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Abstract. Heavy precipitation at the west coast of Norway is often connected to elongated meridional structures of high

integrated water vapour transport known as Atmospheric Rivers (AR). Here we present high-resolution measurements of stable

isotopes in near-surface water vapour and precipitation during a land-falling AR in southwestern Norway on 07 December

2016. In our analysis, we aim to identify the influences of moisture source conditions, weather system characteristics, and

post-condensation processes on the isotope signal in near-surface water vapour and precipitation.5

A total of 71 precipitation samples were collected during the 24-h sampling period, mostly taken at sampling intervals

of 10–20 min. The isotope composition of near-surface vapour was continuously monitored in-situ with a cavity ring-down

spectrometer. Local meteorological conditions were in addition observed from a vertical pointing rain radar, a laser disdrometer,

and automatic weather stations.

We observe a stretched, "W"-shaped evolution of isotope composition during the event. Combining paired precipitation and10

vapour isotopes with meteorological observations, we define four different stages of the event. The two most depleted periods

in the isotope δ values are associated with frontal transitions, namely a combination of two warm fronts that follow each

other within a few hours, and an upper-level cold front. The d-excess shows a single maximum, and a step-wise decline in

precipitation and a gradual decrease in near-surface vapour. Thereby, the isotopic evolution of the near-surface vapour closely

follows that of the precipitation with a time delay of about 30 min, except for the first stage of the event. Analysis using an15

isotopic below-cloud exchange framework shows that the initial period of low and even negative d-excess in precipitation

was caused by evaporation below cloud base. The isotope signal from the cloud level became apparent at ground level after a

transition period that lasted up to several hours. Moisture source diagnostics for the periods when the cloud signal dominates

show that the moisture source conditions are then partly reflected in surface precipitation and water vapour isotopes.

In our study, the isotope signal in surface precipitation during the AR event reflects a combination of atmospheric dynamics,20

moisture sources and atmospheric distillation, as well as cloud microphysics and below-cloud processes. Based on this finding,

we recommend careful interpretation of results obtained from Rayleigh distillation models in such events, in particular for the

interpretation of surface vapour and precipitation from stratiform clouds.
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1 Introduction

Being located at the end of the North Atlantic storm track, precipitation on the west coast of Scandinavia is commonly related

to the landfall of frontal weather systems. Extreme precipitation has been connected to so-called Atmospheric Rivers (ARs,

Zhu and Newell, 1998; Ralph et al., 2004), that transport warm and moist air from more southerly latitudes poleward within

their frontal structures. As such airmasses encounter the steep orographic rise along the Norwegian coast, they can yield5

abundant precipitation (Stohl et al., 2008; Azad and Sorteberg, 2017). Past studies have emphasised the long-range transport

characteristics, and their connection to the large-scale atmospheric flow configuration during such AR events. From a model

study using artificial water tracers, Sodemann and Stohl (2013) estimated that 30-50 % of the precipitation from AR events

could be from latitudes S
:::::
South of 40 ◦N. However, an observational confirmation of such model-derived estimates currently

remains elusive
::::
lack

:::::::::::
observational

:::::::::::
confirmation.10

Precipitation can be considered as the end product of the atmospheric hydrological cycle. Weather systems lead to sequences

of ocean evaporation, horizontal and vertical transport and mixing of atmospheric water vapour, microphysical processes within

clouds on characteristic time scales (Läderach and Sodemann, 2016). The stable isotope composition of precipitation is, there-

fore, an integrated result of the isotope fractionation, that occurs during phase changes in the atmosphere (Gat, 1996). In

addition, post-condensation processes can influence the isotope composition below cloud base (Graf et al., 2019). There-15

fore, observations of stable water isotopes in precipitation hold the promise of allowing to extract information about moisture

transport and moisture sources for individual weather events. Besides, detailed measurements of water isotopes provide the

potential to constrain parameterisations in atmospheric models and thereby to improve weather prediction and climate models

(Bony et al., 2008; Pfahl et al., 2012; Yoshimura et al., 2014)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bony et al., 2008; Pfahl et al., 2012; Yoshimura et al., 2014; Toride et al., 2021)

.20

The use of precipitation isotopes to gain information at the time scale of weather systems dates back to the pioneering

study of Dansgaard (1953), which suggested that the 18O-abundance in warm-frontal precipitation could be explained by a

distinct fractionation process and below-cloud evaporation. Since then, numerous studies have investigated the variation in

precipitation isotopes of weather events at different locations. Studies reveal that the isotope composition can vary substan-

tially over short time scales. For example, analyses of single rainfall events have revealed variations in δD of between 725

‰ for the case of southeast Australia (Barras and Simmonds, 2009) and 58 ‰ in California at sub-hourly time resolution

(Coplen et al., 2008, henceforth C08)
::::::::::::::::
(Coplen et al., 2008). A higher-resolution study in Cairns, Australia measured variations

of up to 95 ‰ within a single 4-h period (Munksgaard et al., 2012). Several typical intra-event trends, such as "L", "V", and

"W" shapes, have been identified by Muller et al. (2015). Despite numerous observations of the isotopic evolution in rain-

fall over time and the corresponding interpretation, it remains unclear how to separate the highly convoluted signal into the30

contribution from weather system characteristics, moisture sources, and below-cloud effects.

The complexity of the isotope information contained in rainfall at the event time scale has led to a scientific controversy

regarding the interpretation of the isotope signal during AR events. C08
:::::::::::::::::
Coplen et al. (2008) sampled the precipitation during

a land-falling AR at the coast of southern California at a time resolution of 30 min. C08
:
,
:::
and

:
interpreted the isotope variation in
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rainfall during the event in relation to cloud height, using a Rayleigh distillation model. Coplen et al. (2015) (henceforth C15)

expanded the dataset and interpretation to numerous additional events. Investigating the same event as C08
:::::::::::::::::
Coplen et al. (2008)

with an isotope-enabled weather prediction model, Yoshimura et al. (2010) (henceforth Y10) instead emphasised the roles of

horizontal advection and post-condensational processes for the temporal evolution of the precipitation isotope signal. Using

the simultaneous water vapour and precipitation isotope measurements in this study, we attempt to shed new light on this so-far5

unresolved controversy.

Here we present the analysis of highly resolved measurements of the stable isotope composition in precipitation and near-

surface water vapour collected at high time resolution during a land-falling AR in southwestern Norway during winter 2016. In

order to disentangle different influences onto the isotope signal in precipitation, we consider three sets of factors together com-

prising the atmospheric water cycle of precipitation. Namely, these factors are: (1) ocean-atmosphere conditions at the moisture10

source that affect the isotopologue composition of generated water vapour, (2) the preferential loss of heavy isotopologues due

to an atmospheric distillation or rainout process, (3) microphysical processes within clouds, and post-condensational exchange

processes of falling precipitation that can alter the isotope composition. We hereby quantify the amount of isotopologues using

the common δ notation as δ =
Rsample−RVSMOW

RVSMOW
· 1000 ‰, where R (e.g. 2R= [HD16O]

[H16
2 O]

) is the isotope ratio, and the δD and δ18O

quantifies the enrichment or depletion of the corresponding isotopologues with respect to the Vienna Standard Mean Ocean15

Water standard (VSMOW) (Mook and De Vries, 2001; IAEA, 2009).

In the following, we use a combination of atmospheric in-situ and remote sensing instrumentation at the measurement site,

weather prediction model data, to identify periods in the sequence of the AR event where different factors have dominant

or overlapping influences. To this end, we quantify below-cloud exchange processes by means of the interpretative ∆δ∆D

framework (Graf et al., 2019). We then relate the observed evolution of the isotope signal to the frontal structure and other20

weather system characteristics. Using the parameter d-excess, defined as d= δD−8·δ18O, and model diagnostics for moisture

source location and evaporation condition analysis (Sodemann et al., 2008), we assess during which periods the precipitation

isotope signal contains information about the evaporation conditions at the moisture sources. Based on the findings from our

analysis, we attempt to resolve some of the disagreement between earlier observational and modelling studies of precipitation

isotopes sampled at high resolution.25

2 Data and methods

2.1 Measurement site

Bergen is located at the southwest coast of Norway (60.3837 ◦N, 5.3320 ◦E), with an annual mean temperature of 7.6 ◦C dur-

ing 1961-1990 (data retrieved from the observation data repository https://sharki.oslo.dnmi.no, Meteorologisk Institutt, Oslo,

Norway). Being located at the end of the climatological North Atlantic storm track (Wernli and Schwierz, 2006; Aemisegger30

and Papritz, 2018), extratropical cyclones frequently bring moist airmasses to the Norwegian coast. At the steep orographic

rise from sea level to above 600 m in a distance of 2 km, the airmasses frequently produce intense precipitation. The average

annual precipitation during 1961–1990 was 2250 mm, with the highest monthly average being 283 mm in September and the
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lowest being 106 mm in May (data retrieved from the observation data repository https://sharki.oslo.dnmi.no, Meteorologisk

Institutt, Oslo, Norway).

2.2 Meteorological observations

Meteorological observations are performed operationally at the WMO station Bergen-Florida (ID 50540) at 12 m a.s.l. Addi-

tional measurements were acquired on the rooftop observatory (45 m a.s.l) of the Geophysical Institute (GFI), University of5

Bergen, located at a distance of 70 m from the WMO station. This additional instrumentation consisted of a Micro Rain Radar

(MRR2, METEK GmbH, Elmshorn, Germany), a Total Precipitation Sensor (TPS-3100, Yankee Environmental Systems, Inc.,

USA), a Parsivel2 disdrometer (OTT Hydromet GmbH, Kempten, Germany) and an automatic weather station (AWS-2700,

Aanderaa Data Instruments AS, Bergen, Norway). Air temperature, pressure, RH, and wind speed from the AWS-2700 were

consistent with the TPS-3100 and the WMO station measurements.10

Precipitation was measured by three instruments. The TPS-3100 Total Precipitation Sensor is an automatic precipitation

gauge that provides real-time solid and liquid precipitation rate at a 60 s time interval (Yankee Environmental Systems, Inc.,

2011). The laser-based optical distrometer
::::::::::
disdrometer

:
Parsivel2 provides the precipitation intensity at a 60 s time resolution,

using measurements of particle size and particle fall speed (OTT Hydromet GmbH, 2015). Comparison of these high-resolution

precipitation measurements located at the rooftop with the rain gauge measurement from the WMO station Bergen-Florida15

at ground level indicates that the TPS-3100 overestimates precipitation slightly (up to 10 %), while the Parsivel2 clearly

underestimates the precipitation intensity (up to 40 %; see Appendix A). All precipitation observed during the event came as

rain. Hereafter, we utilize the rain rates measured by the TPS-3100 for further analysis.

In addition to rain rate, the Parsivel2 distrometer
::::::::::
disdrometer provides drop size and velocity spectra by separating the

precipitation into 32 size classes from 0.2 to 5 mm and 32 velocity classes from 0.2 to 20 m s−1. The instrument has been20

configured to record raw spectra at a 60 s time interval. The raw number of particles are converted into a per-diameter-class

volumetric drop concentration (mm−1 m−3). The drop size distributions are then characterised by the mass-weighted mean

diameter Dm (mm). The drop size distribution is an important precipitation characteristic, among others to evaluate the extent

of below-cloud evaporation (Graf et al., 2019).

Continuous vertical profiling of the hydrometeors during the event was conducted using the vertical-pointing doppler25

radar MRR2. Previous studies have demonstrated the value of these observations for stable isotope analysis in precipita-

tion (C08; Muller et al., 2015)
:::::::::::::::::::::::::::::::::
(Coplen et al., 2008; Muller et al., 2015). Operating at 24 GHz, the radar measures the height-

resolved fall velocity of the hydrometeors and other derived parameters, such as height-resolved size distribution and liquid

water content (METEK Meteorologische Messtechnik GmbH, 2012). Here, the MRR2 was set up with a vertical resolution of

100 m for its 32 range gates, resulting in a measurement range from 100 m to 3200 m. The high resolution in time and height30

enables monitoring of the phase and evolution of hydrometeors, and thus the evolution of melting layers (Battan, 1973; White

et al., 2002, 2003).
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2.3 Water vapour isotope measurements

The stable isotope composition of ambient water vapour was continuously measured with a cavity ring-down spectrometer

(L2130-i, Picarro Inc., USA) from an inlet installed on the GFI rooftop observatory. Ambient air was continuously drawn

through the 4 m long 1/4 inch unheated PTFE tubing with a flow rate of about 35 sccm. The inlet was shielded from precipitation

with a downward-facing plastic cup.5

The analyser was calibrated every 12 hours using a Standard Delivery Module (A0101, Picarro Inc., USA; hereafter SDM)

and a high-precision vaporizer (A0211, Picarro Inc., USA). During the calibration, two laboratory standards bracketing the

isotope composition of typical ambient vapour (GSM1: δ18O = −33.07±0.02
::::
0.06 ‰, δD = −262.95±0.30

::::
0.45 ‰; DI: δ18O

= −7.78±0.02
:::
0.06

:
‰, δD = −50.38±0.30

:::
0.48

:
‰) were blended respectively with dry air supplied by a molecular sieve

(MT-400-4, Agilent Inc., Santa Clara, USA). The generated standard vapour was then measured for 20 min each at a humidity10

level of ∼20 000 ppmv.

The vapour data were post-processed and calibrated according to the following steps. (1) The raw data were corrected for

isotope composition–mixing ratio dependency using the correction function in Weng et al. (2020), which was determined for

the same analyser used here. (2) For each calendar month, SDM calibration periods were identified. Then, the median values

of mixing ratio, δ18O and δD were obtained for each calibration period. The values that deviate from the median value by15

more than 0.5 ‰ in δ18O or 4.0 ‰ in δD were discarded to remove variations due to bursting bubbles and other instabilities.

The remaining data for each period were then averaged and the standard deviation calculated. Calibrations were retained

if at least 60 % of the calibration period were kept after quality control. (3) The vapour measurements were calibrated to

SLAP2-VSMOW2 scale following IAEA recommendations (IAEA, 2009). To this end, the two nearest bounding calibrations

of sufficient quality were identified for each calendar day and each standard. Finally, the calibrated vapour data were averaged20

at a 10-minute interval using centred averaging.

2.4 Precipitation isotope sampling and analysis

Liquid precipitation was sampled at the GFI rooftop observatory at high temporal resolution with a manual rainfall collector

similar to the setup used in Graf et al. (2019). The collector consists of a PE funnel of 10 cm diameter, which directs the

collected water into a 20 mL open-top glass bottle. A total of 71 precipitation samples were collected during the 24-h sampling25

period between 00:00 UTC 07 December and 00:00 UTC 08 December 2016. The sampling interval was adjusted according

to the precipitation intensity. Two samples were collected over a 105 min interval, 8 samples with 20–40 min intervals, and

61 samples with 10–20 min intervals (ref. supplementary material). The bottle and funnel were dried after each sample using

a paper wipe. The sample was immediately transferred from the bottle to a 1.5 mL glass vial (part no. 548-0907, VWR, USA)

and closed with an open-top screw cap with PTFE/rubber septum (part no. 548-0907, VWR, USA) to prevent evaporation until30

sample analysis.

The samples were stored at 4 ◦C before being analysed for their isotope composition at FARLAB, University of Bergen,

Norway. During the analysis, an autosampler (A0325, Picarro Inc., USA) transferred ca. 2 µL per injection into a high-precision
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vaporizer (A0211, Picarro Inc., USA) heated to 110 ◦C. After blending with N2 (Nitrogen 5.0, purity >99.999 %, Praxair

Norge AS), the gas mixture was directed into the measurement cavity of a cavity ring-down spectrometer (L2140-i, Picarro

Inc., USA) for about 7 min with a typical mixing ratio of 20 000 ppmv. To reduce memory effects between sample, two so-

called wet flushes consisting of 5 min of vapour mixture at 50 000 ppmv were applied to the analyzer at the beginning of each

new sample vial. Three standards (12 injections each, plus wet flush) were measured at the beginning and end of each batch5

consisting typically of 20 samples (6 injections each, plus wet flush). The averages of the last 4 injections were used for further

processing. The measurement data were first corrected for mixing ratio dependency using a linear correction for the analyzer

obtained over a humidity range of 15 000–23 000 ppmv. Then, data were calibrated to the SLAP2-VSMOW2 scale following

IAEA recommendations (IAEA, 2009) using two secondary laboratory standards (VATS: δ18O = −16.47±0.02
:::
0.05

:
‰, δD =

−127.88±0.30
:::
0.43 ‰; DI: δ18O = −7.78±0.02

:::
0.06

:
‰, δD = −50.38±0.30

:::
0.48 ‰). The long term

:::::::
long-term

:
reproducibility10

of liquid sample analysis at FARLAB has been estimated to 0.15
::::
from

::::::::
long-term

::::::::::::
measurements

:::
of

:
a
::::
drift

:::::::
standard

::
to

:::::
0.049

:
‰

for δ18O and 0.66
:::
0.37

:
‰ for δD, resulting in a measurement uncertainty of 1.05

::::::::
combined

:::::::
standard

:::::::::
uncertainty

:::
of

:::
0.38

:
‰ for

d-excess.

2.5 The concept of equilibrium vapour

Due to equilibrium and kinetic isotope fractionation during phase transitions, the isotope composition in water vapour and15

precipitation can not be directly compared to one another. Instead, we use the concept of equilibrium vapour to compare

the state of both phases (e.g. Aemisegger et al., 2015). The equilibrium vapour from precipitation is the isotope composition

of vapour that is in equilibrium with precipitation at ambient air temperature Ta. We calculate the equilibrium vapour of

precipitation as

δp,eq

1000
+ 1 = αl→v(Ta)

δp

1000
+ 1, (1)20

where αl→v(Ta) is the temperature-dependent fractionation factor of the liquid to vapour phase transition following Majoube

(1971). We then quantify the difference between equilibrium vapour from precipitation samples and ambient vapour as

∆δ = δDp,eq − δDv, (2)

∆d = dp,eq − dv. (3)

While a similar notation can be defined for ∆δ18O, we use the notation ∆δ to refer to ∆δD only. Using the above deviations25

from isotopic equilibrium, Graf et al. (2019) introduced a useful interpretative framework to quantify the effect of below-

cloud processes on the isotope composition of ambient vapour and precipitation. This so-called ∆δ∆d-diagram quantifies

the deviation of δD and d-excess in the liquid from the vapour phase at ambient temperatures from isotopic equilibrium as

indicators of evaporation and equilibration below cloud base. We make use of this interpretative framework to quantify the

below-cloud processes during the AR event studied here. In addition, we combine the ∆δ∆d-diagram with a set of sensitivity30

studies using the Below-Cloud Interaction Model (BCIM, Graf et al., 2019) to identify the main influences. The sensitivity

experiments are described in more detail in Appendix B.
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2.6 Lagrangian moisture source diagnostic

Moisture sources are a potential factor influencing the isotope composition in precipitation. Here we apply a quantitative

Lagrangian moisture source diagnostic WaterSip (Sodemann et al., 2008) to diagnose the moisture sources for evaporation

contributing to the AR event on 07 Dec 2016. The WaterSip method identifies moisture source regions and transport conditions

from a sequentially weighted specific humidity budget along backward trajectories of air parcels that arrive over the target area.5

More specifically, the method assumes that the change in specific humidity in an air parcel during each 6-h time step

exceeding a threshold value is due to either evapotranspiration or precipitation. A sequential moisture accounting then provides

the fractional contribution of each evaporation event to the specific humidity at an air parcel location, and by taking into

account the sequence of moisture uptakes and losses, the final precipitation in the target area. For the AR event in this study,

the thresholds are set to be 0.2 g kg−1 for ∆qc, with a 20-day backward trajectory length, and relative humidity >80 % to10

identify precipitation over the target region. These thresholds result in source attribution for over 98 %. Here, the moisture

uptakes from both within and above the boundary layer (BL) have been taken into account (Sodemann et al., 2008; Winschall

et al., 2014). As with other methods to identify moisture source regions, the WaterSip diagnostic is associated with uncertainty

due to threshold values, interpolation errors, and conceptual limitations (Sodemann et al., 2008; Sodemann, 2020).

The basis of the WaterSip diagnostic applied here is the dataset of Läderach and Sodemann (2016), which we have extended15

over the entire ERA-Interim period. In that dataset, the global atmosphere is represented by 5 million air parcels of equal mass

calculated using the Lagrangian particle dispersion model FLEXPART V8.2 (Stohl et al., 2005), with wind and humidity and

other meteorological variables from the ERA-Interim reanalysis. For this study, the diagnostic was run with a target area of ca.

110× 110 km centred over Bergen (59.9–60.9 ◦N and 4.3–6.3 ◦E), including both land and ocean regions. The precipitation

event studied here was represented by in total 1100 trajectories arriving in the target area.20

To enable a comparison with stable isotope observations, the WaterSip method predicts the d-excess from the evaporation

conditions at the moisture sources using the empirical relation of Pfahl and Sodemann (2014). More specifically, the SST over

ocean regions and the surface specific humidity from ERA-Interim are used to calculate RH with respect to SST, and then to

calculate d-excess from the empirical relation d= 48.2 ‰−0.54 ‰/% · RHSST , using a weighted average of all contributing

moisture sources.25

2.7 Reanalysis and weather forecast data

We use global ERA-Interim reanalysis data from the European Centre for Medium-Range Weather Forecast (ECMWF), re-

gridded to a 0.75×0.75◦ regular grid, as the basis for the moisture source diagnostics, and for depicting the large-scale me-

teorological situation. Moisture transport is quantified by the integrated water vapour transport (IVT; e.g. Nayak et al., 2014;

Lavers et al., 2014, 2016), and mean sea level pressure (SLP) depicts the location of weather systems.30

Due to the higher time resolution, vertical profiles of air temperature, solid and liquid precipitation, cloud water and cloud

ice at the measurement site were extracted across all model levels from the ERA5 reanalysis (Hersbach et al., 2020) with a

1-h time resolution. Finally, to depict the details of the frontal structure during the event, air temperature, horizontal wind
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speed and relative humidity at different pressure levels, as well as surface precipitation were obtained from high-resolution

operational weather forecasts with the Harmonie-Arome model in the MetCoop domain (Bengtsson et al., 2017). Forecasts

initialized during the period 06 to 07 Dec 2016 at a grid spacing of 2.5×2.5 km were retrieved from the publicly accessible

archive for weather forecast data (http://thredds.met.no, Meteorologisk Institutt, Oslo, Norway).

3 Results5

3.1 Meteorological overview

On 07 December 2016, a substantial amount of precipitation fell over southwestern Norway. The precipitation was related to

the influx of moist air from an AR, apparent as a band of high vertically integrated water vapour (IWV, Fig. 1). The AR reaches

as a narrow band from the central North Atlantic to the study region, impacting the entire west coast of southern Norway.

At 12:00 UTC on 07 Dec 2016, the head of the AR has spread out broadly over the North Sea and the UK. While the IWV10

has commonly been used to define ARs, more relevant for the ensuing orographic precipitation is the associated water vapour

transport, expressed as IVT (Lavers et al., 2014, 2016, see Sect. 4.3).

Figure 1. Vertically integrated water vapour (IWV) for the atmospheric river event occurring at 12:00 UTC 07 Dec 2016 in ERA-Interim

analysis. The measurement site at Bergen is indicated with black cross.

The onshore flow of the large amounts of water vapour resulted in a prolonged precipitation event in Bergen, lasting from

00:00 UTC 07 Dec 2016 to 00:00 UTC 08 Dec 2016. Weather maps from the UK MetOffice show a sequence of surface

warm fronts impinging upon southwestern Norway at 06:00 UTC on 07 Dec 2016 (Fig. 2a). This set of fronts is attached to15

a cyclone south of Iceland with core pressure of 985 hPa. The fronts are embedded in a pronounced westerly flow, bounded

by a broad anticyclone with a centre over southeastern Europe and a core pressure of 1039 hPa. The individual warm fronts
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have approached one another over several days (not shown). We note that in the present case, the onshore water vapour flux is

enhanced by the pressure gradient between the Icelandic low and the high-pressure over Europe. Similar configurations have

been observed earlier to be associated with AR events in coastal western Norway (Azad and Sorteberg, 2017).

(a)

(c) (e)

(b)

(d) (f)

Figure 2. Overview of frontal structures during the precipitation event on 07 Dec 2016. Sea level pressure and surface fronts identified by

the UK Met Office at (a) 06:00 UTC and (b) 18:00 UTC. (c) Sea level pressure (hPa, grey lines), air temperature (K, red lines), and relative

humidity above 80 % (shaded) at 850 hPa at 06:00 UTC. (d) Sea level pressure (hPa, grey), 500 hPa geopotential height (g.p.m, blue),

wind barbs at 500 hPa, and 1 h accumulated precipitation (mm, shaded) at 06:00 UTC. (e) As panel (c), but at 18:00 UTC. (f) As panel (d)

but at 18:00 UTC. Panels (c) and (d) are from the 12 h MEPS forecast initialized at 18:00 UTC on 06 Dec 2016. Panels (e) and (f) are from

the 06 h MEPS forecast initialized at 12:00 UTC on 07 Dec 2016.

At 06:00 UTC on 07 Dec 2016, the first front has passed over land, as seen by the 850 hPa temperature north of Ålesund

(Fig. 2c) and the widespread precipitation above 2 mm h−1 (Fig. 2d) obtained from the control forecast of the AROME MEPS

regional forecasting system. The trailing warm front is still at a distance from the coastline, but already causes intense pre-5
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cipitation near the coast (Fig. 2d, green shading). At 18:00 UTC on 07 Dec 2016, the Icelandic cyclone has started to fill in,

with the warm frontal system dissolving over southern Scandinavia. An upper-level cold front, trailed by a surface warm front,

approaches the coast of southwestern Norway at this time (Fig. 2b). The temperature at 850 hPa shows the transition to a

more cloud-free area with variable gradients as the upper-level cold air arrives over the North Sea (Fig. 2e). While there is still

widespread precipitation over southern Norway, a more scattered precipitation regime sets in at this time (Fig. 2f).10

3.2 Meteorological surface observations

We now describe the sequence of meteorological and isotope parameters during the precipitation event. According to the time

evolution of the meteorological parameters (Fig. 3), in particular the radar reflectivity, we separate the AR event into 4 distinct

precipitation stages: pre-frontal Stage I before 03:30 UTC (purple bar), first frontal Stage II between 03:30 and 07:00 UTC

(blue bar), a second frontal Stage III between 07:00 and 14:30 UTC (red bar), dominated by stratiform precipitation processes,15

and a post-frontal Stage IV after 14:30 UTC (yellow bar) that is dominated by convective precipitation. The four stages are

indicated with corresponding colour bars at the top and bottom of Fig. 3. Since transitions between stages are partly subtle, we

give a detailed description of the time evolution of several of the meteorological parameters.

Meteorological surface observations from the tower observatory during the AR event show that local pressure at the height

of the observatory gradually dropped from 1015 hPa to 997 hPa at 00:00 UTC on 08 Dec (Fig. 3a, blue line). As the warm20

airmass approached, the air temperature at the tower station gradually increased from 5.0 ◦C at 05:00 UTC on 07 Dec 2016 to

11.0 ◦C at 00:00 UTC 08 Dec 2016 (Fig. 3a, black line).

Precipitation already started forming before the increase of temperature, with rain rates (Fig. 3b, black line) below 1 mm h−1

between 00:00 and 03:30 UTC, then steadily increasing to 5.5 mm h−1 at 07:00 UTC, varying thereafter at a generally high

level with a brief intermission at 12:00 UTC. Rainfall became in particular more variable after 14:30 UTC, reaching brief25

maxima above 7.0 mm h−1. The total precipitation amount during this 24-h event was 55.3 mm. While measurements from

the TPS-3100 are used here, we note that several instruments provide a similar time series of precipitation intensity, and

comparable precipitation totals (Appendix A).

Relative humidity changed markedly during the event. Before 04:30 UTC, RH varied between 77 and 80 %. As the precip-

itation intensified and the temperature started to increase at 05:00 UTC, RH gradually increased to 92 % at 09:00 UTC and

remained between 92 and 95 % thereafter (Fig. 3b, blue line).5

The drop size distribution followed a similar evolution as the rain rate (Fig. 3c). At the beginning of the event, raindrop

number concentration maxima were small, with the drop size maximum near 0.4 mm (Fig. 4a, Stage I). The drop size spectra

started to show a more pronounced peak from 01:30 UTC, as well as an increase of raindrop number concentrations (Fig. 4a,

Stage II). On some occasions during Stage II, a bi-modal distribution in drop sizes was observed. Drop size spectra had

pronounced maxima at the smallest drop size categories between 09:00 and 11:00 UTC, and became broader between 13:00 to10

14:30 UTC (Fig. 4a, Stage III). A small number of large raindrops (>1 mm) had appeared during Stage II and III. The large

raindrops had disappeared after entering Stage IV, except for some intense precipitation periods between 18:30 and 20:20 UTC,

around 21:30 UTC, and around 22:40 UTC. A particular feature for Stage IV is that the amount of large raindrops (0.5–1.0

10



Figure 3. Time series of observations at ∼45 m a.s.l. in Bergen between 00:00 UTC 07 December and 00:00 UTC 08 December 2016. (a)

Local temperature (black line) and air pressure (blue line) from the automatic weather station (AWS-2700). (b) 10 min averaged rain rate

from the Total Precipitation Sensor (grey shading) and relative humidity from AWS-2700 (blue line). (c) Droplet number concentrations

from the Parsivel2. (d) 1 min averaged reflectivity from the Micro Rain Radar. (e) δD of the 10 min averaged vapour (grey dots) and

δD of the equilibrium vapour from precipitation (black segments). The uncertainties are 0.60 ‰ and 0.11 ‰ for δD of vapour and the

equilibrium vapour from precipitation, respectively. (f) Same as in (e) but for d-excess, including d-excess of precipitation (blue segments).

The uncertainty is 0.83 ‰ for d-excess of vapour, and 0.20 ‰ for d-excess of the equilibrium vapour from precipitation and precipitation.

Precipitation periods I–IV are indicated with colour bars at the top and bottom of the figure.
11



mm) increase substantially at the expense of raindrops with <0.5 mm diameter (Fig. 4a, Stage IV). This feature is likely to be

associated with the shift from stratiform to convective precipitation.15

Figure 4. Averaged (a) number concentration of rain droplet per droplet size, and (b) reflectivity profile from the Micro Rain Radar at each

precipitation stage during the AR event on 07 December 2016. The shading indicates one standard deviation. The lowermost layer of the

reflectivity profiles has been removed due to ground clutter.

The vertical pointing MRR2 reveals hydrometeor profiles and melting layer height during the event (Fig. 3d). Before 03:30

UTC, precipitation was weak and did not continuously reach the surface, indicating the presence of evaporation of falling

hydrometeors, or below-cloud evaporation (Fig. 4b, Stage I). As the precipitation gradually intensified after 03:30, a melting

layer started to appear, as well as ice-phase hydrometeors aloft. The melting height increased from 1600 to about 1900 m

between 03:30 and 04:30 UTC, and increased substantially to 2500 m at 07:00 UTC, thereafter varying between 2500 and

2700 m until 14:30 UTC. The increase of the melting height between Stage II and III is also clearly reflected in the averaged

MRR2 profiles (Fig. 4b, Stage II and III). At 07:00 UTC, the second warm front arrives over the measurement location, in

close agreement with surface frontal charts and regional weather prediction model forecasts (Fig. 2). Notably, the transition to

the second warm front is almost undetectable in surface temperature, precipitation and relative humidity. During the periods of5

most intense precipitation (i.e. between 06:30 and 11:20 UTC, and between 13:30 and 14:30 UTC), an increase in reflectivity

below 500–1500 m indicates droplet growth at low levels (Fig. 4b, Stage III), underlining the importance of water vapour in

lower atmospheric layers for the surface precipitation. Almost instantly after 14:30 UTC, there is a change to more intermittent

precipitation reflecting the shift from stratiform to a dominantly convective phase of the precipitation event, along with the

arrival of the upper-level cold front (Fig. 2c, e). In addition, no more melting layer was detected at this time (Fig. 4b, Stage IV).10

We speculate that the melting layer vanishes either because the convection was too shallow to reach above the 0 ◦C isothermal

line, or because the precipitation was too intermittent to expose a clear melting layer.
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3.3 Observed stable isotope signature in vapour and precipitation

The measured isotope composition in the surface vapour and precipitation samples is now compared in relation to the four

precipitation stages identified above. For the surface vapour, the 10 min averaged δDv initially showed a relatively stable value15

of −120 ‰ at Stage I (Fig. 3e, dotted line). Then δDv gradually decreased at the start of Stage II (03:30 UTC), until reaching

a minimum of −185 ‰ at the end of this stage (07:00 UTC). At Stage III, corresponding to the arrival of the second, merged

warm front, the value gradually returns to a less depleted level of −160 ‰ at 09:00 UTC and then varies between −160 and

−145 ‰ until 13:30 UTC. As the upper-level cold front arrives, the δDv first drops to a secondary minimum of −172 ‰,

before during Stage IV (after 14:30 UTC) increasing again first rapidly, then more slowly to −110 ‰ around 18:00 UTC and20

finally −100 ‰ after 21:00 UTC (the least depleted values of the event). The resulting stretched-out "W" shape of the vapour

isotope series resembles earlier observations made from high-resolution precipitation sampling (e.g., Muller et al., 2015). The

amplitude of 72 ‰ is substantial but smaller than for example observed in rainfall by C08
::::::::::::::::
Coplen et al. (2008). The relative

evolution of δ18Ov closely follows that of δDv (not shown).

The equilibrium vapour from precipitation δDp,eq approximately follows the pattern of surface vapour (Fig. 3e, black seg-25

ments). The isotope signal in surface vapour appears to lag the isotope signal in precipitation by about 30 min. Comparison

of specific humidity from the isotope spectrometer with specific humidity calculated from the AWS shows no apparent time

lag or offset at 1-min measuring frequency, indicating that atmospheric effects cause this time lag. Overall, the δDp,eq is more

variable than the δDv time series. At Stage I, δDp,eq is substantially less depleted than δDv. This reverses at the beginning of

Stage II. During the transition to Stage III, δDp,eq reaches a minimum, before it again becomes less depleted than δDv until30

about 08:30 UTC. Thereafter, differences between δDv and δDp,eq are small, with the exception of the last hour of Stage III

from 13:30 to 14:30 UTC. The time offset, and the relative enrichment and depletion characteristics of vapour and precipitation

are further examined in Sect. 4.

The time evolution of the secondary isotope parameter d-excess in surface vapour (dv) starts with 11 ‰ during Stage I

(Fig. 3f, dotted line). Thereafter, dv increases to 14 ‰ at Stage II, and stays around that level until the beginning of Stage III at

08:00 UTC, one hour after the second warm front arrives. Then dv gradually decreases throughout the rest of the event, with a

more rapid decrease from about 10 ‰ as the upper-level cold front arrives at 14:30 UTC, to dv varying around 4 ‰ between

18:00 and 21:30 UTC and eventually reaching 0 ‰ at 23:00 UTC.5

The d-excess of the equilibrium vapour from precipitation (dp,eq) shows a remarkable difference to dv at the beginning of

the event (Fig. 3f, Stage I and II, black line segments). Here, dp,eq are substantially lower than dv, with the lowest values

even being negative (−7 and −9 ‰) during Stage I. This results in a large difference between dv and dp,eq of 18 and 20 ‰,

respectively. During Stage II, dp,eq gradually approaches dv, remaining about 2–4 ‰ lower than dv. Similar to dv, dp,eq then

shows a continuous decrease between 07:00 UTC and 16:30 UTC, then stabilising around 2 ‰. The original d-excess of10

precipitation, dp (Fig. 3f, blue line segments), should theoretically be equal to dp,eq. Small discrepancies at Stage I, Stage IV,

and the two depletion minima, may at least partly arise from the definition of the d-excess (Dütsch et al., 2017).
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As is evident from the results presented above, the precipitation and vapour isotope measurements, especially when com-

bining δD and d-excess parameters, clearly provide signals that are not apparent in standard meteorological observations, such

as air temperature and rain rate. Following our hypothesis that the isotope signature at each stage reflects the impact of several15

atmospheric processes, including moisture origin, processes during advection and mixing, condensation processes in clouds,

as well as below-cloud interaction, we now attempt to disentangle the individual contributions from these processes on the

observed isotope signature at the surface during the AR event.

4 Impacts on the stable water isotope signature

The precipitation isotope signal during a weather event results from a convolution of different processes. We now proceed20

backwards from the last process, the below-cloud interaction, to weather system and transport influences, to the moisture

source signal, to investigate how different processes contribute throughout the event.

4.1 Contribution from below-cloud interaction processes

Microphysical processes within clouds and post-condensational exchange processes of falling precipitation can alter the isotope

composition. While isotopic equilibrium can be assumed for rain formation in warm clouds, kinetic effect exists at snow25

formation. Vapour deposition in a supersaturated environment with respect to ice, therefore, increases d-excess in precipitation

(Jouzel and Merlivat, 1984). Liotta et al. (2006) proposed that higher d-excess also exists in orographic clouds since kinetic

effects should be expected in the first step of droplet formation, when in-cloud droplets are short-lived and thus can not

reach equilibrium with the surrounding vapour. For deep convective systems, factors such as condensate lifting, convective

detrainment and evaporation in unsaturated downdrafts can play a critical role in the control of the isotope composition of30

precipitation (Bony et al., 2008).

Below-cloud interaction processes consist of the continuous exchange of falling precipitation with the surrounding vapour

in the atmospheric column below cloud base (Miyake et al., 1968; Barras and Simmonds, 2009; Guan et al., 2013; Wang

et al., 2016). In undersaturated conditions, the vapour exchange will lead to a net mass loss of the droplets. Therefore, below-

cloud evaporation usually dominates at the beginning of a precipitation event, when the atmosphere below cloud base is still

unsaturated. In near-saturated conditions, liquid precipitation will exchange with surrounding vapour in a near-equilibrium5

process. Resulting from the same underlying process, both exchanges are strongly influenced by drop size, whereby smaller

droplets being affected more strongly (Graf, 2017). Depending on the intensity of below-cloud exchange processes, the isotope

composition of precipitation can deviate more or less strongly from Rayleigh model expectations.

We investigate the change in isotope composition due to below-cloud processes using the ∆δ∆d-diagram (Graf et al.,

2019). The ∆δ∆d-diagram uses the differences between equilibrium vapour from precipitation and ambient vapour in terms10

of both δD and d-excess (∆δ and ∆d, Sect. 2.5) as its axes (Fig. 5). The diagram is divided by the zero reference lines

into four quadrants. The closer data points are located near the origin, the closer the equilibrium between the vapour and

liquid precipitation. Data points located in the lower right quadrant have positive ∆δ and negative ∆d values, reflecting the
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impact of strong evaporation below cloud base. Conversely, data points in the lower-left quadrant have undergone moderate

below-cloud evaporation and equilibration. Negative ∆δ values indicate that the (more depleted) isotope signal from the cloud15

level is preserved in precipitation, and has not been overprinted by below-cloud equilibration. In other words, below-cloud

equilibration is incomplete in these cases.
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Figure 5. ∆δ∆d-diagram for precipitation samples collected during the AR event on 07 December 2016. Samples coloured according to (a)

sampling start time (UTC), (b) relative humidity at the surface (RH, %), (c) rain rate (RR, mm h−1), and (d) droplet mean diameter (Dm,

mm). Letters in panel (a) mark time periods (see text for details). Grey lines in panels (b–d) show sensitivity experiments with the idealised

below-cloud interaction model of Graf et al. (2019) regarding the parameters surface air temperature (Ta), cloud base height (zc), and relative

humidity at the surface with regard to a reference simulation. Thereby, each line represents a range of drop sizes (see Appendix B for details).

Circles: Stage I, Squares: Stage II, Stars: Stage III, Triangles: Stage IV.
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The temporal evolution of the precipitation samples during the AR event proceeds from the lower right quadrant, with the

first to samples from Stage I displaying the strongest influence of below-cloud evaporation (Fig. 5a, letter A, circles). Samples

from Stage II are in the bottom left quadrant, first reflecting moderate below-cloud evaporation and some equilibration (letter20

B, squares). Towards Stage III (08:30 UTC), samples are close to equilibrium with surface vapour, with slightly negative ∆d

values (0 to −4 ‰) and a relatively large spread of both positive and negative ∆δD values (12 to −12 ‰, letter C, stars). An

interesting phenomenon then occurs at the transition to Stage IV, when first a stronger cloud influence is apparent, with data

points near −10 ‰ for ∆δ (Fig. 5a, letter D, triangles), before directly jumping to +10 ‰ after 15:00 UTC (Fig. 5a, letter

E). For the remainder of Stage IV, data points then progressively move closer to equilibrium conditions, corresponding to the25

origin of the coordinate axes (letter F). Note that the samples from different stages are well separated in the diagram, indicating

different dominating processes at each stage.

A key factor of influence for the below-cloud evaporation is RH below cloud base. When coloured by RH from the AWS, it is

evident that the samples most affected by below-cloud evaporation coincide with below 90 % RH at the surface (Fig. 5b). The

precipitation samples remain at non-equilibrium at 90–95 % RH and reach the origin only for above 95 % RH. A sensitivity30

study with idealised simulations using BCIM (below-cloud interaction model, Graf et al., 2019) using different drop sizes and

values of RH provides lines that indicate drop-size dependent effects of RH on raindrops falling from 1500 m to the surface.

Thereby, initial conditions approximately resemble the situation during Stage I and II. Here we use lines representing a range

of drop sizes for a specific parameter value similar to a coordinate system (for details see Appendix B). Albeit offset by about

10–15 % from observed RH, the sensitivity study shows a clear tendency towards lower ∆d with lower below-cloud RH.35

While RH is a key driver of below-cloud interaction, several other factors are also important, such as rain rate. The two

samples with the lowest rain rates of about 0.5 mm h−1 (during Stage I) are located in the lower right quadrant of the ∆δ∆d-

diagram (Fig. 5c). Several subsequent samples with slightly higher rain rate (∼0.9–2.2 mm h−1) are located in the left quadrant,

ranging from about −15 to −6 ‰ in ∆d. As the rain rate of the sample further increases and the ambient air nearly saturates,

the effect from below-cloud evaporation weakens. Samples with relatively heavy rain rates (mostly between 3 and 5 mm h−1)5

are found during the rest period of the event; they are located close to the zero ∆d line, indicating weak influences from below-

cloud interactions. A sensitivity analysis of the formation height parameter in the BCIM model shows weak sensitivity, that

aligns horizontally along the ∆δ axis with increasing height. Interestingly, this agrees with data points at the transition to Stage

III when the melting layer was among the highest (Fig. 3d).

The small rain rates are also a consequence of the below-cloud evaporation in an undersaturated environment. This below-10

cloud evaporation also leads to a reduced size of precipitation droplets, characterised by the droplet mean diameter. In the

∆δ∆d-diagram, the samples with the lowest rain rates also have a small droplet mean diameter of below 0.9 mm (Fig. 5d).

There are further samples with mean diameters below 1 mm during Stage IV of the precipitation event. At these times, rather

than being due to evaporation effects, the small drop sizes and the near-saturation conditions indicate that droplet growth

may be taking place actively. An analysis of the sensitivity to the temperature profile with the BCIM shows a sloping of the15

sensitivity from a horizontal to a diagonal orientation with warmer temperatures. This is in qualitative agreement with the

observations during the event with surface warming continuing from Stage III through Stage IV. Overall, ∆d appears more
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readily explained by RH, rain rate, and drop size. A possible reason is that we did not modify the background vapour profiles,

which can have a strong influence on ∆δ.

In summary, we observe strong below-cloud interaction at the beginning of the rainfall event. The period (Stage I and II)20

is characterised by the least saturated ambient air, the lowest rain rate, the smallest droplet size, and the lowest melting layer

height. All these features except the melting layer height favour the occurrence of the below-cloud evaporation. Transition

phases between the stages increase the disequilibrium between surface vapour and precipitation, with the precipitation signal

leading the vapour in characteristic ways (Fig. 5a, letters A–F). The non-equilibrium fractionation during the evaporation

causes the rain droplets to be less depleted in heavy isotopes (i.e. higher δ18O and δD values). At the same time, due to non-25

equilibrium conditions, relatively more HD16O than H18
2 O will leave the droplet, yielding to a low or even negative d-excess in

the remaining rain droplet. These isotope signatures match the precipitation samples taken during this period (Fig. 3e, f; Fig. 5).

The variation during Stage III and IV, however, shows that these two stages are less affected by below-cloud interactions, and

more related to a change in parameters related to the weather system, such as formation height and the temperature profiles.

We, therefore, focus now on the potential contribution of weather-system related changes to the isotope composition of surface30

vapour and precipitation during the AR event.

4.2 Weather system contribution

We now use the 4 stages, defined based on the surface meteorological observations (Fig. 3) to investigate the relationship

between the observed isotope signatures and weather system characteristics.

During atmospheric transport, water vapour is depleted in heavy isotopes due to an atmospheric distillation process (Jouzel

et al., 2007). The rainout history during the transport is essentially depending on the temperature difference between the

moisture source and the condensation height above the precipitation site. This has been historically known as the rainout effect

and can be approximated as a Rayleigh distillation process (Dansgaard, 1964). A larger temperature difference leads to a

greater rainout process and thus a more depleted isotope profile in the condensate, which ultimately translates to precipitation.5

For example, Dansgaard (1953) explained the gradual enrichment of 18O-abundance in the precipitation from a warm front

with the decreasing condensation temperature as the front passes the observation site.

In comparison to such idealised transport concepts, the AR event studied here is substantially more complex. As apparent

from the gradients in air temperature at 850 hPa around 06:00 UTC (Fig. 2c), the AR is composed of two staggered warm

fronts passing over Bergen in close sequence (Sect. 3). A more continuous display of the frontal passage is provided by a time-10

height cross-section of equivalent potential temperature (θe), cloud water, and precipitation, using hourly ERA5 reanalysis data

(Fig. 6). We now attempt to identify periods where the surface isotope measurements can be considered as representative for

the airmass overhead.

The cross-section depicts a constantly increasing temperature (shading) on the surface (below 850 hPa), consistent with the

surface meteorological observations, as well as a descending cloud base (black dotted line). A relatively deep layer of cold air15

near the surface present at the beginning of Stage I is replaced by warmer and more humid air. The cloud base is initially near

850 hPa, as seen by the gradient in cloud water, just below the melting layer, which is at about 830 hPa at this time (purple
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solid line). Towards Stage II, there is an increasing contribution of ice-phase processes to the surface precipitation, with cloud

ice of above 0.15 g kg−1 near 450 hPa (white dotted lines). Snowfall rates increase from 0.1 to above 0.4 mm h−1 above the

melting layer (white solid line), indicating riming of the ice particles between 600–750 hPa as an important contribution to20

the precipitation. The adequacy of this overall sequence is supported by the MRR2 radar observations (Fig. 3d) but indicates a

delay of about 2–3 h in the ERA5 dataset.

Figure 6. Hourly equivalent potential temperature from ERA5 reanalysis for the observation site at Bergen between 00:00 UTC 07 December

and 00:00 UTC 08 December 2016. Solid white line indicates specific snow water content and dotted white line specific cloud ice water

content. Solid black line indicates specific rain water content and dotted black line specific cloud liquid water content. The unit of all contours

for different water species is g kg−1. Thick purple line indicates the 0 ◦C isothermal line and dashed purple lines indicate isothermal lines

deviating from 0 ◦C isothermal line with 5 ◦C intervals. Colour bars at the top and bottom indicate precipitation periods I–IV.

The isotope compositions of surface vapour and precipitation during Stage I and II are initially dominated by below-cloud

interaction. Both surface vapour and equilibrium vapour from precipitation exhibited less depleted δD (Fig. 3e), although

probably for different reasons. With the isotope signal in the precipitation leading that in the vapour, the weather system signal25

progressively becomes more dominant throughout Stage II, levelling at −180 ‰ between 05:00 and 06:00 UTC. We consider

this the actual δD isotope signature of the first frontal airmass.

The increase in d-excess of surface vapour from 12 to 15 ‰ from Stage I to Stage II could reflect a gradual shift from

the pre-frontal to the newly arriving warm-frontal airmass. However, the large distance between the d-excess of equilibrium
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vapour from precipitation from surface vapour indicates the influence of the below-cloud evaporation. The converging d-excess30

of equilibrium vapour from precipitation and d-excess of surface vapour at the end of Stage II indicates a balance between

column vapour and precipitation. We therefore consider ∼14 ‰ as the most likely value for d-excess signal of the first warm

front.

The transition to Stage III with the second warm front is indicated by a substantial jump in melting layer height to 700 hPa

around 07:00–08:00 UTC (Fig. 6, purple line), and a gap in snowfall and intensified precipitation around 09:00 UTC. At35

this time, the cloud becomes markedly deeper, and regions of cloud liquid and cloud ice overlap at 550 hPa. Precipitation

shows a maximum above 800 hPa and decreases below. This rain evaporation may be overestimated by the reanalysis since the

precipitation radar instead shows an increase in reflectivity in the lowest 1000 m above the surface (Fig. 3d). The isotope signal

of this second warm front is less depleted and produces a transition to about −160 ‰ for δD, led by the precipitation (Fig. 3e).

The plateau in δD reached after about 09:00 UTC indicates that this likely is the actual isotope signal of the second warm front.5

The d-excess of both surface vapour and equilibrium vapour from precipitation during Stage III gradually decreased from 15

to 9 ‰ for the vapour, and from 13 to 6 ‰ for precipitation. A plateau reached in the precipitation d-excess after 11:00 UTC

indicates that the steady state in below-cloud exchange has been reached thus the signal of the airmass likely dominates surface

observations at this time.

In addition to being warmer, cloud processes extend over a deeper section of the lower and middle troposphere during the10

second front. The enriching trend probably corresponds to a gradual lowering of the effective condensation level. The lowering

here appears connected to the lower of the cloud base height, allowing an increased contribution to falling raindrops that gain

mass from, for example, the collision with droplets formed at low levels. Indeed, we observe a noticeable increase of radar

reflectivity at the surface level below 1500 m during Stage III (Fig. 3d and 4b). The contribution of low-level vapour to surface

precipitation is also consistent with the arguments by Y10
::::::::::::::::::::
Yoshimura et al. (2010) based on a regional model study of an AR

event that the precipitation isotope signal can be influenced by a deep section of the atmosphere.

In the ERA5 reanalysis, the middle and lower troposphere starts to become more unstable after 14:00 UTC, as indicated by5

θe changing from about 320 K to about 305 K towards the end of the day. Noting the shift by 3 h in relation to observations, the

transition to Stage IV is marked by the disappearance of ice-phase precipitation, with a tongue of cloud water reaching above

600 hPa, and cold air overrunning the warm front at about 720 hPa at 18:00 UTC (Fig. 2b). The very intense precipitation

lasting for a 1-h period at the end of Stage III, associated with strong deviations in the ∆δ∆d-diagram, could be related to

moist convection forming at this thermodynamic instability. The local δD minimum of −175 ‰ at the transition of Stage III to10

Stage IV would then represent a higher-elevation cloud signal, reflecting the isotope gradients in the column.

The stable stratification weakens further during the remainder of Stage IV, leading to a change from stratiform to convective

precipitation. Precipitation formation shifts to the lower troposphere, mostly below the melting layer height, consistent with

MRR2 measurements (Fig. 3d). The apparent lack of a melting layer implies condensation temperatures above 0 ◦C. The δD

of both surface vapour and equilibrium vapour from precipitation gradually becomes less depleted, reaching −110 ‰ around15

18:00 UTC and finally −100 ‰ after 21:00 UTC, even less depleted comparing with the values during Stage I (Fig. 3e). The

increased δD values reflect the shift to precipitation formation dominated by low-level water vapour, consistent with earlier
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studies (Lowenthal et al., 2011). The d-excess plateaus at about 4 ‰ after about 16:00 UTC, with the equilibrium vapour

trending towards 0 ‰ towards the end of the event. With the cloud water isolines nearing the surface, and near-saturated

conditions in observations, the isotope signal essentially reflects conditions within a condensing airmass.20

In order to assess whether a Rayleigh model is capable to diagnose condensation temperatures and condensation heights

during the different stages of the AR event, we apply the Rayleigh fractionation model of Jouzel and Merlivat (1984). Hereby,

the condensation temperature of the precipitation is obtained when the modelled δD from a moist adiabatic ascent became

equivalent to the observed δD in surface precipitation (Table 1). The modelled condensation height of Stage I is 1280 m. With

14.1 ◦C, the condensation temperature is substantially higher than the measured surface temperature of ∼5 ◦C. At Stage II,25

the modelled condensation temperature decreases to 0.9 ◦C, and condensation height increases to 3900 m. In Stage III, the

modelled condensation temperature increases to 2.4 ◦C, corresponding to a condensation heigh of 3600 m. At Stage IV, the

modelled condensation temperature increases to 13.6 ◦C, and condensation height becomes 1390 m. The overestimation of

condensation temperature at least partly reflects the sensitivity of such estimates to initial temperature conditions. The overall

low d-excess from the Rayleigh model calculations may be associated with the high sensitivity of d-excess on the representation30

of supersaturation conditions during ice formation in cloud (Jouzel and Merlivat, 1984).

Throughout the event, it is apparent that the condensation heights estimated from the Rayleigh model are substantially lower

than cloud top heights reaching above 5500 m (∼500 hPa, Fig. 6). In fact, according to ERA5, cloud top temperatures reach

below −25 ◦C. Consistent with MRR observations, the relatively warm condensation temperatures during the stratiform phase

compared to cloud-top conditions indicate that lower atmospheric layers contribute substantially to the precipitation total. For35

the two most depleted δD periods, condensation temperatures are −4.1 and −2.3 ◦C respectively. Also in these two most

depleted situations, the condensation temperature from the Rayleigh model is more consistent with a mass-weighted average

of condensation, rather than cloud-top temperatures, indicating the limitation of Rayleigh models in diagnosing condensation

conditions within stratiform clouds.

We now proceed to explore to what extent the isotope signals of the different airmasses during Stage II to IV reflect the5

moisture source and transport conditions.

4.3 Relation of moisture sources to meteorological evolution

We now focus on how moisture sources and moisture transport to Bergen are connected to the weather system configuration,

and thus potentially contribute to the isotope signal in water vapour and precipitation.

Ocean-atmosphere conditions at the moisture source affect the isotope composition of generated water vapour (Gat, 1996).10

Theoretical studies and observations have shown that d-excess in the generated vapour over ocean surface is dependent on

relative humidity (RH) with respect to sea surface temperature (SST) and to second-order to the SST itself in the source

area (Merlivat and Jouzel, 1979; Uemura et al., 2008; Pfahl and Sodemann, 2014). As an example, high d-excess anomalies are

usually observed in water vapour formed during so-called marine cold air outbreaks (Aemisegger and Sjolte, 2018; Aemisegger,

2018), where cold dry air moves over relative warm ocean waters and triggers strong evaporation (Papritz and Spengler, 2017;15

Papritz and Sodemann, 2018). In contrast, land regions and more calm ocean evaporation are associated with lower d-excess
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Table 1. The observed rain rate (RR) and isotope compositions (δD, d-excess), and the corresponding model estimate of condensation

temperature (Tc), condensation height (Zc), and d-excess of the surface precipitation (dc) during the AR event on 07 Dec 2016 in Bergen.

The model estimates are calculated using the observed δD values of the surface precipitation, according to a Rayleigh fractionation model

of Jouzel and Merlivat (1984). Supersaturation over ice Si is assumed to occur during ice formation and is represented with a linear formula

Si = 1− 0.004T (T in ◦C) after Risi et al. (2010). Input conditions have been taken from global average conditions according to Craig and

Gordon (1965) as T0 = 20 ◦C, RH0 = 0.75, δ18O0 = −13 ‰, δD0 = −94 ‰.

From (UTC) To (UTC) RR (mm) δD (‰) d (‰) Tc (◦C) Zc (m) dc (‰)

Stage I 00:00 03:30 1.8 −14.9 −3.2 14.1 1280 11.7

Stage II 03:30 06:00 3.4 −76.0 4.4 0.9 3900 9.9

1st minimum 06:00 06:50 2.0 −101.2 8.2 −4.1 4790 1.6

Stage III 08:30 13:15 13.8 −68.3 8.3 2.4 3600 10.1

2nd minimum 13:35 14:15 2.4 −85.7 3.8 −2.3 4480 0.2

Stage IV 17:00 21:45 17.0 −16.7 5.0 13.6 1380 11.7

Entire event 00:00 21:45 55.3 −51.9 6.2 5.8 2970 10.7

(Aemisegger et al., 2014; Thurnherr et al., 2020). The d-excess is often assumed to be conserved during transport. However,

microphysical processes within and below clouds can influence the d-excess in local precipitation, and thus obscure information

on the evaporation conditions in the source area (Jouzel and Merlivat, 1984; Graf et al., 2019).

In this context, we now return to the synoptic development over the three days proceeding the precipitation event, and the

location of the moisture sources, and corresponding evaporation conditions. On 4 December 2016, two low-pressure systems

are located south of Greenland and in the North Atlantic. Strong moisture transport takes place at the southern flank in the warm5

sector region, displayed as IVT above 800 kg (ms)−1 (Fig. 7a). Bergen (red cross) is under the influence of a weak pressure

gradient, with an onshore flow from NE, and lower humidity. Moisture uptakes contributing to precipitation in Bergen during

the AR event are identified for the respective time periods. The most substantial moisture uptake (thick blue-green contours)

contributing to the precipitation on 07 Dec 2016 coincides with the location of the AR.

On 5 December, the two low-pressure systems have merged, with a core low below 975 hPa near Iceland (Fig. 7b). IVT in10

the frontal band has intensified. In southern Norway and central Europe, high pressure is starting to form, with a 1030 hPa

core pressure. The moisture uptake has moved further north and overlaps now with the IVT maximum. This warm frontal band

coincides with the two warm fronts passing southern Norway during the event (Fig. 2a). On 6 December at 12:00 UTC, the

cyclone had entirely separated from its frontal bands and started to fill in. High pressure over Europe increased to 1040 hPa,

with the pressure gradient further accelerating the onshore flow, supporting an intense meridional IVT of above 800 kg (ms)−1.15

Moisture sources advanced substantially further to the northeast, with the IVT maximum concentrated south of the British

Isles. On 7 December, a small, secondary cyclone dominated the moisture flux in the north, while the southern part of the

IVT structure remained supported by yet another low-pressure system downstream (Fig. 7d). Moisture uptakes are identified
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Figure 7. Synoptic situation at 12:00 UTC on the three days prior to the AR event day (a-c) and on 7 December 2016 (d). Shown are

integrated water vapour transport (IVT >250 kg (ms)−1, shading), mean sea level pressure (black contours, 5 hPa interval), and concurrent

moisture uptake (mm (6 h)−1, blue-green contours) that precipitates at the arrival location between 00:00 UTC on 7th December and 8th of

December 2016. Red cross indicates the measurement site Bergen, Norway.

over the North Sea near Scotland (blue-green contours), contributing to precipitation in Bergen later that day. The area over

Scotland corresponded to relatively cold air with broken clouds intruding at the rear side, over the UK, belonging to the cold20

frontal air during Stage IV (not shown).

In summary, moisture transport and moisture uptakes were clearly connected to the frontal structures during the AR event.

The most substantial moisture uptake was occurring in the vicinity of the IVT maximum, embedded in the fused warm frontal

bands. As the time window to the precipitation event shortened, the moisture uptake moved substantially further northward

over the North Sea. This change in moisture source distance corresponds at least qualitatively to the progressively less depleted25

isotope signature during the event. We now investigate more quantitatively how different the evaporation conditions at the

moisture sources were for Stages II, III and IV.
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4.3.1 Moisture source contribution

The evaporation conditions at the moisture sources identified above determine the vapour isotope composition before the start

of the condensation processes. Here we investigate if the stepwise decrease in precipitation d-excess observed during Stage II

and Stage III can be related to changes in moisture source conditions. Moisture source conditions are quantified here in terms

of moisture source distance, surface temperature, relative humidity with respect to sea surface temperature (Fig. 8a-c).5

Figure 8. Histograms of moisture source conditions identified with the Lagrangian moisture source diagnostics from 20-day backward

trajectories during the AR event in southwestern Norway. (a) Moisture source distance (km), (b) moisture source temperature (◦C), (c)

moisture source relative humidity with respect to sea surface temperature (RHSST ), and (d) d-excess estimated from the empirical relation

of Pfahl and Sodemann (2014). Grey filled bars show the most intense period of the event (Phase III, 07 Dec 2016 at 12:00 UTC), dotted lines

the 12 h before (Stage I and II), and solid lines the 12 h after the central period (Stage IV). Histograms represent the normalised contributions

of each moisture source location to the precipitation at the arrival region on the respective date. Star symbol indicates the mean value of the

distribution at 12:00 UTC on 07 Dec 2016.

The large majority of moisture uptakes took place within a distance of 8000 km (Fig. 8a). The histogram for the main

precipitation event at 12:00 UTC on 07 Dec 2016 is shown in grey shading, while the preceding time steps are shown in

dashed, and the later ones with solid lines. During the sequence of the event, moisture sources shifted from local sources (less
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than 1000 km distance at 00:00 UTC on 07 Dec 2016) to the most distant at 12:00 UTC, and finally again to closer locations

(3000–4000 km distance), with a combination of local and remote sources at 00:00 UTC on 08 Dec 2016. An analysis of the

corresponding moisture lifetime (not shown) provides the shortest lifetimes during the main precipitation phase at 12:00 UTC,

with a median of about 3 days. This timing corresponding to uptake locations from 04 to 07 Dec 2016, shown in Fig. 7. In

earlier and later stages, lifetime distributions also peak at less than 5 days, while including more notable contributions with5

more than 5 days since evaporation.

Along with the shift in the moisture source location, evaporation conditions also changed. The most frequent temperature at

the moisture sources was about 23 ◦C throughout the event, yet including a range of colder temperature conditions (Fig. 8b).

Colder temperatures contributed in particular during the beginning of the event, when the average moisture source temperature

was 17.6 ◦C at 00:00 UTC on 07 Dec 2016 (purple dashed line), clearly cooler than the mean of 19.7 ◦C at 12:00 UTC (star10

symbol), and moisture sources were more local. Overall, the range of moisture source temperature variations was relatively

limited throughout the event (within 2 ◦C).

The relative humidity with respect to the SST (RHSST ) is a key factor in kinetic fractionation during evaporation (Craig and

Gordon, 1965). Throughout the event, the mean RHSST is around 65–70 % (Fig. 8c, star symbol). The peak at near 100 % is

an artefact of the contribution from land regions where RHSST is not defined. The maximum RHSST shifts during the event,15

from above 60 % before the most intense precipitation period to 55 % at 12:00 UTC on 07 Dec 2016. It appears that the most

intense precipitation stage was thus also associated with the most intense evaporation due to the strongest humidity gradient

over the North Atlantic moisture sources.

For comparison with the stable isotope measurements, we predict the d-excess at the moisture source from the empirical

relation between RHSST and d-excess by Pfahl and Sodemann (2014) (Fig. 8d). The highest d-excess from the moisture20

sources is predicted during the peak of the precipitation event, with a maximum at 16 ‰ (grey shading). As for RHSST , land

sources produce an artefact for d-excess below −5 ‰. Both before and after the main precipitation period, the maximum in

the d-excess distribution is shifted to lower values. This sequence from low to high to low d-excess throughout the event is

qualitatively consistent with the observed d-excess signal. The initial low and even negative d-excess in precipitation during

Stage I is thus likely a combination of the moisture source conditions, amplified by below-cloud evaporation. The source d-25

excess is more sensitive to RHSST than to SST (Merlivat and Jouzel, 1979; Aemisegger et al., 2014). Considering additionally

that the source temperatures only change slightly during the event, the humidity gradient above the moisture sources appears

as the dominant driver of the d-excess changes observed here.

Considering a longer time period around the case investigated here, the Lagrangian diagnostic indicates a rather constant d-

excess value during the whole precipitation event (Fig. C1d). The observed d-excess variation is not captured by the Lagrangian30

diagnostic. The detailed inspection of Fig. 8 indicates the lack of variability is likely due to averaging the complex histograms

to one value at the arrival location. The key characteristic of the histogram distribution is the maximum probability, but skewed

and bimodal distributions make it difficult to provide more robust statistic measures. To represent the full variability of the

moisture source conditions, detailed inspection of the moisture source properties throughout the event is therefore needed.
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5 Discussion

We now return to the initially mentioned dispute in the literature regarding the interpretation of the precipitation isotope

signal from an AR case making landfall at the coast of California. From sampling precipitation at a 30 min time interval

during the AR event, C08
::::::::::::::::
Coplen et al. (2008) found a remarkable variation in δD of 60 ‰, progressing from less depleted

to depleted and back. Both the shape and amplitude of the stable isotope variation were similar to the case studied here. C085

::::::::::::::::
Coplen et al. (2008) based the interpretation of the variability primarily on changes in cloud height, i.e. the temperature of

condensation (Scholl et al., 2007). Using a Rayleigh distillation model, C08
:
it
::::
was proposed that the initial phase precipitation

would originate from low
:::::::
depleted

:::::
phase

:::::
would

::::::::::
correspond

::
to clouds with an average condensation temperature (Tc ) of 10.0

◦C, followed by deeper clouds with an average Tc of −4.2 ◦C , and again shallow clouds with Tc of 9.7 ◦C
:::::::::::::::::
(Coplen et al., 2008)

.10

Y10
:::::::::::::::::::
Yoshimura et al. (2010) then simulated the same AR event with a regional isotope-enabled model, leading them to pro-

pose a fundamentally different explanation for the isotope variation in surface precipitation observed by C08
::::::::::::::::
Coplen et al. (2008)

. According to that interpretation, the less depleted isotope composition of precipitation at the beginning of the event would be

caused by below-cloud evaporation. Furthermore, Y10
:::::::::::::::::::
Yoshimura et al. (2010) found from their simulation that up to one-third

of the condensate would be contributed from the lower troposphere (below 800 hPa), with an increasing tendency throughout15

the event. Notably, the contribution from the cloud top would decrease during the most depleted phase of the event. Despite

uncertainties in some model parameters and parameterisations, Y10
::::::::::::::::::::
Yoshimura et al. (2010) concluded from their analysis that

cloud microphysics, below-cloud exchange and advection all play a role in the observed isotope variation during different

phases of the event.

Expanding the dataset to 43 events sampled with a network of automatic rain samplers across northern California, C1520

::::::::::::::::
Coplen et al. (2015) confirmed the pronounced isotope variation during events as seen in the case discussed in C08. C15 argue

::::::::
discussed

::
in

:::::::::::::::::
Coplen et al. (2008).

:::::::
Further,

:::::
they

::::::
argued

:
that if the below-cloud evaporation were to explain the initial low

depletion in C08 as proposed by Y10
:::::::::::::::::::
Yoshimura et al. (2010), kinetic effects due to evaporation should have led to characteristic

deviations from the GMWL.

The above controversy revolves around two questions: (i) What is the contribution from below-cloud interaction, and in25

particular evaporation, to the precipitation isotope signal? (ii) Are Rayleigh-type models adequate to explain the surface pre-

cipitation signal during AR cases? Based on our highly detailed analysis of an AR event, with high-resolution precipitation

sampling and simultaneous water vapour measurements, we are in a situation to contribute constructively to both aspects of

this scientific controversy.

5.1 Contribution from below-cloud interaction to the isotope composition in surface precipitation30

The joint observation of both surface vapour and precipitation in this study shows a characteristic time lag of the vapour over the

precipitation signal. One plausible explanation for this time lag is that diffusional interaction takes place between precipitation

and the surrounding vapour over extended time periods. Even though the total column mass of precipitation in a column is
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typically only about 1/10th of the IWV, precipitation persisting over longer periods will imprint on ambient vapour isotope

composition, and vice versa. As more precipitation falls, the below-cloud air gradually saturates, reducing the vertical isotope

gradient, and eventually reaching isotopic equilibrium with the precipitation. At that point, the time lag between precipitation

and vapour isotopes would vanish. Here, we find this time lag to be on the order of 30 min.

As long as the surface air is unsaturated, net mass transfer is directed away from raindrops, thus below-cloud evaporation5

reduces drop sizes and rainfall amounts, causing characteristic deviations in the ∆δ∆D framework that reflect kinetic frac-

tionation effects (Fig. 5). The rainfall contributed during Stage I in this study was, however, too small to markedly influence

the isotope composition of the rainfall total (Table 1). Concerning the scientific controversy introduced above, we note that

below-cloud processes can influence precipitation and surface vapour, but the signal can be too small to detect if sampling

interval is too long, or due to sampling and analytical uncertainty. It is therefore not possible to confirm that the initial low10

depletion in C08 dataset
::
the

::::::
dataset

:::
of

:::::::::::::::::
Coplen et al. (2008) was actually due to below-cloud evaporation, in particular without

additional vapour measurements. Other factors, such as advection or progressive vapour-precipitation exchange could also have

contributed to the initial low depletion.

5.2 Adequacy of the Rayleigh model to explain the isotope composition in surface precipitation

The majority of the precipitation in ARs is arriving with the strong onshore flow of the warm sector, led by the warm front15

and dominated by long-range transport. Large-scale ascent, enforced by orographic lifting and condensation heating during

landfall leads to condensation and predominantly stratiform cloud formation. The warm conveyor belt (WCB) model is often

used to describe the strongest precipitation-generating airflow in the warm sector of cyclones (Madonna, 2013). According

to a common classification criterion, airmasses in the WCB airstream rise 300 hPa or more in 48 h, corresponding to vertical

ascent on the order of several cm s−1. Precipitation from cold-sector airmasses, in contrast, has a more convective nature,20

characterised by an isolated ascent in updrafts, and dominated by vertical motions on the order of up to several m s−1.

From the Rayleigh model simulation presented in Sect. 4.2, we find that the condensation temperature of the surface pre-

cipitation is most consistent with the temperature profiles in the reanalysis data (Fig. 6, purple contours) when interpreted

as a representation of the vapour-mass-weighted average in the column rather than the cloud base or cloud top temperatures.

MRR2 reflectivity profiles for the four precipitation stages confirm that lower levels contribute substantially to the surface25

precipitation.

Variants of the Rayleigh distillation model are often used to represent the isotope fractionation during condensation processes

(e.g. Jouzel and Merlivat, 1984). However, precipitation entering from above into air parcels, as well as the isotopic exchange

of the falling precipitation with vapour inside the air parcel is not part of Rayleigh distillation models. Rayleigh models

may thus only be adequate to simulate the vapour composition in a rising air parcel, and the precipitation falling directly30

from it, corresponding to isolated, convective clouds. For slowly ascending warm-sector airmasses, where clouds contribute

to condensation at a range of atmospheric layers, a single air parcel appears insufficient to capture the actual precipitation

process. Conceptually, one could instead consider an entire stack of air parcels, each represented by a Rayleigh model, as a

more adequate representation of stratiform clouds (e.g. Rozanski and Sonntag, 1982). Each air parcel in the column is at or near

26



saturation, contains cloud droplets, and will receive input of hydrometeors from above, and thus contributes to the precipitation

by condensation or deposition, riming, scavenging, and partially equilibrating with the water vapour while passing through.

The vertical connection of an entire stack of Rayleigh-type parcels would create a more efficient, coupled fractionation process

than an isolated Rayleigh model. In light of such a vertically coupled "Rayleigh stack", a single cloud top or condensation

temperature from one Rayleigh model appears too limited to capture the influences on the fractionation process in the entire5

cloud. This is underlined by the fact that
::
in

:::::::::::::::::
Coplen et al. (2008) the Rayleigh model used in C08 only needed temperatures

down to −4.2 ◦C to explain the observed precipitation isotopes, which could not be reconciled by the range of temperatures

throughout the entire column found by Y10
::::::::::::::::::
Yoshimura et al. (2010). A similar observation was made here with the Rayleigh

model of Jouzel and Merlivat (1984).

As the precipitating warm-frontal airmass is advected horizontally with the AR, it will produce a coherent isotope signal at10

the surface, as noted by the displacement times in C15. C15
::::::::::::::::
(Coplen et al., 2015)

:
.
:::::::::::::::::
Coplen et al. (2015) also noted that there is

no immediate relation between the isotopic depletion and either the total amount or the intensity of precipitation during landfall.

Both of these findings are consistent with the interpretation that the isotope composition of the stratiform cloud can obtain a

coherent, depleted isotope signature from a sustained lifting process. The isotope signal of stratiform cloud then reflects a

time-integrated condensation history of the airmasses, whereas surface precipitation is a combination of the airmass signature,15

the surface vapour, and the below-cloud interaction processes.

We conclude from this discussion that since the isotope signal in precipitation is intimately coupled to the cloud microphysics

and dynamics, the Rayleigh perspective can only be adequate to represent the isotope composition near cloud top and in some

convective situations. For surface precipitation, and precipitation from deep stratiform clouds in frontal systems such as ARs,

the Rayleigh model reaches conceptual limitations. Despite their own uncertainties, it, therefore, appears necessary to invoke20

more complex numerical tools in the interpretation, such as isotope-enabled numerical weather prediction models, or Rayleigh-

type models adapted to stratiform clouds.

6 Conclusions and further remarks

We have presented a high-resolution stable isotope signature of a land-falling Atmospheric River in southwestern Norway

during winter 2016. Figure 9 provides a conceptual summary of the sequence of events, by providing a spatial depiction of the25

airmasses arriving at Bergen. In surface precipitation, we observe δD that develops in a stretched "W" shape (between −180

and −100 ‰ for equilibrium vapour of precipitation), and d-excess that increases from −9 to 13 ‰, followed by a gradual

decrease to 0 ‰. In surface vapour, δD exhibits the same "W" shape, following closely to the precipitation isotope variation,

with a lag of about 30 min. The d-excess in vapour, increasing from 10 to 16 ‰, differs in the beginning markedly from the

d-excess in precipitation. As the relative humidity below cloud base increases, the vapour d-excess follows the same trend as30

that of the precipitation, reaching 0 ‰ at the end of the event.

Combining isotope and meteorological observations, we have identified four different precipitation stages during the event.

At each stage, weather system processes imprint on the isotope variations (Fig 9). Specifically, at the beginning of the event
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Figure 9. Weather diagram for the land-falling AR at Bergen on 07 December 2016. δD and d-excess lines represent the evolution of isotope

composition of equilibrium vapour from surface precipitation. Precipitation periods (I, II, III and IV) are indicated with colour bars at the

bottom. Note that the timeline is from right to left.

(Stage I), below-cloud evaporation is substantial, contributing to the low and even negative d-excess and relatively less depleted

δD in surface precipitation. At Stage II, the gradual weakening of below-cloud evaporation as ambient air becomes more

saturated, and the involvement of hydrometeors from above the melting layer results in a gradual drop of δD and an increase

in d-excess. At Stage III, deep clouds allow hydrometeors formed at high levels to gain moisture from low levels, leading to

intermediately depleted values in δD. Stage IV is characterised by numerous convective showers that are formed at relatively5

low elevation, leading to the least depleted δD values during the event. The gradual drop of the d-excess in both surface

precipitation and vapour during Stage III and IV can at least partly be explained by a change in moisture source conditions.

Regarding the controversial discussion of the isotope signal during previous AR events in the literature (C08, Y10, C15),

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Coplen et al., 2008; Yoshimura et al., 2010; Coplen et al., 2015),

:
we emphasise from our results that the isotope signal in pre-

cipitation is intimately coupled to the cloud microphysics and dynamics. Idealised Rayleigh models may be adequate to repre-10

sent the isotope composition of water vapour near cloud top during convective precipitation events. However, additional factors

and more complex models should be considered to interpret the isotope signal in surface precipitation, in particular for deep,

stratiform clouds. A stack of Rayleigh models could be a more adequate conceptual view for these cloud types (Fig 9).

Our case study provides a unique isotope dataset of an AR event in southwestern Norway. More cases should be performed

in the future to test the more general validity of the results obtained in this case study. However, from one case already it is15

apparent that the combined information from paried
:::::
paired water vapour and precipitation sampling can be highly valuable for

future data-model comparison studies with isotope-enabled weather prediction models.
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Data availability. Datasets are available in the supplement.

Appendix A: Comparison of rain rate measurement

The rain rate at the sampling site (45 m a.s.l.) is measured by two instruments, i.e. Total Precipitation Sensor (TPS-3100) and20

Parsivel2 distrometer
:::::::::
disdrometer. Fig. A1 shows a comparison of hourly rain rate during the precipitation period between the

measurements of these two instruments and that of the rain gauge measurement from the closest meteorological station (70 m

away, 12 m a.s.l.). The comparison shows that the TPS-3100 measures a slightly higher rain rate while the Parsivel2 recorded a

substantially lower rain rate, particularly in the situation of heavy precipitation. Since the TPS-3100 measurements agree well

with the rain gauge measurements, we choose to use the rain rate from TPS-3100 for the analysis in this study. We did not25

choose to calibrate the TPS-3100 measurements against the rain gauge measurements because the small discrepancy can be

due to the different locations and elevations of the two instruments.

Figure A1. (a) Hourly rain rate during 04-11 December 2016 measured by rain gauge at WMO station (shading), TPS-3100 (red) and

Parsivel2 (blue). (b) Scatter plots and corresponding fits for the measurements of TPS-3100 (red cross) and Parsivel2 (blue dot) against those

from rain gauge at WMO station.
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Appendix B: Sensitivity studies with the Below-Cloud Interaction Model (BCIM)

Idealised simulations with the Below-Cloud Interaction Model (BCIM) model (Graf et al., 2019) help to reveal the sensitivity

to factors influencing the below-cloud processes. The background thermodynamic profiles used by the BCIM model were

here obtained from the moist adiabatic ascent of an air parcel that is lifted from the surface with initial values of T0 = 5 ◦C

and RH0 = 90 %. The background isotope profiles are obtained correspondingly from Rayleigh fractionation with a surface5

composition of δD = −160 ‰ and d-excess = 10 ‰. A formation height of 1500 m was used in this reference simulation. All

sensitivity simulations are obtained in the same way with an adiabatic ascent of an air parcel, while stepping through a range

of drop sizes, and modifying one of the initial values as detailed below:

– The sensitivity to RH was evaluated by modifying the surface RH in steps of 2 % between 64 and 100 % while keeping

all other parameters unchanged. The surface value for RH was interpolated linearly up to 100 % RH at the cloud base.10

– The sensitivity to formation height was evaluated by modifying the formation height of the droplets in steps of 250 m

from 500 m to 3000 m while keeping all other parameters unchanged.

– The sensitivity to the temperature profile was evaluated by modifying the surface temperature in steps of 1 ◦C while

keeping all other parameters unchanged.

While BCIM provides helpful insights, its limitation should be noted. The model only considers a single falling hydrome-

teor and assumes that the background isotope profile of the atmosphere is not affected by evaporating hydrometeor or other

processes during the simulation. However, in our AR case presented here, it can be clearly seen that the precipitation has a

profound influence on the isotopic evolution of surface vapour.

The BCIM is available from the website https://git.app.uib.no/Harald.Sodemann/bcim. More details of BCIM can be found5

in Graf et al. (2019).

Appendix C: Long term observations and Lagrangian diagnostics

To examine our AR event in the context of the longer-term weather evolution, we present here selected observations at the

sampling site as well as the Lagrangian moisture source diagnostics for the Bergen region between 04 and 11 December 2016

(Fig. C1).10

A dry period of one and a half day precedes the AR event. Following the AR event, discontinuous, moderate precipitation

events occur (Fig. C1a). Comparison of the precipitation time series shows a qualitative agreement between the observation and

Lagrangian diagnostic, with a substantial underestimation of precipitation intensity by Lagrangian diagnostic. The discrepancy

in the precipitation intensity likely arises from the neglect of microphysical processes in the trajectory-based Lagrangian

diagnostic, and from the limitation of comparing a regional estimate with a single-point ground observation. The Lagrangian15

diagnostic shows that the dominating moisture source for the dry period pre the AR event came from the north of Bergen (N

of 65 ◦N; Fig. C1b, black solid line). During the AR event, the moisture source shifted markedly to the south, reaching 35 ◦N.
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Figure C1. Seven days time series of observations at sampling site and Lagrangian diagnostic (WaterSip) output for the Bergen region

between 00:00 UTC 04 December and 00:00 UTC 11 December 2016. (a) 6 hourly averaged rain rate observed from Total Precipitation

Sensor (grey shading) and estimated rain rate from WaterSip (blue line). (b) Moisture source latitude (solid black line) and source distance

(dashed blue line) estimated by WaterSip. (c) Moisture source RHSST estimated by WaterSip (solid black line) and 6-h averaged RH at

sampling site (dashed blue line). (d) d-excess of the 10 min averaged vapour (grey dots), of the equilibrium vapour from precipitation

(black segments) at 45 m above ground, and WaterSip estimate (light blue). The width of the black segment indicates the period over

which the precipitation sample was collected. The uncertainties are 0.83 ‰ and 0.20 ‰ for d-excess of vapour and the equilibrium vapour

from precipitation, respectively. The error bars in (a-d) indicate one standard deviation. The missing data of the WaterSip at 12:00 UTC 6

December is due to bad data quality. The observation of d-excess is only available from 07 December.
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After the AR event, the moisture source gradually shifts back to the north, reaching 55 ◦N on 9 December, followed by another

south-to-north variation. Closely following the source latitude, the moisture source distance reveals the airmass evolution from

a local airmass pre AR event, to a substantial remote airmass during the AR event, and a moderate-distance airmass after20

the AR event (Fig. C1b, blue dashed line). The estimated RHSST at moisture source indicates relatively intense evaporation

condition at the moisture source before the AR event (RHSST reaching 62 %), more moderate evaporation condition during the

AR event (RHSST ≈ 80 %), and varying evaporation conditions afterwards (RHSST varying between 72 and 85 %; Fig. C1c,

black solid line). The local RH at the sampling site stays high (above 90 %) during the entire period, except at the beginning

of the AR event and between 00:00 and 12:00 UTC on 9th December (Fig. C1c, blue dashed line).25

Finally, we examine the d-excess of near-surface vapour, of equilibrium vapour from precipitation, and the d-excess estima-

tion based on Lagrangian diagnostics (Fig. C1d). The d-excess of surface vapour exhibits a peak (above 8 ‰, with a maximum

of about 16 ‰) during the first half-day of the AR event. Thereafter, the d-excess of surface vapour remains at low levels

mostly between 0 and 8 ‰. The low d-excess can be due to the calm evaporation conditions at the moisture source or a con-

tribution from land regions. The d-excess of equilibrium vapour from precipitation follows overall the variation of d-excess of30

surface vapour. The lower d-excess values for the quasi-daily precipitation samples collected after the AR event can be due to

below-cloud evaporation and cloud microphysical processes.
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