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Abstract. Correctly  capturing  the  teleconnection  between  the  El  Niño–Southern  Oscillation (ENSO)  and Europe is  of

importance for seasonal prediction. Here we investigate how systematic model biases may affect this teleconnection. A two–

step bias–correction process is applied to an atmospheric general circulation model to reduce errors in the climatology. The

bias–corrections are applied to the troposphere and stratosphere independently and jointly to produce a range of climates.

ENSO type sensitivity experiments are then performed to reveal the impact of differing climatologies on the ENSO–Europe

teleconnections.

The bias–corrections  do not  affect  the  response  of  the tropical  atmosphere  nor the Aleutian  Low to the  strong ENSO

anomalies imposed in our experiments. However, in El Niño experiments the anomalous upward wave flux and the response

of the northern hemisphere polar vortex differ between the climatologies. We attribute this to a reduced sensitivity of the

upward wave fluxes to the Aleutian Low response in the bias-correction experiments, where the reduced biases result in a

deepened Aleutian Low in the base state. Despite the differing responses of the polar vortex, the NAO response is similar

between  the  climatologies,  implying  that  for  strong ENSO events  the  stratospheric  pathway may not  be the  dominant

pathway for the ENSO–North Atlantic teleconnection.
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1 Introduction

The El Niño–Southern Oscillation (ENSO) has been shown to influence European climate via tropospheric and stratospheric

teleconnections. Although ENSO is a key driver of global variability on seasonal to annual timescales, it’s effect on Europe

is less robust (Brönnimann 2007), and exhibits decadal variability (Rodríguez–Fonseca et al.,  2016). The large seasonal

variability  in the mid–latitude Northern  hemisphere,  and relatively low number  of  observed  ENSO events  create  some

difficulty  in  measuring  the  effect  in  observational  data.  The  ENSO–Europe  teleconnection  begins  with  anomalous

convection in the tropical Pacific, and during El Niño events this leads to increased divergence in the upper troposphere,

creating a Rossby wave source (Hoskins and Karoly, 1981). The anomalous Rossby waves propagate to the Northern Pacific

where they strengthen the wintertime Aleutian Low. There are multiple possible connections between the North Pacific

anomalies and the North Atlantic (Jiménez–Esteve and Domeisen, 2018), with a tendency for a negative North Atlantic

Oscillation during El Niño event. For the stratospheric connection, as reviewed by Domeisen et al., (2019), the deepened

Aleutian low can lead to upward propagating waves, particularly of wavenumber 1, which travel into the stratosphere and

weaken  the  wintertime  stratospheric  polar  vortex.  For  strong  vortex  weakening  events,  such  as  sudden  stratospheric

warmings, anomalies can propagate down to the troposphere and project onto the Northern Annular Mode, and the North

Atlantic Oscillation (NAO) (Butler et al., 2014). The result is also a tendency for a negative NAO during El Niño events.

Mezzina et al. (2020) suggest the NAO-like patterns that result from ENSO variability are distinct from the NAO, and results

from a Rossby wave train from the tropics to the North Atlantic which does not affect NAO variability. Some aspects of the

teleconnection are approximately opposite for La Niña events; there is reduced upper tropospheric divergence and resultant

Rossby wave, and a shallower Aleutian Low, but the anomalous response is weaker with a less consistent extratropical

response (e.g. Jiménez–Esteve and Domeisen, 2019). 

Both the tropospheric and stratospheric teleconnection pathway can be simulated with climate models of sufficient resolution

(Cagnazzo and Manzini, 2009, Bell et al. 2009). Models also allow for large numbers of ENSO events to be simulated,

which has revealed non–linearities in teleconnections (Frauen et al., 2014, Jiménez–Esteve and Domeisen, 2019, Garfinkel et

al., 2019). However, for confidence in modelling results, we need an understanding of the deficiencies of models. A fully

coupled model needs to correctly represent both the complex dynamics of the ENSO ocean–atmosphere interactions to

generate the convective anomalies that drive the teleconnections, and the mean climatology so the anomalies interact with

the base state correctly.  For example,  the convective response of tropical Pacific is dependent on the mean state of the

Walker circulation (Bayr et al. 2018). The location and strength of the convective response is then important in controlling

the location of the extratropical pressure response (Bayr et al., 2019), and can lead to non–linearities. In addition to the

patterns of climatological SSTs, the state of the tropical (e.g. Quasi-Biennial Oscillation (QBO) phase) and extratropical

atmosphere can influence the response of the NAO and polar vortex (Garfinkel et al., 2007), and biases in the subtropical jet

can affect the propagation of Rossby waves from the tropics to the extratropics (Li et al., 2020)
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The technique of flux correcting SSTs has been used to study the effect of model biases on ENSO dynamics (Spencer et al.,

2007, Manganello and Huang, 2009, Dommenget et al., 2014) or seasonal forecasting (Magnusson et al., 2013a, Magnusson

et al., 2013b). Empirical corrections are added to the coupling between the ocean and atmosphere to push the model towards

the observed climatology. It is possible to use a similar technique on the prognostic atmospheric variables of a model. This

bias–correction technique was used by Kharin and Scinocca (2012), and artificially decreased biases were associated with an

increase in predictive skill on seasonal timescales. Simpson et al., (2013a, 2013b) used the technique to study the impact of

jet latitude bias on the Southern Annular Mode (SAM), although they did not see improvements in the persistence of the

SAM when they reduced biases in the jet. When Chang et al. (2019) used a similar bias–correction technique they found an

improvement in the North Pacific jet and North American rainfall  climatology, and a modest improvement in seasonal

forecast skill. Tyrrell et al., (2020) investigated how climatological biases affect the relationship between the Eurasian snow

extent and the wintertime polar vortex, and found that the strength of the vortex had only a small effect on its response to a

tropospheric  forcing,  however,  the  downward  propagation  of  stratospheric  anomalies  was  sensitive  to  the  tropospheric

circulation.

In  this  study  we  have  used  a  similar  bias  correction  technique  to  probe  the  impact  of  climatological  biases  on  the

communication of ENSO anomalies from the tropical Pacific to the North Atlantic and European sector.  The technical

details of the model and experiments are described in section 2, the results of the bias corrections and ENSO experiments are

described in section 3, and a discussion and conclusions are presented in section 4.

2 Data and Methods

We use the ECHAM6 spectral atmospheric model (Stevens et al., 2013), run with a horizontal truncation of T63 and 95

vertical levels with a model top at 0.02 hPa. The bias correction technique follows Kharin and Scinocca, 2012, and is similar

to that described in Tyrrell et al., 2020 (T20). It is a two–step process; first, the bias correction terms are calculated in a

nudged training stage. The model’s prognostic variables – divergence, vorticity, temperature, and log of surface pressure –

are all nudged towards ERA–Interim for 30 years, and the nudging tendencies are recorded every 6 hours. Then the nudging

tendencies  for  the  divergence  and  temperature  are  used  to  create  a  year-long  climatology  of  correction  terms.  This

climatology is then smoothed in time with a Gaussian filter with a 25 day window, and it represents the inherent bias in the

model’s prognostic variables. Secondly, the divergence and temperature correction terms are added to the free running model

as an additional tendency term at each time step. An important difference between the nudged and bias corrected runs is that

the bias correction terms are independent of the current model state, so the model can respond to perturbations, whereas

during the nudged run the model is tightly constrained to the reanalysis. The technical details of the bias correction are

outlined in T20, with two differences for the current experiments. For the training step the model was nudged to ERA–

Interim data from 1979–2009, whereas in T20 only the years 1979–1989 were used. The resulting bias correction terms

being very similar and this did not impact the results. The second difference to T20 was that the only bias correction terms
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used for this study were the divergence and temperature, rather than the divergence, vorticity, temperature and log of surface

pressure. During the training stage all the model’s prognostic variables were nudged towards ERA Interim, and it was found

that  using only two of the temperature,  divergence  and vorticity  of the bias  correction  terms gave  the best  results for

reducing the biases in the winds and temperature. Through testing different combinations we found that bias correcting only

the divergence and temperature lead to the biggest decreases in the climatological biases of the control run.

The bias corrections were applied on model levels between approximately 850 hPa and 2.6 hPa, and three types of bias

correction runs were performed; the troposphere and stratosphere were corrected in FullBC, the stratosphere only in StratBC,

and the troposphere only in TropBC (see Table 1 for details). Then ENSO SST forcing experiments were conducted with

each of these bias corrected climatologies. To generate the SST pattern we used a regression of the Niño3.4 timeseries and

HadISST SSTs from 1979–2009. Only positive regression values between 30°S and 30°N and east of 150°E in the Pacific

Ocean  were  used  for  the  pattern,  and  the  regression  values  were  multiplied  by 1.5  to  strengthen  the  response,  which

corresponds approximately to an El Niño or La Niña forcing magnitude of 1.5K. Climatological SSTs, using HadISST data

from 1979-2009, were used for the control (CTRL) run. The ENSO pattern was added to (El Niño), or subtracted from (La

Niña) the SST climatology in the tropical Pacific,  with climatological  SSTs used everywhere else. The ENSO anomaly

pattern  was  kept  constant  in  time,  i.e.,  the  anomaly  did  not  vary  seasonally  relative  to  the  climatological  SST.  Each

experiment was run for 100 years. It should be noted that using a regression to generate ENSO patterns results in symmetric

El Niño/La Niña magnitudes, whereas from observations El Niño anomalies tend to be larger than La Niña and have a

slightly different structure. This simplification, along with a constant ENSO forcing and climatological SSTs outside the

Pacific Ocean basin, has the advantage of reducing the number of controlling parameters when analysing the results of the

bias-corrections,  which  was  the  main  aim  of  the  research.  However,  the  simplifications  should  be  considered  when

comparing  the  results  with  observations,  particularly  in  relation  to  the  intra-seasonal  and  early  winter  ENSO-Atlantic

connection (e.g. King et al., 2018) that may be driven by SSTs and rainfall away from the Pacific (Ayarzagüena et al., 2018,

Abid et al., 2021).

To calculate the biases between the model and reanalysis (Figure 1) we use ERA Interim 1979–2009, since that data was

used to train our bias correction scheme. However, when analysing the response to El Niño and La Niña runs we use the

newer ERA5 data (Hersbach et al., 2020), including the ERA5 Back Extension (Bell et al., 2020), from 1950 to 2021. To

composite  the  data  the  NINO3.4  index  was  used  for  DJF

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php).  El Niño years defined as NINO3.4

above 0.9 K (13 years),  La Niña years NINO3.4 below -0.9 K (16 years) and the years between -0.5 K and 0.5 K were

defined as neutral years (19 years). The slightly stricter threshold of +/- 0.9 K was used to define the El Niño/La Niña years

to include only stronger events. The years included in the ERA5 composite are listed in Supplementary Table 1.

4

85

90

95

100

105

110



3 Results

3.1 Reduced model biases

 The climatological biases of the model’s wind and temperature vary with latitude, height and season. Here we focus on the

extended  winter  season  (November-March,  NDJFM) because  this  is  the  season  when the  ENSO teleconnection  to  the

Northern Hemisphere is the strongest. In Figure 1 we show the mean NDJFM biases in the zonal mean zonal wind, zonal

temperature and mean sea level pressure. The biases are calculated as 100 years of the model climatology minus the 1980–

2009 ERA Interim climatology. The largest tropospheric biases in UZ in the CTRL (Figure 1 a) are associated with the

subtropical  jet,  which is  too  poleward,  but  in  general  the  UZ and temperature  biases  are  small  in  the troposphere,  in

particular in the tropical troposphere. Figure 1 a and e show that the stratospheric vortex is too weak and warm in the CTRL,

and a cold bias at 200hPa (Figure 1 e) in the high latitudes in indicative of a too high extratropical tropopause. The sea level

pressure (SLP) biases in the control run (Figure 1 i) show an annular pattern of low pressure around 60°-80°N, and high

pressure  to  the  south  of  that  over  Africa  and  Asia  and  the  north  Pacific,  which  results  in  a  weak  Aleutian  Low.

Supplementary Figure 1 shows that the spatial pattern of biases in the geopotential height at 300hPa is very similar to that in

SLP suggesting that the biases are nearly barotropic. 

The bias corrections are applied at different model levels, hence, the biases in control run are reduced to different extents in

the three bias corrected runs. The bias in the subtropical jet is reduced in the FullBC (Figure 1 b) and TropBC (Figure 1 d)

runs but not in StratBC (Figure 1 c). In the stratosphere the bias towards a too weak and too warm stratospheric polar vortex

is almost completely removed in FullBC, and reduced in StratBC. In TropBC the bias in stratospheric UZ is worsened

slightly (Figure 1 d), however, the stratospheric temperature bias is slightly improved compared to CTRL (compare Figure 1

e  and  h).  The tropopause  temperature  bias  in  the high latitudes is  reduced  in  FullBC and TropBC, at  the  expense  of

introducing cold anomalies in the tropical upper troposphere (Figure 1 f, h). The Aleutian Low anomaly is reduced in FullBC

(Figure 1 j) and TropBC (Figure 1 l), but not in StratBC (Figure 1 k), and the reduction in bias, like the bias itself, is

barotropic as shown in Supplementary Figure 1. Note that the strong westerly bias in the equatorial  stratosphere is not

corrected. The bias is associated with the Quasi-Biennial Oscillation (QBO), internally generated in our model, and the lack

of bias correction is partly due to the fact that our approach with annually varying bias-correcting tendencies is not optimized

for the QBO, as discussed in Karpechko et al. (2021).

Overall,  the bias  correction  technique is effective  at  reducing  biases  throughout  the atmosphere,  and the different  bias

correction experiments allow us to isolate biases in various atmospheric features such as the polar vortex, subtropical jet and

the Aleutian Low, which are relevant for ENSO teleconnections to the high latitudes.

3.2 Teleconnection response to ENSO

We trace the path of ENSO anomalies from the tropical Pacific to the northern hemisphere polar regions and the North

Atlantic. Following from Fig. 3 in Jiménez–Esteve and Domeisen, 2019, our Figure 2 shows the anomalous response of
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indices chosen to highlight the ENSO teleconnection to the North Atlantic. The El Niño and La Niña forcing does not vary

seasonally in our experiments, thus is not shown. ERA5 values are included for reference (see Supplementary Table 1 for

years included in the ERA5 composites), although direct comparison with the model runs is difficult due to the idealized

experimental setup. The convective response of the tropical atmosphere to SST anomalies is represented by the meridional

divergent wind at 100 hPa defined in the region 0°–20°N, 160°–220°E (Figure 2 a). As expected, the positive anomalies for

El Niño are greater than the negative La Niña anomalies, however, the ERA5 anomalies are more symmetric for La Niña.

We also see there is no significant difference between the experiments. This is not surprising given the small biases in the

tropical troposphere, and reasonably small improvements in the tropics between the control and bias corrected experiments

(Figure 1). The anomalous divergence creates a Rossby wave that leads to a deepening (El Niño) or weakening (La Niña) of

the Aleutian low. We measure this using an Aleutian Low Index (ALI), defined as the SLP between 35°–60°N, 180°–240°E,

indicated by the green box in Figure 1 i.  The response of  the ALI is proportional  to the tropical  divergence,  with the

anomalous negative El Niño response being greater than the positive La Niña response. Again, there are no clear differences

in the anomalous response between the different climatologies. However, in contrast to the tropical regions, the FullBC and

TropBC runs have reduced Aleutian Low biases compared to the CTRL and StratBC runs (Figure 1 i–l), implying that the

response of the Aleutian Low to an ENSO signal is not dependant on model biases. The modelled ALI anomalies have a

greater magnitude than ERA5.

The next step in the teleconnection is the response of heat flux at 100 hPa, 45°–75°N (HF). The anomalous HF for both El

Niño and La Niña shows differences between the bias corrected runs. For an El Niño forcing, the CTRL and StratBC runs

show an increase in HF with significant values (indicated by black crosses)  for the DJF and JFM three–month means,

whereas the FullBC and TropBC anomalies are about half as strong and have no significant values. For the La Niña forcing

all the models show a negative anomalous HF, with the absolute value of the anomaly being weaker than the El Niño

response. The positive HF response to El Niño in the FullBC and TropBC was about half as strong as the CTRL and StratBC

response, whereas for the La Niña response the CTRL and TropBC anomalous negative HF was around half the value of the

StratBC and FullBC runs. There were no significant HF values at the 5% level for any of the La Niña experiments. The lack

of significance could be partly due to the weaker Rossby wave source associated with a La Niña, and the high variability of

the HF. The response of HF in ERA5 exhibits more variability than that in the model. The ERA5 HF El Niño anomalies peak

in JFM, where they are larger than in the all model runs. La Niña HF anomalies in ERA5 are negative in early winter and

change to positive in late winter, with the late winter positive response being of opposite sign to what is seen in our model.

To test if this was due to sampling uncertainty in observations we subsampled our model for periods of 16 years, to match La

Nina events in ERA5, and the subsampling was performed 500 times, as shown in Supplementary Figure 2. The HF was

used since this was a controlling factor in the stratospheric response, and the HF value for Jan-Feb-Mar is shown, since this

differed the most between ERA5 and the model. It was found that the observed values of the La Niña HF are within the

sampling uncertainty of all model runs, indicating that there is no evidence that the models do not capture the observed

stratospheric pathway of ENSO teleconnections.
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We measure the response of the stratospheric polar vortex with the zonal mean zonal wind at 60N and 10 hPa (UZ60). UZ60

is well predicted by the HF values. Namely, for an El Niño forcing the CTRL and StratBC experiments show a significant

weakening, whereas the response of FullBC and TropBC only show a slight weakening of the vortex (Figure 2 d). Likewise

with the La Niña forcing the FullBC and StratBC show a greater strengthening than the CTRL and TropBC. These results

are also true for the lower stratosphere as measured with the zonal mean zonal wind at 60N and 100hPa (Figure 2 e). The

seasonal mean of the full zonal mean wind response is shown in Supplementary figure 3. As with the ALI response, the

response of the polar vortex does not appear to be affected by biases in the strength of the vortex, and is instead fully

explained by the heat flux response, which is discussed further in the next section. Both the El Niño and La Niña response in

ERA5 changes sign throughout the extended winter season at both 10hPa and 100hPa, which is not seen in the models.

However, the observed values are not inconsistent with zero in any season, suggesting that the observational records may be

too short to constraint the sign of the stratospheric pathway of the ENSO teleconnection.

The differences in the magnitude of the stratospheric responses are not mirrored in the response of the NAO, despite the

well-known connection between the vortex and the NAO and the importance of a realistic stratosphere for the ENSO–North

Atlantic teleconnection (for example, as shown by Cagnazzo and Manzini, 2009, with an older version of the model used in

our study). There is a weaker FullBC response in early winter UZ60 to La Nina, and correspondingly weaker NAO response

in early winter. However,  for the other runs the strength of the polar vortex anomaly has no clear  connection with the

response of the NAO. This is evident when comparing the El Niño response of the CTRL and StratBC, to FullBC and

TropBC, where the latter two have a weak UZ60 response but a strong NAO response. The NAO response to El Niño in

ERA5 is also negative but weaker than the models, and the NAO response shows statistical significance which is not seen in

the stratospheric indices for ERA5. ERA5 also shows a weak insignificant positive NAO during mid and late winter.

To determine the reason for the weak connection between the stratospheric  anomalies and the NAO in the models,  we

investigate scatter plots of uz 60N 10hPa and the NAO index, as shown in Figure 3. For this figure we chose to show the

variability within each experiment (i.e. each of 100 years of DJF means for El Niño, Neutral and La Niña, and for ERA5, 13

El  Niño  years,  16  La  Niña  years  and  19  neutral  years)  to  better  understand  the  time-mean  sensitivity  of  the  ENSO

teleconnection, as well as the sensitivity of the stratosphere-troposphere couplings within different bias corrected runs. The

positive regression slopes in Figure 3 show that there is the expected relationship between UZ60 and the NAO for each year

within each experiment – that is, a weaker vortex (lower values of UZ60) is associated with a more negative NAO. For each

model the large crosses in Figure 3 show the mean value of El Niño years (red crosses), La Niña years (blue crosses) and

neutral years (green crosses). There is an indication that the positive correlation between vortex strength and NAO is also

apparent  between the mean values of the El Niño, and Neutral/La Niña years,  with a much smaller signal between the

Neutral  and La Niña experiments.  However,  the large variability within each  experiment  means that  the ENSO-forced

difference is relatively small. Although causality is not explained, the figure demonstrates that the stratosphere-troposphere

coupling does not play a dominant role in the ENSO-EU teleconnection in our experiments.  The effect  of a weaker or

stronger vortex on the NAO is relatively small compared to variability, and hence, the different polar vortex responses
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between the bias correction experiments do not translate neatly into different magnitudes of the NAO response. One could

also hypothesize that a weaker polar vortex response to El Niño in FullBC and TropBC may cause an NAO response of

similar magnitude to that in CTRL and StratBC (Figure 2 f) because of an increased sensitivity of NAO to the stratospheric

variability. However, the similarity of the UZ60-NAO correlation coefficients between the experiments does not support this

hypothesis. Instead, it reveals that the sensitivity of the NAO to the stratospheric variability remains unchanged by the bias

corrections. Figure 3 a shows the NAO and UZ60 for ERA5, divided into ENSO phases. The behaviour is broadly similar to

the  model,  although  the  regressions  for  both  El  Niño  and  La  Niña  are  not  statistically  significant.  Overall,  for  our

experiments with a strong ENSO forcing, the stratosphere plays only a minor role in the NAO response.

3.3 A mechanism for differences in the simulated polar vortex El Niño response

To investigate the cause of the different HF response between the experiments it is necessary to consider the effect of the

bias corrections. To do that we must consider the absolute values and anomalous response together. In Figure 4 we show the

DJF ALI, HF and UZ60, for La Niña, neutral and El Niño conditions. ERA5 is included to demonstrate the biases. Figure 4a

shows the reduced bias in the ALI in the FullBC and TropBC experiments compared to the CTRL and StratBC experiments.

The figure also shows the deepening and weakening of the ALI for the ENSO forcing is fairly constant between the bias

correction runs, hence, the larger biases in the CTRL and StratBC experiments do not impact the response of the AL. In

Figure 4b we again see the reduced bias in the FullBC and TropBC experiments for the HF. However, there is a smaller

change between neutral and El Niño conditions for the FullBC and TropBC compared to the CTRL and StratBC. In other

words, in the model the HF is less sensitive to the deepening of the AL in the bias corrected runs where the AL is already

deeper due to the reduced bias. In ERA5 the AL is deeper, yet responds more like the biased runs, although we caution

against using this to dismiss the model results, due to the possibility of sampling error (e.g. Supplementary figure 2).

As shown in Figure 2d, the response of the polar vortex is controlled by the HF response in the different climatologies.

Figure 4c reiterates this, and also demonstrates that the biases in the polar vortex do not impact its response to anomalous

wave forcing. In neutral conditions the UZ60 biases in the StratBC and FullBC are around 5 m s -1 less than the CTRL and

TropBC biases. However, for El Niño conditions the FullBC (less bias, stronger vortex) and TropBC (more biased, weaker

vortex) have a weak response, and the StratBC (less bias, stronger vortex) and CTRL (more biased, weaker vortex) have a

strong response.

We have shown that the stratospheric response to an El Niño forcing is partially dependant on model biases, and seems to be

related to the sensitivity of the HF to the AL. In Figure 5 we use regressions of HF onto SLP to show how the effectiveness

of wave forcing by the Aleutian low changes between neutral and El Niño conditions. Similar to Figure 3, we again consider

the variability within each bias-correction and ENSO experiment, to understand the time-mean response. Figure 5 a–d shows

the regression  of monthly HF onto monthly SLP for  the extended winter  months (November–March)  in neutral  ENSO

conditions. The areas of SLP that are most strongly associated with HF are the Aleutian low region and Siberia, with weaker

connections over Greenland and North America. In neutral years these features are very similar between the control and the
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bias corrected runs, which means the deeper Aleutian low has not affected its association with wave driving. Figure 5 e–h is

the same regression in years with an El Niño forcing. Rather than testing the difference between neutral and El Niño years,

this is now a measure of variability during El Niño years. The connection between SLP in the Aleutian low and HF is lower

in the CTRL and StratBC El Niño runs, but is now absent in the FullBC run and very weak in the TropBC runs. Therefore,

for an equally large AL anomaly, there would be less wave forcing in the FullBC and TropBC. There appears  to be a

threshold for the depth of the Aleutian Low, below which any additional anomalies do not result in additional wave forcing.

During La Niña years the regression values over the AL region are slightly stronger in the FullBC and TropBC, but this did

not lead to differences in the response of the HF (i.e. Figure 4b, La Niña to neutral changes). 

In Figure 6 the HF was plotted against the AL SLP anomalies to look for a non-linear saturation in the wave forcing by the

Aleutian Low. For variability within the experiments there is an indication that the relationship between HF and AL breaks

down with low AL values, as indicated by the steeper regression line for La Nina years (blue) and flatter line for El Niño

years  (red).  For the FullBC and TropBC El Niño experiments  the relationship actually  reverses  slightly,  shown by the

positive  regression  in  Figure  6  c  and  e  (red  line).  ERA5 does  not  show changes  to  the  HF-AL  between  the  ENSO

composites, however, the correlations are weak so it's difficult to make conclusions based on that data. Although Figure 6

does not conclusively explain the differences between the bias correction experiments, it shows for our model that the HF-

AL relationship does change in tandem with the absolute value of the AL, and the behaviour is fairly consistent within each

set of bias-correction experiments for different ENSO forcings.

4 Discussion and Conclusions

By applying bias correction terms to the divergence and temperature tendencies of an atmospheric model we have reduced

biases in the tropospheric and stratospheric mean states to create various climatologies. With the different climatologies we

have performed idealized ENSO forcing experiments to test the role of biases in ENSO teleconnections. There were only

small reductions in the bias in the tropics, and there was no difference in the convective response to ENSO between the bias

correction experiments. Likewise, the anomalous response of the Aleutian low to El Niño and La Niña forcing was similar

between the experiments, despite reduced biases in the Northern hemisphere extratropical sea level pressure. Li et al (2020)

showed an equatorward jet bias can dampen the response of the Aleutian Low to a tropical Rossby wave source. The jet in

the CTRL run has a slight poleward bias (Figure 2 a), which is improved in the FullBC and TropBC runs, but this didn't

affect the response of the Aleutian low. Hence, reductions in the subtropical jet biases for our model is likely not important

for the ENSO teleconnection. We find that reducing certain climatological biases in the surface pressure and wind speed

does not significantly affect the response of the Aleutian low to Rossby wave forcing. Reduced biases in the Aleutian low

SLP did, however, lead to differences in the anomalous upward wave flux associated with a deepened low due to an El Niño

forcing,  so the model’s ability to generate a planetary wave flux may be dependent  on biases in surface pressure.  The

response of the polar vortex was shown to be dependent on the upward planetary wave forcing, and not affected by local
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biases in the strength of the vortex. A stronger polar vortex in the experiments with stratospheric bias corrections did not

affect  the anomalous response of the vortex to wave forcing. The NAO response was shown to not be sensitive to the

stratospheric representation nor the stratospheric response, we conclude that in our experiments - with an SST forcing that

corresponding to large ENSO events - it is dominated by tropospheric teleconnections. This result appears consistent with

Bell et al. (2009) who also found that for strong ENSO events the tropospheric teleconnections dominate. 

To validate our model results we compare them with ERA5 reanalysis from 1950 to 2021. A threshold of 0.9K in the

NINO3.4 region was used to composite large ENSO events in the reanalysis, resulting in 13 El Niño and 16 La Niña events

(all years listed in Supplementary Table 1). When comparing the model results to ERA5 the main differences occurred for

the HF and stratospheric ENSO response. ERA5 exhibits more variability throughout winter which is not present in the

model. However, our tests suggested that sampling errors in the reanalysis (see Supplementary figure 2) may be the reason

for the difference.  Note that in order to simplify comparison between model experiments we applied a simple constant

ENSO SST forcing in all model runs, which is not an optimal approach for comparison with observations. A more realistic

experimental  setup would be better suited to examine the differences with observed teleconnections.  Also, we note that

despite the variability of the stratospheric response in ERA5, the observed NAO response was more similar to the model,

which again points to dominant role of tropospheric teleconnections for strong El Niño events.

Although one  motivation  behind  artificially  bias  correcting  the  model  was  to  investigate  how the  response  to  various

forcings might improve if the biases were reduced, it should be noted that the ECHAM atmospheric model has already been

shown to have a realistic response to an ENSO forcing (Manzini et al. 2006, Cagnazzo and Manzini, 2009). The ENSO

teleconnection, the Siberian snow–polar vortex connection investigated in Tyrrell et al. (2020), and the QBO teleconnection

investigated in Karpechko et al. (2021) are all relevant to seasonal forecasting, but the bias correction technique is unlikely

to be used for operational forecasting. Hence, for these experiments the bias corrections are a tool that is used not necessarily

to improve the response relative to observations, but rather to explore the sensitivity of the response to climatological biases.

It  was interesting to find that  response of  the Aleutian low and the stratospheric  polar  vortex was not affected  by the

climatological biases that we reduced. These two features are important in the ENSO–to–Europe teleconnection and had

large  reductions  in  bias  due  to  the  corrections.  These  features  are  also  both  forced  by  planetary  waves;  horizontally

propagating waves from anomalous convection in the tropical Pacific, or vertically propagating waves from the northern

hemisphere troposphere to the stratosphere. Hence, model biases in the depth of the Aleutian low, or the magnitude of the

polar vortex winds, do not appear to strongly affect their response to wave forcing.

The control and bias corrected runs differed in the magnitude of wave forcing caused by the deepening Aleutian low due to

the El  Niño forcing.  We theorize  that  this  was  due to  the relationship between  the  depth of  the Aleutian  low and its

effectiveness at wave forcing. The two experiments with bias corrections in the troposphere both had a deeper Aleutian low,

which was closer to observations. Although the magnitude of ALI anomaly was the same, the runs with a deeper Aleutian

low had reduced wave forcing for El Niño conditions. Regressions between SLP and HF showed that lower Aleutian low

SLP was associated with a decreasing correlation between Aleutian low SLP and HF. Therefore,  we speculate that  the
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reduced  wave  forcing  when  the  troposphere  was  bias  corrected  in  the  FullBC  and  TropBC,  was  due  to  the  lower

climatological SLP values in the Aleutian low area. It appears that at some threshold of low values of SLP, further anomalies

in the Aleutian low do not result in anomalous upward waves. The opposite was not true for the La Niña conditions, since

there appears to be no maximum values where the relationship between HF and Aleutian low SLP changes. Additionally, the

non–linearity in the El Niño/La Niña atmospheric response (e.g. Frauen et al., 2014) means that the La Niña response is

smaller, making it more difficult to distinguish robust differences between the climatologies. By artificially bias correcting

an atmospheric model, we have shown that some aspects of ENSO teleconnections are very robust to the specific model

biases we corrected, while more subtle interactions of anomalies with the basic state can impact the overall response. A

deeper understanding of the influence of inherent model biases on teleconnections can guide future model development, and

also aid in the physical understanding of these important teleconnections.

Data availability

The climatological means of all model experiments, for the variables used in this paper are available at:
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Table 1. Experiment details and run names.

Bias corrections ENSO Neutral El Niño La Niña

None CTRL CTRL_EN CTRL_LN

850 hPa to 2.6 hPa FullBC FullBC_EN FullBC_LN

100 hPa to 2.6 hPa StratBC StratBC_EN StratBC_LN

850 hPa to 100 hPa TropBC TropBC_EN TropBC_LN
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Figure 1: Nov-Mar bias of zonal mean zonal wind (top row), zonal mean temperature (middle row) and MSLP (bottom row) in the
four experiments; CTRL (a, e, i), FullBC (b, f, j), StratBC (c, g, k), and TropBC (d, h, l). The bias is calculated as the difference
between model and ERA Interim climatology (1979-2009). Grey contours show model climatology. Negative winds in the top rows
are marked with dashed lines.  Contours are drawn at  intervals  of  10 m/s for zonal  winds (-30,  -20,  ...,  30 m/s),  at  10K for
temperatures (200, 210, ..., 290K), and at 5 hPa for SLP (990, 995, ..., 1030hPa). The green box in (i) shows the area of the Aleutian
Low Index used in Figure 2, 4 and 6.
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Figure 2. Progression of anomalies from the ENSO region to the stratospheric polar vortex and NAO, for the model and ERA5.
Timeseries uses three–month means, and black crosses indicate significance at p < 0.05 in the model, red crosses are used for
ERA5. For model runs solid lines show 100 years of the El Niño run minus 100 years neutral run, dashed lines show 100 years of
the La Niña run minus 100 years neutral run. ERA5 data is from 1950-2021 and shows the difference between a composite of 13 El
Niño (black solid lines) or 16 La Niña years (black dashed lines), and 19 neutral years.
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Figure 3. Scatterplot with regression line of mean DJF values of uz at 60N 10hPa and the NAO index, for (a) ERA5 (1950-2021),
(b) CTRL, (c) FullBC, (d) StratBC and (e) TropBC. Neutral years are green, El Niño years are red, and La Niña years are blue.
The large crosses indicate the mean value for each El Niño/La Nina/Neutral experiment. Correlation and p-values shown in the
legend.
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Figure 4. DJF values in the model and ERA5 of (a) Aleutian Low Index, (b) heat flux between 45N–75N at 100 hPa and (c) UZ60
for La Niña, neutral and El Niño years. Shading shows 95% confidence interval.
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Figure 5. Regression of monthly HF and monthly sea level pressure for extended winter months (Nov–Mar). Top row is neutral
years, middle row is El Niño years, bottom row is La Niña years. Stippling indicates significance at p < 0.05. 
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Figure 6. Scatterplot with regression line of mean NDJFM values of the Aleutian Low Index and the heat flux between 45N–75N at
100 hPa, for (a) ERA5 (1950-2020), (b) CTRL, (c) FullBC, (d) StratBC and (e) TropBC. Neutral years are green, El Niño years are
red, and La Niña years are blue. Correlation and p-values shown in the legend.
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