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Abstract. Forecasts of Pacific jet variability are used to predict stratosphere-to-troposphere transport (STT) and tropical-to-

extratropical moisture exports (TME) during boreal spring over the Pacific-North American region. A retrospective analysis 10 

first documents the regionality of STT and TME for different Pacific jet patterns. Using these results as a guide, Pacific jet 

hindcasts, based on zonal-wind forecasts from the European Centre for Medium-Range Weather Forecasting Integrated 

Forecasting System, are utilized to test whether STT and TME over specific geographic regions may be predictable for 

subseasonal forecast leads (3-6 weeks ahead of time). Large anomalies in STT to the mid-troposphere over the North Pacific, 

TME to the west coast of the United States, and TME over Japan are found to have the best potential for subseasonal 15 

predictability using upper-level wind forecasts. STT to the planetary boundary layer over the intermountain west of the United 

States is also potentially predictable for subseasonal leads, but likely only in the context of shifts in the probability of extreme 

events. While STT and TME forecasts match verifications quite well in terms of spatial structure and anomaly sign, the number 

of anomalous transport days is underestimated compared to observations. The underestimation of the number of anomalous 

transport days exhibits a strong seasonal cycle, which becomes steadily worse as spring progresses into summer.  20 

1 Introduction 

Mass transport is important to many aspects of Pacific-North American climate, including: stratosphere-to-troposphere 

transport (STT) of ozone to the planetary boundary layer, which has negative impacts on human health (Fiore et al. 2003; EPA 

US 2006; Langford et al. 2009; Lefohn et al. 2011); STT to the free troposphere, which is needed to estimate the North 

American background distribution of ozone (Fiore et al. 2014, Cooper et al. 2015, Young et al. 2018); and water vapor 25 

transport, which contributes to precipitation variability (Ralph and Dettinger 2011; Mahoney et al. 2016; Guan et al. 2015; 

Gershunov et al. 2017). Because of these impacts, identifying time periods when transport forecasts might be skillful on 

subseasonal timescales (forecasts 3-6 weeks into the future) is recognized as having high societal value (e.g., Lin et al. 2015; 

Baggett et al. 2017 and references therein).  

 30 
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Skillful subseasonal transport forecasts hinge, in large part, on the skillful prediction of atmospheric teleconnections (Baggett 

et al. 2017; DeFlorio et al. 2019). Initial studies of subseasonal teleconnection variability suggested that enhanced predictability 

might occur during spring when strong El Niño-Southern Oscillation (ENSO) conditions are present (Barnston 1994; 

Branković et al. 1994; Branković and Palmer 1997). However, more recent studies suggest that, overall, teleconnections (Wang 

and Robertson 2019) and transport (DeFlorio et al. 2019) on subseasonal timescales tend to be most predictable during winter. 35 

Indeed, one reason to expect predictability to be lower in spring is that Pacific teleconnection patterns become increasingly 

sensitive to the location and scale of tropical forcing as the Pacific jet undergoes its seasonal transition (Newman and 

Sardeshmukh 1998; Barsugli and Sardeshmukh 2002; discussed in more detail below). 

 

Still, even if teleconnections and transport are more predictable during winter on average, skillfully predicting the atmospheric 40 

circulation during spring is important in the context of both STT and water vapor transport. For example, STT of ozone that 

affects surface air quality occurs primarily during spring (e.g., Lefohn et al. 2001; Langford et al. 2009; Lefohn et al. 2011; 

Langford et al. 2012; Olsen et al. 2013; Škerlak et al. 2014; Lin et al. 2015). Likewise water vapor transport during spring is 

also important for many regions of the Pacific basin and North America (e.g., Cayan and Roads 1984, Lee et al. 2014, Swain 

et al. 2016, Mundhenk et al. 2016). Thus, here we seek to explore the circumstances whereby skillful transport predictions 45 

might be possible during the important, yet potentially less predictable spring season. 

 

Stratosphere-to-troposphere transport and water vapor transport occur via distinct physical pathways. In midlatitudes, STT 

occurs mainly via two mechanisms: stratospheric potential vorticity (PV) intrusions, which include tropopause folds, PV 

streamers, and PV cutoffs (Reed and Danielson 1958; Hoerling et al. 1993; Langford and Reid 1998; Shapiro 1980; Sprenger 50 

et al. 2007; Škerlak et al. 2015); and transverse circulations in jet exit regions (Langford et al. 1998; Langford 1999). Intense 

water vapor transport events also arise via several distinct, though interrelated, physical processes, including so-called 

‘atmospheric rivers’, warm-conveyor belts, and tropical moisture exports (Zhu and Newell 1998; Stohl and James 2005; 

Knippertz and Martin 2007; Knippertz and Wernli 2010; Newman et al. 2012; Madonna et al. 2014; Pfahl et al. 2014; Knippertz 

et al. 2013; Ralph et al. 2018; Sodemann et al. 2020). In this study, we focus on spring season STT that extends downwards to 55 

the mid-troposphere and planetary boundary layer (PBL), and long-range tropical-to-extratropical water vapor transports, 

hereafter referred to as tropical moisture exports (TME; see Knippertz et al. 2013 for a detailed discussion of TME). 

 

STT and TME have very different seasonal cycles in terms of timing and geography, which is readily observed in monthly 

mean climatologies (Fig. 1; see Section 2 for a detailed description of STT and TME, which are both taken from the database 60 

of Sprenger et al. 2017). Over western North America, STT of mass (and ozone) that reaches the PBL peaks in spring (Fig. 1, 

left column; see also, Škerlak et al. 2014; Albers et al. 2018 and references therein). Despite the strong storm track located 

over the North Pacific, deep STT into the PBL is limited over the ocean due to a shallow marine boundary layer. In contrast, 

STT of mass extending downwards into the middle troposphere (500 hPa), peaks during January and February and then slowly 
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decreases thereafter (Fig. 1, middle column). TME also undergoes a seemingly smooth transition during winter and spring, 65 

with an initial peak extending from Hawaii to the western US during February, followed by a slow recession of transport 

westward, whereby a secondary peak occurs near Japan during May (Fig. 1, third column; see also Knippertz and Wernli 2010; 

Mundhenk et al. 2016; Gershunov et al. 2017). The different regional and temporal characteristics of the STT and TME 

seasonal cycles shown in Fig. 1 are in part a reflection of the different physical processes that govern them, as outlined above. 

However, at least a portion of STT and TME seasonality and variability are linked by one important commonality: they are 70 

both directly modulated by large-scale Rossby waves (e.g., Ryoo et al. 2013; Albers et al. 2018), which themselves owe their 

propagation and breaking patterns to the strength and location of the subtropical and polar front jets (Hoskins and Ambrizzi 

1993; Scott and Cammas 2002; Abatzoglou and Magnusdottir 2006; Hitchman and Huesmann 2007; Mundhenk et al. 2016; 

Olsen et al. 2019). For example, high TME is often observed on the western edge of blocking anticyclones in the North Pacific, 

where air is rising (Mundhenk et al. 2016), while STT occurs east of the block, where sinking air and PV intrusions frequently 75 

develop (Sprenger et al. 2007). This means that the variability, and as we will show, the predictability, of both types of transport 

are dependent on the seasonal cycle of the Pacific jet. 

 

Sometime between early March and late April, the Pacific jet undergoes a transition – which typically occurs very abruptly – 

from being strong and largely zonally contiguous between Asia and North America to being weak, with a discontinuity in the 80 

jet that spans most of the Pacific basin (Nakamura 1992; Newman and Sardeshmukh1998; Hoskins and Hodges 2019; Breeden 

et al. 2020). The characteristics of this transition, and its relationship to forms of low-frequency variability that might be 

predictable on subseasonal timescales (e.g., ENSO) have been explored in the context of STT of mass and ozone. For example, 

Breeden et al. 2020 demonstrated that early season jet transitions (mid-to-late March), which are more common during La 

Niña conditions, are characterized by enhanced mass transport to the PBL (see also, Lin et al. 2015 and references therein). 85 

Conversely, late transitions (mid-to-late April) have weaker transport to the PBL although the association to El Niño is 

somewhat weaker. However, these analyses are retrospective, and it remains unclear whether forcings such as ENSO – and 

the resulting teleconnections – are actually forecast well enough to be useful when making subseasonal transport predictions. 

 

While the predictability of mass transport on daily timescales is typically limited to less than two weeks (Lavers et al. 2016; 90 

DeFlorio et al. 2018), weekly averages of dynamical variables can occasionally have skill out to 3-6 weeks (e.g., Wang and 

Robertson 2019; Buizza and Leutbecher 2015; Albers and Newman 2019). This evokes the possibility that forecasts of 

atmospheric transport, which may be harder for models to explicitly predict on subseasonal timescales, might be successfully 

inferred from forecasts of more predictable or better constrained dynamical variables. Indeed, similar ideas have been 

successfully applied to assess the predictability of atmospheric blocking on seasonal timescales (Pavan et al. 2000) and 95 

precipitation on daily timescales (Lavers et al. 2014; Lavers et al. 2016). Here we assess the potential predictability of transport 

during spring based on the predictability of zonal wind variance associated with the Pacific jet. We do so by considering a 

very simple conditional probability: if 200 hPa zonal winds have a high (positive or negative) loading on a particular 200 hPa 



4 

 

Pacific basin zonal wind pattern, then what will the corresponding shift in the probability of STT or TME be during those time 

periods? We first answer this question in the context of a retrospective analysis (1979-2016), which allows us to understand 100 

the regionality of STT and TME for different jet patterns. Then, using the retrospective results as a guide, we utilize 

Subseasonal-to-Seasonal Prediction Project database (Vitart et al. 2017) zonal wind hindcasts (1997-2016) from the European 

Centre for Medium-Range Weather Forecasts to test whether STT and TME over specific geographic regions may be 

predictable for subseasonal forecast leads (weeks 3-6). For both the retrospective and hindcast analyses, STT and TME are 

taken from the ETH-Zürich Feature-based climatology database (available for years 1979-2016; Sprenger et al. 2017), which 105 

allows us to apply a single, self-consistent measure of transport for both the retrospective (1979-2016) and hindcast (1997-

2016) analysis periods. 

2 Pacific jet and transport data 

2.1 Jet variability 

Jet variability over the Pacific-North American region is represented via empirical-orthogonal functions (EOFs), which are 110 

based on ERA-Interim (Dee et al. 2011) monthly mean (March-May, MAM) anomalies of 200 hPa zonal wind (cosine latitude 

weighted 10°-70°
 
N and 125°-270° E) for the 1979-2016 period. Anomalies were created by removing the first four annual 

harmonics of the 1979-2016 daily climatology. Using monthly averages instead of daily or weekly values is motivated in part 

by the suggestion of Newman et al. (2012) that a large fraction of ocean-to-continent transport arises from low-frequency 

variability rather than individual synoptic events. Using monthly values also significantly boosts the variance explained by the 115 

leading three EOFs to nearly 60% versus <20% for daily values (e.g., Feldstein 2000). We use a bootstrap method to test for 

EOF degeneracy (North et al. 1982) and find that the first three EOFs (Fig. A1), which represent 25%, 21%, and 11% of the 

total MAM monthly mean wind variance, are reasonably well-separated and have robust spatial patterns (see Appendix for 

details). Hereafter we refer to the first three EOFs (and their corresponding PC time series) as EOF1 (PC1), EOF2 (PC2), and 

EOF3 (PC3).  120 

 

While EOFs 1-3 are significantly correlated with several commonly used climate indices (Table 1), we make no inference that 

the EOF patterns represent dynamical or physical “modes” of the climate system (Monahan et al. 2009). Indeed, the significant 

correlations between each of our PC time series and multiple teleconnection indices indicates that the variance of our EOFs 

almost certainly results from a convolution of external forcing and internal variability across multiple timescales (e.g., Straus 125 

and Shukla 2002).  Evidence for this assertion can be found by noting that while EOF1 is essentially uncorrelated with the 

NOAA Oceanic Niño Index (ONI) (correlation of 0.16 and not significant), EOF1 is one-month lag correlated with EOF2 

(correlation 0.66, significance level >95%), which is itself highly correlated with the ONI index (correlation 0.78, significance 

level >95%). Thus, with one exception (considered in the Discussion) we simply use the EOFs as a data compression tool that 

helps to isolate the largest scale flow patterns that we anticipate will have the best chance for prediction.  130 
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To evaluate the potential predictability of Pacific jet variability, we use hindcasts (1997-2016) of 200 hPa zonal wind from the 

European Centre for Medium-Range Weather Forecasting Integrated Forecasting System (ECMWF IFS CY43R1/R3, model 

operational in 2017), which were obtained from the Subseasonal-to-Seasonal Prediction Project database (Vitart et al. 2017). 

Hindcasts are ‘coarse-grained’ in time via a 7-day running-mean and in space via regridding to a fixed 2.5-degree 

longitude/latitude grid. Anomalies are computed by removing the lead dependent climatology, which also serves as a mean 135 

bias correction (e.g., Buizza and Leutbecher 2015; Monhart et al. 2017). Hindcasts are computed as three-week averages for 

weeks 3-5 (i.e., days 15-35). The 3-week averages are then projected onto the EOF patterns described above. We also computed 

results for other averaging periods including weeks 3-4 and 3-6, as well as individual week 3, 4, and 5 forecasts, but settled on 

weeks 3-5, because we found that this window provided the most skillful transport forecasts. Specifically, averaging several 

weeks together increased skill (i.e., an extension of the ‘forecast skill horizon’, see for example, Younas and Tang 2013; Buizza 140 

and Leutbecher 2015), while extending the forecast window out all the way to week 6 degraded forecast skill because the 

forecast zonal wind anomaly amplitudes become very small compared to the verification anomaly amplitudes. The IFS 

hindcast PC time series are verified against ERA-Interim-based PC time series prepared in an identical manner. 

To help verify that the zonal wind EOF patterns are highlighting Pacific jet variability (in Sect. 3.1), we compare the EOFs to 

a upper tropospheric jet stream climatology (Koch et al. 2006; Sprenger et al. 2017), which is itself based on ERA-Interim. 145 

The jet climatology (1979-2014) is based upon vertical averaging of zonal and meridional winds between 100-500 hPa at every 

horizontal grid point, where a ‘jet event’ at each grid point is detected when the vertically averaged wind exceeds 30 ms-1. This 

procedure yields a frequency of upper tropospheric jet events at each grid point. 

2.2 Transport composites 

To examine stratosphere-to-troposphere mass transport and tropical-to-extratropical water vapor transport, we use six ETH-150 

Zürich Feature-based ERA-Interim Climatologies (Sprenger et al. 2017): stratosphere-to-troposphere mass transport to 500 

hPa (STT500), which provides an estimation of transport into the free troposphere, and stratosphere-to-troposphere transport to 

the planetary boundary layer (STTPBL) (Sprenger et al. 2003, Škerlak et al. 2014); and a climatology of tropical-to-extratropical 

moisture/water vapor transport (TME), (Knippertz and Wernli 2010). The STT climatologies (1979-2016) are based on 

Lagrangian parcel trajectories calculated using the LAGRANTO Lagrangian transport model (Wernli and Davies 1997; 155 

Sprenger and Wernli 2015), where stratosphere-to-troposphere mass trajectories are considered as exchange ‘events’ if they 

have 48-hour stratospheric, followed by 48-hour tropospheric, residence times. We use both monthly mean and daily mean 

climatologies of STT500 and STTPBL, all of which have units of number of mass exchange events per 6-hourly time step. TME 

climatologies (1979-2016) are calculated via LAGRANTO water mass trajectories that originate in the tropics and reach at 

least 35° N with a water mass flux greater than 100 g kg-1 m s-1; we use monthly mean and daily mean TME climatologies 160 

where units are given as the number of TME events per 6-hourly time step.  
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For our retrospective transport analysis, we composite STT and TME for months when the zonal-wind PC time series were 

larger than 1 STD. For the hindcasts, we use a slightly weaker 0.8 STD threshold in order to boost the number of samples 

given the relatively short length of the subseasonal-to-seasonal hindcast database (1997-2016). We chose to keep the STD 

threshold as high as possible though, because higher amplitude anomalies likely correspond to periods of higher forecast skill 165 

(Compo and Sardeshmukh 2004; Van den Dool and Toth 1991; Johansson 2007).  Importantly, the choice of threshold does 

not qualitatively change our results. Hindcast transport composites are based on time periods when weekly average forecasts 

of zonal-wind PC time series were predicted to exceed 0.8 STD. For hindcast verification composites, the composites are based 

on periods when the verification weekly average zonal-winds PC time series exceeded 0.8 STD. This procedure typically 

means that the verification composites include more samples because, as we will show, the weeks 3-5 IFS forecasts 170 

systematically underestimate the amplitude of the zonal wind PC time series and thus do not exceed the STD threshold as often 

as is observed.  

We also briefly discuss the connection between STT and climatologies of tropopause folds (Sprenger et al. 2003; Škerlak et 

al. 2014), PV streamers (Wernli and Sprenger 2007), and PV cutoffs (Wernli and Sprenger 2007). Tropopause folds are defined 

as regions where a vertical profile contains three crossings of the dynamical tropopause, with additional criteria applied to 175 

ensure that the folded airmass is ‘stratospheric’ (e.g., enclosed airmass must have PV > 2 PV units and cannot be of diabatic 

origin). Shallow, medium, and deep tropopause folds were considered, but only shallow and medium depth folds were found 

to be relevant. PV streamers (thin filaments of stratospheric air) are identified using a geometric contour searching algorithm, 

while PV cutoffs are identified as stratospheric airmasses (PV > 2 PV units) that are isolated and fully-embedded within the 

troposphere. PV streamers and cutoffs were considered on isentropic surfaces between 305-340 K, but only the most relevant 180 

surfaces are shown. Units for folds, streamers, and cutoffs are events per 6-hourly time step. 

2.3 Units and significance testing 

While the original units of all of the ETH-Zürich climatologies are frequencies (jet frequency, STT, tropopause folds, PV 

streamers, PV cutoffs, and TME), all of our figures, except for the climatologies (Fig. 1), are presented in units of standard 

deviations. That is, for every variable, we calculate anomalies from climatology and then divide by the anomaly standard 185 

deviation (z-scoring). Thus, a unit of ‘1 STD’ equates to a one standard deviation anomaly, where the standard deviation is 

calculated individually for each specific time period considered (e.g., the STD normalization for a March monthly mean is 

different from the STD normalization used for a three-week forecast period in March).  

When comparing forecast and verification transport probability density functions (PDFs), we evaluate significance via a 

combination of bootstrap confidence intervals (10,000 ensembles with replacement) and two-sample Kolmogorov-Smirnov 190 

distribution tests (KS-test; Marsaglia et al. 2003; Hollander et al. 2013), where the later tests whether the shape and location 

of two empirical distributions are significantly different. The PDFs themselves are created by taking box-area means of STT 
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or TME for a specified geographic region at every forecast time step and using each as a ‘sample’. The PDFs are then calculated 

via kernel density estimation based on the collection of all samples for either the forecasts or verifications.  

3 Results 195 

3.1 Retrospective analysis 

The first three EOF patterns of the 200 hPa zonal wind all exhibit anomalies that correspond to some amount of 

extension/retraction and/or latitudinal shifting of the Pacific jet compared to climatology (Fig. 2). This interpretation is 

confirmed by compositing ETH feature-based jet frequencies for time periods with high EOF loading (PC amplitude >1 STD), 

which yields jet frequency distributions that correspond extremely well with each of the first three EOF wind patterns 200 

(Supplementary Fig. S1). This suggests that the amount of wind variance explained by each of the individual EOFs is 

sufficiently large that when the PC magnitude is high there are notable corresponding shifts in the location of the Pacific jet 

stream. While the EOF patterns likely combine jet variability due to both the subtropical and polar front jets (Koch et al. 2006), 

a strong jet stream of either type will act as a waveguide for Rossby waves (e.g., Schwierz et al. 2004; Rivière 2010 and 

references therein) with an increased frequency of STT (e.g., Shapiro and Keyser 1990) and TME (e.g., Higgins et al. 2000; 205 

Sprenger et al. 2017).  

 

To evaluate the jet-transport connection, we consider STT and TME for time periods with high zonal wind EOF loading 

(absolute value of PCs>1 STD). Because the patterns of the STT and TME anomaly composites are so similar for both EOF 

phases, we show only the negative EOF pattern; see Supplement Figs. S2-S4 for the positive phase. STT500 maxima match the 210 

EOF wind patterns quite well (Fig. 3, top row), with positive (negative) STT500 anomalies tending to occur along the northern 

flanks of the regions of stronger (weaker) winds (Koch et al. 2006), and hence increased (decreased) jet frequency. The 

correspondence of higher STT500 with higher windspeeds, suggests that transverse circulations around the jet play a key role 

in transport, and confirms that the EOF-based STT500 anomalies are related to variations in the North Pacific storm track 

(Škerlak et al. 2014). The STT500 anomalies are most closely associated with shallow to medium depth tropopause folds (Figs. 215 

S5 and S6) and PV cutoffs along the 310 K isentropic surface (Fig. S7).  

 

STTPBL on the other hand (Fig. 3 middle row), have maxima slightly downstream of the 500 hPa maxima, which reflects the 

fact that deep STT tends to occur as maturing Rossby waves amplify and PV streamers become increasingly stretched and 

filamented along isentropic surfaces that slope equatorward and downwards towards the surface (see for example, discussion 220 

of Fig. 5 in Škerlak et al. 2014; see also Reed and Danielson 1958; Shapiro 1980; Shapiro and Keyser 1990; Wernli and 

Bourqui 2002; Sprenger et al. 2003, Appenzeller et al. 1996, Wernli and Sprenger 2007). In addition, as the PV streamers 

become more filamented, isolated regions of high PV stratospheric air often become fully detached as PV cutoffs. Indeed, 

MAM STTPBL appears to be closely associated with PV streamers and PV cutoffs along the 310 and 305 K isentropic surfaces 
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(Figs. S8 and S9, respectively). In contrast to STT500, STTPBL does not appear to be strongly associated with tropopause folds 225 

(not shown; see also Supplemental Fig. S1(e) of Škerlak et al. 2015), though some caution should be exercised when 

interpreting the relative importance of tropopause folds, PV streamers, and PV cutoffs for deep STT as shown here, because 

previous authors, using alternative techniques, have found that tropopause folds play an important role in deep STT (e.g., 

Shapiro 1980; Langford et al. 2009; Breeden et al. 2020 and references therein). Anomalous TME also corresponds well with 

the EOF patterns (Fig. 3, bottom row), except that the anomalies are on the southern edge of the positive EOF wind patterns, 230 

which is due to the tendency for strong TME to occur along the warm sector of a breaking Rossby wave (Bao et al. 2006; 

Knippertz et al. 2013).  

 

While all of the transport composites are physically consistent with the EOF patterns, and hence jet variability, the STT500 and 

TME composites have a much more robust signal compared STTPBL. That the STTPBL is weaker is not entirely surprising 235 

because while a high percentage of upper level breaking waves extend downwards to the mid- to upper troposphere, 

subsequently causing associated STT500 and TME, only a small subset of these waves will achieve the needed amplitude and 

depth to extend all the way to the PBL. Moreover, transport to the STTPBL is also dependent on the depth of the PBL, which 

tends to be relatively shallow until late spring to early summer when convective heating begins to increase (Seidel et al. 2012; 

Škerlak et al. 2014; Breeden et al. 2020). Nevertheless, all of the composites provide a basis for the expectation that Pacific 240 

jet variability can be used as a predictor for transport over landmasses of interest, including the western United States, southern 

Alaska, and Japan.  

3.2 Potential predictability of jet shifts and transport 

While subseasonal forecasts of teleconnection indices are known to exhibit reasonable correlation-based skill (Wang and 

Robertson 2019), the amplitude of the anomalies is often quite weak compared to observations (Yamagami and Matsueda 245 

2020). Thus, the relevant question here is, do forecast models predict jet variability well enough – in terms of both correlation 

and anomaly amplitude  –  to provide guidance for subseasonal transport forecasting? 

 

For weekly forecasts, the correlation between the forecasted and verified zonal wind PCs is ‘skillful’ (correlations >0.5-0.6, 

Hollingsworth et al. 1980; Arpe et al. 1985; Murphy and Epstein 1989) within the deterministic timeframe (weeks 1-2) for all 250 

three EOFs (Table 2). Beyond week 2, however, the PC1 and PC3 correlations drop off rapidly, with the skill of predicting 

PC3 almost completely limited to synoptic timescales. On the other hand, PC2 retains useful skill all the way out to forecast 

week 6, which may be due to its stronger relationship to ENSO (Table 1). These correlations suggest that only the first two 

PCs retain enough skill to be useful on subseasonal leads. The same result is true for the weeks 3-5 forecast window (Fig. 4), 

where forecast-verification correlations for both PC1 and PC2 are near or above 0.5, while PC3 exhibits very low correlation-255 

based skill. In terms of the PC amplitudes of the weeks 3-5 forecasts, both PC1 and PC2 regularly exceed our 0.8 STD 

threshold, while the PC3 amplitude rarely exceeds it. Thus, while EOF3 is related to large transport anomalies over land regions 
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of interest (e.g., STTPBL and TME over North America), it is unfortunately not predictable on subseasonal timescales (similar 

results are also found for EOFs 4 and higher). We therefore focus on predicting transport via PC1 and PC2. 

 260 

The number of observed instances (verifications) when the PC1 and PC2 amplitudes exceeds 0.8 STDs exhibits a seasonal 

cycle (Fig. 5), though the degree of overlap of the confidence intervals suggests that the seasonal cycle is more pronounced 

for EOF2 than for EOF1. The situation is a bit more complicated if the individual phases of each EOF are considered (see 

Supplement, Fig. S10), though the small sample sizes make conclusive inferences difficult. Nevertheless, the slow decay of 

observed PC1 and PC2 exceedances (i.e., large amplitude jet events) between March and May is qualitatively consistent with 265 

previous studies documenting the seasonality of jet activity and Pacific baroclinic wave amplitudes (Nakamura 1992; Koch et 

al. 2006). Unfortunately, the number of PC1 and PC2 exceedances predicted by the IFS at 3-5 week lead times has a much 

stronger seasonal cycle compared to observations, with early spring having many more exceedances than for late spring for 

both phases of PC1 and PC2 (Fig. 5 and Supplement S10). This implies that the transport anomalies outlined next are more 

predictable, and hence the composites more heavily weighted, for the periods before the jet undergoes its spring transition 270 

(Newman and Sardeshmukh 1998; Breeden et al. 2020). 

 

Based on the regions with the largest transport anomalies (Fig. 3) for the more predictable PC1 and PC2 time series (Fig. 4), 

we chose four subregions within the full Pacific domain to examine the potential predictability of STT and TME: EOF1-based 

STT500 for the North Pacific, which includes southern Alaska and the Russian Far East; EOF2-based STTPBL for the western 275 

to intermountain-western US; EOF1-based TME for the western US; and EOF2-based TME for the West Pacific (Japan and 

far eastern Asia). These subregions are highlighted by the boxes in Figs. 6a, 7a, 8a, and 9a, respectively. To provide context 

for the four subregion forecasts, we first show forecast and verification transport anomalies for the entire Pacific domain. For 

each of the four full domain figures (Figs. 6-9), the top two panels show verification transport composites, which are based on 

times when the verification zonal wind PC time series amplitude is greater than +/-0.8 STD (black lines in Fig. 4), while the 280 

bottom two panels show corresponding transport composites, except for time periods when the forecasted zonal wind PC time 

series amplitude is greater than +/-0.8 STD (orange lines in Fig. 4). For comparison, the months that are included in the 

retrospective composites (Fig. 3) are highlighted by the light red and blue shading in Fig. 4 (note that the time periods when 

the week 3-5 time series exceed the +/-0.8 STD threshold do not always match the red and blue shading regions, because the 

shaded regions highlight periods when the monthly mean time series exceeded the monthly 1 STD threshold). The pattern 285 

correlations between the forecast and verification transport composites for the full domains in Figs. 6-9 (not just for the boxed 

in areas) are included in the forecast titles for both EOF phases. Transport predictability for the four boxed subregions is 

subsequently evaluated via PDFs of transport for the forecasts and verifications (Fig. 10).  Beyond the four region/transport-

type combinations just mentioned, STT500 and TME were found to be potentially predictable for EOFs 1 and 2 over several 

additional subregions of the central Pacific basin, but because those results are similar to what we discuss below, they are not 290 

shown. 
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STT500 based on the EOF1 forecast is qualitatively consistent with the verification-based composite for both positive and 

negative EOF phases (Fig. 6), though the STT500 pattern is better reproduced for the negative phase (pattern correlation of 0.49 

vs. 0.75 for the positive vs. negative phases, respectively). In addition, the verification composites show an asymmetry between 295 

opposite EOF1 phases in the amount of STT500, which is also accurately forecasted, with the negative EOF phase exhibiting 

peak values in the 0.75-1.25 STD range vs. 0.25-0.5 STDs for the positive EOF phase. This asymmetry is likewise reflected 

in the forecast and verification PDFs of STT500 for the North Pacific subregion (Fig. 10a), where the median for the positive 

EOF1 phase is weakly negative, while the negative EOF1 phase has a greater than +0.5 STD median anomaly. The only 

noteworthy difference between the North Pacific forecast and verification PDFs is that the forecast-based PDF is shifted 300 

towards more positive values than the verification-based PDF. Regardless, the confidence intervals for the medians of the 

positive vs. negative phases of the forecast-based PDFs are very well-separated and the underlying distributions are different 

according to a KS-test, which suggests that the predicted shifts in transport are significant. We also evaluated forecasts of 

STT500 for various subregions over populated land masses (e.g., the western US), but the resulting verification and forecast 

PDFs were not significantly different, which reflects the fact that STT500 peaks over the North Pacific portion of the storm 305 

track (Fig. 3a). 

 

For EOF2-based STTPBL over the western US, the verification composite is consistent with the retrospective composites (cf., 

Figs. 7a,b and Fig. 3e), however, the pattern is much weaker. Nevertheless, the forecast- and verification-based STTPBL 

composites (Fig. 7c,d) and PDFs for the western US subregion (Fig. 10b) do agree quite well. However, the STTPBL distribution 310 

is notably shifted away from zero only for the negative EOF phase and the confidence intervals for the medians overlap, which 

suggests that the STTPBL forecasts are probably borderline in their usefulness for most forecast periods. Still, the forecasted 

STTPBL do represent different distributions according to a KS-test, so the change in the shape of the tails of the distributions 

may be of some practical use for prediction of extreme STTPBL events. 

 315 

There are several potential reasons why the STT500 forecast and retrospective composite pattern amplitudes compare quite well 

(c.f. Fig. 3a and Fig. 6), while the STTPBL forecast and verification patterns are weaker than their retrospective counterparts 

(c.f. Fig. 3e and Fig. 7). First, STTPBL over the Pacific-North American region tends to be largest for two circumstances: 

regions with high orography and time periods when the PBL height is particularly high. These two circumstances coincide 

over the western to intermountain-western US (Škerlak et al. 2014; Breeden et al. 2020) during MAM, which coincides with 320 

the box area (Fig. 7a) used for our STTPBL PDF calculations (Fig. 10b). Unfortunately, PBL heights do not get particularly 

high until mid- to late spring (see Fig. 5c of Breeden et al. 2020), which is the time period when Pacific jet forecasts are the 

least skillful (Fig. 5b). A second potential issue is that only a small percentage of overall STT events are deep enough to reach 

the lowermost troposphere (e.g., Škerlak et al. 2014  find that 36% of SST events reach 500 hPa, while only 5% reach 800 

hPa, see their Fig. 4), which may magnify sampling issues related to the much smaller hindcast period (1997-2016) compared 325 
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to the longer period (1979-2016) used for the retrospective analysis. We attempted to address the sampling issue by expanding 

the forecast averaging window from 3 weeks to 4 weeks, however, using an expanded 4 week averaging window yielded fewer 

well-forecasted periods, which also resulted in a weaker STTPBL pattern.  

 

The TME forecasts match the verifications very well, for both EOFs, and for both phases of each EOF, with basin-wide pattern 330 

correlations ranging from 0.57 to 0.88 (Figs. 8-9). In addition, the magnitude of the anomaly values for both EOFs are notable, 

with both TME phases exhibiting anomalies in the 0.5-1.25 STD range over relatively large portions of the Pacific domain. 

Interestingly, positive TME centered over Alaska is predicted very well for the positive phase of EOF1 (Fig. 8a,c) and the 

negative phase of EOF2 (Figs. 9b,d), yet it is unclear if this pattern represents a reliably predictable form of TME because 

neither of the corresponding TME composites for the longer time record retrospective analysis show anomalies over Alaska 335 

(cf., Figs. 8 and 9 to Figs. 3g and 3h, respectively). In contrast, the forecasted patterns of TME between Japan and the west 

coast of the US (south of 55º N) are quite consistent with the jet (Figs. 1 and S1) and TME (Fig. 3, bottom row) patterns from 

the retrospective analysis, which suggests that TME over broad regions of the Pacific basin may be reasonably predictable 

during spring. Indeed, the western US and West Pacific subregion TME PDF shifts are robust and match the verification PDFs 

very well (Fig. 10c and d, respectively). This is particularly true for the West Pacific where the median shift in TME transport 340 

is nearly +/- 1 STD for each EOF phase, and the PDF forecast and verification PDFs are nearly identical.  

Discussion and conclusions 

Many ‘modes’ of climate variability are known to be associated with anomalous atmospheric transport. For example, 

stratosphere-to-troposphere mass and ozone transport to the PBL over North America is known to be influenced by ENSO 

(Breeden et al. 2020; Lin et al. 2015 and references therein), while the frequency of atmospheric rivers is thought to be 345 

modulated by a variety of climate phenomena, including ENSO, the Madden-Julian oscillation, and the quasi-biennial 

oscillation (Guan et al. 2012; Lee et al. 2014; Kim and Alexander 2015; Guan et al. 2015; Mundhenk et al. 2016; Guirguis et 

al. 2019). However, retrospectively isolating such associations, which is equivalent to conducting a ‘perfect model’ forecast, 

does not assure that current operational forecast models can successfully predict those relationships, particularly on 

subseasonal timescales (e.g., Lavers et al. 2016; Baggett et al. 2017). Nevertheless, some teleconnection and transport patterns 350 

appear to be potentially predictable on subseasonal timescales (e.g., Mundhenk et al. 2018; Wang and Robertson 2019; Pan et 

al. 2019; DeFlorio et al. 2019; Yamagami and Matsueda 2020), though these forecasts are typically found to occur during 

boreal winter. 

 

Our analyses have shown that stratosphere-to-troposphere transport (STT) to at least 500 hPa and long-range tropical-to-355 

extratropical moisture exports (TME) over the Pacific-North American region can potentially be skillfully predicted on 

subseasonal timescales (3-5 weeks ahead of time) during boreal spring. The transport forecasts themselves were inferred from 
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ECWMF IFS-based forecasts of Pacific jet variability. IFS Pacific jet forecasts for four Pacific-North American subregions 

are associated with significant shifts in the probability of anomalous transport, including: STT into the free troposphere over 

the North Pacific (Fig. 10a); STT into the planetary boundary layer over the intermountain-western US (Fig. 10b); TME over 360 

the west coast of the US (Fig. 10c); and TME to Japan and far eastern Asia (Fig. 10d). While the forecasted shifts in transport 

probability match verifications quite well, one deficiency is apparent: the IFS is able to predict the sign of the zonal wind PC 

time series with reasonable success (Table 2 and Fig. 4), yet it consistently struggles to maintain enough zonal-wind PC 

amplitude relative to the substantial weather-related noise (compare amplitude of forecast and verification time series in Fig. 

4). This results in an underestimation of the number of anomalous transport days compared to observations (Fig. 5), which 365 

degrades the estimation of the transport probabilities (Fig. 10). 

 

The underestimation of the number of anomalous transport days exhibits a strong seasonal dependence, which becomes quite 

acute during April and May (Fig. 5). This implies that either overall teleconnection predictability decreases as spring proceeds, 

or alternatively, the IFS is simply unable to skillfully predict large amplitude jet anomalies with consistency beyond early-370 

spring. While it is beyond the scope of the current study to explore which one of these possibilities is responsible for the lack 

of consistent late spring skill, this is clearly an important question, because the first possibility would be a fundamental feature 

of the climate system, while the latter would be a model-based constraint that might theoretically be improved. Of course, 

these two possibilities are not mutually exclusive, because the increasing sensitivity of Pacific-North American teleconnections 

to tropical forcing at smaller spatial scales during the spring jet transition (Newman and Sardeshmukh 1998) may be inherently 375 

less predictable, yet also more difficult to accurately model. That said, despite the IFS underestimation of the number of days 

with anomalously strong jet patterns (Fig. 5), the IFS is still able to identify roughly 15% (PC1) and 30% (PC2) of all spring 

days (March-May) that are anomalous, which suggests that using upper-level winds to forecast transport may currently be 

possible. 

 380 

For the three types of transport that we have evaluated here, STT into the free troposphere and TME are the most robustly 

predicted, at least in terms of shifts of the average and extremes of their transport distributions (Fig. 10). STT to the PBL over 

the western US, on the other hand, mainly exhibits a change in the shape of the tails of the transport distributions, but a rather 

weak shift in the median (i.e., the shift of the medians of the two EOF2 phases have confidence intervals that are strongly 

overlapping, Fig. 10b). This has implications for the suggestion that ENSO may be used to predict air quality related to STT 385 

of ozone during spring (e.g., Lin et al. 2015 and Albers et al. 2018 and references therein). Similar to previous retrospective 

analyses (e.g., Lin et al. 2015; Breeden et al. 2020), we find that mass transport to the PBL is associated with ENSO (Fig. 11), 

where here, we have composited STTPBL based on periods when the NOAA ONI is greater than 0.8 STDs from the historical 

mean, which yields an equivalent number of samples to our EOF2-based results. The ONI-based (retrospective) transport 

composites look very similar to our earlier EOF2-based retrospective results (cf., Figs. 11a and b to Figs. 3e and S3c, 390 

respectively. For proper comparison, note that PC2 and ONI are negatively correlated).  Moreover, the transport PDFs for the 
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intermountain-western US subregion based on PC2 versus ONI, for both ENSO phases, are drawn from the same distributions 

according to a two-sample Kolmogorov-Smirnov test (Fig. 11c). This close correspondence is due to the high correlation 

between the ONI and PC2 time series (Fig. 11d). Yet, because we have found STTPBL predictions related to EOF2 to be 

significant only in terms of shifts in the tails of the distributions (cf. Fig. 10b and 11c), our results suggest that at best, ENSO 395 

may be harnessed to provide STTPBL forecast guidance on subseasonal timescales for extreme events only. Complicating 

matters further in the context of ozone transport to the PBL (as opposed to simply mass transport as investigated here), is that 

predictions based on ENSO will likely be even more difficult because STT of ozone is also modulated by the seasonal 

variability of the available reservoir of ozone in the extratropical lower stratosphere (Olsen et al. 2013; Neu et al. 2014; Albers 

et al. 2018). That said, because it is doubtful that Nino-3.4-based indices like ONI capture the full dynamical scope of ENSO 400 

variability (Penland and Matrosova 2006; Capotondi et al. 2015), the complete impact of ENSO on STTPBL predictability 

certainly deserves further study. 
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 625 

 WP PNA ONI 

PC1 -0.66 (0.00) 0.44 (0.00) 0.16 (0.1) 

PC2 -0.38 (0.00) -0.09 (0.35) -0.78 (0.00) 

PC3 -0.31 (0.00) -0.56 (0.00) -0.05 (0.64) 

 

Table 1: Correlations between MAM monthly average PC time series and various climate indices, with p-values in parentheses. The West 

Pacific pattern (WP) and Pacific-North American pattern (PNA) and NOAA Oceanic Niño Index (ONI) are taken from NOAA Center for 

Weather and Climate Prediction (NOAA CPC). 
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 week 1 week 2 week 3 week 4 week 5  week 6 

PC 1 0.97 

[0.96,0.97] 

0.78 

[0.75,0.83] 

0.57 

[0.51,0.63] 

0.42 

[0.35,0.49] 

0.3 

[0.22,0.38] 

0.31 

[0.23,0.39] 

PC 2 0.97 

[0.96,0.98] 

0.86 

[0.84,0.88] 

0.74 

[0.7,0.78] 

0.71 

[0.66,0.75] 

0.68 

[0.63,0.72] 

0.66 

[0.61,0.71] 

PC 3 0.94 

[0.93,0.95] 

0.68 

[0.63,0.72] 

0.38 

[0.3,0.45] 

0.21 

[0.13,0.3] 

0.12 

[0.03,0.2] 

0.09 

[0.0,0.18] 

Table 2: Correlations between MAM weekly average PC time series of IFS hindcasts and ERA-Interim verifications. 95th percentile 

confidence intervals are shown in square brackets underneath each correlation coefficient. All p-values are less than 0.05 when all data is 

used in the forecast-verification correlation calculations; however, if the correlation calculations are repeated instead using every third 

forecast (to take into account autocorrelation in the forecast time series), then PC3 has large p-values (0.12 and 0.32) at weeks 5 and 6, 

respectively, while all other PC correlations at all forecast leads remain <0.05. 635 

 



23 

 

 

Figure 1: Monthly average climatologies (1979-2014) of STT to the PBL (left column), STT to 500 hPa (middle column), and TME (right 

column). Units for all panels are event frequencies (events/6-hourly time step), where each of the relevant events types are defined in Sect. 

2.2. 640 
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Figure 2: Spring (MAM, 1979-2014) zonal wind climatology (filled contours) with colored contours showing the first three EOF patterns. 

The variance explained by each EOF is shown in the title for each panel. Units of the zonal wind climatology are m/s. The EOF zonal wind 

anomaly contours span +/- 1 to 7 m/s in 2 m/s intervals. 
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Figure 3: Monthly mean (MAM, 1979-2014) frequencies (filled contours) of STT to 500 hPa (top row), STT to the PBL (middle row), and 

TME (bottom row), for time periods when PCs 1-3 are greater than 1 STD from climatology for the negative EOF phase (units of STDs). 

Colored contours show the EOF patterns associated with each composite. See Supplement Fig. S2-S4 for composites of the positive EOF 650 
phase. 

 

 



26 

 

 

Figure 4: Time series of weeks 3-5 average zonal wind projected onto EOFs 1-3 for IFS forecasts (orange lines) and ERA-Interim 655 
verifications (black lines). The horizontal dashed lines denote +/-0.8 STDs from the mean of the verification time series. For reference, the 

light blue and red shading denote the months that were included in the monthly average composites used to create Fig. 3. Correlations 

between the forecasts and verifications (with 95th percentile confidence intervals) are shown in the titles of each panel. 
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Figure 5: Number of times that a weeks 3-5 average verification or forecast exceeded the 0.8 STD threshold for the 1997-2016 hindcast 

period (i.e., the periods in Fig. 4 where the black or orange lines, respectively, was above or below the dashed horizontal STD reference 

lines). 95th percentile bootstrap confidence intervals are shown as whiskers. 
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Figure 6: (a), (b) EOF1-based composites of STT to 500 hPa for weeks 3-5 forecast periods when the verification time series (black line in 

Fig. 4) was above (positive phase) or below (negative phase) the 0.8 STD threshold. (c), (d) EOF1-based composites of STT to 500 hPa for 

weeks 3-5 forecast periods when the forecast time series (orange line in Fig. 4) was above (positive phase) or below (negative phase) the 0.8 

STD threshold. The black box outlines the North Pacific subregion used for creating the transport PDF in Fig. 10a. Units are in STDs and 670 
pattern correlations between top and bottom panels (cf., (a) versus (c) and (b) versus (d)) are shown in the bottom row titles. 
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Figure 7: (a), (b) EOF2-based composites of STT to the PBL for weeks 3-5 forecast periods when the verification time series (black line in 675 
Fig. 4) was above (positive phase) or below (negative phase) the 0.8 STD threshold. (c), (d) EOF2-based composites of STT to the PBL for 

weeks 3-5 forecast periods when the forecast time series (orange line in Fig. 4) was above (positive phase) or below (negative phase) the 0.8 

STD threshold. The black box outlines the western to intermountain-western US subregion used for creating the transport PDF in Fig. 10b. 

Units are in STDs and pattern correlations between top and bottom panels (cf., (a) versus (c) and (b) versus (d)) are shown in the bottom row 

titles. 680 
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Figure 8: (a), (b) EOF1-based composites of TME for weeks 3-5 forecast periods when the verification time series (black line in Fig. 4) was 

above (positive phase) or below (negative phase) the 0.8 STD threshold. (c), (d) EOF1-based composites of TME for weeks 3-5 forecast 685 
periods when the forecast time series (orange line in Fig. 4) was above (positive phase) or below (negative phase) the 0.8 STD threshold. 

The black box outlines the western US subregion used for creating the transport PDF in Fig. 10c. Units are in STDs and pattern correlations 

between top and bottom panels (cf., (a) versus (c) and (b) versus (d)) are shown in the bottom row titles. 
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 690 

Figure 9: (a), (b) EOF2-based composites of TME for weeks 3-5 forecast periods when the verification time series (black line in Fig. 4) was 

above (positive phase) or below (negative phase) the 0.8 STD threshold. (c), (d) EOF2-based composites of TME for weeks 3-5 forecast 

periods when the forecast time series (orange line in Fig. 4) was above (positive phase) or below (negative phase) the 0.8 STD threshold. 

The black box outlines the West Pacific subregion used for creating the transport PDF in Fig. 10d. Units are in STDs and pattern correlations 

between top and bottom panels (cf., (a) versus (c) and (b) versus (d)) are shown in the bottom row titles. 695 
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Figure 10: Probability density functions (PDFs) of (a) EOF1-based STT to 500hPa for the North Pacific subregion, (b) EOF2-based STT to 

the PBL for the western to intermountain-western US subregion, (c) EOF1-based TME to the western US subregion, and (d) EOF2-based 

TME to the West Pacific subregion. IFS-based forecasts are shown in solid dark lines and ERA-Interim-based verifications are shown as 

thicker light lines; for both forecasts and verifications, medians are shown as blue dots and 95th percentile bootstrap confidence intervals are 700 
shown as whiskers. Units are in STDs. 
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Figure 11: (a) El Niño- and (b) La Niña-based monthly mean (MAM, 1979-2014) frequencies of STT to the PBL (filled contours) and zonal 

winds (contours) for time periods when the NOAA ONI was +/-0.8 STDs from climatology (units of STDs). Note: for correct comparison, 705 
panels (a) should be compared to panels (d) from Fig. 4; compare also panels (a) and (b) here to panels (d) and (c) from Fig. S3. (c) Probability 

density functions (PDFs) of EOF2-based STT to the PBL for the western to intermountain-western US subregion. (d) Time series of the 

NOAA ONI (blue line) and PC2 (orange line), where ONI has multiplied by -1 for ease of comparison. 
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Appendix 

To verify that EOFs 1-3 represent distinct patterns that are robust to variations in sampling period (North et al. 1982), we 

conducted several calculations. To begin, a 10,000 member bootstrap ensemble of 200 hPa zonal wind EOFs was created 

(resampling with replacement), where each bootstrap member consisted of ‘N’ randomly selected monthly mean 200 hPa zonal 

wind anomalies for the Pacific basin domain shown in Fig. 2. The ‘N’ randomly selected anomalies are chosen from the pool 715 

of all MAM 1979-2016 monthly means, and N=114, which is the number of months in the original EOF calculation for MAM, 

1979-2016. The resulting data was used in three calculations. 

 

First, the pattern correlation between each bootstrap ensemble member EOF and the corresponding original EOF was 

calculated. The median pattern correlation for all 10,000 bootstrap ensemble members was then calculated. For all three EOFs, 720 

the median pattern correlation was near 0.9 (individual values are shown for each of the three EOFs in the title bars of Fig. A1 

a-f). Next, the median of the variance explained was calculated for each bootstrap ensemble EOF. For all three EOFs, the 

variance explained for the original EOFs and for the median of the bootstrap ensemble EOFs is within a couple percent 

(individual values are shown for each of the EOFs in the title bars of Fig. A1 a-f). And finally, the standard deviation of the 

variance explained was calculated for each of the bootstrap ensembles (Fig. A1g). The spread (measured by the standard 725 

deviation) is small enough that there is no overlap between each of the first three EOFs. In combination, these calculations 

support the notion that the first three 200 hPa zonal wind EOFs are not degenerate according to the criteria outlined in North 

et al. 1982.  
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Figure A1: (a), (c), and (e) 200 hPa zonal wind EOF patterns for MAM, 1979-2016, which correspond to the EOF contours 

shown in Figs. 2-3 and S1-S4. (b), (d), and (f) 200 hPa zonal wind EOF patterns for the bootstrap ensembles corresponding to 

panels (a), (c), and (e), respectively. For each row in (a)-(f), the median pattern correlation between the original (left column) 

and bootstrap ensembles (right column) are shown in the subtitle. The subtitle of each panel in (a)-(f) also shows the variance 735 

explained (original EOFs, left column) or the median variance explained (bootstrap ensembles, right column) for each EOF. 

(g) Median variance explained for the bootstrap ensemble (solid marker), and the spread of variance explained for the bootstrap 

ensembles of each EOF, where the spread is calculated as 1 STD of the variance explained (shown as whiskers). 
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