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Abstract. Atlantic hurricane activity varies substantially from year to year and so do the associated damages. Longer-term
forecasting of hurricane risks is a key element to reduce damages and societal vulnerabilities by enabling targeted disaster
preparedness and risk reduction measures. While the immediate synoptic drivers of tropical cyclone formation and
intensification are increasingly well understood, precursors of hurricane activity on longer time-horizons are still not well
established. Here we use a causal network-based algorithm to identify physically interpretable late-spring precursors of
seasonal Atlantic hurricane activity. Based on these precursors we construct statistical seasonal forecast models with
competitive skill compared to operational forecasts. In particular, we present a skillful prediction model to forecast July to
October tropical cyclone activity at the beginning of April. Our approach highlights the potential of applying causal effect

network analysis to identify sources of predictability on seasonal time-scales.

1 Introduction

Tropical cyclones (TCs) are among the most damaging weather events in many tropical and subtropical regions (Munich Re
2020). The compound nature of tropical cyclone hazards combining heavy winds, extreme precipitation and coastal flooding
contributes to their severity (Ye and Fang 2018), directly impacting societies. Furthermore, a range of secondary impacts in
the aftermaths of cyclones such as displacement, loss in livelihoods or income, and health impacts are being reported (Camargo
and Hsiang 2014). Applying risk reduction measures to the direct damages of TCs is challenging and is expected to become
even more so with global warming and sea level rise (Woodruff et al. 2013). Preparedness for the secondary impacts could,
however, be improved if reliable forecasts of the potential risks of the upcoming hurricane season are available (Murphy et al.
2001).

Several academic institutes provide seasonal hurricane forecasts for the Atlantic basin (Klotzbach et al. 2019). The Colorado
state university was one of the first, already issuing seasonal forecasts in 1984 (Gray 1984a, b). Since then, a variety of

forecasting methods are applied, ranging from purely statistical forecasts to forecasts based on numerical global climate model
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simulations and hybrid approaches (Klotzbach et al. 2017, 2019). The Barcelona Super Computing Center each year collects
and publishes seasonal forecasts from universities, private entities and government agencies'.

Dynamical forecasts are based on global circulation models that simulate the climate system including tropical cyclone
occurrences (Vitart and Stockdale 2001; Vecchi et al. 2014; Manganello et al. 2017). Their skill depends on their ability to
represent TC genesis and development, and their capacity to forecast the large-scale circulation over the Atlantic main
development region (MDR) as well as their ability to adequately represent the interaction between the two. With increasing
spatial resolution, their representation of TCs improves (Roberts et al. 2020). Their ability to predict the large-scale circulation
and low frequency variability can, however, remain a limiting factor for seasonal forecasts (Manganello et al. 2017).
Statistical forecast models, in contrast, are usually based on favorable climatic conditions in the region of TC formation and
established teleconnections affecting cyclone activity on the basins scale (Klotzbach et al. 2017). Besides warm sea surface
temperatures (SST), both the formation and intensification of TCs critically depend on low vertical wind shear (VWS) over
the tropical Atlantic (Frank and Ritchie 2001; Emanuel et al. 2004). Furthermore, dry air intrusion and anticyclonic wave
breaking can hamper TC formation (Hankes and Marinaro 2016). Finally, a lack of easterly African waves can lead to lower
TC activity (Dieng et al. 2017; Patricola et al. 2018).

The included predictors of a statistical forecast model are often chosen based on correlation analysis and expert judgement.
One major challenge in statistical forecasting is yet to select a set of skillful predictors without running into overfitting issues,
implying dropping skill when applied to independent test data (Hawkins 2004).

Recently, a novel statistical forecast approach based on causal effect networks (CEN) was proposed (Kretschmer et al. 2017).
In such a network, causal links between the predictand and a set of potential predictors are identified by iteratively testing for
conditionally independent relationships, thereby removing spurious correlations (Runge et al. 2019). First applications have
shown that statistical forecast models based on causal precursors can result in skillful forecasts as they identify relevant
predictors without overfitting (Kretschmer et al. 2017; Di Capua et al. 2019; Saggioro and Shepherd 2019; Lehmann et al.
2020).

Here we apply this approach to detect remote predictors in spring of hurricane activity in the Atlantic basin from July to
October. We first demonstrate the applicability of the method by constructing a forecast for the July-October accumulated
cyclone energy (ACE) based on May precursors using reanalysis data. The identified precursors are well-documented drivers
of hurricane activity in the Atlantic, indicating the usefulness of our approach. To increase forecast lead time, we then apply
the same method to construct a forecast based on March reanalysis and obtain competitive forecast skill based on these

predictors.

! https://seasonalhurricanepredictions.bsc.es/predictions
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2 Methods
2.1 Data

We use tropical cyclone locations and maximum sustained wind speeds from the official WMO agency from the IBTrACS
database (Knapp et al. 2010, 2018). Our main analysis is based on the fifth generation of ECMWF atmospheric reanalyses
(ERAS) (Copernicus Climate Change Service (C3S) 2017). We use the monthly reanalysis data on a regular 1-degree grid for
the period 1979-2018. For sensitivity testing, we also use the Japanese 55-year reanalysis (JRAS5) on monthly time-scale and
provided on a regular 1.25-degree grid (The Japan Meteorological Agency (JMA) 2013). As data in the pre-satellite era are
less reliable (Tennant 2004), we focus on the period from 1979-2018, but we also perform sensitivity tests using the full range

of the JRASS dataset ranging from 1958-2018.

2.2 Accumulated Cyclone Energy (ACE)
Following Waple et al. (2002), we calculate accumulated cyclone energy (ACE) as an indicator for seasonal tropical cyclone
activity:

2
Umax »

ACE = 10_4 Zall days
ACE is accumulated for TCs within the Atlantic basin with maximal sustained wind speeds above 34 knots over all days from

July-October.

2.3 Causal effect networks (CEN)

Causal effect networks have been introduced to statistically analyze and visualize causal relationships between different
climatic processes, referred to as “actors”. Specifically, spurious correlations due to indirect links, common drivers or
autocorrelation effects are identified as such and removed from the network structure (Kretschmer et al. 2016; Runge et al.
2019). The remaining links can then be interpreted in a more causal way within the set of considered variables.

Here we use a two-step approach to construct causal effect networks consisting of a condition selection algorithm (PC-
algorithm) and a momentary conditional independence (MCI) test. This so called PCMCI algorithm was introduced by Runge
te al. (2019) and a python implementation is openly available on github.com/jakobrunge/tigramite (Runge 2014). The
properties of the PCMCI algorithm including mathematical proofs and numerical tests are documented and discussed in Runge
et al. (2019).

Note that this algorithm relies on several assumptions, which in real-world scenarios are likely never fully fulfilled (Runge
2018). Specifically, it requires a comprehensive sampling of potentially relevant climate signals as well as sufficient temporal
coverage to ensure full representation of multi-annual to multi-decadal modes. As we are particularly restricted by the relatively
short reanalysis record, we cannot exclude potential state-dependencies, e.g. on annual time scales as well as non-stationarities

(Fink et al. 2010; Caron et al. 2015). As this represents a divergence from the theoretical methodological approach of causal
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precursor analysis, we will therefore refer to the results of the CEN analysis as “robust precursors” acknowledging that we

cannot assure frue causality.
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Figure 1: Schematic overview of the four steps to build a forecast model for ACE in July-October (left): 1) The regions of interest

for two favourable conditions of hurricane activity (SST and VWS) are identified. 2) For each of the favourable conditions of 1)

potential precursors in May are identified by clustering the most significantly correlated grid cells within SST data. 3) Causal effect

networks are used to select a sub-set of robust precursors. 4) A statistical model is built based on the identified robust precursors of

3). Steps 2)-4) are repeated for the different training sets leading to a different forecast model for each hindcasted year.

2.4 Using CEN as a robust precursor selection tool to construct a statistical forecast model

We apply a CEN approach to identify robust precursors in May (and in March) of seasonal hurricane activity of the same year.

Similar to Kretschmer et al. (2017), our methodology consists of 4 steps (see schematic overview in Fig. 1):

1.

We first identify regions where favorable conditions for TC formation and intensification are most relevant. Here
we use SSTs and VWS fields as established favorable conditions but without prescribing spatial patterns a priori.
We then identify the regions in the tropical Atlantic that are correlated with ACE in our target region during the
hurricane season (July to October).

We search for potential precursors of the favorable conditions identified in step 1. To do this, we calculate
lagged point correlation maps of gridded SST, and mean sea level pressure (MSLP) data and cluster the most
significantly correlated points into potential precursor regions. We use SSTs and MSLP as they are commonly used
to describe the forcing on the atmosphere and the current location of pressure systems which in turn gives insights
on the atmospheric circulation in general.

We identify robust precursors amongst all potential precursor regions identified in step 2 by constructing a causal
effect network (CEN) using the so-called PCMCI algorithm.
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4. We construct a statistical forecast model based on the robust precursors identified in step 3 using linear regression
and logistic regression. While for the detection of potential and robust precursors (step 2 & 3) detrended anomalies
of climate variables are used, the final forecast models are constructed with the raw reanalysis data.

More details including all relevant free parameters of our approach (such as significance thresholds and clustering parameters)

are listed and discussed in the SI.

2.5 Forecast model evaluation

We evaluate the skill of our model by performing a cross-validation hindcast: For each hindcasted year, we construct a new
statistical model using all years but the year we aim to hindcast as well as the two preceding years of that year. Specifically,
steps 2-4 are iteratively performed for each hindcasted year (see Fig. 1). By excluding the two preceding years from the training
set, we assure that autocorrelations of up to 3 years do not leak information from the training data into the testing data. Note
that despite the clear separation between training and testing data such cross-validation tests cannot guarantee reproducibility

of the forecast skill in a real forecasting setting (Li et al. 2020).

3 Results
3.1 Favorable conditions for active hurricane seasons

Favorable conditions for active hurricane seasons are (among others) warm SSTs and low VWS over the western tropical
North Atlantic (Fig. 2). We identify the regions where the association of SSTs and VWS on basin wide ACE is strongest by
clustering most strongly correlated grid-cells (see SI for more information). These regions cover large parts of the main
development region (MDR) and we call them SSTwmpr and VWSwmpr. The relationships between these variables and TC

formation as well as TC intensification are well documented (Frank and Ritchie 2001).

b 0.8
. ~ 0.6

0.4

0.2
0.0

-0.2

correlation

-0.4

VWSup -06
-0.8

Figure 2: Favorable conditions for high ACE in July-October. a) Point correlation between SST and basin wide mean

ACE in July-October. The contour line indicates the identified region in the Atlantic basin, which consist of a cluster
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of the 5% most significantly correlated grid-cells. Details on the definition of the region are described in the

supplementary information. b) As (a) but for VWS.

To identify potential precursors (step 2 in Fig. 1) of SSTmpr and VW Smpr we next calculate lagged point correlation maps
using the regional averages of VW Smpr (SSTmpr) and gridded SST data. VW Swpr in July-October is strongly correlated with
SSTs in May in several locations. Potential precursor regions are found in the tropical Atlantic and Pacific, in the northern
North Atlantic and in the northeastern Pacific (see Fig. 3a).

We then construct a causal effect network (step 3 in Fig. 1) with all identified potential precursors. We find that warm SSTs
in the tropical Pacific and cold SSTs in the subtropical North Atlantic are robust precursors of strong VWSwmpr (Fig. 3b). The
signal from the Pacific resembles the Nino3.4 region and thus reflects the El Nifio Southern Oscillation (ENSO) which is a
well-known driver of variations in hurricane activity (Gray 1984a; Tang and Neelin 2004; Kim et al. 2009). In combination,
the difference between tropical Atlantic SSTs and tropical Pacific SSTs is consistent with the hypothesis that Atlantic hurricane
activity mainly depends on the temperature of Atlantic SSTs relative to the other basins (Vecchi and Soden 2007; Murakami
et al. 2018).
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Figure 3: Precursors of VWSwmpr in a training set containing the years 1979-2015: a) Pointwise correlation between
SSTs in May and VWSwmbr averaged over July-October. Labels indicate clustered regions that are treated as potential
precursors. b) Robust precursors of VWSwpr as detected by our method. The color of the arrows indicates the link
strength and the color of the nodes indicates the strength of auto-dependence. The link strength (including auto-
dependence of variables) is calculated following Runge et al. (2019) using partial correlations. This was shown to give
a normalized measure of causal strength ranging between -1 and 1. For visualization purposes only ingoing links of

VWSwmbr are shown here, the full network is shown in Fig. S1.



The correlation maps vary for the different training sets, partly leading to different potential precursors of VWSwmpr (Fig. 4a).
170 For instance, some regions are only identified as potential precursors in some training sets (lighter shading). Nevertheless,
throughout all different training sets, SSTs in the Atlantic and in the Nifi03.4 region are consistently identified as robust
precursors of VW Swmpr (Fig. 4c¢).
A robust precursor for warm SSTwmpr in July-October is a large SST region in the North Atlantic (Fig. 4d). This region extends
to the north-eastern Atlantic. The strong link of this precursor to SSTwmpr is a result of the high autocorrelation of SSTs.
175 Furthermore it is likely, that water from north of the MDR would be advected into it during the following months (Klotzbach
et al. 2019). The identified SST signals north in the subpolar Atlantic and Arctic ocean may not have a direct impact on the
cyclone activity, but could also be the result of the presence of a common driver of multi-month/annual SST in the North
Atlantic that cannot be resolved by our temporally limited application of the CEN method for forecasting purposes. This does
not mean that the SST signal in the region does not have skill as a robust precursor, but only that no direct ‘causal’ pathway

180 might be at play here.
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Figure 4: Potential and robust precursors of VWSwpr (a and c¢) and SSTwmpr (b and d) in May. Number of training sets
in which a grid-cell is part of a potential (a-b) and robust (c-d) precursor region. The maximum number is 40 - the

185 number of different training sets considered.
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3.2 Forecast model based on May precursors

We next hindcast each years’ ACE in July-October with a linear regression model (step 4 in Fig. 1) based on the absolute
values of the robust precursors identified in May for the training set (containing again all years but the hindcasted year and the
two preceding years) (see Fig. 5). With a Pearson correlation coefficient of p = 0.47 (and a Spearman rank correlation
coefficient of p, 4, = 0.53), our cross-validated hindcast seems competitive with operational forecasts (from CSU, TSR and
NOAA) which have p < 0.4 (see Fig. 1 in Klotzbach et al. 2019).

Our model skillfully discriminates between above and below median seasonal activity (Fig. 5b). However, the intensity of
most extreme hurricane seasons is underestimated in our linear forecast model (e.g. years 1995, 2004, 2005, 2017 in Fig. 5a).
Figure 5b shows that despite this lack in sensitivity of the linear model, it can still deliver valuable information on the
occurrence of above 66 percentile seasons.

As an addition to the linear model, we next use a logistic regression classifier to construct probabilistic forecast models. We
focus on predicting the most active (above 66" percentile) and least active (below 33™ percentile) seasons using the same
predictors as for the linear model (Fig. 6b-c). For each year this model gives a probability of having an above 66 (below 33™)
percentile season. As it does not assume a linear relationship between predictors and predictands it might be better suited for
the prediction of extreme seasons.

We evaluate the performance of the model using the Brier skill score (BSS) (Brier 1950). With a positive BSS, the result of
the forecast model that gives the probability of finding an above 66" percentile season (Fig. 6¢) is slightly superior to a
climatological forecast, which would be forecasting above 66™ percentile seasons with a probability of 33% in each year. The
reliability curve flattens out for high forecast probabilities indicating that the usefulness of this forecast is however limited.
For instance, the false positive rate is 50% for seasons which are hindcasted to be an above 66™ percentile season with a
probability of 60%. Yet, seasons that are very unlikely to become particularly active are hindcasted with high confidence.
We hypothesize that the deficit to hindcast some of the most active seasons might be due to missing relevant predictors. For
example, Klotzbach et al. (2018) argued that the extreme TC activity in 2017 was due to an enhanced Pacific Walker circulation
during near neutral ENSO conditions. The Pacific Walker circulation and ENSO are strongly correlated, but in 2017, forecast
models using ENSO as a predictor (rather than the Walker circulation) heavily underestimated the seasonal activity (Klotzbach
et al. 2018). Furthermore, it has to be noted that there is some stochastic component to TC formation which systematically

limits the skill of our empirical forecast model that is based on favorable conditions for TC formation.
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Figure 5: Hindcast skill based on May reanalysis. a: ACE yearly aggregated over July-October (black) and based on
our linear forecast model using precursors identified for the month of May (magenta). The shading corresponds to a
66% confidence interval based on the standard deviation of the model over the training periods. b: Receiver operating
characteristic (ROC) curve (see SI) for different seasonal activities: above (the long-term) median seasons in blue, above

the 33rd percentile in green and above the 66th percentile in purple. The area under the ROC curve (ROCA) is

indicated in the legend with significance levels (** - alpha=0.05, * - alpha=0.1).
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Figure 6: Reliability diagrams for a logistic regression model on May precursors and for three types of seasonal
activities: above median (a), below 33rd percentile (b), above 66th percentile (c) seasons. Dots show the mean hindcasted
probability versus the observed frequency of a (seasonal) event. The size of the dots indicates the relative amount of
data points that contributed to a bin. A perfectly reliable forecast would lie on the diagonal (dashed gray line). Dots
within the dark-green area contribute to a forecast skill improvement compared to the climatology while dots within
the light-green area contribute to a forecast skill improvement compared to random guessing. The Brier Skill Score

(BSS) is indicated in the lower right corner of each panel.
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3.3 Forecasting at longer lead times

So far, the robust precursors we detected with our data-driven approach are already well documented in the literature, providing
us with confidence in the approach. We next apply the same methods to construct a forecast model based on reanalysis data in
March, where existing operational forecasts show little skill (Klotzbach et al. 2017, 2019). At the end of March, it is difficult
to forecast the state of ENSO for the upcoming hurricane season due to the ENSO predictability barrier (Torrence and Webster
1998; Hendon et al. 2009). Indeed, in March, the El Nifio region is not identified as a robust precursor of VW Swmpr in July-
October (see Fig. S2).

We further search for robust precursors in mean sea level pressure data (MSLP). To avoid spurious effects at this long-time
lag on atmospheric time scales, we adjust our criteria to yield large-scale precursors and cluster the 7.5% most significantly
correlated grid cells (instead of 5% elsewhere) into large-scale precursor regions (see SI for more details).

We identify potential precursor regions in both hemispheres (Fig 7a). As robust precursors, a high-pressure system over the
southern Indian Ocean and a low-pressure system eastward of New Zealand are identified in nearly all training sets (Fig 7c).
For SSTwmpr, autocorrelation still plays an important role and, as for the May forecast, a larger area in the North Atlantic

remains a robust precursor (see Fig 7 d).
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Figure 7: Potential and robust precursors of VWSwmpr and SSTupr in March. As Figure 4 but in March and with MSLP

precursors for VWSwbr.
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As expected, the overall skill of a hindcast based on these March precursors is lower than for the May hindcast but still
considerable with a spearman rank correlation of 0.27 between the observed and the hindcasted ACE (Fig. 8). Despite being
relatively low, this correlation is promising since this correlation is near zero in most operational forecast models (compare
Klotzbach et al. 2017; Klotzbach 2019).

The linear model shows skill in hindcasting above median as well as extremely active seasons (Fig. 8b). For instance, an above
66 percentile season can be hindcasted with a true positive rate of 65% and a false positive rate of only 27%.

The hindcasts of the logistic regression model for above 66" percentile seasons has skill over a climatological forecast (BSS =
0.11). The reliability diagram (Fig. 9c) shows a rather flat curve with few data points with high observed frequencies. This
means that when the model predicts high probabilites for above 66™ percentile seasons a relatively high number of these events
are false positives. For above median TC activity the reliability curve is substantially closer to the diagonal and the skill over

a climatological forecast is higher (BSS = 0.17 Fig. 9a).
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Figure 8: Hindcast skill based on March reanalysis. As Figure 5 but for March.
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Figure 9: Reliability diagrams for a logistic regression model on March precursors. As Figure 6 but for March.

Our results suggest that the identified dipole pattern in MSLP in the southern Indian Ocean and the western south Pacific
enhances VWS in the tropical Atlantic 4-6 months later (see Fig. 7c for the dipole) but the underlying mechanism is not
obvious. We hypothesize that this dipole weakens the trade winds in the western Pacific, thereby favoring the formation of El
Nifo events. This would sub-sequentially lead to strong VWS in the Atlantic (during the main hurricane season).

We test this hypothesis by constructing a causal effect network. As input data we include time-series constructed as the MSLP
difference between the southern Indian Ocean and the western south Pacific (“Delta MSLP”), the strength of the trade winds
in the western Pacific (“Trade winds 850 hPa”) and SSTs in the Nifio 3.4 region (“SST Nifio 3.4”) (all regions are displayed
in Figure 10a). The CEN is then calculated for the months of February to July which is roughly the period for which we want
to test the hypothesis.

The detected causal links between the actors are shown in a Figure 10b. Indeed, weak trade winds in the western Pacific are
suggested to favor the formation of El Nifio events in the next month. Furthermore, a strong pressure gradient towards the
Indian Ocean weakens the trade winds (on a time scale of two months). At the same time, strong trade winds increase the
pressure difference between Indian Ocean and Pacific. Overall, although a more detailed analysis is needed, our analysis

suggests that the identified March dipole, might indeed be physically linked to the upcoming Atlantic hurricane activity.

a b Trade winds
(850hPa)
2
Trade winds 1
(350nPa) b Delta MSLP
[ msip
i SST Nifio 3.4
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Figure 10: Causal effect network (CEN) to test if the detected robust precursor in March affects ENSO variability. a)
Regions included to construct the time-series that enter the CEN. To describe the robust precursors, we include the
MSLP difference between the southern Indian Ocean (magenta box) and the western South Pacific (cyan box). We
further include an index of western Pacific trade winds at 850hPa (blue box) and SSTs in the Nino3.4 region (green
box). b) Resulting CEN of the time-series calculated over the regions as shown in a). For the CEN calculation only the
months February to July and time lags of 1 to 4 months are considered. The color of the arrows indicates the link

strengths, with the color of the nodes indicating the strength of the auto-dependence.
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The skill of the March forecast drops when detrended ACE anomalies are predicted using detrended precursor anomalies (see
Fig. S3). One explanation for the reduced skill might be related to the simultaneous increase in ACE and the increase in Atlantic
SSTs over the period 1979-2018, partly modulated also by multi-decadal natural variability (Schleussner et al. 2013; Alexander
et al. 2014). As the link between Atlantic SSTs and ACE is well-established (Murakami et al. 2018), and SSTs are auto-
correlated on up to decadal timescales, such a detrending would be expected to reduce the skill of our model. Also, the linear
trends of March precursors are small compared to the interannual variability and are not statistically significant (see Fig. S4).
While a longer time series would be required to fully establish the independence of our findings from simultaneous trends in
the predictors and predictands, we are confident that our identified precursors of VWSwmpr and SSTwmpr do indeed contain
physically meaningful information.

Note that the identified robust precursors of strong VWSwmpr over the southern hemispheric oceans might suffer from quality
deficits of the reanalysis product, as only relatively few observations of SSTs and MSLP are available in these regions. We
therefore perform a number of sensitivity tests to investigate how robust this signal is and whether it could be an artefact of
the used ERAS reanalysis data. To do this, we conduct the same analysis using JRASS reanalysis and obtain similar precursors
in May and March (Fig. S5 & Fig. S7). Overall these precursors are yet less robust in JRASS and the forecast skill is slightly
reduced (Fig. S6 & Fig. S8).

The reason for this difference might also lie in the method applied to identify potential precursors (step 2 in Fig. 1). Applying
the same clustering algorithm with the same parameters on a dataset with a different grid size leads to a minimally different
clustering behavior and might therefore affect the whole model building approach. The strong influence of the clustering step
on the identified potential precursors and all the subsequent steps in the analysis could thus partially explains the differences
between the results obtained with JRAS55 and ERAS.

Finally, we test whether our model has skill outside of the period used for the main analysis (1979-2018) by applying a forecast
model trained on 1980-2018 to the early period of JRASS5 (1958-1978). In the pre-1979 period, our model captures main
features as a reduced hurricane activity in the 1970s after higher activity in the 1960s (see Fig. S9). It, however, systematically
overestimates hurricane activity and the skill is lower than in the cross-validated hindcast of the period 1979-2018.

The reduced skill in the pre-1979 period could be a result of non-stationarities in precursors of Atlantic hurricane activity. For
instance, changes in anthropogenic aerosol emissions lead to a suppression of tropical cyclone activity in the period 1950-1980
(Dunstone et al. 2013). This could explain the systematic overestimation of hurricane activity in our model as it does not
capture the effect of aerosols.

It has to be noted as well that reanalysis for time periods before the use of satellites (before 1979) are subject to considerable
uncertainties especially in the southern hemisphere (Tennant 2004). It therefore remains difficult to investigate whether the
identified relationship between March precursors and hurricane activity is robust under different climate states with the

available datasets.

13



325

330

335

340

345

350

355

In summary, the identified MSLP precursors in March appear to be less robust than the well-documented May precursors.
However, as far as it can be assessed with the given reanalysis datasets, sensitivity tests suggest that the identified March

precursors indeed contain useful information contributing to a skillful seasonal forecast of ACE.

4 Discussion

A crucial component of statistical forecasting is the selection of meaningful predictors. Because too many included features
quickly lead to overfitting, methods are required to sub-select relevant predictors from a large set of potential predictors
(Hawkins 2004). Here we showed that causal effect networks (CEN), a data-driven method based on causal inference
techniques, can be used to identify robust predictors of a variable of interest.

Using CEN, we identified warm SSTs in the Atlantic and La Nifia conditions in May as robust precursors of an active hurricane
seasons in July-October. These precursors are consistent with the prevailing literature and thus show the usefulness of our
approach. We performed hindcasts based on these precursors and showed that the skill of our forecast model compares well
with operational forecast models (Klotzbach et al. 2019), although, the real forecasting skill of our model can only be evaluated
in the coming years.

At longer lead times, the skill of operational forecast models issued at the beginning of April is limited (Klotzbach et al. 2019).
Here we also identified robust precursors in March including a region of Atlantic SSTs and two regions of mean sea level
pressure anomalies in the southern Indian Ocean and east of New Zealand. A model based on these precursors provides
valuable hindcasts of above median and above 66 percentile seasonal activity. We speculate on the involved mechanism at
play, and suggest that a strong pressure gradient in that region weakens the trade winds in the western Pacific, which would
favor the formation of El Nifio events, which in turn are associated with reduced hurricane activity. We provided some evidence
for this hypothesis by applying a simple CEN on the involved actors, but more research is needed to show the robustness of
this link.

In this study we searched for robust precursors of two well-known favorable conditions for TC formation and intensification,
that is, warm SSTs and low VWS in the Atlantic main development region. Including more variables to the characterization
of favorable conditions, such as relative humidity or upper troposphere temperatures could further increase the skill. It might,
however, be challenging to incorporate these conditions in our current framework which was constructed using seasonally
aggregated data. For relative humidity in particular, variability on shorter time scales than SSTs or VWS might be relevant in
this context.

Here we constructed causal effect networks for favorable conditions in the hurricane season and their potential precursors in
SSTs or MSLP at a fixed time lag of two or four months. Yet, mechanisms on different time-scales and lags might also play a
role and might further affect our results (Runge 2018). Overall, we cannot guarantee that the identified links are “truly causal”.

The causal effect network approach rather helps to identify “the least spurious links” and therefore most robust precursors or
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most skillful predictors. We stress that physical knowledge of the underlying mechanisms is essential to ensure a meaningful
interpretation of our data-centric approach.

A challenge that we did not address here are potential non-stationarities regarding the detected robust precursors (as discussed
in Fink et al. 2010; Caron et al. 2015). Such non-stationarities could lead to varying forecast skill. Given the limited time span
for which reliable reanalysis datasets exist, this issue remains difficult. Applying our approach to climate simulations for which
longer time series are available is therefore a logical next step.

Our here proposed technique to construct statistical forecasting models is generic and can easily be applied for other
meteorological phenomena. It could for instance be applied to forecast seasonal hurricane activity in other basins for which
fewer forecasts exist.

From a methodological viewpoint, the most sensitive step in the approach seems to be the identification of potential precursors
(step 2 in Fig. 1). Depending on the choice of the free parameters of the clustering algorithm and significance threshold for
correlated grid-cells, the detected potential precursor regions can vary and subsequently affect the causal network. Improving
the robustness of this step or finding alternative ways of defining these potential precursors would further enhance the
applicability of the method. Given the recent advances in novel machine learning techniques we are confident that this method

can be further improved.

5 Conclusions

Using a causal effect network approach, we identified skillful spring predictors of seasonal Atlantic hurricane activity from
July to October. For shorter lead times of two months, the identified precursor regions represent well-documented physical
drivers. Statistical forecast models based on these drivers yield considerable prediction skill, demonstrating the potential of
our method. For longer lead times of up to four months, our method suggests a pressure dipole between the southern Indian
Ocean and the western South Pacific as a predictor of hurricane activity in the following season. A prediction model based on
these March precursors still shows skill, but challenges in predicting in particular highly active hurricane seasons remain.

We see different entry points for our findings to be incorporated into applied seasonal hurricane forecasts. Besides a direct
application of our early April forecast model, we encourage other statistical forecasting groups to investigate whether our
newly identified predictors can help to improve their statistical forecast models. Furthermore, the causal links identified here
could form the basis for hybrid forecasting techniques where a dynamical forecast ensemble is constrained by selecting only
members that adequately reproduce the causal links as demonstrated by Dobrynin et al. (2018).

Improved seasonal forecasting with long lead-times can support seasonal planning of disaster risk reduction measures,
particularly also related to disaster relief and emergency aid provision. While basin scale dissipated energy does not directly
provide risk profiles for individual countries, it allows to inform decision making on the regional level, including on financial
support needs pooled e.g. in the Caribbean Catastrophe Risk Insurance Facility serving Caribbean islands states (CCRIF). As

such, improved seasonal forecasting can provide essential information to ensure hurricane preparedness in affected countries.
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