
Response to Reviewers

We would like to thank John Albers and the two anonymous reviewers for careful reading, in-

sightful comments and helpful suggestions for our study. These have been included into the

manuscript (see changes indicated in bold in the annotated manuscript attached at the end

of the reviewer’s response). Please find below the detailed responses (in blue) to the review-

ers’ comments and suggestions. All line indications refer to the new (annotated) version of the

manuscript.

The main changes to the manuscript are listed here:

1. We changed the title of the manuscript to ”Emergence of representative signals for sudden

stratospheric warmings beyond current predictable lead times”.

2. We have reframed the implications of our study. We do not aim to improve the pre-

dictability of SSWs, and thus we keep the word ”predictability” only for literature review.

However, the increasing positive values of the tendency of the first PC time series at lead

time of 3-4 weeks before the majority of SSWs suggest that the intrinsic predictability of

SSWs may be longer than the current two-week predictability shown in the forecasting

models. Our results can be viewed as a promising step towards improving the predictabil-

ity of SSWs in the future by using more advanced statistical methods or in operational

forecasting systems.

Response to John Albers:

This is an interesting paper that does a nice job investigating the relative role of linear and

nonlinear processes for driving stratospheric variability, with important implications for subsea-

sonal predictability. In particular, I think it is interesting that the results suggest that linear

processes likely dominate downward propagating stratospheric anomalies until the final week or

so prior to an SSW, at which point nonlinear processes seem to become important. To be clear,

my comments below are not really criticisms of your results, rather I am just trying to mention

a few issues that I think would be useful to keep in mind when interpreting what your results

imply both in terms of physical process understanding and subseasonal predictability. (Note,

all references that I cite are listed at the bottom of this review)

Thank you for your detailed comments and explanations. Below are point-by-point responses,

and we also add some discussion in the revised manuscript in response to your comments.

To begin, I should point out that I think that the overall methodology of employing EOFs as

a filter is, for the most part, totally fine. Indeed, in many respects, an ‘EOF-filter’ is a better
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filter technique than a spectral filter because it implicitly takes into account both spatial and

temporal information. That said, I think that a little bit of caution needs to be used when

interpreting what a single EOF represents (here I am mostly, though not completely, referring

to your ‘SSW-EOF’, E1).

As nicely discussed in Monahan et al. (2009, in particular their Sect. 3), individual EOFs

generally do not coincide with the dynamical/physical modes of the dynamical system from

which they are derived. One reason for this, is that the atmosphere and ocean (and certainly

the coupled atmospheric-oceanic system) contain processes with very different timescales, which

results in a ‘nonnormal’ dynamical system. This concept (i.e., ‘nonnormality’) is relatively easy

to understand in terms of something like the NAO, where distinct physical processes like ENSO,

the MJO, synoptic-eddy feedbacks, and SSWs all project onto the NAO pattern. This means

that total NAO variance (as represented by the 1st EOF of Atlantic MSLP or geopotential) is

not a single physical/dynamical mode, but rather a convolution of variance that arises due to

many individual physical processes/dynamical processes. That is, any given NAO anomaly is

a result of constructive/destructive interference between the different types of variability (i.e.,

ENSO, MJO, etc.).

Thank you for your insight. We agree that the EOF modes cannot be interpreted by default as

physical modes, as e.g. also discussed in Dommenget and Latif (2002), however they are often

able to capture structures and dynamics that are intrinsic to the studied phenomena. In our

case, the pattern captured by E1 indicates that PV anomalies are centered at the polar cap.

Because E1 is derived using only days around the SSWs, E1 is targeted towards SSWs by design

and the variance explained by E1 for the days around SSWs is around 28%, which is typically

large compared to what can be seen in many climate studies looking at the first EOFs, i.e., often

around 10-15%. Here the physical process (dynamics) represented by the variation of E1 is clear,

i.e., it represents the changes in the strength of the polar vortex, and it is strongly correlated

with polar cap temperature. Since the weakening of the vortex is the dominant behavior of the

polar vortex during SSWs, we believe that E1 can be used to represent the weakening of the

polar vortex even before the occurrence of SSWs, which is supported by the fact that the largest

values, i.e., extremes, in the first PC (indicated by red vertical lines in Fig. 2) correspond to

SSW events. We have added references and the discussion in Lines 149-152.

Now, thinking in terms of nonnormality has important implications for your results, because

(1) it is important for interpreting what physical processes may give rise to your E1 EOF, and

(2) it will dictate what portion of the E1 EOF variance might be predictable at various forecast

leads. To help explain what I mean by this, below I use one possible scenario as an example (the

PJO/NAM). To be clear, I do not know to what extent this scenario is applicable to your results

(though I would guess it is), but the scenario itself is perhaps less important than thinking about

what nonnormality means in terms of your E1 EOF and the predictability of the variance that

this EOF represents.

The potential scenario that I consider here is that your E1 EOF represents a broader class of
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stratospheric variability that regularly occurs and is occasionally punctuated by an SSW event.

This is an idea envisioned by several previous authors (e.g., Kodera et al. 2000 and Kuroda and

Kodera 2004) where it is postulated that the polar night jet oscillation (PJO) can be considered

to be a general class of downward propagating stratospheric anomalies, that may occasionally

be punctuated by a particularly strong PJO-like event in the form of a SSW. Because the

PJO is typically identified via EOFs, it therefore likely arises from the nonnormal dynamics of

ENSO, the MJO, the QBO, internal variability etc. Obviously some of these processes are more

predictable at subseasonal leads than others. The SSW on the other hand, may typically (though

not always) be due to internal nonlinear stratospheric dynamics (e.g., Sjoberg and Birner 2014,

Birner and Albers 2017, White et a. 2019, de la Camara 2019, Nakamura et al. 2020), which

are unlikely to be predictable beyond 1-2 weeks (i.e., variability governed by the deterministic

limit of predictability).

So, what does this mean in terms of your results and subseasonal predictability? One possibility

is that the portion of E1 that you find behaves linearly is part of a broader class of PJO or

NAM like variability that is not necessarily indicative of a future SSW, but may, under certain

circumstances, be predictable on subseasonal timescales as you have suggested. On the other

hand, the nonlinear portion of E1 may necessarily be related to SSWs only, and may never

be predictable beyond synoptic forecast leads (1-2 weeks). Complicating matters further, is

the open question of whether PJO/NAM events without a SSW are strong enough to generate

predictable anomalies in the troposphere.

We thank the reviewer for the detailed example and explanation. We agree that the linear

component of the PV advection that we found for the lead times of around 3-4 weeks may

not be specific to and uniquely representative of SSWs. The same is true for the increasing

wave activity at lead times of around 3-4 weeks, which does not guarantee a future SSW either.

However, both the linear component of the PV advection and the convergence of wave activity

flux lead to a weakening of the polar vortex. When we look at the distribution of dA1
dt amongst

all 25 SSW events in ERA-interim as shown in the figure below (Figure R1), we see that more

than 60% of SSWs have positive values of dA1
dt at lead times of 20 days and the median of

the distribution is consistently positive from 20 days onwards before the onset of the events.

We agree with the reviewer’s comments that this signal could be representative of a PJO event.

However, it would be difficult to distinguish these signals, as in reanalysis, almost all PJO events

are associated with a SSW event, while the reverse it not true. Hence, we think that while the

detected signals may also pick up features of PJO events, they are certainly representative of

SSW events. Furthermore, the fact that a large number of SSWs display a strong and persistent

linear signal indicates the importance of the linear term in preconditioning/modulating the onset

of SSWs. Even though the linear component may not be unique to SSWs, we found that large

positive values of dA1
dt (larger than one standard deviation of dA1

dt during winter) correspond to

either an SSW event or a strong polar vortex deceleration event (a deceleration of the zonal-

mean zonal wind at 10 hPa and 60◦N of more than 16.4 m/s in 10 days, which corresponds

to the 60th percentile in terms of the strength of all wind deceleration events). dA1
dt and its
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linear contributor for SSWs events tend to be stronger and more persistent than for the strong

deceleration events. Figure R2 shows dA1
dt of the composite of the strong deceleration events

(red) compared to that of the composite of SSW events (blue). Note that SSW events are a

subset of the strong deceleration events and thus we exclude the SSW events from the strong

deceleration events in the plot, such that the two sets of events are disjoint to avoid any overlap

and ambiguity. The signals shown at lead times of around 20 days appear almost exclusively

for SSWs. We added a discussion on this topic in Lines 556-566.

Concerning the nonlinear contributor of dA1
dt , we found that it is only important for wave-2 SSW

events and has almost no contribution for wave-1 SSWs. Therefore, we will use the nonlinear

signals at lead times of 10 days to one week to infer the type of event.

Concerning the downward influence of the stratospheric anomalies in the troposphere, we did

not look into whether PJO/NAM events without the reversal of the wind – note that there are

very few of these events – can still have an influence on tropospheric weather and we actually

did not discuss the downward impact of SSWs in the study. We think this is a very interesting

and important question to investigate but it is beyond the scope of the current study. From

another perspective, if the PJO/NAM events have a similar downward impact, then the signals

found here could also be useful to capture these events.

Figure R1: The distribution of dA1
dt for all 25 SSW events in ERA-interim as a function of lead

time. The bottom and top of each box are the 25th and 75th percentiles of the distribution.
The red line in the middle of each box is the median of all SSW events. The whiskers extending
above and below each box are the maximum and minimum. The red plus sign indicates the
outliers, which lie at more than 1.5 times the interquartile range from the bottom or top of each
box. The black line shows the mean of all SSW events and it is the same as the black line in
Figure 3a and 3b. Bold parts of the black line indicate the values that are outside of the 2.5th to
97.5th percentile range of normal winter day values determined from bootstrapping as described
in the main text.
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Figure R2: Composites of dA1
dt as a function of lead time from 50 to 1 days before the onset of

events. Blue is for SSW events and red is for strong deceleration events.

Overall, I think that it is probably important for you to comment in your paper on what can (or

cannot) conclusively be physically implied about what your E1 EOF represents. For example,

what processes might give rise to the potentially predictable (linear) behavior that you have

identified 25 days prior to SSW onset? Is the SSW a culmination of those linear processes that

somehow transition to nonlinear behavior (for e.g., finite amplitude ideas such as Nakamura

et al. 2020 or resonance of some kind)? Or does the nonlinear behavior occur independently

from the linear processes? In addition, in the future, it would be useful to determine whether

E1-type variability that occurs with or without a SSW might imply different levels of enhanced

tropospheric subseasonal skill. In other words, if an SSW is required in order to make the

stratospheric anomaly large enough to be associated with enhanced tropospheric forecast skill,

but the SSW is ultimately only predictable 1-2 weeks ahead of time, then does that mean that the

weaker stratospheric anomalies that are linearly predictable at 3-4 week leads may unfortunately

be of lesser practical importance for forecasting tropospheric anomalies if they occur without

a SSW? On the other hand, if E1-type variability can be used to guide tropospheric forecasts

even without a SSW occurring, that would be very useful information as well.

We agree with the reviewer that the question of which processes lead to the increase of the linear

and nonlinear contributions in the A1 budget is important. In this study however, our focus is

on the spatial patterns of linear and nonlinear PV flux terms as they can help us understand

the linear and nonlinear contributions to the increase of dA1
dt . We find that the spatial pattern
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of the linear PV flux for wave-1 SSW events is largely stationary (Figure 7), which is due to the

stationary spatial patterns of PV and v anomalies (Figure 8). Understanding the question of

why the PV and v anomalies show these stationary patterns could help answer the question of

which processes lead to the increase of linear and nonlinear contributions. However, in this study

we do not focus on connecting the persistent anomalies to certain tropospheric weather events,

like blocking, mid-latitude cyclones, etc. From the spatial pattern of the linear and nonlinear

PV flux (Figure 7), the polar vortex tends to be displaced for wave-1 events and split for wave-2

events due to the rearrangement of the PV by the PV flux. As Reviewer 1 points out, our

results are consistent with the results from Smith and Kushner (2012), and we cite the related

previous studies that connect different processes to the linear and nonlinear contributions to the

increase of dA1
dt . For example, Smith and Kushner (2012) (and the references therein) suggested

that the displacement events are preceded by sea level pressure anomalies associated with the

Siberian high which is consistent with the increase of the linear meridional heat flux before the

events. As another example, the increasing nonlinear signals from one week before the onset

of wave-2 SSWs could be due to the resonance mechanism mentioned in Albers and Birner

(2014). We agree that enhanced prediction skill in the troposphere is a very important question

and worth further analysis. However, in the current study our focus is on finding dynamical

circulation signals representative of SSWs. We leave the connection with the predictability of

the troposphere for future work. We added a discussion on this topic in Lines 567-581.

Again, I don’t have any conclusive answers to the above questions, but it is probably worth

pointing out that your results do appear to generally agree with some recent results that my-

self and a co-author recently published (Albers and Newman ERL Feb. 2021). In short, our

results suggest that linearly predictable stratospheric anomalies are associated with enhanced

tropospheric predictive skill of the NAO. Of relevance here, is the fact that our results have

some interesting similarities to what you have found in your paper. For example, similar to your

results, we find that strong downward propagating stratospheric NAM anomalies are generally

associated with linear processes for lags as far back as 25-30 days prior to ‘stratospheric NAM

event onset’. Likewise, we also find that nonlinear processes only become important 0 to 15

days prior to ‘event onset’ (denoted by stippling in our Fig. 1b). Interestingly, we were able to

identify two types of dynamical modes (note, these are not EOFs), one single mode representing

purely stratospheric processes (related to the NAM), and a second collection of modes represent-

ing coupled tropical tropospheric-stratospheric processes. In terms of subseasonal predictability,

these modes account for a small fraction of overall NAO variance (see our Fig. 5c), which helps

explain why subseasonal forecast skill is so low on average. We did not, however, provide any

insight into which processes (purely stratospheric vs. tropical-stratospheric) are more important

for subseasonal predictability (that is, we did not address the questions outlined in Domeisen et

al. 2019 or Afargan-Gerstman and Domeisen 2020). On this note, does your E1-EOF have any

relationship to any forms of tropical variability?

Thank you for the insights and questions. While this study is not looking at tropospheric

predictability specifically, we believe that the findings in your study mentioned in the comments
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are very interesting and the question of which processes are the most relevant for subseasonal

predictability is important. Even though we cannot provide an answer to the question, we

combined the answer to the previous comment with this answer, and added the discussion in

Lines 567-581.

In closing, you mention in your paper that you would like to explore the implications of your

work in the context of actual subseasonal predictability. Given that you already have identified

an EOF that you believe is important, one quick test you could do would be to project IFS

hindcast data (or whatever your preferred S2S model is) onto your E1-EOF and then calculate

‘forecasts of opportunity’ as periods when the forecasted E1-EOF loading is particularly high.

This would a very rough way of identifying when the ‘signal’ part of a signal to noise calculation

was particularly high, which typically equates to periods of higher forecast skill. If your E1-EOF

is identifying a ‘skillful’ portion of stratospheric variance, then these high loading periods may

be associated with higher tropospheric skill (this type of ‘signal’ calculation is not as complete

as computing the actual ‘signal-to-noise ratio’ as we did in our ERL paper, but it is easy to

compute and seems to work reasonably well some circumstances, e.g., Albers et al. WCD 2021).

Thank you for your suggestions. In fact, we have already projected ECMWF hindcast data

onto E1 extracted from ERA-interim and found that more than 70% of SSWs events can be

identified using dA1
dt . However, these results are part of ongoing work and will be the subject of

a future manuscript. One major reason for not including these results in the current manuscript

is that the model output from the S2S models does not contain PV, hence we had to re-write

our equations using different variables, which required additional deliberations and care with

regard to the analysis and results.

One final minor comment... for the de la Camara et al. paper that you reference, the ’de’ and

the ’la’ are not capitalized.

Thank you for catching this. Change made.

Response to Reviewer 1:

My first comment refers to the predictability of SSWs by analyzing the tendency of the PC of

the first variability mode of PV. I was wondering if the authors have also studied the number of

events that present a rapid increase of this PC but they are not SSWs. How many false alarms

would you get? I guess these “false alarms” would correspond to minor stratospheric warmings.

I am also curious about the opposite case. Have the authors identified any SSW that would not
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be associated with a fast increase of this PC? In this regard, I am a bit concern about the first

assumption of linearity to identify SSWs (i.e. the use of a PCA to identify these events). My

concern is based on the importance of nonlinear processes in the development of some of these

events (wave- 2 SSWs) that is shown later in the study.

Thank you for your comments. The goal of the current manuscript is not to use dA1
dt or the

corresponding contributors to identify or predict individual events but to find stratospheric

signals representative of SSWs (from composites). For example, we found that dA1
dt emerges at

lead times of 3-4 weeks, which might indicate that the dynamical predictability of SSWs could

be longer than 1-2 weeks, as has been commonly observed in the literature. The issue raised

by the reviewer is an important question to address, and this is the topic of our ongoing study.

If we look at the distribution of dA1
dt for all 25 SSW events in ERA-Interim as shown in Figure

R1 (see above, in the previous response to John Albers), one can see that more than 60% of

SSWs have positive values of dA1
dt at lead times of 20 days. The median of the SSW events (red

line within the box) consistently shows positive values of dA1
dt from around 20 days before the

onset of the events. On the other hand, Figure 2a in the manuscript shows that there are some

peaks in A1 that do not correspond to an SSW event. However we found that all the peaks

(values larger than 0.01, which corresponds to one standard deviation in the A1 winter time

series) correspond to a strong deceleration event (the deceleration of the zonal-mean zonal wind

at 10 hPa and 60◦ N by more than 16.4 m/s in 10 days, which corresponds to the 60th percentile

in terms of the strength of all wind deceleration events), which includes all SSW events. Since

this study focuses on SSWs, we did not further investigate how different components in the PV

equation contribute to dA1
dt in the strong deceleration events and how they are different from

SSW events. In ongoing work, we are using a time series classification-based method to study

these differences and apply S2S re-forecast data to look into the accuracy (e.g., hit rate and false

alarm rate) of using dA1
dt at different lead times to identify an SSW event. We added a more

careful discussion concerning these points in the conclusion in Lines 556-566.

Secondly, I am not sure if the authors are aware of the study by Smith and Kushner (2012)

where they analyze the evolution of anomalies of eddy heat flux and their contributing terms at

different vertical levels for displacement and split SSWs. Their results highly agree with some of

this manuscript, particularly the relative role of linear and nonlinear processes and their timing

for the development of displacement and split SSWs. It is true that there is not a straight

relation between split and displacement SSWs and wave-2 and wave-1 events, but Ayarzaguena

et al. (2019) repeated the analysis for the latter and found similar results. I think that it would

be interesting to discuss and compare the results of the present manuscript with those of Smith

and Kushner (2012).

Thank you for mentioning this study. As the reviewer points out, their results are highly

consistent with our results. In fact, as we show in section 4 related to the physical interpretation

of the mode decomposition, we can use the PV flux (and thus the wave activity) to interpret

the results shown in section 3. To be more specific, we found that the linear (nonlinear) PV
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flux is more important for the wave-1 (wave-2) SSWs, which agrees with the results on vertical

wave activity in Smith and Kushner (2012). On the other hand, we also found that the linear

and nonlinear terms are related more to wave-1 and wave-2 events than displacement and split

events. We included a discussion in lines 323-327 and lines 417-421.

Specific comments

Lines 340-343: I was wondering if it would be a good idea to analyze SSWs in long simulations

of more complex models such as CCMs. For instance, some CMIP6 models include interactive

chemistry and provide daily output of long piControl simulations. I am suggesting this because

I had the impression that the conditions in the ISCA model simulations are different from those

in the reanalysis. For instance, there is no interannual variability in SSTs, but a strong warming

in the equatorial Pacific is imposed. The evolution of the tendency of the PC1 is also different

in the reanalysis and the model. It seems that SSWs might be only predicted in advance much

later in the model than in reanalysis. Thus, it is not clear if the difference between reanalysis

and model results is due to the short reanalysis sample or model biases.

Thank you for this comment. There are several potential reasons for why the behaviour of dA1
dt

and its contributors in the Isca model is not the same as that in the reanalysis. We agree that

model biases and lack of representation of certain processes in the Isca model are part of the

explanation for the differences with the reanalysis. We think that using the CMIP6 models

with long piControl simulations as comparison is a good idea. However, the output daily data

of CMIP6 only has 8 pressure levels, which is not enough to yield an accurate computation of

potential vorticity and its budget. For this reason of lack of sufficient data, we did not use

CMIP6 models for comparison. To better understand the influence of the number of events and

the model biases on dA1
dt in the Isca model, we randomly select 25 events from the 78 SSWs in the

Isca model run and show dA1
dt in blue in figure R3. The clear increase of dA1

dt occurs around 10 days

before the onset of the events, same as that of all SSWs in the Isca-model (red). Additionally,

we used the output data to compute the A1 budget from a more complex climate model (ICON,

Zängl et al. (2015), Giorgetta et al. (2018)) with prescribed observed SSTs, CO2, ozone, and

aerosols concentrations following the monthly mean evolution of the 1979-2015 historical period

(which contains most of the ERA-Interim period used in this study). The prescribed monthly

mean prescribed values of SST allow the model to represent interannual variability and the

teleconnections associated with El Niño-Southern Oscillation (ENSO). The ICON model has a

higher resolution (∼158km horizontally) and uses parameterizations of gravity wave drag and

cloud microphysics, processes that are not included in the Isca model. There is a total of 42

SSWs in the ICON simulation. dA1
dt of the ICON model simulation (green) shown in figure R3

and its variation is similar to that of the Isca model (red and blue) but with a clear increase

at around 15 days before the events. If we randomly select 25 out of the 42 SSWs in ICON

and repeat the analysis, the result is very similar (magenta). The figure suggests that for more

complex models, the increase of the first PC tendency starts earlier and the tendency is more

similar to the reanalysis (black). However, the large values of the tendency at around 20 days
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cannot be reproduced in both the simplified and complex models used in this analysis and seem

to be more related to model biases and variability than the averages of a large number of SSWs

in the models. We modified the sentences in Lines 374-378 to clarify this aspect.

Figure R3: dA1
dt as a function of lead time from 50 to 1 days before the onset of SSW events in

different data sets. Black is for the 25 SSWs in ERA-Interim; red is for the 78 SSWs in Isca
model output; blue is for 25 SSWs randomly selected from the 78 SSWs in the Isca model; green
is for the 42 SSWs in ICON model output; pink is for 25 SSWs randomly selected from the 42
SSWs in the ICON model.

Lines 378-385: I would also highlight the positive (and statistically significant) values of the

linear term for wave-2 SSWs just before the onset of events. Their values are of opposite sign

to those for wave-1 events.

We modified the sentences in Lines 421-423 to read: “The linear zonal-mean PV flux for wave-2

SSWs is positive and statistically significantly different from the normal winter days just before

the onset of SSWs, while the linear zonal-mean PV is negative and also statistically significantly

different from normal winter days for wave-1 SSWs.”

Lines 426-445: I wonder if it would be helpful to represent in the same plot v∗a and P ∗∗
a , one in

contours and the other in shading. This might help to clarify the relation between P ∗∗
a and v∗a

and nonlinear PV flux.

We now changed Figure 9 and plotted v∗a (green lines) on top of P ∗∗
a (shading). Note that even

though the main features of nonlinear PV flux as shown in Figure 7 can be roughly inferred by

v∗a and P ∗∗
a in Figure 9, some of the weak features cannot be represented well. This is because
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{P ∗∗
a v∗a} 6= {P ∗∗

a }{v∗a}, where {} denotes the composite mean of SSW events. We added a

discussion on this topic in Lines 483-485.

Technical corrections:

Line 348: I could not find the results that the authors mention in Figure 3 of Ayarzagüena et

al (2019). Are the authors maybe referring to Figure 3 of Ayarzagüena et al (2018)?

Thank you for spotting this. Change made.

Line 382: I think a ”be” before ”found” is missing.

Thanks, change made.

Response to Reviewer 2:

The mode decomposition analysis is a rather involved and difficult to interpret approach, but the

authors have made significant efforts to connect their analysis to PV flux and wave- mean flow

interaction diagnostics which are helpful. The results regarding the distinct processes leading to

a wave-1 and a wave-2 warming are broadly consistent with other works that argue that wave-2

events evolve more rapidly, more non-linearly, more barotropically, and less predictably than

wave-1 events.

However, much is made of the statistically significant precursors found in the time series of

the leading EOF, their main metric for describing the evolution of the vortex; it motivates the

title of the paper. Unfortunately, statistically significant composite signals preceding events

don’t imply anything about the predictability of the event in question. Just because the vortex

weakens somewhat on average prior to the event does not imply that every time the vortex

weakens a sudden warming will follow 25 days later. In other words - the composite suggests at

most that this is a necessary condition, not at all that it is sufficient. To demonstrate evidence

of predictability, the authors would need to identify relevant precursor events without reference

to the warmings themselves, then show that warmings are more likely to occur following that

event. This issue comes up in discussion of tropospheric ’precursors’ to sudden stratospheric

warmings all the time - there are statistically significant signals in the composite evolution prior

to sudden warmings, but they turn out to be relatively useless as predictors because only a small

subset of the tropospheric events are followed by a warming.

We thank the reviewer for the comments. Overall we agree with the reviewer and reframe the

11



implications of our study. We only use the word “predictability” when necessary.

In this manuscript we only aim to find signals that are representative of SSWs during their

dynamical development rather than improving the predictability of SSWs. We agree that the

positive dA1
dt from the composite does not imply that dA1

dt can be used to predict individual

SSW events. However, the positive dA1
dt in the composite is indeed a representative overall

feature of SSWs. Based on the bootstrapping, dA1
dt shown in the composite at lead times of 3-4

weeks is positive ahead of most SSWs, not just for specific SSW events. More specifically, the

distribution of dA1
dt for all 25 SSW events in ERA-interim (Figure R1) shows that the median

of dA1
dt is consistently above zero and around 70% of SSWs have positive values of dA1

dt starting

at lead times of around 20 days. We see the results of the present manuscript as a promising

step that it is possible to improve the predictability of SSWs using more advanced methods.

We also notice that large positive values of dA1
dt (larger than one standard deviation of dA1

dt of

all winter days) correspond either to an SSW event or a strong polar vortex deceleration event

(the deceleration of the zonal-mean zonal wind at 10 hPa and 60◦N by more than 16.4 m/s in 10

days, which corresponds to the 60th percentile in terms of the strength of all wind deceleration

events). However, the magnitude and persistence of the positive dA1
dt in strong deceleration

events composite are not as strong as those in SSW events composite (see Figure R2).

Related to the comment on the precursor signals in the troposphere, we believe that the signals

found here are more directly related to and representative of SSWs than the tropospheric signals

(as the reviewer pointed out, the signals found in the troposphere which many studies phrased

them as ”precursors” are not always followed by an SSW event) from a dynamical point of

view. The tropospheric signals may not lead to a deceleration of the stratospheric zonal wind

or an SSW event as Albers and Birner (2017) showed that only 1/3 of SSWs can be related to

tropospheric precursors. While tropospheric anomalies can help to enhance the wave activity

and generate more planetary waves propagating into higher levels, many previous studies showed

that the stratospheric basic state is crucial for the upward propagation of planetary waves into

the mid-to-upper stratosphere (e.g., Jucker 2016; Albers and Birner 2017). Therefore, an SSW

event is the product of the interaction between the planetary wave and the mean wind flow

in the stratosphere. The main reason why we believe the positive dA1
dt is more directly related

to and representative of SSWs is because E1 represents the variation of the polar vortex by

design and the linear and nonlinear PV advection terms in the PV equation contribute to
dA1
dt . The linear and nonlinear PV advection terms can be related to the PV flux form as we

showed in session 4 and they represent the interaction between the mean flow and the planetary

wave activity. In a word, dA1
dt represents not just one component (i.e., tropospheric signals or

stratospheric mean state) but combined effect of both components. We added a discussion on

this topic in Lines 556-566, including the following statement: ”What we found here suggests

that the intrinsic predictability of SSWs may be longer than the current two-week practical

predictability. However, further work is still needed to investigate whether the predictability of

SSWs can actually be extended, and if yes, how.”
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I have a few other comments, some more substantial than others, but addressing this concern

is essential, and will amount to major revisions. The authors should either reframe the results

from a dynamical point of view and remove reference to predictability, or show evidence for

predictability that justifies this emphasis.

As we mentioned in the previous response, in this manuscript we only aim to find signals that are

representative of the dynamical development of SSWs rather than improving the predictability of

SSWs. Using the signals (e.g., the positive dA1
dt ) found in this study to identify each individual

SSW event will be the subject of upcoming work. To clarify this, we modified the wording

throughout the manuscript and reframed the implications of our results without addressing

”predictability” (see the tracked changes version of the revised manuscript). We also changed the

title of the manuscript ”Emergence of representative signals for sudden stratospheric warmings

beyond current predictable lead times”.

Further Comments

Climatology

It’s not completely clear from the methodology just how the climatology has been computed, but

the authors should consider imposing some kind of low-pass smoothing filter on the climatology

if they haven’t done so already. Given the finite number of years in the calculation, particularly

for observations, there will be considerable residual high- frequency sampling variability that

can artificially increase the small scale variance in the anomalies. This probably won’t impact

the low frequency modes too much, but it will affect the details of the high-frequency modes.

The climatology here is the mean value of each day of all the years available. We added a

comment in Line 130 to make the definition of climatology clearer: ” . . . obtained by computing

the daily mean values of PV over all available years”. As suggested by the reviewer, we applied

a running-average (30-day running mean) to low-pass filter daily mean values over the available

years. The results are shown in the figure below. The results are very similar to those shown in

Figure 3. The main obvious difference is in Nlow−high, which captures the interaction between

the low and high frequency EOF modes without influencing our main conclusions. One reason

for the very similar results between using low-pass filtered climatology and no low-pass filtered

climatology is that applying PCA on the PV data already acts as a filter. The first PCs tend

to capture low-frequency signals, while high-frequency signals (captured by further PCs) are

discarded in the analysis. Our results show that the main contributions to the increase of dA1
dt

come from the first 25 EOF modes. We added a sentence in Lines 131-135 to clarify this aspect.

EOF calculation

From what I could understand, the EOF calculation has been carried out in two steps. The

first analysis is used to obtain the structure of the leading EOF, then this variability is removed

from the PV field and a separate calculation is carried out to obtain the remaining modes. It’s

not clear why this two step approach is adopted. I think it’s connected as well to the fact that
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Figure R4: Same as Figure 3 in the manuscript but applying 30-day running mean of the daily
climatology.

EOF 2 explains more variance than EOF 1 (Figs. 1, C1); I’m assuming that the percentage

reported for EOF 2 is the fraction of the *remainin* variance that is explained by EOF 2. If

this multi-step approach is important, this should be clearly explained and demonstrated.
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The reason for using a two-step approach to obtain the EOF modes is that we want to obtain

an EOF mode that best describes the variability of the polar vortex that is most directly related

to the development of SSWs. This is achieved by computing the first EOF mode based only

on data around the onset day of SSWs. Specifically, days -10 to +5 are used for this purpose.

Applying PCA to all winter days leads to a first EOF mode that is different from the current

EOF mode shown in Figure 1. The variance explained by EOF1 is smaller than that explained

by EOF2 because EOF1 is derived only from data around SSW events. EOF1 is therefore

concentrated on SSW characteristics, and it does not capture all the information contained in

the whole winter data, which generally displays less variability than is observed around SSW

events. The remaining EOFs are derived directly from the whole winter data after removing its

projection onto EOF1. It should therefore not be surprising that EOF2 captures more variance

of the whole winter data than EOF1. After we combined the EOFs from the two EOF mode

decompositions, we computed the explained variance of this combined basis for the whole winter

data. We added a discussion and clarification of this method in Lines 137-143 and Line 156-159.

Description of ISCA model

The processes and parameterizations used should be briefly discussed; calling it ’intermediate’

complexity is a bit ambiguous. E.g. is there a gravity wave drag parameterization? Realistic

radiation? Ozone variability? etc.

We now added a more detailed description of the model in Lines 107-115.

Bootstrap methodology

The bootstrap methodology for computing statistical significance is reasonable, but the authors

should use non-SSW days that have the same seasonal distribution as the SSW days to avoid

aliasing with the seasonal cycle.

Since we removed the daily climatology of PV to obtain the EOF modes and corresponding PC

time series, the evolutions of the first PC and its contributors do not contain the seasonal cycle.

As the reviewer suggested that the bootstrapping should reflect the temporal distribution of

SSWs, we repeated the analysis to use non-SSW days only during December, January, February,

and March (during the typical months of occurrence of SSWs). The results are very similar and

do not change our main conclusions. We added a sentence in Line 276-279.

Minor comments:

-Sign convention for leading EOF: At present a positive A1 anomaly corresponds to a weakening

of the vortex. This makes the descriptions awkward to me, e.g. in the abstract: the leading

PC is an ’indicator of the strength of the polar vortex’ but an increase indicates a deceleration.

This took me a while to understand. The opposite sign convention might be more intuitive.

The first PC is an indicator of the strength of the vortex which can go in both directions,

and positive PC values here indicate a weakening of the vortex, and therefore the potential
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occurrence of SSWs. We added a footnote in the manuscript to clarify it.

l48: the statistics are closer to two in three winters.

Thanks, change made.

Part 1 of the two papers published by Domeisen et al. in 2020 is labeled Domeisen et al. 2020b,

and part 2 is labeled Domeisen et al. 2020a. The citations are appropriate as labeled, but they

confused me because I am used to the more sequential ordering.

This is unfortunately not something we can change in the latex template. The journal might be

able to change this during copy-editing.
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