates a directional wind shear in the lower part of the troposphere: inland, wind veers from east–south-east at

10 m height (not shown) to south-east at 697 m height (Fig. 10b) to south–south-east at 2957 m height (Fig. 10d). Backward

trajectories confirm it: the lower the air parcel comes, the further east it originates (Fig. 9a).

5.2 Second part and end of the HPE305

This part lasts approximately between 05:00 and 10:00 UTC 15 October in the REF simulation and begins when the rain band

associated with the cold front CF2 reaches the Pyrenees-Orientales coast. Contrary to the first part during which most of con-

vection is triggered inland, in this second part, convection is triggered over the Mediterranean Sea (Fig. 11c) and carried inland

by the mid-level wind (see wind around 3 km height in Fig. 11d), diminishing the influence of local forcings in triggering con-

vection. Convection triggered over sea is fed by a warm and moist air mass ahead of CF2 with equivalent potential temperature310

up to 332 K (Fig. 11a). Consequently, this air mass is more unstable than in the first part: simulated MUCAPE values are up to

1600 J kg–1 (Fig. 11c).

At 07:00 UTC an increasing number of air parcels found inside updraughts over the Aude department originate from south

of the Balearic Islands, i.e. from CF2, the front formed with Leslie’s remnants (Fig. 12a) in comparison with the first part.

These parcels, projected in Fig. 12c originate from altitudes between 1 and 4 km, altitudes generally higher than in the first315

part. Some air parcels carried by the LLJ, coming from the east of the domain at altitudes between 0 and 1 km are still found

(Fig. 12b). If their number decreases compared to the first part, their average water vapour mixing ratio of 10.4 g kg–1 remains
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Figure 11. As Fig. 10 at 07:00 UTC 15 October.

high and increases through their transport above the Mediterranean Sea by 1.8 g kg–1 (Tab. 1). Some descending dry air parcels

are also found to originate from dry mid-level areas located at the rear of CF2 (Fig. 12d).

In the lower levels, at 697 m, REF simulates a strong wind variation along CF2: ahead of CF2, the south-easterly LLJ320

reaches 22 to 26 m s–1 while at the rear wind turns south-westerly and only reaches 6 to 12 m s–1 (Fig. 11b). Between 07:00

and 09:30 UTC, the north-eastwards advance of CF2 propagates this wind variation over the Aude department (not shown).

When wind speed abruptly decreases along CF1, CF1 stationarity breaks and the cold air west of CF1 immediately starts

flowing eastwards in a similar manner to a density current, and later spreads out circularly over the Mediterranean Sea (not

shown). It indicates that, during the HPE, the propagation of the cold air located west of CF1 is countered by the LLJ blowing325

perpendicularly to it, also in a similar manner to the propagation of a cold pool can be countered by the environmental wind

(Miglietta and Rotunno, 2014).
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Figure 12. As Fig. 9 for trajectories ending at 07:00 UTC 15 October at 43.26◦ N, 2.34◦ E. Air parcels are projected along the same axis

A–B but separated depending on their origin and behaviour: (b) ascending parcels from east, (c) ascending parcels from south or west and

(d) descending parcels from south.
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Table 2. Properties and geographic origin of air parcels found in the atmospheric column C338 as a function of time, aggregated in time

intervals from 19:00 UTC 14 October to 10:00 UTC 15 October. Mean water vapour mixing ratio 2 h before reaching C338 (i.e. before some

parcels are lifted) is indicated by r̄v.

Initial parcel Properties Time interval (hours in UTC)

location [19,21[ [21,23[ [23,01[ [01,03[ [03,05[ [05,07[ [07,09[ [09,10] Total (%)

East of 4.5◦ E
Number 76 67 76 70 75 52 25 30 471 (42 %)

r̄v (g kg–1) 10.6 9.7 9.4 9.4 8.7 9.0 10.2 9.7 9.5 (54 %)

West of 4.5◦ E – Number 66 55 48 33 31 39 64 44 380 (34 %)

south of 42◦ N r̄v (g kg–1) 2.6 1.7 3.7 4.6 4.8 4.9 4.7 4.1 3.7 (17 %)

Other
Number 2 22 20 41 38 53 55 34 265 (24 %)

r̄v (g kg–1) 9.6 9.9 10.2 9.6 9.3 8.9 8.9 8.4 9.2 (29 %)

5.3 Amount of moisture supplied by Leslie’s remnants

To quantify the amount of moisture brought over the Aude department during the HPE by Leslie’s remnants, the geographic

origin of air parcels found in the atmospheric column above the 338 mm precipitation maximum simulated by REF (see Fig. 6b,330

now referred to as C338) is tracked. Every 30 min from 19:00 UTC 14 October to 10:00 UTC 15 October (the time period of

the HPE in the REF simulation), backward trajectories of 36 air parcels taken every 2 vertical levels of the model between

18 m and about 10 km height are computed until the beginning of the REF simulation. Here, parcels above 10 km height are

not taken because most parcels followed above this height are not found inside any updraught over the Aude department.

The computation of backward trajectories provides the initial parcel location: it is either its location at 12:00 UTC 14 October335

or where the parcel enters the parent domain if the parcel is out of the domain at that time. The geographical origin is divided

in 3 categories (Tab. 2): east of 4.5◦ E, west of 4.5◦ E – south of 42◦ N corresponding to air parcels from Leslie’s remnants,

and other. The "other" category includes mostly low-level cold and stable air parcels located west of CF1 (Fig. 9b). Because

these parcels are stable, only the first categories including conditionally unstable air parcels are compared.

Tab. 2 shows that 42 % of air parcels found in C338 originate from east of 4.5◦ E, i.e. from east of the Balearic Island, and340

they carry 54 % of the water vapour mixing ratio of all air parcels tracked. On the contrary, 34 % of air parcels coming from

Leslie’s remnants carry only 17 % of the water vapour mixing ratio of all air parcels tracked, although their number particularly

increases in the second part of the event. This result suggests that air parcels originating from the Mediterranean Sea, east of

the Balearic Islands, supply more moisture to convective cells than air parcels originating from Leslie’s remnants.

5.4 Lifting by the Albera Massif and effect on precipitation345

To understand the role of the Albera Massif in generating convective bands downwind, as it is observed and simulated by REF,

the simulations REF and NOALB are compared.
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Figure 13. Instantaneous precipitation rate at 05:00 UTC 15 October superimposed on the terrain elevation of (a) REF and (b) NOALB

simulations.

Heavy precipitation is simulated by REF at 05:00 UTC over the highest slopes of the Albera Massif and along a line down-

stream of the massif (Fig. 13a, dashed red area). When the Albera Massif is removed in NOALB (Fig. 13b), no precipitation

is simulated over or downstream of it. Also, along the eastern Pyrenees, west of the dashed red line, a slightly larger area of350

instantaneous precipitation above 10 mm h–1 is found than in REF. Over and downstream of the Albera Massif, heavy precipi-

tation in REF results from aligned convective cells exhibiting ascending vertical velocities above 4 m s–1 (Fig. 14a), whereas no

substantial ascending movement is found along this line in NOALB (Fig. 14b). The orientation of the line of updraughts (along

the A–B axis in Fig. 14a) is parallel to the horizontal wind streamlines at 2674 m height, showing that convective cells are

aligned with the south–south-eastern mid-level wind direction. Superimposed with this line of updraughts, lee waves resulting355

in quasi-stationary, evenly spaced, couplets of positive and negative vertical velocities are simulated by REF (Fig. 14a,large

black arrows) but are not found in NOALB (Fig. 14b).

To quantify the flow regime of the situation at 05:00 UTC 15 October, the mountain Froude number Frm = U
Nh (Kirshbaum

et al., 2018) is estimated, where U is the mean wind speed of the layer, N is the Brunt-Väisälä frequency and h is the mountain

height. Here h = 1128m, the maximum height of the Albera Massif in the model. To compute N, the bulk method described360

by Reinecke and Durran (2008) is used considering a single layer which has approximately the height of the mountain: N =√
g
θ̄

θ(25) – θ(1)

h
, where g = 9.81m s–2 is the standard acceleration of gravity, θ(n) is the potential temperature at model level n

(first level is at 5 m height and the 25th is at 1143 m height) and θ̄ is the mean potential temperature over the layer. The moist

Froude number Frw = U
Nwh (Chen and Lin, 2005) is also computed, where Nw is the moist Brunt-Väisälä frequency that differs

from N because θ is replaced by θv. The computation of U, N and Nw is an average over 100 grid points located upwind the365
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Figure 14. Vertical velocity (w) and horizontal wind streamlines at 2674 m height in the (a) REF and (b) NOALB simulations. Horizontal

wind (c) speed and direction and (d) convergence > 2× 10–3 s–1 at 193 m height in the REF simulation at 05:00 UTC 15 October.

mountain, precisely the grid points less than 10 km east and 10 km south of grid point A (A is shown in Fig. 14a). Computation

leads to U = 21.3m s–1, N = 9.9×10–3 s–1, Nw = 8.9×10–3 s–1 which gives Frm = 1.9 and Frw = 2.1. According to Kirshbaum

et al. (2018), Frm = 1.9 > 1 indicates that the flow tends to directly ascend the terrain over the windward slope instead of being

deflected around the obstacle. This ascent mechanically lifts the conditionally unstable air parcels supplied by the LLJ, but also

likely triggers the aforementioned lee waves. Frw = 2.1 corresponds to the flow regime IV of Chen and Lin (2005), described370

as a flow with an orographic stratiform precipitation system over the mountain and possibly a downstream-propagating cloud

system (a stratiform cloud is defined by the authors as having a cloud depth less than 4 km).

To closely look at how convective cells are initiated and maintained, a time evolution of the vertical cross section A–B

simulated by REF is shown in Fig. 15. At 05:05 UTC, a convective cell containing hydrometeors is formed above the Albera

Massif (Fig. 15a, black arrow). Inside this cell, the potential temperature is higher than the environment around 2 km height375

probably due to latent heat release associated with water phase changes. This cell is advected towards B by the mid-level

wind. A second cell is initiated at the rear of the first one by orographic lifting and the surface of hydrometeor mixing ratio
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Figure 15. Vertical velocity (w, m s–1), potential temperature (black contours, ◦C), horizontal convergence > 2× 10–3 s–1 (black diagonal

hatches) and hydrometeor mixing ratio > 1 g kg–1 (little black dots) between 05:05 and 05:15 UTC 15 October. Terrain is in black.

above 1 g kg–1 rapidly increases (Fig. 15b, brown arrow). On the lee side of the mountain, these convective cells propagate in

the middle of a large subsidence area (related to the aforementioned lee wave). Subsidence appears counteracted by a quasi-

stationary wind convergence zone located near the ground which connects with the updraughts and invigorates them. This wind380

convergence zone is simulated downwind of the mountain (Fig. 14d) and seems due to rapid wind decrease and some wind

confluence in the lee side of the Albera Massif (Fig. 14c). Then, as shown by Figs. 15d,e, both cells connect with an ascending

zone of the lee wave around 20 km along the axis A–B and rapidly grow: the hydrometeor mixing ratio surface above 1 g kg–1

as well as the vertical velocity are found to rapidly increase inside both cells. These findings are consistent with the description

of the flow regime IV of Chen and Lin (2005): vertical velocities above 1 m s–1 and hydrometeor mixing ratios above 1 g kg–1385

remain below 4 km a.s.l. over the mountain, and convective cells propagate downstream of the mountain.

Because of the slight directional vertical wind shear simulated in the lower part of the troposphere (see wind direction in

Figs. 14a,c), once convective cells are on the lee side of the mountain, as they are advected by the south–south-eastern mid-

level wind, the south-eastern LLJ supplies conditionally unstable air parcels that do not cross the Albera Massif to the cells

from their south-eastern flank. Backward trajectories starting from their updraughts (not shown) indicate that the number of390

23



low-level moist air parcels that do not cross the Albera Massif found inside the cells increases as they are advected. This supply

mechanism possibly explains the maintenance of the convective cells long after they are formed.

This preferential organization of convection along a line downstream of the Albera Massif results in substantial departures

in 24 h rainfall accumulations between NOALB and REF (Figs. 6b,d). Precipitation along the eastern band (see Sect. 2),

downstream of the Albera Massif, is reduced by as much as 100 mm in NOALB compared to REF. REF maximum precipitation395

over plains is reduced from 338 to 310 mm, and the maximum in NOALB (332 mm) is shifted over mountains. Concomitantly,

precipitation is enhanced along the western band downstream of the eastern slopes of the Pyrenees: maximum precipitation

is increased from 296 to 327 mm in NOALB compared to REF. Precipitation is also enhanced between both bands, along the

quasi-stationary CF1. Consequently, the south-east–north-west orientation of the precipitation zone exceeding 240 mm in REF

is replaced by a south–north orientation in NOALB.400

This sensitivity experiment shows the large importance of the Albera Massif in the shape of the precipitation field, focus-

ing precipitation downstream of it while reducing precipitation elsewhere. The proposed mechanism describing convection

initiation over the Albera Massif, first relief intercepting the marine LLJ, and the convective cells maintenance downstream

of the Albera Massif may be applied to similar reliefs. Additional simulations (not shown) in which the Corbières Massif

and the Eastern slopes of the Pyrenees are successively flattened show a substantial decrease in maximum accumulated pre-405

cipitation downstream of these reliefs, associated with a spread of precipitation above 200 mm over a larger area along the

quasi-stationary front.

6 Influence of the cooling associated with the evaporation of precipitation

This section investigates the possible influence of the cooling associated with the evaporation of precipitation over the Aude

department on CF1. The following questions are addressed. Does this process (i) modify the location of CF1? (ii) extend the410

duration of CF1 stationarity? (iii) enhance the temperature gradient along CF1?

Regarding 24 h accumulated precipitation, it is globally higher in NOCOOL than in REF while remaining organized in two

major bands whose orientation is slightly rotated clockwise compared to REF (Figs. 6b,c). Maximum precipitation reaches

415 mm in NOCOOL and only 338 mm in REF.

At 04:00 UTC, both REF and NOCOOL exhibit a sharp east–west virtual potential temperature (θv) gradient that delineates415

the location of CF1 (Fig. 16). At 5 m height, REF shows about 0.5 to 1 ◦C colder temperatures than NOCOOL on both sides of

CF1. Highest departures are found over the Pyrenees. South of the A–B axis, CF1 is shifted from 0 to 10 km west in NOCOOL

compared to REF, depending on the latitude. Along the A–B axis (Figs. 16c,d), near the ground, CF1 is very close between

REF and NOCOOL: it is only about 4 km further west in NOCOOL than in REF. The θv gradient is visible up to 2 km a.s.l. in

both simulations. East of CF1, departures of generally less than 0.5 ◦C are found between simulations. West of CF1, generally420

higher θv are found in NOCOOL compared to REF, with NOCOOL up to 2 ◦C higher than REF near A above 1500 m a.s.l.

The evaporative cooling does not shift the location of CF1 by more than few kilometres or substantially modify the θv

gradient along it. Comparison of REF and NOCOOL does not show any extended duration of CF1 stationarity or substantial
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Figure 16. Virtual potential temperature at 5 m height for the (a) REF and (b) NOCOOL simulations at 04:00 UTC 15 October. Vertical cross

sections of virtual potential temperature along the A–B axis are drawn for the (c) REF and (d) NOCOOL simulations.

time lag between simulations. However, higher θv simulated in NOCOOL than in REF are explained by the evaporative cooling

switched off. These higher θv result in globally higher MUCAPE and consequently stronger convective cells and stronger rain425

rates in NOCOOL than in REF (not shown). This difference possibly explains why precipitation is substantially higher in

NOCOOL than in REF (Figs. 6b,c).

One of the reasons for the small evaporative cooling west of CF1, where highest precipitation is observed, is the small evap-

oration due to near saturation of air masses in the lower troposphere according to the REF simulation (Fig. 17). At 04:00 UTC,

relative humidity exceeds 90 % over most of Languedoc-Roussillon and a dry air mass is only found over Spain, at the rear of430

CF2. The fact that the cooling associated with evaporation processes does not have any substantial impact on the stationarity

of the simulated MCS in this HPE agrees with the same observation of Ducrocq et al. (2008) for the 1999 Aude HPE.

7 Conclusions

The synoptic situation on 14 and 15 October 2018 was favourable to a HPE over Languedoc-Roussillon. The remnants of

hurricane Leslie were involved in the formation of a Mediterranean surface low and its associated cold front (CF2). The rapid435
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Figure 17. Relative humidity in the REF simulation at 04:00 UTC 15 October at (a) 697 m height (b) 1507 m height (c) 2957 m height (d)

5160 m height.

deepening of this surface low, extended by a trough over Languedoc-Roussillon, contributed to strengthen a low-level jet (LLJ)

over the Mediterranean Sea. Meanwhile, a decaying cold front (CF1) remained quasi-stationary in the middle of the Aude

department, west of the trough. The slow movement northwards of the surface low as well as the quasi-stationarity of the

trough sustained quasi-stationary atmospheric conditions that continuously supplied conditionally unstable air parcels during

several hours over the Aude department.440

A two-way grid nested numerical simulation at 1 km and 500 m horizontal resolutions is carried out with the Meso-NH

model. The realism of this simulation is assessed using in particular near-surface analyses built from observations of standard

and personal weather stations. Compared to observations, the simulation delays the arrival of precipitation ahead of CF2 over

the Aude department as well as the end of the HPE over the west of this department. Also, the location where both CF1 and the

trough remain quasi-stationary is well simulated but the stationarity duration of both low-level mesoscale boundaries is longer445

than observed. Consistent with these longer stationarities and the delay, simulated 24 h accumulated precipitation is slightly

overestimated.

The simulation reveals that the main origin of lifted air parcels and dominant mechanisms that trigger convection differ

during the HPE. In a first part, conditionally unstable air parcels mainly originate from east of the Balearic Islands, over the
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Mediterranean Sea, at altitudes between 0 and 1.5 km. They are carried by the LLJ towards the Languedoc-Roussillon shore450

while moistened during their transport over the Mediterranean Sea. Once inland, these air parcels are continuously lifted over

the upwind slopes of the first mountains encountered, i.e. mostly eastern Pyrenees relief, the Albera Massif and the Corbières

Massif. Convective cells organize along quasi-stationary lines downwind of the mountains, forming the active parts of a back-

building MCS. Cells are maintained and reinforced downwind of the terrain by low-level leeward convergence, ascending

areas created by mountain lee waves and favoured supply in conditionally unstable air due to the low-level directional wind455

shear. A sensitivity study shows that the convective line downwind of the Albera Massif disappears when the Albera Massif

terrain is flattened, revealing the crucial role of terrain in the formation of these lines. In a second part, an increasing number

of conditionally unstable air parcels originates from south of the Balearic Islands i.e. from the vicinity of the Mediterranean

surface low and CF2 at altitudes mostly between 1 and 4 km. Convective cells are triggered within the conditionally unstable

air mass located ahead of CF2, over the Mediterranean Sea, and advected towards the Languedoc-Roussillon coast. Inland, the460

MCS loses progressively its organization in lines. The end of the HPE is driven by the advance of CF2 north-eastwards.

Throughout the event, convection is particularly enhanced above and west of the quasi-stationary front CF1, whose mark is

confined below 2 km and along which strong wind convergence as well as a substantial virtual potential temperature gradient are

simulated. Most parcels found in large updraughts near the simulated precipitation maximum are lifted above CF1. Regarding

the quasi-stationary location of CF1, the simulation indicates that CF1 propagation towards east is countered by the LLJ that465

blows in the opposite direction: when the wind speed drops, the cold air mass west of CF1 flows rapidly eastwards which

breaks the stationarity. A sensitivity study shows that evaporative cooling plays no role in the stationarity of CF1, possibly

because of the low evaporation due to the near saturation of the middle and lower troposphere.

Consequently, in decreasing order of importance, the location of the exceptional precipitation over the Aude department is

the result of convection focusing (i) west of the quasi-stationary CF1 and (ii) downwind of the Albera Massif and the Corbières470

Massif. Precipitation maximum is found at the junction between these areas in both simulation and observation. Regarding

the role of Leslie’s remnants, they contribute to (i) supply low-level conditionally unstable air in the second part of the event

and (ii) moisten mid-levels of the troposphere, diminishing evaporation processes which therefore play no role in modifying

the location of CF1. However, low-level moisture that contributes to precipitation over the Aude department mainly originates

from air masses located east of the Balearic Islands rather than Leslie’s remnants.475

Future work could quantify Leslie’s direct contribution in the formation of the Mediterranean low and its associated cold

front CF2 but also the remote impact of Leslie’s extratropical transition in a similar way as Grams and Blumer (2015) or

Pantillon et al. (2015): it could help to understand how accurately these systems need to be tracked to improve HPE forecasts.

As they allow to track low-level mesoscale boundaries which are involved in the stationarity of precipitation, rapidly updated

near-surface analyses comprising personal weather stations could be used as an independent means to evaluate in real time the480

accuracy of near-surface model forecasts. In parallel, the assimilation of these station data could be tested in convective-scale

models such as AROME.
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Appendix A: Details on the Meso-NH configuration

The lateral coupling is performed through a combination of a radiation boundary condition and a five-grid-point flow relaxation

scheme with a damping rate of 0.002 s–1. Near the upper boundary, a Rayleigh damping with a rate of 0.001 s–1 is progressively485

applied above 15 km height in order to prevent spurious reflections. Both dampings are applied to the perturbations of the wind

components and the thermodynamical variables with respect to their large-scale values.

The transport scheme chosen is a fourth-order centred discretization for the momentum and a monotonic version of the

Piecewise Parabolic Method (Colella and Woodward, 1984) for meteorological (temperature, water substances and turbulent

kinetic energy) and scalar variables. The time integration scheme is a fourth-order explicit Runge-Kutta for the momentum and490

a forward scheme for meteorological and scalar variables. The model time step is 2 s for the parent domain, 1 s for the child

domain. To suppress very short wavelength modes, a fourth-order diffusion operator is applied to the wind components (u,v,w)

with an e-folding time (time at which waves are damped by a factor e–1) of 1800 s.

Earth surface variables and fluxes are simulated with the SURFEX model version 8.1 (Masson et al., 2013). Each grid

mesh is divided in four main tiles. The following schemes are used for each tile: a three layer force-restore version of ISBA495

for natural land surface (Noilhan and Planton, 1989), TEB for urban area (Masson, 2000), the roughness length formula of

Charnock (1955) with Louis (1979) exchange coefficients for lake and the COARE 3.0 parameterization (Fairall et al., 2003)

for sea-surface fluxes. Optional corrections of sea-surface fluxes due to density effects during heat and water vapour transfer

(Webb et al., 1980) and precipitation effects (Gosnell et al., 1995; Fairall et al., 1996) are applied. The SST field comes from

the initial AROME analysis and remains constant for the entire simulation. Physiographic files used include the land cover500

data base ECOCLIMAP-II/Europe version 2.5 (Faroux et al., 2013), SRTM topography (Farr et al., 2007) and soil properties

derived from the Harmonized World Soil Database (FAO, IIASA, ISRIC, ISS-CAS, JRC, 2012).

Regarding physical parameterizations, the longwave radiation scheme used is the Rapid Radiation Transfer Model (Mlawer

et al., 1997) while the shortwave scheme is based on Fouquart and Bonnel (1980) method. For turbulence, the one dimensional

parameterization used is based on a 1.5-order closure (Cuxart et al., 2000) of the turbulent kinetic energy equation with the505

Bougeault and Lacarrere (1989) mixing length. For the child model at 500 m horizontal resolution, in the so-called turbulence

"grey zone", the choice of a 1D turbulence parameterization can be questioned (Machado and Chaboureau, 2015). Here, this

choice is made to keep consistency between the two coupled models. At resolutions lower or equal to 1 km, deep convection is

assumed to be resolved explicitly by the model’s dynamics. Shallow convection is parameterized with the Pergaud et al. (2009)

scheme. The bulk one-moment mixed microphysical scheme used is ICE3 (Pinty and Jabouille, 1998) that includes six water510

species (water vapour, cloud droplets, raindrops, pristine ice crystals, snow or aggregates and graupel).

Code availability. The Meso-NH model is freely available online at http://mesonh.aero.obs-mip.fr/mesonh54.
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