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Identification, characteristics, and dynamics of Arctic extreme seasons

Response to the Reviewers’ comments by Katharina Hartmuth, Maxi Boettcher, Heini Wernli,
and Lukas Papritz

We thank the editor and all three reviewers for their insightful and helpful comments. We
address each comment point by point below. The editor’s and reviewers’ comments are given in
blue and our responses in black. The most important aspects of our replies and revisions are:

1) As suggested by reviewer 1, we used the North et al. approach to show that the first two
PCs are statistically distinguishable from the others.

2) We now better explain the several subjective choices that were necessary for our
analyses.

3) We clarify our choice to use a multivariate approach to explore different types of extreme
seasons.

Please note, that we always refer to the lines in the revised manuscript (document without
track changes). Figures in the reply document are referred to as “Fig. R1”, etc., and figures in
the revised manuscript are referred to as “Fig. 1”, etc. We further supplement this document with
a pdf containing track changes (latexdiff-pdf showing changes from first manuscript version to
revised manuscript).

Editor

All three reviewers appreciated the study, and I agree with them that the work represents an
interesting and important contribution. Some valid concerns are raised in their thorough and
insightful reviews, and the authors have provided good indications of how they will address
these concerns. In preparing a revised manuscript, I would encourage the authors to focus
particularly on a few points which many of the reviewers’ comments group around. Also, there
remain small English usage errors throughout (some but not all mentioned by the reviewers).

1) Interpretation of identified extreme seasons, mentioned in detail by R2 and also touched on
by R1 (anomalous vs extreme) and R3 (rescaling). I believe it would be worth spending some
more time to put results from this method in context of results from conventional approaches
(R2 comment #1), which would also go towards highlighting the impact/novelty of this study.

Thank you for this comment. We extended the discussion of our method and did our best to
better highlight the novelty and differences of our approach compared to a more conventional
method (such as, e.g., simply choosing the warmest or wettest seasons).

We further updated Table 2, which now includes the rank for each seasonal-mean anomaly (with
respect to all seasons) of our identified extreme seasons. We can show that each extreme
season has an extraordinary seasonal-mean anomaly (rank 1 or 2) for at least one parameter.



Thus, the extreme seasons identified with our method would also be identified with a more
classical approach (e.g., the extreme summers 2013 and 2016, which show the most negative

and most positive , respectively, in the whole study period). However, with our method we 𝑇
2𝑚

*

also identify anomalous seasons that are characterized by an unusual combination of seasonal
mean anomalies, each of which is not particularly noteworthy (in terms of their rank). We have
included a discussion of the benefits of our approach over a more classical one in the
discussion (Section 6).

For further details see responses to reviewer questions (R1: general comment (1) and specific
comments (2,15), R2: general comment (1) and R3: specific comment (8)).

2) Clarification of methodology (all reviewers), including the choice of winter case studies only.

We included all suggestions from the reviewers to clarify and improve the discussion of our
method throughout the manuscript. At the end of chapter 4 (L363ff.), we included a more
detailed justification for the choice of our three case studies.

3) Sharpening of the presentation (e.g., many nice suggestions from R2, R3 regarding framing
questions). I agree with the authors that the length is fine, especially given the amount of work
that has been done, but the text could be edited to better guide the reader to the main
messages. It could help also in the abstract and conclusions to put more weight on what we
learn about point #1 and less weight on details of the case studies.

Thank you for these remarks. We added some metadiscourse at the beginning/end of a few
sections to ensure a better guidance of the reader. We further sharpened our main messages by
integrating the reviewers’ suggestions and, e.g., adding further discussion of our method in the
discussion chapter (L584ff.).

Reviewer 1

General comments

The authors evaluate the atmospheric conditions during anomalously extreme seasons in the
Arctic. This is performed using a regional principal component (PC) analysis (PCA) from ERA5
data of the first two PCs of all seasons from 1979-2018. Furthermore, the PCA uses six key
surface variables and divided spatially into 9 Arctic sub-regions. The sub-regions are
subjectively chosen, but based on climatological sea ice conditions in either the Nordic Seas,
Kara-Barents Seas, and the rest of the Arctic. Results identify 2-3 extreme seasons for each
season (DJF, MAM, JJA, SON) in each sub-region. The PCA applied here provides a
quantification of which variables contribute most to the extreme conditions of the respective
season, and how consistent those conditions are during those particular seasons. The authors
then choose two extreme seasons in the Kara-Barents sea during winter (DJF) to further
investigate the synoptic weather conditions that were occurring and how they might have lead



up to the resulting seasonal extremes. The chosen seasons are picked based on their
orthogonal, yet extreme, projections onto the PCs.

This research nicely demonstrates how PCs can be used to identify seasonal anomalies and
extremes in certain regions of the Arctic. It furthermore demonstrates how to use that
information to provide an expectation of how an extreme season was characterized with regard
to one of the six variables and how consistent those conditions were. It is certainly a nice way to
be able to identify extreme seasons that might be worth analyzing in further detail at shorter
time and space scales if desired. Overall, I think these results can make a contribution and be
published once some remaining issues are addressed. In particular:

1) Picking the first two principal components is subjective and does not necessarily isolate most
of the variance. It first needs to be established that the first two principal components are the
only significant ones. I do not doubt that this is the case given that on line 282, it is stated that
they usually explain 80-90% of the variance. However, it should be shown that they are indeed
statistically distinguishable from the others. North et al. (1982) provide a well-established
method of statistically distinguishing the first few eigenvalues from the others.

Thank you for this comment and for pointing us to the method introduced by North et al. We
applied this method and the results reveal that the first two PCs in DJF and JJA are, with the
exception of sub-region ARM in JJA, always statistically distinguishable from the others. We
added this information to the revised manuscript (L305ff.). Here we provide further details about
our results from applying the North et al. (1982) method, which we also show in the supplement.

Figures R1 and R2 show the standard errors for each eigenvalue in our PCA as introduced by
North et al. (1982) for each sub-region in DJF (left-hand side) and JJA (right-hand side),
respectively. The estimate for the standard error is given by
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where denotes the respective eigenvalue and N the sample size, which in our caseλ
α

corresponds to the 39 realizations of the four seasons of the study period. Along the y-axis, the
eigenvalue for each Principal Component (PC) is given and the error bars represent the
estimated standard error. For both seasons, the first two eigenvalues, and are either clearlyλ
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distinguishable or their error bars show only a very small overlap, except for sub-regions KBI
and NOM in winter. Further, and are always clearly distinguishable from the third eigenvalueλ
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The only exception is the sub-region ARM in JJA for which the error bars of and have aλ
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significant overlap. Thus, we can show that the first two PCs, which we use for the definition of
our extreme seasons and which explain between 80%-90% of the variance in the respective
sub-regions, are almost always statistically distinguishable from the remaining eigenvalues. We
conclude that PC1 and PC2 isolate most of the variance and the corresponding eigenvalues are
statistically distinct.



Figures R1 and R2: Standard errors for each PCA eigenvalue for all sub-regions in DJF (Fig. R1) and JJA (Fig. R2).
The number of the Principal Component is given along the x-axis and the eigenvalue of each Principal Component
along the y-axis. Error bars denote the estimated standard error following North et al. (1982).

2) Section 3 and generally throughout: The values of all correlations and their p-values that are
described should be listed in a table.

We agree that it would be helpful to add a list containing all correlations and respective p-values
for the described relations between the different parameters. We thus added such a table to the
supplementary material and refer to it in the paper.

3) Figures 5 and 6 are a very nice way to illustrate the seasonal anomalies and the variability
that may have also been occurring within those seasons. Having never seen these diagrams
before, it at first takes a little bit of time to understand. It would be very helpful if there were a
schematic showing the "phase space" of the interpretation that illustrates what is said in words
on lines 251-258 (i.e., regions on the graph where there would be anomalies that tend to be
continuous, where there would be warm episodes alternating with weak cold episodes, where
there would be several intense warm and cold episodes that nearly cancel, where they would be
near the climatology, etc.).

Thank you very much for pointing this out. To better understand and interpret the figures, we
added lines of a constant ratio of the seasonal-mean anomaly and the seasonal-mean absolute

anomaly ( ) to the diagrams, such as you can see in the schematic figure below. We furtherχ*

χ*| |
adapt lines 258-278 in the revised manuscript as follows:



Figure R3: Schematic figure showing seasonal-mean anomalies ( ,χ*

along x-axis) vs. seasonal-mean absolute anomalies ( , alongχ*| |
y-axis). The dots in this schematic figure are colored by the ratio of

both measures, , which is additionally visualized by grey dashedχ*

χ*| |
lines. is shown by stippled grey lines and is shownχ*

χ*| |
=± 1 χ*

χ*| |
= 0 

by a dashed blue line.

‘To better understand the seasonal substructure of Arctic
winters and summers, we compare the seasonal-mean

anomalies ( ) with the seasonal-mean absoluteχ*

anomalies ( ) for T2m, P and ES in selected sub-regionsχ*| |
in DJF (Fig. 5) and JJA (Fig. 6). The ratio of seasonal-mean and seasonal-mean absolute

anomalies, , is indicative of the temporal persistence of an anomaly throughout a season.χ*

χ*| |
Thus, the location of a season in the diagrams provides information about the substructure of
the season in terms of the considered parameter. In general, the further to the right, the more
positive is the seasonal-mean anomaly of the shown parameter and the further to the left, the
more negative. The closer the seasonal-mean anomaly is to the seasonal-mean absolute

anomaly (dots close to the outer stippled grey line representing ), the more persistentχ*

χ*| |
= ±1

the anomaly is throughout the season. Thus, we define seasons with as seasons0. 8 ≤ χ*

χ*| |
 ≤ 1

with a “continuous” anomaly. With a decreasing absolute value of , the seasons are locatedχ*

χ*| |
further away from the outer stippled grey lines, meaning that positive or negative anomalies in
the respective parameter occur more episodically throughout the season. The closer a season

is positioned towards the blue dashed line where and thus , the more positiveχ* = 0 χ*

χ*| |
= 0

and negative daily anomalies cancel each other, leading to a weak overall seasonal anomaly.

The value of is further indicative of the magnitude of the daily anomalies throughout aχ*| |
season. A season located at the top of the plot shows stronger daily anomalies than a season

with the same ratio but a smaller .χ*

χ*| |
χ*| |

For example, a season can be anomalously warm because the daily-mean T2m values are larger

than the climatology on almost all days of the season , resulting in . With a decreasing
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ratio of both anomaly metrics, e.g. , the season is still anomalously warm, but it
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results from several warm episodes alternating with weaker and/or shorter periods with

negative T2m* values. If , cold and warm episodes cancel each other leading to a weak
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overall seasonal anomaly. Comparing two seasons with the same , the season which is
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positioned further up in the plot (showing larger values of and ) shows a larger𝑇
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variability in T2m with more intense warm and/or cold episodes compared to the season which is
located further down.’

4) The justification for choosing two winter cases is weak. Perhaps this is because the anomaly
values are smaller in the summer. But is it not dM and the standardized anomalies that
determine how extreme a season is with these methods? These are just as strong in the
summer (Table 2). I can see that the results shown in Figure 5 are used to pick the cases, but
again, this seems contrary to the main setup of this paper of using the PCs to determine the
extremes. Also, why 2011/12 in the Kara Barents Sea when this categorizes as "anomalous"
rather than "extreme" in these methods? Regardless, it is hard to justify the title "Identification,
characteristics, and dynamics of Arctic extreme seasons" when only the dynamics of winter
extreme seasons were discussed.

We agree that our choice of the case study seasons (three winter seasons, two in the Kara and
Barents Seas, and one in the High Arctic) is subjective. They are also to a certain extent a
compromise between “many more seasons would be interesting to study in greater detail” and
“the paper should remain readable and have a reasonable length”. We think that choosing three
winter seasons makes their comparison easier and their differences more revealing. We would
like to show that even in the same region (Kara and Barents Seas) two anomalous/extreme
winter seasons can have a completely different substructure and can be associated with
different weather systems, emphasizing the inter-annual variability. Showing this for a winter and
a summer season would be less surprising and interesting as this would mix seasonal and
inter-annual variations. It is also important to us to evaluate the case studies in some depth,
which limits the number of cases fitting into the paper to about three. Of course, we also looked
at other seasons but then decided that the selected cases nicely illustrate the diversity and
complexity of the involved processes, which is one of the key aims of our study. In the revised
version we now better explain that the choice of the case studies is subjective and motivated by
our intention to reveal the diversity and complexity of the involved processes (L363ff.).

Regarding the title, it’s true that we identify and characterize extreme seasons in summer and
winter, but then only discuss the dynamics in winter. However, as we now explicitly mention this
limitation and better explain the key aim of the case studies, we think that the title is justified.

Specific comments:



1) Line 135: Why are only marine cold air outbreaks (CAOs) considered? There are also
significant CAOs over land, described in Biernat et al. (2021).

We are only considering ocean and ice grid points and thus only marine cold air outbreaks,
which are identified on grid points with less than 50% sea ice.

2) Line 186: Choosing a dM threshold of 3 seems quite subjective. How is this threshold picked?
If each principal component has a significant anomaly of two standard deviations, this could
provide an expectation for what would be significant when considering the PCs in combination.

The thresholds for anomalous resp. extreme seasons are indeed a rather subjective choice.
However we find that with these thresholds we obtain on average 0-1 extreme seasons per
sub-region (which equals 0-2.5% of all seasons) and 4-5 anomalous seasons per sub-region
(equalling 15-17% of all seasons). Assuming a normal distribution, these values correspond to
the range of 2-3 for our extreme seasons and 1-2 for our anomalous seasons. Further, withσ σ
this number of extreme seasons, the return period of such a season corresponds to
approximately 40 years. Several studies, e.g., Röthlisberger et al. (2021) used this as an
adequate measure for defining extreme seasons.

As a side note, we would like to mention that preliminary analyses of 1000 years of
(present-day) CESM large-ensemble data show that our chosen threshold of dM=3 results on
average in a return period of around 70-90 years. We are, thus, confident that classifying the
seasons with dM>3 as “extreme” is well justified.

3) Line 219: Be more specific about "almost always." What percentage of the time is it true?
Same thing for line 225... what percentage of the cases translates to `usually'?

Thank you for pointing this out. We adjusted the manuscript in the indicated section (L225ff.) to
clarify the mentioned relationships between the different variables.

4) Line 262: How close to the |P*| = P* line does a season need to be in order to be called
"continuous?" For example, the 2016/2017 winter season was pretty close, but not exactly on it.
On the other hand, there are very few cases of |T2m*| = T2m* being exactly equal in the
summer while it is described as "continuous" on line 260.

There are indeed only very few cases where the seasonal-mean and seasonal-mean absolute
anomalies of a season are equal. Thus we changed our definition of a “continuous anomalous

season” from to , including seasons with a ratio of (see previousχ*| | = χ* χ*| | ≈ χ* 0. 8 ≤ χ*

χ*| |
≤ 1

comment). We added these changes to the revised manuscript (L265ff.).

5) Line 307: Would also be useful to point out that there is very little 2-m temperature variability
over the Arctic sea ice in the summer. This could imply that temperature variability may not play
a major role in sea ice loss, which has very large interannual variability in the summer.



Figure 8 does indeed suggest that T2m has only little variability in regions with SICclim>0.9 in
summer compared to other sub-regions. However, T2m is capped above sea ice as the air is cold
and the excess energy goes into the melting of the ice if T2m is above the freezing point, which
essentially limits (near-surface) temperature variability. We further assume that the sea ice loss
in summer is equally strong in the other sub-regions (especially the mixed sub-regions with very
variable SIC), which show a larger variability in SIC. As there exists only one sub-region with
SICclim>0.9 in summer, we think that additional analyses would be needed to make such a
statement.

6) The justification of how an extreme season is chosen on Lines 310-314 should be moved up
to Section 2.3.

We already explain this in Sect. 2.3. The text in lines 334ff in the revised manuscript is meant as
a reminder. We now clarify this by writing “As explained in Sect. 2.3, …”.

7) Line 315: Which season does Figure 2 show? This could also be referenced here along with
Table 2.

Figure 2 in the manuscript is only a schematic biplot which does not refer to a specific season
nor region. We slightly changed the figure caption to clarify that this is only an idealised plot.

8) Figures 9, 10, 14: Would be helpful to label the x-axis with the month/date instead of the day
of the season, esp. to be consistent with the text.

We mostly use “on day 12,15, 20…” throughout the text and only rarely real dates. Thus, we
adapted the manuscript such that we don’t use specific dates anymore, as we think that this
ensures better readability.

9) Line 367: How are blocking, cyclone, and CAO frequencies computed exactly? Need
references and a short description.

A common feature of our weather system identification schemes is that they produce a
two-dimensional binary field, often referred to as the “mask” of the weather systems, where grid
points that belong to a system have a value of 1 and the others have a value of 0. Simple time
averaging of these binary fields then automatically delivers the weather system frequency field.
For example, if a cyclone mask covers a grid point at 25% of all times, then averaging 25%
times a value of 1 and 75% a value of 0 leads to a frequency of 0.25 (we added this information
in lines 397ff.). For the specifics of the identification scheme, we added a few sentences for
each weather system and now give the relevant references to the papers that introduced these
schemes in lines 132ff.

10) Line 389: "Several episodic precipitation events..." But wouldn't Fig. 5h suggest consistent
precipitation events?

Thank you for pointing this out. We deleted “episodic” to clarify the constant occurrence of
precipitation events throughout the season.



11) Line 431: Remove "it is obvious that"

We changed “it is obvious that” to “it can be seen that”.

12) Line 440: Please also label JJA 2016 in Figs. 6 and 8.

To make it clear that JJA 2016 is somehow connected to our case study DJF 2016/17, we
additionally labeled it in Figs. 6 and 8 in the manuscript.

13) Lines 441-445: It is misleading to say that there were positive temperature anomalies over
large parts of the Arctic in JJA 2016. This and the blocking was more centered over the
Kara-Barents Sea region, while much of the central Arctic was not exceptionally warm and had
frequent cyclones.

We are not sure if we understood your remark correctly, as we do not state that the positive
surface temperature anomalies in JJA 2016 occurred over large parts of the Arctic, but only in
the Kara and Barents Seas. We then state that in autumn 2016 (mainly during October and
November), positive temperature anomalies occurred across the whole Arctic region as already
shown by Tyrlis et al. (2019). We now clarify this further in the text by replacing “during autumn
2016” by “during October and November 2016” (L482).

14) Section 5.3: If the blocking frequency was greatest over Scandinavia, why were the warmest
temperature anomalies over the Kara-Barents (KB) region and not co-located with the blocking?
Seems like there should have been northerly flow over much of the KB region from air flowing
over sea ice. Is it surprising that the air mass was not modified by the time it reached KB?

Thank you for pointing this out. First of all we want to emphasize that DJF 2016/17 was not a
particularly warm season, but experienced several episodic warm events. Blocking over
Scandinavia influenced the surface temperatures in the Kara and Barents Seas, especially
during the warm episode in February 2017. Trajectories show that a majority of the air causing
this warm episode originated over Scandinavia and was undergoing subsidence (we will add a
short evaluation of some air mass trajectories to the supplement; see answer to comment (15)
of reviewer 2 and Fig. R6). However, the pattern of blocking and cyclone anomaly patterns as
shown in Fig. 12 in the manuscript does also support northerly flow into the region as you
correctly assume, causing for example the period with a strong CAO in mid-February 2017,
when cold air is transported from the High Arctic towards the South, facilitated by a block over
Scandinavia and a cyclone in the eastern part of the Kara and Barents Seas. Please have a
look at the supplementary animation S2 where we show the synoptic evolution for each day
throughout the season. We also tried to further shape section 5.3 to better highlight in which
way the synoptic patterns influenced the surface temperatures in our case study sub-regions.

15) Lines 120, 541: Is this approach really novel given that (Graf et al. 2017) first introduced it
in a similar application?

Using a PCA for finding dominant variability modes has been done in several studies such as,
e.g., Graf et al. (2017). However it has never been used to define anomalous or extreme



seasons based on the combination of several parameters. Thus, in terms of defining extreme
seasons, this approach is novel. However, we deleted the word “novel” in L584 to clarify that the
use of a multivariate approach per se is not novel.

Technical corrections:

1) Table 1: 2 m temperature --> 2-m temperature

We followed the WCD submission guidelines (see “House standards” for hyphen usage: “It is
our house standard not to hyphenate modifiers containing abbreviated units (e.g. “3-m stick”
should be “3 m stick”)).

2) Table S1: Caption states standardized values are in brackets, but they are instead in
parentheses.

Thank you for spotting this. We replaced “brackets” with “parentheses” in the caption of Tables 2
and S3-S6.

3) Section 2 should be "Data and methods" given that there is more than one method used to
complete the analysis.

Changed as suggested.

4) Figure 1 caption: State what the green and red boxes denote.

We added the following sentence to the caption of Figure 1: “Green and red boxes denote the
areas of the Kara and Barents Seas and Nordic Seas regions, respectively.”

5) Line 135: There does not need to be a space between the number and the "%" symbol

Again, we followed the WCD submission guidelines (see Figure content guidelines: “Spaces
must be included between number and unit (e.g. 1 %, 1 m).”).

6) Lines 140-141: What is the sign convention for the surface energy balance?

Thanks for hinting at this. We added the following sentence in L144ff.: “Positive signs denote
energy fluxes into the surface, whereas negative signs are indicative for energy fluxes into the
atmosphere.”

7) Line 183: There should be a period at the end of the equation.

A period has been added at the end of the equation.

8) Lines 352, 465: normal --> average



Changed as suggested.

9) Line 393: This --> These

Thanks for spotting this, we changed “this” to “these”.

10) Line 424: Remove "of"

“Despite of this” has been changed to “despite this”.

11) Line 453: Insert "of" after "Comparison"

“Comparison DJF 2011/12 and DJF 2016/17” → “Comparison of DJF 2011/12 and DJF
2016/17”.

12) Line 463: got --> became

Changed as suggested.

References:
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between tropopause polar vortices, cold pools, and cold air outbreaks over the central and
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Graf, M. A., H.Wernli, and M. Sprenger, 2017: Objective classification of extratropical
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Reviewer 2

The paper presents an analysis of variability in three Arctic regions using 6 metrics. An input of
those metrics into the dominant modes of variability and links between those metric are
discussed. Overall, I am impressed by the amount and quality of work done in this study.

Here is what I like about the paper:

● Fig 5 and 6, which show that while strong anomalies may be observed in one or two
metrics, other metrics may remain close to their climatological values;

● assessment of the input of the six metrics into the main modes of variability and
relationships between them;

● case studies (particularly fig. 10,11, 14) and the discussion around them. An attempt to
establish a connection between the weather and seasonal anomalies is valuable;



● a wide range of metrics used in the study - not only T2m/SIC/P, but also energy fluxes,
cyclone frequency, CAO and a blocking index.

However, there is a couple of major concerns that need to be addressed before the paper can
be accepted for publication:

1. I am not convinced that the approach, introduced in the paper, is a good way to select
extreme seasons. Despite the use of a multivariate approach, it often comes to just one metric
showing a strong seasonal anomaly, which was enough to identify the season as extreme or
anomalous. Thus, without applying this approach, one may simply go through all 6 metrics and
select the most extreme season(s) in each of them. I don’t think I saw a proof that the seasons
selected with the PCA analysis were more anomalous than those that showed a strong anomaly
but were not picked up by the PCA approach. The latter may be even more anomalous than
those, that were selected using the PCA.

On the other hand, there are seasons that were identified as anomalous though none of the
variables showed a strong anomaly. Could it be proved that they are ‘true’ anomalous seasons
and not artefacts of the method?

I am not asking for a change of the approach here, but I think more discussion around potential
(dis)advantages of the proposed method is needed. In my opinion, this method identifies the
dominant modes of variability and allows for assessment of the contribution of each of 6 metrics
into those modes and a link between them. Section 5 explores a few seasons when one of the
first two modes of variability was among the strongest.

We appreciate and fully understand this remark. It is a priori not clear how extreme seasons
should be defined. An obvious choice, which we also use in other studies, is to simply choose
the warmest or wettest seasons. This would prioritize one parameter (e.g. temperature or
precipitation) and a justification would be given why this parameter is particularly relevant. Here
we tried something else, something more “objective” in the sense that we did not want to
pre-specify the most relevant parameter. Instead, we allow for the possibility that besides
individual parameters, also their combination can be unusual. Thus, we were led by the
hypothesis that our multivariate approach will lead to different types of extreme seasons
(different in terms of their individual anomalies of T2m, P and ES), which, however, share a similar
“anomalousness” as expressed by the parameter dM. We don’t think that this method produces
artefacts; in order to reach a value of dM≥2 (or even dM≥3), at least one of the considered
variables or a combination thereof must be clearly exceptional compared to the other seasons in
the ERA5 time period. In the revised version we will make sure that this line of thought becomes
obvious to the reader. At the same time, we cannot (and don’t want to) prove that this approach
is “better” than a more conventional one. If all that matters in a specific study is for instance the
seasonal snow accumulation, then there is no need to work with our approach.



We adapted the discussion (L584ff.) to clarify the novelty and characteristics of our approach in
the context of other, more conventional, methods.

2. My other concern is the length of the manuscript. Considering the amount of work, it is hard
to make it shorter, but I think the paper will benefit from it. Some plots (especially, Fig. 3) are too
busy and are difficult to interpret. Section 3 and 4, while interesting, are hard to read, particularly
when plots discussed in the text are a couple of pages away (which is inevitable). Please select
the most robust and/or important relationships and focus on them. I understand that each plot
provides a lot of information, but, unfortunately, human beings can only keep a few facts in mind
at a time.

We did our best to further streamline the text and make it as readable as possible. With regard
to the length of the paper, we think that it is still fairly OK.

Other comments:

1) Abstract: 1.The abstract is a bit long, even if there is no word limit, a page-long abstract is
not ideal.

Thank you, we shortened the abstract by about 20%.

2) I think it is worth mentioning that 2016/17 winter was mostly anomalous in terms of
precipitation and maybe in some other variables, otherwise, until you read the paper, it remains
unclear why it was anomalous.

Thank you for this remark. In the revised version of the abstract we write “In contrast, winter
2016/17 started with a strongly reduced sea ice coverage and enhanced sea surface
temperatures in the Kara and Barents Seas. This preconditioning, together with increased
frequencies of cold air outbreaks and cyclones, was responsible for the large upward surface
heat flux anomalies and strongly increased precipitation during this extreme season.” This
makes it clear that DJF 2016/17 was mainly anomalous in terms of precipitation and surface
heat fluxes.

3) Sect. 2.3: For the PCA analysis, was each metric first averaged over the corresponding
region? Meaning that the special structure of those anomalies was not accounted for.

Yes, we average over the region and therefore lose information about the spatial structure.

4) Fig. 3: As I already mentioned above, it is a very busy plot, which is hard to read. The only
thing that is obvious to me is that in JJA the red/blue markers can be linked to positive/negative
temperature anomalies. For DJF, what is obvious is a link between T2m and P anomalies and
that the low right corner has predominantly negative Es anomalies. However, regional
differences, discussed in the text, are very hard to see. If you decide to keep this plot, maybe
splitting into different geographical locations or the sea ice concentrations helps.



Thank you very much for the suggestion. We adapted the figure (Fig. R4 below shows the
revised Fig. 3 of the paper), and now show the correlations for each SICclim range in separate
panels.

Figure R4: Seasonal-mean anomalies of P ( ; mm day-1, along x-axis), T2m ( ; K, along y-axis) and ES ( ; W m-2,𝑃* 𝑇
2𝑚

* 𝐸
𝑆

*

color) for 39 seasons in DJF (a,b,c) and JJA (d,e,f) for sub-regions with SICclim > 0.9 (a,d), 0.1 ≤ SICclim ≤ 0.9 (b,e)
and SICclim < 0.1 (c,f).

5) l.230: Despite good clustering in Fig. 4, this plot is again very busy. Maybe you can show the
average location for each of the nine sub-regions on top of the existing plot.

Thanks for this suggestion. We added averages for each sub-region to Fig. 4 in the revised
manuscript (see Fig. R5 below).



Figure R5: Seasonal-mean absolute anomalies for P ( ; mm day-1 ,along x-axis), T2m ( ; K, along y-axis) and𝑃*| | 𝑇
2𝑚

*|||
|||

ES ( ; W m-2, color) for 39 seasons and (a) 9 sub-regions in DJF and (b) 7 sub-regions in JJA. Blue symbols mark𝐸
𝑆

*|||
|||

average values for each sub-region.

6) Fig.5, ‘the seasonal-mean absolute anomalies’: are these the seasonal-mean absolute daily
anomalies, as in Fig. 4?

Yes. We define the seasonal-mean absolute anomalies as the seasonal mean of the absolute
daily anomalies (L238ff.), which is valid for all figures in Sect. 3.

7) Fig.5,6: why Nordic seas are not shown?

In order to limit the length of the paper (see also your remark above), we selected some
sub-regions for Figs. 5 and 6 (those that are most relevant for the case studies). The other
sub-regions are now shown in the Supplement.

8) l.285-287: The statement on correlation between T2m and P comes from the fact that the
corresponding blue lines are close to each other?

Yes. The more parallel two precursor vectors are, the stronger is the correlation of the
precursors, provided that PC1 and PC2 explain a large part of the variance (Gabriel, 1971;
1972).

9) Regarding the comment on the weather systems creating extremes in the high Arctic, I would
like to agree, though none of the AR seasons across all regions in fig. 5 look particularly
extreme. How about other regions that have stronger extreme seasons often just in one
parameter - can they be explained by anomalous weather patterns?

Yes, we agree, variability is distinctively smaller in the High Arctic in winter. But we think that
one strength of our method is that it is still able to objectively quantify the "anomaly magnitude"



of one season compared to another in a specific sub-region. A method using absolute
thresholds would find most extreme seasons most likely at the poleward end of the storm tracks.

With respect to your 2nd question, we unfortunately don’t understand what you mean by “other
regions”. For all seasons, which we investigated in detail, we found an important role of
anomalous weather patterns.

10) l.303-307: Why the described connection between P and Rs over the sea, as well as
between T2m and RL in KBM does not hold in the Kara-Barents Sea?

In NOS and ARS we can see an anti-correlation between P and RS (corr(P,RS)=-0.91 in NOS
and corr(P,RS)=-0.96 in ARS. Our argument for this anti-correlation is the presence of clouds
during rainfall. As you correctly point out, there is no such anti-correlation in sub-region KBS
(corr(P,RS)=0.05). This would indicate that there is a large variation in cloud cover (and thus
possible reduction in Rs) also during periods without precipitation. We did, however, not
investigate this relationship in further detail.

We also want to point out that the mentioned correlations are only an approximation (see
previous comment), which is more accurate the more of the total variance is explained by the
first two Principal Components. As in the mentioned sub-regions this explained variance ranges
between 85% and 88%, we assume that the correlations are good enough to use them for our
interpretation.

11) Section 4: The relationship between 6 metrics during cold and warm seasons, gained from
the PCA analysis, is interesting. Could correlations found in this section be confirmed by using
the raw data?

We are not sure if we understand this question correctly. Yes, we can confirm some of the
correlations found with the PCA. For example it is shown in Fig. 3 that in DJF T2m and P are
mostly positively correlated in ice and mixed sub-regions, whereas there is no such correlation
in regions over the open ocean. This correlation can as well be seen in the PCA biplots for DJF
in Fig. 7. However, as we use six different variables for the PCA analysis, and there seems to be
no conventional method to illustrate the correlation of six variables, we only show T2m, P and ES

in Fig. 3. It is further important to mention that we use detrended seasonal-mean anomalies for
the PCA and thus remove the seasonality and a potential trend compared to the raw data.
Therefore, it is not straightforward to compare the correlation of certain parameters for both data
sets.

12) l. 322: “By design, extreme seasons have very large anomalies for at least one parameter…
However, some anomalous seasons don’t show very strong anomalies in one particular
parameter, which implies that for these seasons it is the combination of several parameters that
makes them anomalous” I am not sure that the first sentence is true. Moderate anomalies in a
few variables may also give an anomalous season and this is what happens in some cases.

Thank you for this remark. We rephrased the mentioned section (L349ff.) in order to clarify that
indeed our extreme seasons have at least one large anomaly in one parameter (see previous



comment about the approach as well as answer to comment 1 by the Editor) to reach a dM value
which is larger than 3. However, it is correct that this is not necessarily the case for anomalous
seasons, where it is often the combination of several moderate anomalies resulting in dM>2 (but
smaller than 3).

13) l.367: I could not find a description of how cyclones, CAO and blocking events were defined.

For the specifics of the identification scheme, we added a few sentences for each weather
system and now give the relevant references to the papers that introduced these schemes
(L132ff., see answer to specific comment (9) by reviewer 1).

14) l.372: Even during CAOs the temperature remained above the climatological mean, hence, I
doubt that 38%-deficit in CAO can be responsible for the season being anomalous. During the
first month (days1-27), there were no significant blocking events and CAOs, but T2m was well
above average. To me it looks like there was a strong preconditioning. Furthermore, in the next
case, shown in Fig. 10, there is a high number of CAOs but they have relatively small effect on
T2m, especially during the first half of the season, brings the temperature down by only,
perhaps, 2-3 deg.

Thank you for this remark, it is certainly important to discuss this more thoroughly. As we state
in section 5.3, where we discuss the synoptics throughout the winter 2011/12, one important
feature is the pathway of the cyclones entering the Arctic from the North Atlantic, as they tend to
slow down and get stationary in the region of the Nordic Seas, and their position relative to the
Kara and Barents Seas. As a result, during several days of this winter, the warm sector of a
cyclone is located in the Kara and Barents Seas whereas its cold sector is positioned in the
Nordic Seas. This does not only explain partially the relative lack of CAOs, but also the overall
increase in the surface temperature anomaly. If the cyclones were located further east, both the
warm and the cold sectors would have been located in the region, likely resulting in no notable
T2m anomaly. Comparing the timeseries in Fig. 9 with the supplementary animation S1 shows
that this synoptic situation especially occurs in December and in the second half of February,
when the T2m anomaly is very strong. For further studies it could thus be very useful to have a
metric for the coverage of a region by a cyclones’ warm sector as opposed to its cold sector
(and thus the position of a cyclone with respect to that region). This would simplify the
interpretation of a cyclones’ influence on surface parameter anomalies in a distinct region. In the
revised manuscript we now emphasize more that the impact of cyclones depends critically on
their track relative to the region (L500ff.).

With regard to your comment on preconditioning in this season, we can say that this is most
probably only a minor reason for the anomalous surface temperatures. Indeed, SON 2011

shows already slightly positive values and a slightly reduced SIC, but not to an extent that𝑇
2𝑚

* 

could explain the strong seasonal-mean T2m anomaly during DJF 2011/12. The sea surface
temperature reaches values of about +1-1.5 K above normal in September 2011, however
returns to climatological values in October and shows no significant anomalies throughout
November.



15) l.465: A seasonal blocking anomaly over Scandinavia is probably not enough to support the
statement that ‘Subsidence-induced warming [over Scandinavia] and long-range transport of
warm air masses contributed to several warm episodes.’

This is indeed correct. To confirm this statement, we added a short evaluation of some air parcel
trajectories to the supplement, which show the importance of subsidence-induced warming and
long-range transport during episodic warm events in DJF 2016/17.

Figure R6 shows air parcel trajectories for two warm episodes in DJF 2016/17 from 16-19
January 2017 (Fig. R6a) and from 11-14 February 2017 (Fig. R6b). In January, the influence of
long-range transport of air parcels at lower levels, mainly from eastern Europe, can be
observed. In February, subsiding air masses, favored by the presence of a blocking system over
Scandinavia, additionally contribute to the warm event.

Figure R6: 10-day kinematic backward trajectories associated with positive daily mean T2m anomalies in the region of
the Kara and Barents Seas for the period (a) 16-19 January 2017 and (b) 11-14 February 2017 colored according to
pressure. Trajectories are initialized every 6 hours at 25, 50, 75 and 100 hPa above ground for grid points with

. Every 100th trajectory is shown with black dots denoting the starting point of each trajectory.𝑇
2𝑚

* ≥ 2 𝐾

16) l.498: why a persistent high does not cause subsidence warming? and why there are no
blocking events during Jan 2013 at the time of a persistent high? I can also see a number of
cyclones in Feb, despite the text says that Feb was also calm. I agree that probably the main
reason for decreasing t2m and low P is that the High Arctic remained isolated from the lower
latitudes, however, none of the metrics in this study reflect an exchange between latitudes. I am
not suggesting adding such metric at this stage, but it might be something to add in the future.

Thank you for these remarks. It would certainly be useful to have a measure which is indicative
for latitudinal air mass exchange to better understand the processes leading to extreme
seasons in the High Arctic.



Regarding your questions about the non-co-occurrence of the persistent high-pressure system
as well as the lack of subsiding air, we analysed the geopotential height as well as the potential
vorticity (PV) anomaly at upper levels throughout this winter. Figure R7 shows the geopotential
height at 300 hPa (Z300) during the episode of the strong high-pressure system between 15
January and 25 January 2013 in the region of the Chukchi Sea and the High Arctic. Z300 does
not show significantly enhanced values above the surface high, indicating that there is no strong
upper-level forcing in the form of a persistent ridge which could have caused the formation of a
block and the strong subsidence of air. The analysis of the vertically averaged potential vorticity
anomaly (VAPVA) between 500 and 150 hPa does further support these results, as it reaches
only small negative or even positive values in the same region (for the identification of a block
following Sprenger et al. (2017), an area with VAPVA < -1.3pvu which persists for at least 5 days
would be needed). Thus we assume that the strong high-pressure system at the surface is
caused by very cold air below an inversion layer, decoupled from the synoptics in the upper
troposphere. We can show that there exists a strong inversion layer very close to the surface in
the center of the high pressure system by using a skewT-logP diagram (see Fig. R8), which
supports our assumption that the air in this area experiences radiative cooling opposed to
subsidence-induced adiabatic warming which one might expect in the presence of an
upper-level block.

Figure R7: Synoptic situation on (a) 20 January 2013 and (b) 24 January 2013. Daily mean geopotential height at 300
hPa (in hPa, color). Sea level pressure (grey contours, in intervals of 10 hPa) and blocking mask (dashed green
contour) at 00 UTC on the considered days. Black star at 173°E, 78.5°N shows location of skewT-logP profile in Fig.
R8. Sub-region ARI is marked by orange hatching.

Figure R8: SkewT-logP diagram 173°E, 78.5°N
(black star in Fig. R7). Temperature is shown
along the x-axis (in °C) and pressure along the
y-axis (in hPa). Black lines show the ambient



temperature profile for 20 January 2013 (dotted line), 22 January 2013 (dashed line), and 24 January 2013 (solid line)
at 00 UTC. Grey lines show isobars (horizontal) and isotherms (skewed), respectively. Colored dashed lines denote
dry (red) and moist (blue) adiabats, respectively. Green dotted lines denote constant saturation mixing ratios.

We replaced Fig. 15 from the first manuscript with Figs. R7 (Fig. 15) and R8 (Fig. 16) and
adapted lines 544ff. in the revised manuscript to clarify the synoptics during DJF 2012/13.

17) l.529-534: the paragraph first describes obvious seasonal differences (higher variability in
winter due to stronger gradients) and then concludes ‘hence, it is reasonable to subdivide the
Arctic into several regions considering these spatial differences to study anomalous Arctic winter
seasons.’ But during summer the regions were also subdivided. I am not sure if this paragraph
is needed at all.

Thank you very much for this remark. The mentioned paragraph is indeed a bit misleading and
possibly not needed at all, which is why we deleted it. However, we still want to mention the
difference in spatial variability between winter and summer and therefore added a sentence in
this regard to the previous paragraph (L568).

18) l. 541: see my major comment on the PCA approach

See our response on p.12 of this reply document.

Minor comments:

1) l.61 ‘and of the feedback’: remove ‘of’

Changed “strongly affect the type of linkages between parameters and of the feedback
processes” to “strongly affect the type of linkages between parameters as well as feedback
processes”.

2) Table 1:  Es should be added

Thank you for pointing this out, we added the variable “Es” to Table 1.

3) Table 2 is first mentioned in section 2.3 but is only shown in section 4. Replace ‘brackets’
with ‘parentheses’

Thank you, we changed “brackets” to “parentheses” in the Table caption.

Indeed we refer to Table 2 already in the method part to justify the detrending of our data set.
However we prefer to show Table 2 only in the results part and not yet in the methods part as it
basically shows the results of our analysis, based on the PCA biplots in Figs. 7 and 8.

4) l.160: it is not the entire ERA5 period, but the entire period covered by this paper



Thank you for pointing this out. We changed the regarding sentence to “A distinction is made
between areas where, on all days of the considered season in the time period covered by this
study, mainly sea ice is present …”.

5) Please use either the Kara-Barents sea or the Kara and Barents seas

We now only use “Kara and Barents Seas”.

6) 406: I’d replace ‘single’ with ‘individual’

We replaced “single” by “individual”.

7) 432: on this date

Thank you, changed as requested.

8) Fig. 13 is mentioned earlier than fig. 12.

We rephrased the mentioned part in line 474, to clarify that we only refer to section 5.3 here and
not yet want to discuss Fig. 13.

9) Fig. 10,11, 14: I suggest showing months and days of months’ along Axis X, instead of days
of season, as specific dates are often mentioned in the text (e.g, 9 Jan or 17 Feb). Can SLP be
added to fig. 10,11? In fig. 14 the legend mentions CAOs, but they are not shown - could they
be added?

Regarding days/dates: see our answer to specific comment (8) of Reviewer 1.

We added SLP to Figs. 10 and 11. Further we removed the CAO heatmap description from the
caption. It does not make sense to show the marine air outbreak frequency for sub-region ARI,
as this region is mainly ice-covered and as mentioned in the method section (L139ff.), we define
CAOs only for grid points with a sea ice concentration of less than 50%.

Reviewer 3

The authors have investigated seasonal extremes in the Arctic using PCA of six climate
variables and analysis of some key dynamical elements – cyclones, blockings, and marine cold
air outbreaks – to further investigate particular extreme seasons. This is an interesting and
valuable framework for understanding the various causes of seasonal extremes, and it is very
well presented. I recommend the manuscript for publication with some minor adjustments. My
principal concerns relate to the justification of the many choices which needed to be made in
this analysis, these are detailed below.



Specific comments:

1) L13: “respectively” – this doesn’t quite follow when you say 2-3 extreme seasons for four
seasons.

Thank you, we changed the wording to “...our approach identifies 2-3 extreme seasons for each
of winter, spring, summer and autumn, with strongly differing characteristics…”.

2) L15: I think a justification of why 2 winter seasons were chosen for the in-depth case studies
is needed here.

See answer to general remark (4) by reviewer 1.

3) L117: It is very nice to have these questions in the Introduction to frame the paper, but as far
as I could see the synoptic systems of interest are pre-defined in the study (cyclones, blockings,
and marine CAOs), so perhaps this question should be reframed to reflect this.

This is indeed a good point. We rephrased question 3: “In which way do synoptic-scale weather
systems such as cyclones, blocks and marine cold air outbreaks determine the sub-structure of
extreme seasons?”

4) L131: What was the method(s) of interpolation?

This interpolation is done by the ECMWF software when downloading the ERA5 fields from the
MARS archive.

5) L155: What is the justification for choosing these regions?

As stated, a distinction between areas with differing sea-ice concentration is made, as surface
heat fluxes and surface radiation are strongly dependent on the surface conditions. Further, we
defined three different geographical regions, namely the Nordic Seas (NO), the Kara and
Barents Seas (KB) and the remaining Arctic (AR). These are chosen based on the following
main features: The NO region is the endpoint of the Atlantic storm track and important for deep
water formation. The KB region has been strongly affected by changes in sea ice concentration
and reacts very sensitively to atmospheric forcing. It is also a preferred region for atmospheric
blocking and has its “own” storm track. Region AR is largely uncoupled from the mid-latitudes.
Due to these different characteristics, it is useful to look at these regions separately when
analysing the dynamical processes leading to Arctic extreme seasons. We added a sentence in
this regard to the manuscript (L160ff.) to further justify the choice of our regions.

6) L161: Are results sensitive to the choice of definition of ice, mixed, and sea? Why were these
thresholds chosen?

The results are sensitive to the choice of the SIC thresholds when defining ice, mixed and sea,
because obviously the resulting regions get larger or smaller depending on how the thresholds
are changed. For instance, if for ice, the threshold SICclim was lowered from 0.9 to 0.8 then this



would increase the size of the ice regions (and decrease the size of the mixed regions) and
therefore the results for ice and mixed would be slightly less distinct. We decided to use
relatively strict thresholds for ice and sea to ensure that these regions are indeed almost
completely ice-covered and ice-free, respectively.

7) L174: Why choose just the first 2 PCs? This seems arbitrary, although I see later you mention
that these explain a very large part of the overall variance.

See answer to first general comment of Reviewer 1. And yes, indeed the first two Principal
Components explain usually 80-90% of the overall variance (in more detail: in 88% of the cases
its >80% explained variance, in 53% of the cases they explain even >85% of the overall
variance) and they are - for almost all regions and seasons - statistically distinct.

8) L178: Why are these rescaled by their respective SDs to give equal weight to each PC? Do
you not wish to identify the extremeness of a season rather than the extremeness of a season
with respect to these two PCs? (ref L114) If you don’t do this rescaling do you still identify the
same seasons as being extreme seasons?

We decided to use the scaled Euclidean distance (= Mahalanobis distance) in the PCA phase
space to define our extreme seasons as with this approach, outliers in both, PC1 and PC2, are
considered equally (without the rescaling, there would be more weight on the PC1 outliers).
Thus, outliers in both PCs are treated similarly, independent of the individual variance explained
by each PC.

We haven’t tested the identification of extreme seasons without rescaling. Without rescaling,
different, subjective thresholds for the definition of anomalous and extreme seasons would have
to be chosen, which would hamper a direct comparison of the two methods.

9) Fig 8 and elsewhere: why was 10^5 km^2 chosen as the size threshold for a region?

This is a very pragmatic and subjective choice. Results from a PCA might be less reliable for
very small regions. With this threshold, each region comprises at least 40 model grid points.

10) L393: grammar – “This periods typically are…”

Thank you, changed as suggested.

11) L408: “exemplarily shows” -> “exemplifies”

Thank you, changed as suggested.

12) L510: “as is the case”

Thank you, changed as suggested.
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Abstract.

The Arctic atmosphere is strongly affected by anthropogenic warming leading to long-term trends in, e.g., surface tem-

perature and sea ice extent. In addition, it exhibits a pronounced seasonal cycle and strong variability on time scales from

days to seasons. Recent research elucidated processes causing short-term extreme conditions in the Arctic that are typically

related to the occurrence of specific weather systems. This study investigates unusual atmospheric conditions in the Arctic on5

the seasonal time scale, characterized by surface temperature, surface precipitation, and the atmospheric components of the

surface energy balance. Based on a principle component analysis in the phase space spanned by the seasonal-mean values of

the considered parameters, individual seasons are then objectively identified that deviate strongly from a running-mean cli-

matology, and that we define as extreme seasons. Given the strongly varying surface conditions in the Arctic, this analysis is

done separately in Arctic sub-regions that are climatologically characterized by either sea ice, open ocean, or mixed conditions.10

Using ERA5 reanalyses for the years 1979-2018, our approach identifies 2-3 extreme seasons for
::::
each

::
of

:
winter, spring,

summer, and autumn, respectively, with strongly differing characteristics and affecting different Arctic sub-regions. While

some show strongly anomalous seasonal-mean values mainly in one parameter, others are characterized by a combination of

very unusual seasonal conditions in terms of temperature, precipitation, and the surface energy balance components. Two ex-15

treme winters affecting the Kara-Barents Seas are then
::::
Kara

::::
and

::::::
Barents

:::::
Seas

:::
are selected for a detailed investigation of (i)

their substructure, (ii) the role of synoptic-scale weather systemsthat occur during the season, and (iii) ,
::::
and potential precon-

ditioning by anomalous sea ice extent and/or sea surface temperature at the beginning of the season. Winter 2011/12 shows the

highest surface temperature anomaly in parts of the Kara-Barents Seas (about + 5 K), which was due to
::::::
started

::::
with

::::::
normal

:::
sea

::
ice

::::::::
coverage

:::
and

::::
was

:::::::::::
characterized

:::
by constantly above-average temperatures during the season related to a strongly

::::::::
sequence20

::
of

:::::::::::::
quasi-stationary

:::::::
cyclones

:::
in

:::
the

::::::
Nordic

::::
Seas,

::::::::
favoring

:::
the

:::::::
frequent

::::::::
advection

::
of

:::::
warm

:::
air

::
to

:::
the

:::::::
Barents

::::
Sea.

:::
An enhanced

frequency of blocking anticyclones in the Kara-Barents Seas and a strongly
:::
and

::
a reduced frequency of cold air outbreaks .

Sea ice coverage was normal at the beginning of the season and then developed a negative anomaly due to the unusually high

temperatures
::
in

:::
the

::::
Kara

::::
and

:::::::
Barents

::::
Seas

::::::
further

::::::
helped

::
to

::::::::
maintain

:::
the

:::::
warm

::::::::
anomaly. In contrast, winter 2016/17 started

with a strongly negative anomaly in
::::::
reduced

:
sea ice coverage and a strongly positive anomaly in sea surface temperature25

in the Kara-Barents Seas, which remained during most of the season. The combination of this preconditioningwith specific

synoptic conditions, i.e., a particularly high frequency
::::::::
enhanced

:::
sea

::::::
surface

:::::::::::
temperatures

::
in

:::
the

:::::
Kara

:::
and

:::::::
Barents

:::::
Seas.

::::
This

1



:::::::::::::
preconditioning,

:::::::
together

::::
with

::::::::
increased

::::::::::
frequencies of cold air outbreaks and an increased frequency of cyclones, was respon-

sible for the extreme characteristics of this season, reflected in large upward surface heat flux anomalies and strongly increased

precipitation
:::::
during

:::
this

:::::::
extreme

::::::
season.30

In summary, this study shows that extreme seasonal conditions in the Arctic are spatially heterogeneous, related to different

near-surface parameters, and caused by different synoptic-scale weather systems, potentially in combination with surface pre-

conditioning due to anomalous ocean and sea ice conditions at the beginning of the season. The framework developed in this

study and the insight gained from analyzing the ERA5 period will be beneficial for addressing the effects of global warming35

on Arctic extreme seasons.

1 Introduction

Near-surface atmospheric conditions in the Arctic show a high variability on synoptic to inter-annual temporal scales, which is

superimposed on a strong, long-term warming trend (e.g. Serreze and Barry, 2011; Cohen et al., 2014)
::::::::::::::::::::::::::::::::::::::::
(e.g., Serreze and Barry, 2011; Cohen et al., 2014).

Key drivers of variability on the synoptic to weekly time scale are interactions with the mid-latitudes for instance via air mass40

exchanges (e.g. Woods et al., 2013; Laliberté and Kushner, 2014; Graversen and Burtu, 2016; Messori et al., 2018; Papritz and Dunn-Sigouin, 2020)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Woods et al., 2013; Laliberté and Kushner, 2014; Graversen and Burtu, 2016; Messori et al., 2018; Papritz and Dunn-Sigouin, 2020) and

air mass transformations within the Arctic (Ding et al., 2017; Pithan et al., 2018; Papritz, 2020). Both air mass exchanges and

transformations are found to be related to synoptic weather systems. On longer time scales, in contrast, memory effects and

feedback mechanisms such as the sea ice albedo feedback (Arrhenius, 1896; Curry et al., 1995), the water vapor and cloud

feedbacks (Vavrus, 2004; Graversen and Wang, 2009; Boisvert et al., 2016), as well as the temperature feedback (Pithan and45

Mauritsen, 2014) play an important role. Given this broad spectrum of processes, this leads to the question how variability on

various temporal scales is inter-connected. In this study, we focus on the seasonal scale and it is our goal to analyze the role

of intra-seasonal processes, including synoptic-scale weather systems, for the emergence of seasonal extremes in the Arctic.

The following paragraphs provide the relevant background on the key near-surface meteorological parameters in the Arctic and

how they are interrelated. Furthermore, we discuss the role of different synoptic-scale weather systems for the variability of50

these parameters and the occurrence of short-term extremes and seasonal anomalies in the Arctic.

Near-surface temperature, the components of the surface energy budget - including radiative and turbulent heat fluxes - as

well as surface precipitation are especially important parameters linking the variability of the atmosphere with that of the ocean

and the cryosphere. Large fluctuations in the surface energy budget, which themselves are closely linked to air temperature55

fluctuations, contribute to the variability of sea ice (Stroeve et al., 2008; Olonscheck et al., 2019), the ocean mixed layer as

well as open ocean convection (e.g. Marshall and Schott, 1999)
:::::::::::::::::::::::::::
(e.g., Marshall and Schott, 1999). Radiative and sensible heat

fluxes drive the variability of the surface energy budget components over sea ice (Lindsay, 1998), whereas over open ocean

turbulent heat fluxes dominate (Segtnan et al., 2011). Precipitation variability influences snow cover, which is strongly linked

to the albedo feedback, and it affects the freshwater balance of the Arctic Ocean and the Nordic Seas (Serreze and Francis,60
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2006; White et al., 2007), which jointly with turbulent heat fluxes impacts the thermohaline circulation (Dickson et al., 1996;

Talley, 2008).

The three parameters - near-surface temperature, surface energy budget, and surface precipitation - do not vary indepen-

dently from each other but they are interlinked. Thereby, the surface boundary conditions, i.e., sea ice vs. open ocean, strongly65

affect the type of linkages between parameters and of the
::
as

::::
well

::
as

:
feedback processes due to vastly different heat capacities.

On synoptic time scales, for instance, warm and cold air advection strongly influence heat fluxes over the open ocean, where

the most intense upward fluxes occur in cold air outbreaks (Harden et al., 2015; Papritz and Spengler, 2017; Pope et al., 2020).

On longer time scales, surface air temperature changes are largely influenced by variations in the sea surface temperature

via surface sensible heat fluxes (Johannessen et al., 2016). In addition, incoming shortwave radiation is absorbed and can be70

released to the atmosphere later. Over sea ice, in contrast, temperature is to a large degree determined by the surface energy

balance, which includes radiative and turbulent heat fluxes, conductive heat fluxes across the ice and latent energy for freezing

and melting (Serreze and Francis, 2006). In winter, when the incoming shortwave radiation is strongly reduced, the surface

sensible heat flux and net surface longwave radiation mainly determine the surface energy balance in regions covered by sea

ice (Ohmura, 2012). These considerations reveal that a meaningful identification of extreme seasons in terms of the surface75

temperature, energy budget and precipitation parameters must take their co-variability and the underlying surface boundary

conditions into account.

The role of synoptic-scale weather systems for inter-annual variability in the Arctic has been subject of multiple recent stud-

ies, which emphasized especially the importance of cyclones (Simmonds and Rudeva, 2012; Messori et al., 2018), blocking80

anticyclones (Wernli and Papritz, 2018; Papritz, 2020), and Rossby wave breaking (Liu and Barnes, 2015). Air mass exchanges

between the mid-latitudes and the Arctic region are often facilitated by cyclones, which, on one hand, transport warm and moist

air to higher latitudes (Sorteberg and Walsh, 2008; Messori et al., 2018), causing there an increase in downward heat fluxes as

well as the formation of clouds and precipitation. On the other hand, the advection of cold and dry air in the cyclones’ cold

sector enhances ocean evaporation and heat fluxes into the atmosphere. Additionally, extreme moisture transport into the Arctic85

is often associated with events of Rossby wave breaking (Liu and Barnes, 2015), which can be strongly linked to the evolution

of surface cyclones (Martius and Rivière, 2016). Air mass transformations within the Arctic can similarly result in anomalous

conditions. Recent studies emphasized the importance of polar anticyclones and blocking events in the High Arctic, driving

subsidence-induced adiabatic warming and thus leading to anomalies in surface temperature and net surface radiation, resulting

in increased sea ice melting (Wernli and Papritz, 2018; Papritz, 2020). In winter, radiative heat loss under clear-sky conditions90

can lead to extreme cold conditions, whereas cloud formation favors the trapping of longwave radiation, thus providing a pos-

itive warming feedback and causing an increase in surface temperature (Boisvert et al., 2016; Woods and Caballero, 2016).

Similarly, a persistent and strong tropospheric polar vortex over the pole can isolate polar air masses and result in anomalously

cold conditions due to enhanced radiative cooling (Messori et al., 2018; Papritz, 2020). Therefore, air mass transport and air

mass transformation can significantly influence the Arctic surface energy balance. Whereas the modification of turbulent heat95

3



fluxes is of particular importance over the open ocean, the impact on radiative fluxes, for instance due to an increase in the

atmospheric moisture content, is highly relevant in regions covered by sea ice.

Several studies have analyzed short-term Arctic extreme events and the involved dynamical processes, for instance the un-

usual warm event in winter 2015/16, which led to above freezing temperatures close to the North Pole (Cullather et al., 2016)100

and caused significant sea ice melting in the Kara-Barents
::::
Kara

::::
and

::::::
Barents

:
Seas (Boisvert et al., 2016). Binder et al. (2017)

were able to show that several pathways of exceptional air mass transport caused this warm event. Another example is an

extreme melt event on the Greenland ice shield in July 2012 (Nghiem et al., 2012), which was found to be related to a blocking

anticyclone and associated anomalous long-range transport of warm and humid air masses from the South (Hermann et al.,

2020). Such extreme weather events can have significant long-term effects, particularly due to their impact on sea surface105

temperatures and sea ice extent. For instance, Simmonds and Rudeva (2012) have shown that a particularly intense Arctic

cyclone in summer caused the dispersion and separation of sea ice, leaving the main sea ice pack more exposed and thus

vulnerable to further melting. Similarly, the described extreme warm event in December 2015 caused positive anomalies in

sea surface temperature and negative anomalies in sea ice concentration in the Kara-Barents
::::
Kara

::::
and

::::::
Barents

:
Seas, which

persisted throughout the year 2016 (Blunden and Arndt, 2017). Single events of extreme weather, causing episodes of strongly110

anomalous conditions such as exceptionally high or low surface temperatures, can thus have a major impact on seasonal-mean

surface temperature, the formation and melting rates of sea ice, and on minimum and maximum sea ice extent.

Despite these insights, so far only little attention has been given to systematically understanding the characteristics of extreme

seasonal-mean conditions in the Arctic, and the role of synoptic weather systems in their formation. Therefore, our study aims115

to address the following research questions:

1. How spatially (in)homogeneous are the seasonal-mean near-surface atmospheric conditions in the Arctic in winter and

summer?

2. How can extreme seasons be defined objectively, based on a combined analysis of different key surface parameters in

Arctic sub-regions?120

3. Which dynamical processes, in particular, which
:
In

::::::
which

::::
way

:::
do synoptic-scale weather systems

:::
such

:::
as

::::::::
cyclones,

:::::
blocks

::::
and

::::::
marine

::::
cold

::
air

::::::::
outbreaks

:
determine the sub-structure of extreme seasons?

4. What is the role of surface preconditioning , i.e., of early season anomalies of sea surface temperature and/or sea ice

concentration for the formation of extreme seasons?

To address these research questions, a novel method will be introduced to determine the “unusualness" of a season, which125

we define based on a combination of various surface parameters. Our study is organized as follows: Data and methods are

described in Section 2. Section 3 presents an overview of the seasonal variability of surface temperature, surface precipitation,

and of the surface energy budget components. In Section 4 we define anomalous and extreme seasons in the Arctic based on
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seasonal anomalies of these parameters, and analyze their substructure in distinct Arctic sub-regions. Detailed analyses of three

Arctic extreme seasons and the involved atmospheric synoptic-scale processes are presented in Section 5, followed by the main130

conclusions in Section 6.

2 Data and method
:::::::
methods

2.1 ERA5 data

To perform a detailed analysis of Arctic extreme seasons, the ERA5 reanalysis dataset of the European Centre for Medium-

Range Weather Forecasts (ECMWF) is used (Hersbach et al., 2020). Hourly atmospheric fields and short-range forecasts135

were spatially interpolated to a 0.5◦×0.5◦ horizontal grid on model levels. The study period includes winters [December-

February (DJF)] from 1979/80 to 2017/18 as well as springs [March-May (MAM)], summers [June-August (JJA)] and autumns

[September-November (SON)] from 1980 to 2018. Based on the ERA5 dataset, we additionally consider synoptic features such

as extratropical cyclones and blocks identified following the methods presented in Sprenger et al. (2017).
::::
Here,

::::::::
cyclones

:::
are

::::::
defined

::
as

::::::
objects

::::::::
covering

::
the

::::
area

::::::
around

::
a

:::
sea

::::
level

:::::::
pressure

:::::::::
minimum,

::::::::
delimited

::
by

:::
the

:::::::::
outermost

:::::
closed

:::
sea

:::::
level

:::::::
pressure140

::::::
contour

::::::::::::::::::::::::
(Wernli and Schwierz, 2006).

:::::::
Blocks

:::
are

::::::::
identified

:::::
based

:::
on

:::
the

::::::::
deviation

:::
of

::::::::
vertically

::::::::
averaged

:::::::
potential

::::::::
vorticity

:::::::
between

:::
150

::::
and

::::::
500 hPa

:::::
from

:::
the

:::::::
monthly

::::::::::::
climatological

:::::
mean.

::::::::::
Contiguous

:::::
areas

:::::
where

::::
this

::::
value

::::
falls

::::::
below

::::::::
−1.3 pvu

:::
are

::::::
tracked

::
in

::::
time

:::
and

:::::
tracks

::::
that

:::::
persist

:::
for

::
at

::::
least

:
5
::::
days

:::
are

:::::::::
considered

::
as

::::::
blocks

:::::::::::::::::::::::::::::::::::::::::
(Schwierz et al., 2004; Croci-Maspoli et al., 2007).

Further, we define cold air outbreaks (CAOs) based on the exceedance of the 900 hPa sea-air potential temperature difference145

(θSST −θ900) by + 4 K (cf. Papritz and Spengler, 2017), whereby we exclude grid points over land or with a sea ice concentra-

tion of more than 50 %. As outlined below, particularly anomalous seasons are identified based on seasonal-mean anomalies

of the following six variables in specific regions: 2 m temperature (T2m), precipitation (P , defined as the sum of convective

and large-scale precipitation), surface sensible heat flux (HS), surface latent heat flux (HL), net surface shortwave radiation

(RS) and net surface longwave radiation (RL). The last four variables are relevant for the surface energy balance and their150

sum is denoted by ES .
:::::::
Positive

::::
signs

::::::
denote

::::::
energy

::::::
fluxes

:::
into

:::
the

:::::::
surface,

:::::::
whereas

::::::::
negative

::::
signs

:::
are

:::::::::
indicative

:::
for

::::::
energy

:::::
fluxes

:::
into

:::
the

::::::::::
atmosphere.

:
We use short-range forecasts for the fluxes P ,HS ,HL,RS andRL and analyses for the other fields.
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Abbreviation Variable name Unit

:::
ES :::

sum
:::
of
::::
HS ,

:
HL,

:::
RS::::

and
:::
RL

[
::::::
W m−2]

:::
HL

surface latent heat flux [W m−2]

HS surface sensible heat flux [W m−2]

P precipitation [mm day−1]

RL net surface longwave radiation [W m−2]

RS net surface shortwave radiation [W m−2]

SIC sea ice concentration

SST sea surface temperature [K]

T2m 2 m temperature [K]

Table 1. List of variable names used in this study.

To compute anomalies, a transient climatology is calculated at every grid point as follows. First, daily-mean values of the

variables are smoothed with a 21-day running mean filter. In a second step, the 9-year running mean is computed for each155

calendar day. Thus, the seasonal cycle is retained in the climatology, but decadal variations and long-term trends related to

the overall warming of the Arctic are removed. The climatology is kept constant at the beginning and end of the study period

when no 9-year running mean can be calculated. Examples of this filtering procedure are shown in the supplementary material,

where Fig. S1a and b shows the original T2m time series in the Kara-Barents
::::
Kara

:::
and

:::::::
Barents

:
Seas and illustrates that the 9-

year running mean can effectively eliminate also non-linear long-term trends (T2m in the Kara-Barents
::::
Kara

:::
and

:::::::
Barents Seas160

steeply increases in the decade from 2000-2010). Seasonal-mean anomalies are then defined as deviations of the seasonal-

mean values from this transient climatology. With this approach (also used by Messori et al. (2018) and Papritz (2020)), the

identified extreme seasons appear relatively uniform throughout the study period (see Table 2 and Tables S1-S4
:::::
S3-S6 in the

supplementary material). Throughout the study, we denote daily anomalies of a variable χ as χ∗, seasonal-mean anomalies as

χ∗ and seasonal-mean absolute anomalies as |χ∗|.165

2.2 Definition of sub-regions

It is one goal of this study to analyze the characteristics of Arctic extreme seasons with respect to climatological conditions.

Therefore, extreme seasons
:::::::
Extreme

::::::
seasons

:
will be identified in three distinct

:::::::::::
geographical regions, the Nordic Seas (NO),

the Kara-Barents
:::::::
endpoint

::
of

:::
the

::::::::
Atlantic

:::::
storm

:::::
track

:::::::::::::::::::::::::::::::
(e.g., Wernli and Schwierz, 2006) and

::::
area

::
of

:::::
deep

:::::
water

:::::::::
formation

::::::::::::::::::::::
(e.g., Dickson et al., 1996),

:::
the

::::
Kara

:::
and

:::::::
Barents Seas (KB)

:
,
:::::
which

:::
are

:::::::
strongly

:::::::
affected

::
by

:::::
recent

:::::::
changes

::
in

:::
sea

:::
ice

:::::::::::
concentration170

::::::::::::::::::::::::::::::
(e.g., Cavalieri and Parkinson, 2012),

:
and the remaining Arctic poleward of 60◦ N (AR, containing the High Arctic region

> 80◦ N)
:::::
Arctic

:::::::
Ocean),

::::::
which

::
is

::
to

:::::
some

:::::
extent

:::::::::::
dynamically

:::::::::
de-coupled

:::::
from

:::
the

:::::::::::
mid-latitudes. Grid points above land are

excluded.
::
It

::
is

:::
one

::::
goal

::
of
::::

this
:::::
study

::
to

:::::::
analyze

:::
the

::::::::::::
characteristics

::
of

::::::
Arctic

:::::::
extreme

:::::::
seasons

::::
with

::::::
respect

:::
to

::::::::::::
climatological
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Figure 1. Sub-regions defined based on SICclim in (a) DJF, (b) MAM, (c) JJA, and (d) SON. The labels refer to: NOI: Nordic Seas Ice,

NOM: Nordic Seas Mixed, NOS: Nordic Seas Sea, KBI: Kara-Barents
::::
Kara

:::
and

::::::
Barents

:
Seas Ice, KBM: Kara-Barents

::::
Kara

:::
and

::::::
Barents

Seas Mixed, KBS: Kara-Barents
:::
Kara

:::
and

::::::
Barents

:
Seas Sea, ARI: Arctic Residual Ice, ARM: Arctic Residual Mixed, ARS: Arctic Residual

Sea.
:::::
Green

:::
and

:::
red

::::
boxes

::::::
denote

::
the

::::
areas

::
of
:::
the

::::
Kara

:::
and

::::::
Barents

::::
Seas

:::
and

:::::
Nordic

::::
Seas

::::::
regions,

:::::::::
respectively.

:::::::::
conditions. As the variables, especially the surface heat fluxes and surface radiation are strongly dependent on the surface con-

ditions (e.g. Pope et al., 2020)
:::::::::::::::::::
(e.g., Pope et al., 2020), the regions are additionally subdivided in each season according to the175

climatological seasonal-mean sea ice concentration (SICclim). A distinction is made between areas where, on all days of the con-

sidered season in the entire ERA5 time period
::::
time

:::::
period

:::::::
covered

:::
by

:::
this

:::::
study, mainly sea ice is present (Ice, SICclim > 0.9),

mainly open ocean is present (Sea, SICclim < 0.1), and regions of intermediate SICclim (Mixed, 0.1≤SICclim≤ 0.9). Further-

more we require a minimum size of a sub-region of 105 km2. With these criteria, three sub-regions are defined in each region,

which results in overall seven distinct sub-regions in JJA and SON and nine distinct sub-regions in DJF and MAM (Fig. 1). For180

example, ARM denotes the sub-region with intermediate sea ice cover in the High Arctic and NOS the sub-region with mainly

open ocean in the Nordic Seas. In these sub-regions and based on the surface parameters listed above, anomalous and extreme

Arctic seasons are defined using a method based on principal component analysis (PCA) as detailed in the following.
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2.3 Definition of anomalous and extreme seasons

To determine in an objective way whether a season is anomalous or extreme, a PCA is performed for each sub-region. For that185

purpose, the seasonal anomalies of the six variables (referred to as precursors) are standardized with their inter-seasonal stan-

dard deviation to ensure comparability and equal weighting of the different parameters. Here, the variables HS , HL, RS and

RL, which all contribute to the surface energy balance (ES), are weighted by the maximum standard deviation of the four ES

components, thus emphasizing variables contributing stronger to ES variability. We use the PCA to reduce the dimensionality

of the six-parameter phase space to two dimensions by focusing on the first and second principal component (P̃C1 and P̃C2).190

P̃C1 and P̃C2 maximize the so-called “explained variance", which is the explained proportion of the total inter-seasonal vari-

ability in the six-dimensional phase space of the precursors.

To define extreme and anomalous seasons, P̃C1 and P̃C2 are first rescaled by their respective standard deviation (σ1 and

σ2), such that outliers in both PCs are treated similarly independent of the variance explained by P̃C1 and P̃C2, thus providing195

a measure for the unusualness of each season with respect to each of the principal components (from now on, we will refer to

these rescaled components as PC1 and PC2). Then, the Euclidian distance in the reduced phase space spanned by the two

rescaled components, the so-called “Mahalanobis distance" (dM ), is calculated as:

dM =
√
PC12 +PC22 =

√
P̃C1

2

σ12
+
P̃C2

2

σ22
. (1)

This measure dM can now be used to quantify how strongly a particular season deviates from climatology, representing the200

combination of the seasonal anomalies of the six variables. We therefore refer to dM as “anomaly magnitude" of a particular

season. Seasons with dM ≥ 3 are defined as “extreme seasons", and seasons with 3>dM ≥ 2 as “anomalous seasons".
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Figure 2. Schematic PCA biplot for a specific region and season with PC1 along the x-axis and PC2 along the y-axis. Grey dots represent

single seasons, red (orange) dots show extreme (anomalous) seasons. Blue lines represent the projections of the original parameters onto the

first two principal components. Values of dM=2 and dM=3 are shown by orange and red circles, respectively.

The phase space of the rescaled principal components can be illustrated using a biplot (Fig. 2), similar as in Graf et al.

(2017). The axes of such a plot represent PC1 and PC2, respectively, and each dot represents one season in the study period,205

whereby anomalous and extreme seasons are shown as colored dots. The closer two dots are, the more similar are the anoma-

lies of the corresponding seasons. Radial vectors show the relative contribution of the precursor variables to PC1 and PC2,

whereby the projected values of a vector on both axes illustrates the weight on the respective PC. In the case shown in Fig. 2,

the vector for T2m is mainly aligned along PC2, thus T2m variability is important for the second principal mode of variability

in the six-dimensional phase space. Relatively longer (shorter) vectors indicate a larger (smaller) contribution of the precursor210

to the explained variance. If two vectors are approximately perpendicular, the precursors are uncorrelated. This interpretation

of correlations is more precise, the higher the explained variance by PC1 and PC2 (Gabriel, 1971, 1972). The relative position

of each season in the biplot (i.e., the scores) with respect to the precursor vectors indicates the contribution of the different

precursor variables to the anomaly magnitude dM in the considered season. For instance, seasons with a positive T2m anomaly

are positioned in the direction of the T2m vector and seasons with a negative T2m anomaly in the opposite direction.215

In the example given in Fig. 2, the variables T2m and P show no correlation, whereas HS and HL are positively correlated

and HS and P are strongly anti-correlated. Further, T2m shows the largest contribution to the variance explained by PC1 and
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PC2 (mainly determining PC2) whereas HL, RS and RL mostly contribute to PC1. RS contributes the least to the explained

variance. Two seasons with dM ≥ 3 are marked as extreme season 1 (ES1) and extreme season 2 (ES2). Their score vectors are220

roughly orthogonal to each other, which indicates that a different combination of anomalies and thus different processes are

decisive for explaining their large anomaly magnitudes. In this example, ES1 is mainly determined by a positive T2m anomaly,

while ES2 is an anomalously wet season with negative surface heat flux anomalies, as the respective precursor vectors are

directed more or less directly towards (P ) respectively away (HL, HS) from ES2.

3 Spatial and temporal variability of Arctic seasons225

In order to characterize Arctic seasons in general, we first analyze the regional and temporal variability
::::::::::
co-variability

:
of

seasonal-mean anomalies of surface temperature (T2m∗), precipitation (P ∗) and surface energy balance (ES∗) ::
in

:::
the

:::::
three

::::::
regions, considering the varying surface conditions of the different sub-regions (Fig. 3). We are interested in correlations be-

tween the seasonal anomalies, how their magnitudes vary between the regions, and in aspects of the seasonal substructure (e.g.,

is an anomalously warm season constantly warm?).230

In winter, warm seasons are generally wetter and cold seasons are drier (Fig. 3a). ES∗ and T2m∗ are positively correlated,

thus warm winters show in general a positive ES∗ and vice versa for cold winters, whereby for the relationship between ES∗

and P ∗ a strong dependency on the respective surface type can be observed.
::::
a-c),

:::::
except

:::
for

::::::::::
sub-regions

:::::
NOS

:::
and

:::::
KBS

:::
(see

:::
also

::::::::
Table S1

::
in

:::
the

:::::::::::
supplement). In regions with SICclim > 0.9

:::::::
(Fig. 3a), T2m∗ and P ∗ are strongly positively correlated, thus235

warm winters are almost always
::
(in

::::::
79.8 %

:::
of

:::
the

:::::
cases) wet and tend to have a positive ES anomaly (and again vice versa for

cold winters). In contrast, regions with SICclim < 0.1 in the Nordic and Kara-Barents
:::
Seas

::::
and

::::
Kara

:::
and

:::::::
Barents

:
Seas do either

show no or
::::
only

:
a
:::::
weak

:::::::
positive

::
or

::::
even

:
a slightly negative correlation between T2m∗ and P ∗ .

:::::::
(Fig. 3c).

:
Over the open ocean,

warm and dry winters show strongly positive, and cold and wet winters negative ES∗ values. Regions with intermediate sea ice

extent
:::::::
(Fig. 3b)

:
do not show this correlation between T2m∗ ::::

T2m
∗
:
and ES∗, but warm winters tend to be wet and cold winters240

dry, similar to the ice sub-regions.

In summer, no correlation between T2m
∗ and P ∗ is found, but warm summers usually

:::::
73.3 %

:::
of

:::
the

::::::
warm

::::::::
summers

show a positive ES∗ and
:::::
72.5 %

:::
of

:::
the cold summers a negative ES∗, independent of the surface conditions (Fig. 3b

::
d-f

::::
and

::::::::::::
supplementary

:::::::
Table S2). Regional differences are much smaller during summer, indicating more homogeneous conditions245

among the sub-regions.
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Figure 3. Seasonal-mean anomalies of P (P ∗; mm day−1, along x-axis), T2m (T2m
∗; K, along y-axis) and ES (ES∗; W m−2, color) for

39 seasons and (a) 9 sub-regions in
:::
(a-c) DJF and (b) 7

:::
(d-f)

:::
JJA

::
for

:
sub-regions

:::
with

:::::
(a, d)

::::::::::
SICclim > 0.9,

::::
(b, e)

::::::::::::::
0.1≤SICclim≤ 0.9

:::
and

:::
(c, f)

::::::::::
SICclim < 0.1.

:::::::
Tables S1

:::
and

::
S2

:
in JJA

::
the

:::::::::
supplement

::::
show

:::::::::
correlations

:::
and

::::::::
respective

::::::
p-values

:::
for

:::
the

:::::::
described

:::::::
relations

::::::
between

:::
the

::::::
different

::::::::
parameters

::
in
::::
each

::::::::
sub-region.

Figure 4 shows the
::
In

:::::::
addition

::
to

::
the

:::::::::
previously

::::::::
discussed

:
seasonal-mean absolute anomalies |T2m∗|:::::::::

anomalies,
::
the

::::::::::::
intra-seasonal

::::::::
variability

::
of

:::
the

:::::::::
individual

:::::::::
parameters

::
is
:::
an

::::::::
important

:::
and

:::::::::::::
complementary

::::::::::::
characteristic

::
of

:::::
Arctic

::::::::
seasons.

::
As

:::
we

::::
will

:::::
show

::
in

:::
the

::::::::
following,

:::
the

:::::::
strength

::
of

:::
the

::::::::::::
intra-seasonal

:::::::::
variability

:::
can

:::::::
depend,

::
in

:::::::::
particular,

::
on

:::
the

::::::
surface

::::::::::
conditions.

::
To

::::::::
compare

::
the

::::::::::::
intra-seasonal

:::::::::
variability

::
of

:::::
T2m

∗,
::
P ∗

::::
and

::::
ES
∗,
:::
we

:::::::
consider

:::
in

:::::
Fig. 4

::::::::::::
seasonal-mean

:::::::
absolute

:::::::::
anomalies

::::::
|T2m∗|,:|P ∗| and250

|ES∗|, which are defined as the seasonal mean of the absolute daily anomalies. They are used as a measure for the overall

variability of the individual parameters throughout a season. Distinct clusters occur for the different sub-regions in winter

(Fig. 4a). Regions in high latitudes and mostly over sea ice such as ARI and ARM show only small variations in all three

variables implying a relatively small amplitude of day-to-day and inter-seasonal fluctuations. In the Kara-Barents
::::
Kara

::::
and

::::::
Barents

:
Seas, sub-regions KBI and KBM show high variability in daily and seasonal T2m and ES anomalies but a similarly255

small |P ∗|. In the Nordic Seas, T2m and P are much more variable, except over the open ocean, where T2m anomalies are

typically smaller and less variable. P and especially ES variability is strongly enhanced over the open ocean due to intensified

air-sea interaction. The clear distinction of the seasonal-mean absolute anomalies between the different sub-regions reveals

11



the spatial inhomogeneity of Arctic meteorological conditions in winter, which is due to varying surface conditions as well as

differences in seasonal variability between distinct Arctic Seas. This also serves as an a posteriori confirmation of our approach260

to separately consider Arctic extreme seasons in these sub-regions.

In summer, the variability of the three analyzed parameters is smaller due to reduced meridional gradients of surface temper-

ature and radiation causing smaller T2m andES fluctuations (Fig. 4b). Similar to winter, a large variability of T2m occurs in the

Kara-Barents
::::
Kara

:::
and

:::::::
Barents

:
Seas and of P in the Nordic Seas. However, as the surface conditions between the sub-regions265

become more homogeneous, the regions do not appear in distinct clusters as for winter with the exception of the sub-regions

ARI and ARM, which cover most of the perennial sea ice and show, as in winter, only a small variability of the three parame-

ters. It is further noteworthy that |T2m∗|::::::
|T2m∗| and |P ∗| are positively correlated, indicating higher variability in P in seasons

with larger T2m fluctuations.

(a) DJF (b) JJA
[W

 m
-2

]

[W
 m

-2
]

[K
]

[K
]

[mm day-1] [mm day-1]

Figure 4. Seasonal-mean absolute anomalies of P (|P ∗|; mm day−1, along x-axis), T2m (|T2m
∗|; K, along y-axis) and ES (|ES∗|; W m−2,

color) for 39 seasons and (a) 9 sub-regions in DJF and (b) 7 sub-regions in JJA.
:::
Blue

:::::::
symbols

::::
mark

::::::
average

:::::
values

::
for

::::
each

:::::::::
sub-region.

To better understand the seasonal substructure of Arctic winters and summers, we compare the seasonal-mean anomalies270

with the seasonal-mean absolute anomalies for T2m, P and ES in selected sub-regions in DJF (Fig. 5) and JJA (Fig. 6
:
;
:::
for

::::::::
remaining

::::::::::
sub-regions

:::
see

::::::::::::
supplementary

:::::::
Figs. S2

:::
and

:::
S3). The ratio of seasonal-mean and seasonal-mean absolute anomalies

:
,

::::

χ∗

|χ∗|
, is indicative for the temporal persistency of an anomaly throughout a season, thus .

:::::
Thus,

:
the location of a season in the di-

12



agrams provides information about the substructure of the season in terms of the considered parameter. For instance
::
In

::::::
general,

the further to the right, the more positive is the seasonal-mean anomaly of the shown parameter , and the further to the top, the275

larger is the seasonal-mean absolute anomaly. If
:::
left,

:::
the

:::::
more

::::::::
negative.

:::
The

:::::
closer

:
the seasonal-mean anomaly is close to the

seasonal-mean absolute anomaly (dots along the grey line
::::
close

::
to

:::
the

::::
outer

:::::::
stippled

::::
grey

::::
line

::::::::::
representing

::::::::

χ∗

|χ∗|
=±1), the more

persistent is the anomaly during the season
:::
the

:::::::
anomaly

::
is

:::::::::
throughout

:::
the

::::::
season.

:::::
Thus,

:::
we

::::::
define

::::::
seasons

::::
with

:::::::::::::
0.8≤ χ∗

|χ∗|
≤ 1

::
as

::::::
seasons

::::
with

::
a
:::::::::::
"continuous"

::::::::
anomaly.

::::
With

::
a

:::::::::
decreasing

::::
value

:::
of

::::

χ∗

|χ∗|
,
:::
the

:::::::
seasons

:::
are

::::::
located

::::::
further

:::::
away

::::
from

:::
the

:::::
outer

::::::
stippled

::::
grey

:::::
lines,

:::::::
meaning

::::
that

::::::
positive

:::
or

:::::::
negative

::::::::
anomalies

::
in

:::
the

:::::::::
respective

::::::::
parameter

:::::
occur

::::
more

:::::::::::
episodically

:::::::::
throughout280

::
the

:::::::
season.

:::
The

::::::
closer

:
a
::::::
season

:
is
:::::::::
positioned

:::::::
towards

:::
the

::::
blue

::::::
dashed

:::
line

::::::
where

:::::
χ∗ = 0

:::
and

::::
thus

:::::::

χ∗

|χ∗|
= 0,

:::
the

:::::
more

::::::
positive

::::
and

:::::::
negative

::::
daily

:::::::::
anomalies

:::::
cancel

:::::
each

:::::
other,

::::::
leading

::
to

:
a
:::::
weak

::::::
overall

:::::::
seasonal

::::::::
anomaly.

::::
The

:::::
value

::
of

::::
|χ∗|

:
is
::::::
further

:::::::::
indicative

::
of

:::
the

:::::::::
magnitude

::
of

:::
the

:::::
daily

:::::::::
anomalies

:::::::::
throughout

::
a
:::::::
season.

::
A

::::::
season

::::::
located

::
at
::::

the
:::
top

::
of

:::
the

::::
plot

::::::
shows

:::::::
stronger

:::::
daily

::::::::
anomalies

::::
than

:
a
::::::
season

::::
with

:::
the

:::::
same

::::

χ∗

|χ∗| ::::
ratio

:::
but

:
a
:::::::
smaller

:::
|χ∗|.

285

For example, a season can be anomalously warm, because the daily-mean T2m values are continuously larger than the

climatology
::
on

::::::
almost

:::
all

::::
days

::
of

:::
the

::::::
season, resulting in |T2m∗|::::::::

T2m
∗

|T2m
∗|
≈

::
1.

::::
With

::
a

:::::::::
decreasing

::::
ratio

::
of

:::
the

::::::::
anomaly

:::::::
metrics,

:::
e.g.,

::::::

T2m
∗

|T2m
∗|

=T2m∗.In contrast, if |T2m∗|>T2m∗ > 0, the anomalously warm season
:::
0.5,

:::
the

:::::
season

::
is

::::
still

::::::::::
anomalously

::::::
warm,

:::
but

:
it
:

results from several warm episodes alternating with weaker and/or shorter periods with negative T2m∗ values. If the

seasonal-mean absolute anomaly is much larger compared to the seasonal-mean anomaly, i.e., |T2m∗|:::::::

T2m
∗

|T2m
∗|
≈�T2m

∗, then290

the variability of T2m is large with several intense warm and cold episodes, which
::
0,

::::
cold

:::
and

:::::
warm

:::::::
episodes

:
cancel each other

out leading to a weak overall seasonal anomaly.
:::::::::
Comparing

:::::::
seasons

::::
with

:::
the

:::::
same

::::::

T2m
∗

|T2m
∗|

,
:::
the

:::::
ones

:::::::::
positioned

::::::
further

:::::
along

::
the

::::::
y-axis

::::::::
(showing

:::::
larger

::::::
values

::
of

:::::
T2m

∗
::::
and

::::::
|T2m∗|):::::

show
::
a

:::::
larger

:::::::::
variability

::
in

::::
T2m ::::

with
:::::
more

::::::
intense

:::::
warm

::::::
and/or

::::
cold

:::::::
episodes.

:
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Figure 5. Seasonal-mean anomalies (
::
χ∗,

:
along x-axis) vs. seasonal-mean absolute anomalies (

::::
|χ∗|, along y-axis) in DJF for (a-d) T2m (K),

(e-h) P (mm day−1), and (i-l) ES (W m−2) in sub-regions ARI, KBI, ARM and KBM.
:::
The

::::
ratio

::
of

::::
both

::::::::
measures,

::::

χ∗

|χ∗|
,
::
is

:::::::::
additionally

:::::::
visualized

:::
by

:::
grey

::::::
dashed

::::
lines.

:::::::

χ∗

|χ∗|
=±1

::
is

:::::
shown

::
by

::::::
stippled

::::
grey

::::
lines

:::
and

::::::

χ∗

|χ∗|
= 0

::
is

:::::
shown

::
by

:
a
::::::
dashed

:::
blue

::::
line. Red (orange) markers

represent extreme (anomalous) seasons (see Sect. 2.3) and selected case study seasons are labeled. The stippled grey line marks where the

seasonal-mean anomaly equals the seasonal-mean absolute anomaly
::::::::
Remaining

:::::::::
sub-regions

::
are

::::::
shown

:
in
:::::::::::
supplementary

:::
Fig.

::
S2.

The seasonal substructures of the three parameters differ. In particular during summer, several seasons show continuous295

T2m
∗ (Fig. 6a-d) and/or almost continuous ES∗ values (Fig. 6i-l), including several clear outlier seasons in terms of T2m∗

(Fig. 6a, c, d). In winter, the overall T2m variability is much larger and only very few seasons show distinct T2m∗ outliers

(Fig. 5a-d). Further, no continuous P ∗ can be observed (Figs. 5e-h and 6e-h), indicating that also in very wet seasons precipita-

tion is episodic and includes dry periods. In addition, and maybe less evident, also the driest seasons feature some precipitation

events.300

The influence of the different surface conditions becomes apparent in particular for the seasonal substructure of ES anoma-

lies. In regions with intermediate or high SICclim, where surface heat fluxes are small and ES is mainly determined by net
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surface radiation, seasonal anomalies can continuously have the same sign, especially in summer, as shown by points near

the diagonal in Fig. 6i and j. Over the open ocean, where surface heat fluxes are much more important, daily-mean ES values305

fluctuate significantly around the climatology, which results in a large |ES∗| but only a small ES∗ (Fig. 6l).

In KBM and KBS, a different distribution of ES anomalies occurs in DJF and JJA. Winters with a negative ES∗, which

is often caused by several episodes of cold air outbreaks (Papritz and Spengler, 2017), tend to show enhanced ES variability

throughout the season (Fig. 5l) compared to winters with a positive ES∗, where CAOs are less frequent. The opposite occurs310

in summer, when periods of increased net surface radiation can cause a positive ES∗ and enhanced |ES∗| compared to seasons

with a negative ES∗ (Fig. 6k and l).
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Figure 6. Same as Fig. 5 but for JJA in sub-regions ARI, ARM, KBM and KBS.
:::
The

::::::
extreme

::::::
summer

:::::
2016

:
is
::::::
labeled

::
in

::::::
(c, g, k)

:::
due

::
to

::
its

:::
role

::
in

::
the

::::::::::::
preconditioning

::
of

:::
the

::::::
extreme

:::::
winter

::::::
2016/17

::::
(see

:::::::::::
subsection 5.2).

:::::::::
Remaining

:::::::::
sub-regions

::
are

:::::
shown

::
in

:::::::::::
supplementary

::::::
Fig. S3.
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4 PCA results

In
::
the

::::::::
previous

::::::
section,

:::
we

::::::::
discussed

:::
the

:::::::::::
co-variability

::
of

::::
T2m,

::
P

::::
and

:::
ES :::

and
:::::::
regional

:::::::::
differences

:::
for

:::::
Arctic

::::::
winter

:::
and

:::::::
summer

::::::
seasons

::
as

::::
well

:::
as

:::
the

:::::::
seasonal

::::::::::
substructure

:::
of

::::
these

::::::::::
parameters.

::
In

:
a next step, we identify and then characterize anomalous315

Arctic seasons, based on the combination of the seasonal-mean anomalies of the three surface parametersdiscussed above. To

this end, a PCA is performed for each season (DJF, MAM, JJA, SON) and sub-region, as explained in Sect. 2.3. Figures 7 and 8

show the resulting biplots for DJF and JJA (for MAM and SON see Figs. S2 and S3
::
S5

::::
and

::
S6

:
in the supplementary material).

Depending on the region and sub-region, the contributions of the precursor variables to the principal components PC1 and PC2

vary, which usually explain about 80− 90%
:::::::::
80%− 90%

:
of the total variance in the combined seasonal anomalies.

::::::
Further

:::
we320

:::
can

::::
show

::::
that,

:::::::::
following

:::
the

::::::
method

:::::::::
introduced

::
in

::::::::::::::::
North et al. (1982),

:::
the

::::
first

:::
two

::::
PCs

::
in

::::
DJF

:::
and

::::
JJA

:::
are,

::::
with

:::::::::
exception

::
of

:::::::::
sub-region

:::::
ARM

::
in

::::
JJA,

::::::
always

:::::::::
statistically

:::::::::::::
distinguishable

::::
from

:::
the

::::::
others

::::
(see

::::::::::::
supplementary

:::::::
Fig. S4).

::::
This

:::::::
implies

:::
that

:::
by

:::::::::
considering

::::
PC1

::::
and

::::
PC2,

:::
we

::::::
capture

:::::
most

::
of

:::
the

::::::::
variance.

In winter, sub-regions over ice show a positive correlation between T2m∗ and P ∗ (Fig. 7a, d, g). This correlation is particularly325

strong in the High Arctic, where precipitation events during winter are predominantly caused by synoptic weather systems that

transport warm and moist air masses into the region (e.g. Webster et al., 2019; Papritz and Dunn-Sigouin, 2020)
::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Webster et al., 2019; Papritz and Dunn-Sigouin, 2020).

T2m
∗, P ∗ and RL∗ mainly determine PC1 and thus the direction of maximum variance in the phase space spanned by all

precursor variables in ice sub-regions. Surface sensible and latent heat flux anomalies are positively correlated and mostly

uncorrelated with T2m∗ and P ∗ as they contribute mostly to PC2.330

Similarly, sub-regions with intermediate sea ice concentration show a positive correlation of T2m∗ and P ∗ (Fig. 7b, e, h),

although slightly weaker than over ice for regions KB and NO. Again, the heat fluxes are mostly uncorrelated with T2m∗ and

slightly negatively correlated with P ∗, particularly HL
∗. RL∗ is contributing less to the variance in mixed regions, which

indicates a comparatively lower importance of radiation compared to heat fluxes for determining the seasonal variability.335

Over the open ocean (Fig. 7c, f, i), a positive correlation between the heat flux anomalies and T2m∗ can be observed, indi-

cating increased surface fluxes from the ocean into the atmosphere during periods with anomalously cold temperatures. Unlike

over ice, the maximum variance over open water is mainly determined by the surface heat fluxes. P ∗ is mostly uncorrelated to

the other variables and strongly related to PC2, reflecting that precipitation can occur in warm conditions (e.g., warm sector of340

a cyclone) and in cold conditions (CAO).

Arctic summer seasonal variability is mainly determined by T2m∗, P ∗ and RS∗, whereby T2m∗ and P ∗ are mostly uncor-

related in all regions (Fig. 8). Whereas T2m∗ shows only weak correlations with other parameters in general, P ∗ is strongly

anti-correlated with RS∗ in sub-regions NOS and ARS (Fig. 8f and i), most likely due to the presence of clouds during precip-345

itation events. In sub-regions ARI and ARM (Fig. 8g and h), RL∗ additionally influences the seasonal variability and strongly
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correlates with T2m∗, again emphasizing the importance of clouds in this region.

Season Sub-

regions

dM T2m
∗ [K] P∗ [mm day−1] ES

∗ [W m−2] Area [105 km2]

DJF 2004/05 ARS 3.2 –0.13 (–0.07) [
:::
21–] +1.30 (+2.73) [

:::
1+] –47.10 (–2.00) [

::
1–] 3.5

DJF 2012/13 KBI 3.0 +0.13 (+0.05) [
::::
18+] +0.02 (+0.12) [

::::
19+] –29.48 (–3.07) [

::
1–] 5.3

:::
5.4

DJF 2016/17 KBI 3.4 +0.41 (+0.16) [
::::
16+] +0.25 (+1.96) [

:::
2+] –29.00 (–3.02) [

::
2–] 22.8

:::
5.4

KBM 3.3 +1.61 (+0.59) [
::::
13+] +0.67 (+3.44) [

:::
1+] –54.20 (–3.03) [

::
1–]

::::
10.7

KBS 3.1 +0.83 (+0.65) [
::::
14+] +0.98 (+3.03) [

:::
1+] –19.14 (–0.81) [

::
8–]

:::
6.8

JJA 2013 ARI 3.2 –0.53 (–2.90) [
::
1–] +0.32 (+1.75) [

:::
4+] –10.9 (–3.21) [

::
1–] 14.3

JJA 2016 KBM 3.1 +1.36 (+3.27) [
:::
1+] +0.23 (+1.18) [

:::
7+] +0.52 (+0.91) [

:::
8+] 16.7

::::
11.6

NOM 3.3 +1.13 (+3.47) [
:::
1+] –0.37 (–1.10) [

::
8–] +9.27 (+1.65) [

:::
4+]

:::
5.1

MAM 19901 NOI 3.7 +0.37 (+0.27) [
::::
17+] –0.16 (–0.37) [

:::
16–] –1.51 (–0.47) [

:::
12–] 82.2

:::
1.3

ARI 4.1 +3.08 (+3.45) [
:::
1+] +0.25 (+3.81) [

:::
1+] +2.36 (+1.23) [

:::
4+]

::::
80.9

MAM 1996 NOM 3.3 +1.32 (+1.20) [
:::
6+] –0.54 (–1.25) [

::
4–] +33.96 (+2.69) [

:::
1+] 5.8

SON 1995 KBM 3.0 +0.68 (+0.42) [
::::
16+] –0.06 (–0.27) [

:::
15–] –27.11 (–2.99) [

::
1–] 10.7

SON 2007 ARM 3.3 +1.33 (+1.40) [
:::
8+] +0.06 (+0.78) [

::::
11+] –15.2 (–3.47) [

::
1–] 52.7

SON 2018 ARI 3.2 +1.63 (+1.36) [
:::
4+] +0.31 (+3.07) [

:::
1+] –2.76 (–1.60) [

::
4–] 32.3

Table 2. Extreme seasons in DJF, JJA, MAM and SON, including the affected sub-regions and respective Mahalanobis distance (dM , see

Sect. 2.3), the seasonal-mean anomalies of T2m, P andES (standardized seasonal-mean anomalies in brackets
::::::::
parentheses) and total affected

area
:::
per

::::::::
sub-region.

:::
The

:::
rank

::
of
::::
each

:::::::::::
seasonal-mean

:::::::
anomaly

::::
with

:::::
respect

::
to

::
all

::::::
seasons

::
is
:::::
given

:
in
:::::::

brackets,
::::
with

::::
"1+"

:::::::
denoting

:::
rank

::
1
::
in

::::
terms

::
of

:
a
::::::
positive

:::::::
anomaly

::::
(e.g.,

::::::
wettest

:::::
season)

:::
and

::::
"1–"

:::::::
denoting

::::
rank

:
1
::
in

::::
terms

::
of

:
a
:::::::
negative

:::::::
anomaly

::::
(e.g.,

::::
driest

::::::
season).

4.1 Arctic extreme and anomalous seasons

Using
::
As

::::::::
explained

::
in
::::::::

Sect. 2.3,
:::

by
:::::
using

:
a threshold for the anomaly magnitude (dM ≥ 3, see Sect. 2.3), seasons that ap-350

pear as clear outliers in their respective PCA biplot are defined as extreme seasons, whereas seasons located at the edges of

the point cloud formed by all seasons are characterized as anomalous seasons (3>dM ≥ 2). The two thresholds are chosen

1
:::::
Extreme

:::::
season

:::::
MAM

:::
1990

::
in

:::::::
sub-region

::::
NOI

::::
shows

::::
rank [

:
1+]

::
for

::::
RS ,

:::
rank [

::
7+]

::
for

:::
HS ,

:::
rank

:
[
::
9–]

::
for

:::
HL:::

and
:::
rank

:
[
::
1–]

::
for

:::
RL.

::::::
Although

:::::
single

::::::::
components

:
of
:::
ES::::

show
:::
rank

::
1,

::
but

::
in

::::::
opposite

:::::::
directions,

::
this

::::
leads

::
to

::
an

:::::
overall

:::::
medium

:::
rank

:
[
:::
12–]

::
for

:::
ES .
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pragmatically to distinguish seasons with different anomaly magnitudes and to classify the season with the largest anomaly

magnitude as “extreme season". The term extreme season is appropriate as their return period corresponds to approximately 40

years in a given region. With our
:::::
Using

::::
these

:
thresholds we find 2 extreme seasons in DJF, JJA and MAM, respectively, and 3355

extreme seasons in SON (Table 2).
::::
With

::::
this

::::
total

::::::
number

:::
of

:::::::
extreme

:::::::
seasons,

:::
the

:::::
return

::::::
period

::
of

::::
such

::
a

::::::
season

::::::::::
corresponds

::
to

::::::::::::
approximately

::
40

:::::
years,

::::::
which

:::
has

::::
been

:::::
used

::
as

::
an

::::::::
adequate

:::::::
measure

:::
for

:::::::
defining

:::::::
extreme

:::::::
seasons

::
by

::::::
several

:::::::
studies,

::::
e.g.,

::::::::::::::::::::::
Röthlisberger et al. (2021). The number of sub-regions where one particular season is identified as extreme varies between

one and three, however the varying size of the sub-regions and thus significant differences in the extent of the affected area

have to be considered. Further we identify on average 3.3 anomalous seasons per sub-region in DJF, 5 anomalous seasons per360

sub-region in JJA, 4.7 anomalous seasons per sub-region in MAM and 4.4 anomalous seasons per sub-region in SON (see

supplementary Tables S1-S4
:::::
S3-S6).
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Figure 7. PCA biplot for all sub-regions in DJF with PC1 and PC2 along the x- and y-axis, respectively. Every season is represented by

a grey dot, red and orange dots show extreme and anomalous seasons, respectively. Blue lines represent the coefficients of the precursor

variables. Red and orange circles represent dM=3 and dM=2, the thresholds used for extreme and anomalous seasons, respectively. Selected

case study seasons are labeled.
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Figure 8. As Fig. 7 but for JJA. No biplots are shown for the sub-regions KBI and NOI, because they fall below the minimum size threshold

of 105 km2 in summer.
:::
The

::::::
extreme

:::::::
summer

::::
2016

::
is

:::::
labeled

::
in
:::::

(b, e)
:::
due

::
to

::
its

:::
role

::
in
:::
the

::::::::::::
preconditioning

::
of

:::
the

::::::
extreme

:::::
winter

:::::::
2016/17

:::
(see

::::::::::::
subsection 5.2).

It is now interesting to
::::
After

:::::::::
identifying

::::::
Arctic

:::::::
extreme

:::
and

:::::::::
anomalous

::::::
seasons

:::
as

:::
well

::
as
:::
the

::::::
surface

::::::::::
parameters

::::::::::
determining

::::
their

::::::::
variability

:::
in

:::
the

:::::::
different

:::::::::::
sub-regions,

:::
we

:::
are

::::
now

::::::::
interested

::
in
::::

the
::::::::::
substructure

::
of

:::::
such

::::::
seasons

:::::
with

::::::
respect

::
to

:::::
T2m,365

::
P

:::
and

::::
ES .

:::::::::
Therefore,

:::
we

:
briefly reconsider Figs. 5 and 6 and focus on the extreme and anomalous seasons, shown by red

and orange dots, respectively, in comparison to all seasons in the study period. By design, extreme seasons
::::
with

::::::
dM ≥ 3

:
have

very large anomalies for at least one parameter
::::
(see

:::::
ranks

:::
for

::::::::::::
seasonal-mean

:::::::::
anomalies

::
in

:::::::
Table 2), for example the strong
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positive and nearly continuous P ∗ in the extreme winter in KBM (Fig. 5h) or the negative ES∗ in both extreme winters in

KBI (Fig. 5j). In summer, all extreme seasons are characterized by a strong T2m∗ outlier (Fig. 6a, c, d), which coincides with370

an equally strong ES∗ outlier in ARI (Fig. 6i). Similarly, most anomalous seasons also show outliers or anomalies near the

edge of the point cloud for at least one parameter. However, some anomalous seasons don’t show very strong anomalies in

one particular parameter, which implies that for these seasons it is the combination of several parameters that makes them

anomalous. In a given region, several extreme or anomalous seasons can have similar seasonal anomalies, for instance both

extreme winters in KBI (Fig. 5b, f, j) and two anomalous and one extreme summers in ARI (Fig. 6a, e, i), indicating similar375

characteristics and most likely also underlying processes causing the anomalous nature of these seasons. However, in other

regions with multiple anomalous seasons, they show a similar behavior in one but a contrasting behavior in another variable.

For example, the anomalous winters in KBM both have a positive T2m∗ but different signs in their respective ES∗ (Fig. 5d and

l). We thus expect different processes to be responsible for these seasons to be anomalous.

380

Based on the results of the PCA analysis and Fig. 5, two extreme and one anomalous winters
::
the

::::::::
following

::::::
winter

:::::::
seasons

are chosen for detailed case studies to better understand their seasonal substructure as well as the underlying processes. The

selected seasons are the
:
:
:::
The

:
winters 2011/12 and 2016/17 in the Kara-Barents

::::
Kara

:::
and

:::::::
Barents Seas and the winter 2012/13

in ARI. A third
:::
We

::
do

::::
not

:::::::
consider

::::
the extreme winter in region ARS is disregarded

:
in

::::::::
2004/05, as ARS is only a very

small region that consists of two remote fragments and thus the meaningful analysis of the involved processes would be less385

straightforward. Furthermore this selection allows to, on one hand, contrast two seasons in the same geographical region, and

on the other hand also point out differences in terms of the underlying processes in a region at the edge of the Arctic and

in the High Arctic.
:::
This

::::::
choice

:::
of

::::
case

:::::
study

::::::
seasons

::
is
:::::::::
subjective

:::
and

:::::::::
motivated

::
by

:::
the

::::::::
intention

::
to

::::::
reveal

:::
the

:::::::
diversity

::::
and

:::::::::
complexity

::
of

:::
the

::::::::
involved

:::::::::
processes.

::
It

::
is

::::::
further

:::::::
strongly

::::::
limited

:::
by

:::
the

::::::::
available

::::::
amount

:::
of

:::::::
suitable

::::::
seasons

:::
for

::::::::
in-depth

:::::::::::
investigation.

::::::::
Choosing

:::
two

::::::
winter

:::::::
seasons

::
in

:::
the

::::
same

::::::
region

::::::
allows

::
us

::
to

:::::::::
emphasize

::::::::::
inter-annual

:::::::::
variability,

:::::
while

::::::::
avoiding390

::::::::
additional

::::::
effects

::
of

:::::::
seasonal

:::::::::
variations.

:

5 Case Studies

5.1 DJF 2011/12

The winter of 2011/12 is classified as an anomalous season in KBI and KBM. In both sub-regions, this winter shows the largest

positive T2m∗ during the 39-year study period (Fig. 7b and d). The time series in Fig. 9a shows that the daily-mean surface395

temperature is continuously above the climatology (consistent with the fact that the dots in Fig. 5b and d are on the diagonal).

In KBI, T2m∗ is the main contributor to this season’s anomaly magnitude, supported by positive P ∗ and RL∗ (Figs. 5b and f,

and 7a). In KBM, positive T2m∗ and HS
∗ mainly determine the exceptional character of this winter (Figs. 5d and 7b), which

also leads to one of the most positive ES∗ compared to all winters in the study period (Fig. 5l).

400
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In DJF 2011/12, T2m∗ is about + 6.6 K in KBI and + 4.7 K in KBM. In the whole region, during December, values are

continuously around + 6 K above climatology, before approaching more normal
::::::
average

:
levels at the beginning of January

(Fig. 9a). The largest T2m∗ values are reached in February. The SIC anomaly shows an opposite behavior and is continuously

negative, reaching values close to climatology only at the beginning of the season and during the period with reduced T2m∗

in January (Fig. 9c). Similarly to the other variables, we here calculate the SIC anomaly using a transient climatology, as this405

effectively removes non-linear SIC trends in the Kara-Barents
:::
Kara

::::
and

:::::::
Barents Seas (see Fig. S1c and d in the supplement).

Daily-mean ES values are strongly correlated with daily-mean T2m, resulting in mostly positive ES∗ during the particularly

warm episodes and shorter periods of negative ES∗ when T2m∗ is reduced (Fig. 9b). The positive ES∗ is mainly due to a

strongly positive HS
∗, i.e., strongly reduced heat fluxes into the atmosphere, favored by the warm surface temperatures and

comparatively few CAOs (see next paragraph). During the period with the largest T2m∗ in February, when the surface air tem-410

peratures exceed 0 °C at several grid points on multiple days, even positive HS values occur over the open ocean (not shown).

Daily P values show only small deviations from climatology, except for the first five days of the season and in the beginning

of February (Fig. 9d).
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Figure 9. Time series of daily-mean (a) T2m (in °C), (b) ES (in W m−2), (c) SICand , (d) P (in mm day−1)
:::
and

::
(e)

::::::
sea-level

::::::
pressure

:::::
(SLP,

:
in
::::
hPa) averaged in the region of the Kara-Barents

::::
Kara

:::
and

::::::
Barents Seas (KBI, KBM, and KBS) in DJF 2011/12 (black lines). The transient

climatology is shown by grey lines. Blue, orange, and green heatmaps at the bottom of the figure show the daily-mean coverage of the region

by cyclones, blocks, and CAOs, respectively (the darker the color the higher the coverage). Relative frequency anomalies of the three weather

systems are given in percentages. The horizontal axis indicates days since the start of the season with day 1 corresponding to 01 December.

It is now interesting to compare the time series of the basic variables with the occurrence of specific weather systems.415

The colored heatmaps at the bottom of Fig. 9 provide information about the occurrence of cyclones, blocks and CAOs in the

Kara-Barents Seas.
::::
Kara

:::
and

:::::::
Barents

:::::
Seas.

::
As

:::::
each

::::::
weather

:::::::
system

:
is
:::::::::
identified

::
as

::
an

::::::
object

::::::::
described

::
by

::
a
::::::::::::::
two-dimensional

:::::
binary

::::
field

:::::
(grid

:::::
points

::::
that

::::::
belong

::
to

:
a
::::::
system

::::
have

::
a
:::::
value

::
of

:
1
::::
and

::::
other

::::
grid

:::::
points

:::::
have

:
a
:::::
value

::
of

:::
0),

:::
the

:::::::
weather

::::::
system

::::::::
frequency

::::
field

::
is

:::::::::
calculated

:::
by

::::
time

::::::::
averaging

::
of

:::::
these

::::::
binary

:::::
fields.

::::
For

::::::::
example,

::
if

:
a
:::::::
cyclone

:::::
mask

::::::
covers

:
a
::::
grid

:::::
point

::
at

::::
25 %

::
of

:::
all

:::::
times,

::::
then

::::
time

::::::::
averaging

::
of

:::
the

::::::
binary

:::::
fields

:::::
yields

::::
0.25,

::::::::::::
corresponding

::
to

::
a
::::::
cyclone

:::::::::
frequency

::
of

:::::
25 %. Here, the420

color intensity is representative for the
::::
daily

:::::
mean

:::::::
weather

::::::
system

:::::::::
frequency

::::::::
averaged

::::
over

:::
the

:::
area

:::
of

:::
the

:::::::::
sub-region,

::::
thus

::
it

:::::::
indicates

:::
the

:
percentage of the sub-regions’ area which

:::
that overlaps with a cyclone, blocking or CAO mask on a daily basis.

The repeated passage of cyclones (Fig. 9, blue heatmap) originating from the Nordic Seas (not shown) ensures the continuous

transport of warm and moist air masses into the Kara-Barents
::::
Kara

:::
and

:::::::
Barents Seas throughout several periods, mostly during

December and February. Yet, in the wintertime average, cyclone frequency in this region was slightly below climatology
:::
(as425
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:::::
further

:::::::::
discussed

::
in

::::::
section

::::
5.3). In contrast, CAO frequency (Fig. 9, green heatmap) was strongly reduced while blocking

frequency was substantially increased (Fig. 9, red heatmap) in this season. CAOs, which often occur after the passage of a

cyclone
:
in

:::
the

::::::::
cyclones’

::::
cold

::::::
sector, as can be seen for example around days 30, 43 and 77, usually lead to a strong decrease

in T2m and ES (associated with intense surface fluxes). Therefore, the relative lack of CAOs in this winter favors the persis-

tence of above average T2m. Several blocking episodes around days 34, 61 and 71 are associated with notable peaks of T2m430

and ES . Animations S1-3 in the supplementary material show daily synoptic plots for each of the discussed case studies and

further illustrate the interplay of the synoptic systems and the occurrence of the anomalies in the considered surface parameters.

This season’s large anomaly magnitude in sub-regions KBI and KBM was mainly determined by its exceptionally positive

T2m
∗ and the resulting positive HS

∗, favored by unusually frequent blocking events and the reduced frequency of CAOs435

throughout the season.

5.2 DJF 2016/17

The winter 2016/17 is classified as extreme in all sub-regions of the Kara-Barents
::::
Kara

:::
and

:::::::
Barents

:
Seas. The PCA biplot

shows that in KBI and KBM the anomaly magnitude of this winter is mainly determined by negative surface flux anomalies,

especially of HS (Fig. 7a and b). In KBS, a positive P ∗ is the strongest contributor to the anomaly magnitude (Fig. 7c) and in440

KBM this winter occurs with a strong positive P ∗ outlier (Fig. 5h). In fact, it is the winter with the most precipitation in the

Kara-Barents
::::
Kara

::::
and

::::::
Barents

:
Seas during the study period. Further, in KBI and KBM, a strongly negative ES∗ occurs as a

clear outlier with respect to other winters (Fig. 5j and l). Finally, T2m∗ shows a positive anomaly in KBM and KBS, which,

however, is not exceptional (Fig. 5d).

445
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Figure 10. Time series of daily-mean (a) T2m (in °C), (b) ES (in W m−2), (c) SICand ,
:
(d) P (in mm day−1)

:::
and

::
(e)

::::::
sea-level

:::::::
pressure

::::
(SLP,

::
in

::::
hPa) averaged in the region of the Kara-Barents

::::
Kara

:::
and

::::::
Barents

:
Seas (KBI, KBM, and KBS) in DJF 2016/17 (black lines). The

transient climatology is shown by grey lines. Purple vertical lines indicate the two time steps shown in Fig. 11, 09 January 2017
:::
(day

:::
40)

and 07 February 2017
::::
(day

::
69), respectively. Blue, orange, and green heatmaps at the bottom of the figure show the daily-mean coverage of

the region by cyclones, blocks, and CAOs, respectively (the darker the color the higher the coverage). Relative frequency anomalies of the

three weather systems are given in percentages. The horizontal axis indicates days since the start of the season with day 1 corresponding to

01 December.

Several episodic precipitation events result in the strongly positive P ∗ which often can be linked to the passage of a cyclone

(Fig. 10d, blue heatmap). Only very few episodes show P ∗ values below climatology, e.g. at the beginning of February when

the occurrence of a block causes dry conditions (Fig. 10d, red heatmap). The positive T2m∗ results from several episodic warm

events with a duration of ∼ 5–10 days (Fig. 10a), each deviating more than + 5 K from climatology. There are, however, also

several periods that are notably colder than climatology, thus implying a small seasonal-mean anomaly. This
:::::
These periods typ-450

ically are characterized by a CAO (Fig. 10, green heatmap). A negative SIC anomaly occurs throughout the season (Fig. 10b),

which is especially pronounced in KBM (not shown), with strong decreases in SIC following warm and wet episodes linked

to the passage of cyclones (Fig. 10, blue heatmap). During these episodes, which occur for example around days 21, 37 and

57, the wind field associated with the cyclone affects the sea ice transport and pushes the sea ice edge further north, momen-

tarily reducing the sea ice coverage mainly in the region KBM. In the supplementary Fig. S4
::
S7 we show an example, using455
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PIOMAS sea ice data (Schweiger et al., 2011), of how the passage of several cyclones between
::::
days

:
17 December and 24

December affects the sea ice transport in the Kara-Barents
::::
Kara

:::
and

:::::::
Barents

:
Seas. The most prominent anomaly during this

winter however is the strongly negative ES∗ (Fig. 10b), particularly pronounced in KBI and KBM, mainly resulting from

negative HL
∗ and HS

∗. This negative ES anomaly is closely linked to SIC anomalies and episodic cold periods. Specifically,

the reduction in sea ice coverage and, thus, increased area of open ocean leads to more intense upward surface heat fluxes. A460

slightly positive tendency ofES is found for episodes where SIC returns to climatological values, for example in February 2017

(Fig. 10b and c). In addition, the most negative values ofES occur during cold periods related to marine CAOs (Fig. 10a and b).

Analysing the weather systems during this winter reveals that the single
::::::::
individual warm events are driven by different synop-

tic processes. Figure 11 exemplarily shows
:::::::::
exemplifies two characteristic but different synoptic circulation patterns associated465

with anomalously warm conditions on 09
:
in

:
January 2017 (Fig. 11a) and on 07

::
in February 2017 (Fig. 11b). In January2017, a

sequence of multiple cyclones continuously transport warm air from the southwest towards the Kara-Barents
::::
Kara

:::
and

:::::::
Barents

Seas (Figs. 10, blue heat map, 11a and supplementary animation S2). Figure 11a shows a typical situation where a cyclone from

the Nordic Seas propagated into the Kara-Barents
::::
Kara

:::
and

:::::::
Barents Seas region, leading to anomalously warm conditions in

its warm sector and precipitation along its cold front. Since the cyclones become nearly stationary and a large part of their cold470

sector is often located outside of the region in the Greenland Sea or towards the High Arctic, they cause a net warming in the

region of the Kara-Barents
::::
Kara

:::
and

:::::::
Barents Seas as well as persistent precipitation during their passage (Fig. 10a and d). Fig-

ure 11b shows the persistent large-scale situation during the warming episode in February 2017, when a stationary block over

northern Scandinavia in combination with a strong cyclone to the South of Greenland leads to anomalously warm conditions in

its northern periphery (Figs. 10, red heatmap, 11b and supplementary animation S2). Next to the enhanced poleward transport475

of mid-latitude air masses which is favored by this pattern, subsidence-induced adiabatic warming additionally causes high

surface temperatures for the duration of the block (cf. Papritz, 2020). At the same time, the presence of the block suppresses

precipitation in the region, resulting in one of the driest periods of the season (Fig. 10d).
::
In

::::::::::::
supplementary

:::::::
Fig. S8,

:::
we

:::::
show

::
the

::::::::::
differences

::
in

:::
the

::
air

:::::
mass

:::::
origin

:::
for

::::
both

:::::
warm

::::::
events

::
by

:::::
using

:::
air

:::::
parcel

::::::::::
trajectories.

480

In January, daily-mean ES values correlate well with daily-mean T2m values with the most negative ES values on the colder

days. Despite of this, ES shows a negative seasonal-mean anomaly, as SIC∗ values are strongly negative and frequent CAO

events (Fig. 10, green heatmap) enhance surface fluxes into the atmosphere. In February, when SIC levels show only small

negative anomalies and thus anomalous heat fluxes into the atmosphere are smaller, strong positive HS
∗, HL

∗ and RL∗ during

the blocking event lead to the largest positive ES∗ values throughout the winter, followed again by a period with frequent485

CAOs and strongly negative ES∗ values.
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Figure 11. Synoptic situation on (a) 09 January 2017
:::
(day

:::
40)

:
and (b) 07 February 2017.

:::
2017

::::
(day

::::
69).

:
Daily anomaly of potential

temperature at 900 hPa (θ900; K, color). Instantaneous sea-level
::::::
Sea-level

:
pressure (SLP, grey contour

::::::
contours, in intervals of 10 hPa), sea

ice edge (SIC = 0.5, solid yellow line), climatological sea ice edge (SICclim = 0.5, dashed yellow line), cyclone mask (dashed black contour)

and blocking mask (dashed green contour) at 00 UTC on the considered days. The region of the Kara-Barents
::::
Kara

:::
and

::::::
Barents

:
Seas is

marked by orange hatching.

Besides synoptic processes, also preconditioning potentially plays an important role for the occurrence of an extreme sea-

son, as we aim to discuss now. From Fig. 10c, it is obvious
::
can

:::
be

::::
seen

:
that SIC in the Kara-Barents

::::
Kara

::::
and

::::::
Barents

:
Seas

was already exceptionally low at the start of the winter season, in fact, the sea ice extent on 01 December was the lowest490

at
::
on

:
this date for the entire study period. At the same time, the sea surface temperature (SST) shows a significantly pos-

itive anomaly of about + 1 K on average, which favors a delayed freeze-up in the region and at the same time also more

intense upward sensible and latent heat fluxes. These initial surface conditions provide an important precondition for the

strongly negative ES∗, which itself is decisive for the anomaly magnitude of this winter. Analysing SIC and SST anomalies

in the Kara-Barents
::::
Kara

:::
and

:::::::
Barents

:
Seas during the previous seasons in 2016 shows that they developed since the previ-495

ous winter (SIC) or spring 2016 (SST, see Fig. 13b,
::::::
which

:::
will

:::
be

::::::::
discussed

::
in

:::::::::
section 5.3). At the end of 2015, an extreme

warm event (e.g. Boisvert et al., 2016; Binder et al., 2017)
:::::::::::::::::::::::::::::::::::::
(e.g., Boisvert et al., 2016; Binder et al., 2017) led to a significant

thinning of the sea ice in the Kara-Barents
::::
Kara

::::
and

::::::
Barents

:
Seas, causing an early start of the melt season in 2016 and subse-

quently increased SST values in MAM, coinciding with a positive T2m∗ in the same region. The summer of 2016 does occur

as an extreme season in sub-regions KBM and NOM (Fig. 8b and e) and as an anomalous season in KBS (Fig. 8c), mainly500

due to a strong T2m∗ of on average + 1.4 K in the Kara-Barents
::::
Kara

:::
and

:::::::
Barents

:
Seas, which was facilitated by a reduction
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in total cloud cover and thus strongly enhanced RS . Together with the already existing positive SST anomaly this extremely

warm summer led to record low SIC and ice-free conditions in the Barents Sea from July to September (Petty et al., 2018).

Strong blocking over large parts of the Arctic during autumn
::::::
October

::::
and

::::::::
November

:
2016 caused positive surface temperature

anomalies across the whole Arctic region (Tyrlis et al., 2019) as well as strong positive ES anomalies, favoring the persistence505

of the negative SIC and positive SST anomalies (Blunden and Arndt, 2017) until the beginning of DJF 2016/17.

In summary, the winter 2016/17 was extreme in the Kara and Barents Seas due to a combination of preconditioning and

favourable synoptic conditions. Specifically, a combination of strongly positive SST∗ and negative SIC∗ at the beginning of

the season, and a relatively large number of CAO events throughout the season, resulted in strongly negative surface heat flux510

anomalies. Furthermore, an enhanced frequency of cyclones transporting warm and humid air masses into the region lead to a

strongly enhanced P ∗.

5.3 Comparison
:
of

:
DJF 2011/12 and DJF 2016/17

Comparing both anomalous winters in the Kara-Barents
:::
Kara

::::
and

::::::
Barents

:
Seas, it becomes already evident from the PCA bi-

plots (Fig. 7a and b) that the processes leading to their respective anomaly magnitude are fundamentally different, as the vectors515

pointing to the two seasons in the biplot are nearly orthogonal. The winter of 2011/12 is dominated by a continuous positive

T2m anomaly favored by a reduced frequency of CAO events, whereas in DJF 2016/17 the negative heat flux anomalies and

exceptionally positive P ∗, enhanced by strongly reduced sea ice cover are most important.
:::
We

::::
have

::::::
further

::::
seen

::
in

::
the

::::::::
previous

:::::::::
paragraphs

:::
that

::::
both

:::::::
seasons

::::::
feature

::::
large

:::::::::
variability

::
in

:::
the

::::::::::
substructure

:::
of

:::
the

::::::::
respective

::::::::::
parameters.

::
To

:::::
better

::::::::::
understand

:::
the

:::::::::
underlying

::::::::
processes

::::::
leading

::
to

:::::
these

::::::::::
differences,

:::
we

:::
will

::::
now

:::::::
analyse

::
the

::::::::
synoptic

:::::::
situation

::
in

::::
both

:::::::
seasons

::
in

:::::
more

:::::
detail.520
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Figure 12. Seasonal-mean
::
(a,

::
b) cyclone frequency (a, b) and

::
(c,

::
d) blocking frequency (c, d) anomalies for

::
(a,

::
c) DJF 2011/12 (a, c) and

::
(b,

::
d) DJF 2016/17 (b, d).

:::
17. Region of the Kara-Barents

::::
Kara

:::
and

::::::
Barents Seas is marked with green contour.

The synoptic activity differs between these seasons. In DJF 2011/12, cyclone frequency was strongly enhanced over the

Nordic Seas concomitant with a reduction in the Kara-Barents
:::
Kara

::::
and

::::::
eastern

:::::::
Barents Seas (Fig. 12a). This

:
,
:::::
which

:
favored

the frequent advection of warm air masses into the Barents Sea. Since enhanced
::::::::
Enhanced cyclone activity was restricted to

the Nordic Seas
:::
and

:::
the

:::::::
western

::::::
Barents

::::
Sea where several cyclones slowed down and got

::::::
became stationary (see supplemen-525

tary animation S1), also the
:
.
::
As

::
a
:::::
result,

::::::
during

::::::
several

:::::
days

::
of

:::
this

::::::
winter,

:::
the

::::::
warm

:::::
sector

::
of

::
a
::::::
cyclone

::::
was

:::::::
located

::
in

:::
the

::::::
Barents

:::::
Seas,

:::::::
causing

::
an

:::::::
increase

:::
in

::::::
surface

:::::::::::
temperatures,

::::::::
whereas

::
its

::::
cold

::::::
sector

:::
was

:::::::::
positioned

:::
in

:::
the

::::::
Nordic

:::::
Seas.

:::::
Thus,

::
the

:
frequency of cold air outbreaks, which preferentially occur in the cyclone’s cold sectors, was reduced in the Kara-Barents

Seas
:::::
region

::
of

:::
the

::::
Kara

::::
and

::::::
Barents

:::::
Seas,

:::::::
favoring

:::
the

::::::::
formation

::
of

::
a

::::::
positive

:::::
T2m

∗. In addition, recurrent blocks over the Ural

mountains (Fig. 12c) contributed to above normal
:::::::
average surface temperatures. In DJF 2016/17, in contrast, cyclone activity530

was close to climatology (Fig. 12b)
:
as

::::::::
cyclones

:::::::
crossed

:::
the

:::::
region

::::
(see

:::::::::::::
supplementary

:::::::::
animation

:::
S2), but instead blocking

frequency over Scandinavia was strongly enhanced (Fig. 12d). Subsidence-induced warming and long-range transport of warm

29



air masses contributed to several warm episodes .
:::
(see

::::::
Fig. S8

:::
in

:::
the

::::::::::
supplement).

:
However, an enhanced frequency of CAOs,

facilitated by the frequent passage of cyclones combined with reduced SIC and warm ocean temperatures, limited T2m∗ but

contributed to a strongly negative ES∗. Thus, the patterns of synoptic activity were partly reversed between the two seasons,535

yet they contributed substantially to their anomalous nature.
:::::::
Further,

:
it
::::::::
becomes

::::::
evident

::::
that

::
the

::::::
impact

:::
of

:::::::
cyclones

::
on

:::::::
surface

::::::::
anomalies

:::::::
depends

::::::::
critically

::
on

::::
their

:::::
track

::::::
relative

::
to
:::
the

::::::
region

::
of

:::::::
interest.
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Figure 13. Standardized seasonal-mean anomalies of SIC (SIC∗; along x-axis) and SST (SST∗; in K, along y-axis) in the Kara-Barents

:::
Kara

::::
and

::::::
Barents Seas for the entire study period (grey dots) including all seasons. Colored dots highlight the eight seasons preceding (a)

the anomalous winter 2011/12 and (b) the extreme winter 2016/17.

In addition to the synoptic activity, we found the influence of preconditioning in SIC and SST values to be of great importance

for DJF 2016/17. Figure 13b shows persistent negative SIC∗ and positive SST∗ throughout the preceding 1.5 years. Comparing540

the initial conditions for the winter of 2011/12, the influence of the previous seasons seems to be minor, as SIC and SST values

are close to normal at the beginning of the winter and seasonal-mean anomalies in spring and summer 2011 show no significant

negative and positive anomalies, respectively (Fig. 13a).

5.4 DJF 2012/13

::::
After

::::::::
analysing

::::
two

:::::::::
anomalous

::::::
winters

::
in

:::
the

::::
Kara

::::
and

::::::
Barents

:::::
Seas,

:::
we

::::
now

::::
want

::
to

::::::
discuss

:::::::
another

:::::::::
anomalous

:::::
Arctic

::::::
winter545

::
in

:::
the

::::
High

::::::
Arctic

::
to

:::::
better

:::::::::
understand

:::
the

::::::::
different

::::::::
processes

:::::::
leading

::
to

::::
such

:::::::
seasons

::
in

:::::
Arctic

:::::::
regions

::::
with

::::::
distinct

:::::::
surface

:::::::::
conditions. In the region of the High Arctic, the winter of 2012/13 is classified as strongly anomalous in ARI mainly due to its

negative T2m∗ and P ∗ (Fig. 7g), making it one of the coldest and driest winters in this sub-region (Fig. 5a and e). A negative

RL
∗, i.e., less net longwave radiation, resulting in an overall strongly negative ES∗ contributes additionally to the anomaly

magnitude of this winter (Fig. 5i). Figure 14a shows that the T2m anomaly mainly results from deviations up to −8K from550
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the climatology during the second half of the season, which is quite a substantial anomaly considering the size of the spatially

averaged area, whereas the first half of the season is close to climatology. From mid-January on,ES values are also consistently

below average and little to no precipitation occurs until the end of the winter (Fig. 14b and e). It is evident that only the second

half of the season features exceptional conditions, indicating that anomalies do not have to persist throughout a whole season

to make it anomalous.555
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Figure 14. Time series of daily-mean (a) T2m (in °C), (b)ES (in W m−2), (c) SICand ,
:
(d) P (in mm day−1)

:::
and

::
(e)

::::::
sea-level

::::::
pressure

:::::
(SLP,

:
in
::::
hPa)

:
averaged in the sub-region ARI in DJF 2012/13 (black lines). The transient climatology is shown by grey lines. Purple vertical line

indicates the time step shown in Fig. ??, 18 February 2013. Blue , orange, and green
:::::
orange heatmaps at the bottom of the figure show the

daily-mean coverage of the region by cyclones ,
:::
and blocks, and CAOs, respectively (the darker the color the higher the coverage). Relative

frequency anomalies of the three
:::
two weather systems are given in percentages. The horizontal axis indicates days since the start of the

season with day 1 corresponding to 01 December.

The anomalies during the second half of the season coincide with a decrease of synoptic activity over the High Arctic.

Specifically, the relative cyclone and blocking frequency anomalies in ARI are slightly and strongly reduced, respectively,

especially in the second half of the season. In December, several cyclones and blocks affect the prevalent conditions in the

High Arctic (Fig. 14, blue and red heatmaps and supplementary animation S3). Between
::::
days 20 December and 25December,560

a strong intrusion of warm and moist air facilitated by adjacent blocking and cyclone systems in the Bering Sea causes a strong
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precipitation event, coinciding with increasing surface mean temperatures and a local decline in sea ice coverage (Fig. 14a, c, d).

At the same time, a displacement of the polar vortex occurs, which subsequently leads to a splitting of the polar vortex and

a sudden stratospheric warming event at the beginning of January 2013 (Coy and Pawson, 2015; Nath et al., 2016). As the

region of the High Arctic is positioned beneath the saddle point of the resulting two cyclonic vortices in the stratosphere,565

relatively calm conditions lead to the development of a high pressure
:::::::::::
high-pressure

:
system in the Laptev Sea, which evolves

into a strong and persistent polar high during January (Fig. 14e). Persistent radiative cooling induces
:::::::
Figure 15

::::::
shows

:::
that

:::::
there

:
is
:::
no

:::::::::
upper-level

::::::::::
anticyclone

::
or

:::::
block

::::::
present

::
in

:::
the

:::::
High

:::::
Arctic

::::::
during

:::
that

::::::
period.

::::
This

::::::::
suggests

:::
that

:::
the

:::::
strong

::::::::::::
high-pressure

::::::
system

:
at
:::
the

:::::::
surface

:
is
:::::
most

:::::
likely

::
of

:
a
:::::::::::::
thermodynamic

:::::
origin

::::::
caused

:::
by

::::
cold

:::
and

:::::
dense

:::
air

:::::
below

::
an

::::::::
inversion

::::
layer

:::
(as

:::
can

:::
be

::::
seen

::
in

:::
the

::::
skew

:
T
::::
-log

:
p

:::::::
diagram

::
in

:::::::
Fig. 16),

::::::::
resulting

::::
from

::::::::
persistent

::::::::
radiative

::::::
cooling

::::
and

:::::::
inducing

:
a first drop in T2m :::::

T2m
∗570

at the end of January (Fig. 14a).

In February, the calm conditions in the High Arctic remain and prolong the isolation of the cold and dry air in this region.

:::::
Again,

::
a
::::
lack

:::
of

::::::
notable

::::::::::
upper-level

::::::
forcing

::::
can

:::
be

::::::::
observed

::::
(see

::::::::::::
supplementary

::::::::
Fig. S9). With the increasing dryness of

the air, persistent longwave radiative cooling
::
of

:::
the

:::::::
surface results in a dome of very cold air, as reflected by the air mass

below the 275 K isentrope, covering nearly the whole High Arctic region between 17 February and 21 February (Fig. ?? and575

supplementary animation S3). The conditions in February cause
::::::
causing

:::
the

:::::::::
formation

::
of

::::::
another

::::::
surface

::::::::::::
high-pressure

::::::
system

:::::
during

:::
the

::::::
second

::::
half

::
of

::::::::
February

:::
and

:
one of the strongest negative monthly T2m anomalies in this region.

:::
The

:::::::::
formation

::
of

::
the

:::::
dome

:::
of

:::
cold

:::
air

::
is

::::::
evident

::
as

::
a
:::::
strong

::::::::
inversion

::
in

:::
the

:::::
skew

:
T

:::
-log

:
p

::::::
diagram

:::::::::
(Fig. S10).

:

Comparing winter 2012/13 in ARI with the two anomalous winters in the Kara-Barents
::::
Kara

::::
and

::::::
Barents Seas reveals funda-

mentally different characteristics, resulting mainly from the regionally varying synoptic activity but also the prevalent surface580

conditions. While preconditioning does not play an important role in the High Arctic, which is mainly covered by sea ice, the

long-term development of SIC and SST anomalies in areas with varying SIC can significantly influence the initial conditions

of winters in the Kara-Barents
::::
Kara

:::
and

:::::::
Barents Seas. Each of the three seasons has its own substructure and different combi-

nation of anomalies resulting in the respective anomaly magnitude. Besides the rather straightforward “continuous anomaly in

one parameter" as it is the case for DJF 2011/12, we show that, with our approach to define extreme and anomalous seasons585

based on a multi-variate anomaly magnitude, there are many different pathways for such a season to develop. In DJF 2012/13,

several weeks of consistent extreme conditions resulted in a whole anomalous season, although the first half of the winter was

relatively normal. And in 2016/17, it was not only extraordinary atmospheric conditions but also the preconditioning by an

anomalous evolution of the surface conditions during the previous months that led to an extreme Arctic winter.

6 Discussion and conclusions590

In this study, Arctic winters (DJF) and summers (JJA) have been characterized based on seasonal anomalies of surface param-

eters including temperature, radiation, heat fluxes and precipitation for distinct regions considering varying surface conditions.

In winter, strong spatial differences can be observed dependent on the prevailing surface conditions (i.e., open ocean vs. sea

ice), especially in terms of the surface energy balance components (ES),
::::::::
whereas

::
in

:::::::
summer

::::
there

::
is
::::

less
::::::
spatial

:::::::::
variability
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(a) (b)

Figure 15. Synoptic situation on 18 February 2013.
::
(a)

::
20

::::::
January

::::
2013

:::
(day

:::
51)

:::
and

:::
(b)

::
24

::::::
January

::::
2013

:::
(day

::::
55). Daily anomaly of the

cold air mass DP, defined as the mass below the 275
::::
mean

:::::::::
geopotential

:::::
height

::
at

:::
300 K isentropic surface

:::
hPa (in hPa

::
m, color). Instantaneous

sea-level
::
Sea

::::
level

:
pressure (SLP, grey contour

::::::
contours, in intervals of 10 hPa) , sea ice edge (SIC = 0.5, solid yellow line), climatological

sea ice edge (SICclim = 0.5, dashed yellow line), cyclone mask (dashed black contour) and blocking mask (dashed green contour) at 00 UTC

::
on

::
the

:::::::::
considered

::::
days.

:::::
Black

:::
star

::
at

:::::
173 °E,

::::::
78.5 °N

:::::
shows

::::::
location

::
of
:::::

skew
:

T
::

-log
:
p

:::::
profile

:
in
::::::
Fig. 16.

:
Sub-region ARI is marked by orange

hatching.

:::
due

::
to

:::::::
reduced

::::::
surface

::::::::::
temperature

:::
and

::::::::
radiation

::::::::
gradients. Regions with a climatological sea ice concentration of above 90%595

show only smallES variability mainly determined by changes in the net surface thermal radiation, as solar radiation and air-sea

interactions are strongly reduced, particularly in the high latitudes. In contrast, areas with predominantly open water surface

show a large seasonal variability in the surface energy balance primarily driven by fluctuations in the surface heat fluxes. Tem-

perature anomalies do show a distinct spatial variability as well, featuring relatively large fluctuations in sea ice covered areas

in the Kara-Barents and Nordic Seas and reduced variability over the open ocean. The Nordic Seas are further characterized by600

an increased precipitation variability compared to the Kara-Barents
::::
Kara

:::
and

:::::::
Barents Seas and the High Arctic, whereby the

latter shows smaller variability for all analyzed parameters.

Reduced surface radiation and temperature gradients as well as decreasing sea ice extent result in less heterogeneous

conditions in the distinct sub-regions during summer. Only in the High Arctic, including areas of perennial sea ice, variability is605

clearly smaller compared to the other regions. As a consequence, the Arctic shows much more spatial variability during winter

when meridional gradients in surface temperature and surface radiation are increased, leading to less homogeneous surface

conditions and significant regional variability differences. Hence, it is reasonable to subdivide the Arctic into several regions
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Figure 16.
::::
Skew

:
T
:::
-log

:
p
::::::
diagram

::
at

::::::
173 °E,

::::::
78.5 °N

:::::
(black

:::
star

::
in

::::::
Fig. 15).

::::::::::
Temperature

:
is
:::::
shown

:::::
along

::
the

:::::
x-axis

:::
(in

:::
°C)

:::
and

::::::
pressure

:::::
along

::
the

:::::
y-axis

:::
(in

::::
hPa).

:::::
Black

::::
lines

::::
show

:::
the

::::::
ambient

:::::::::
temperature

:::::
profile

:::
for

::
20

::::::
January

:::::
2013

:::
(day

:::
51;

:::::
dotted

:::::
line),

::
22

::::::
January

::::
2013

::::
(day

:::
53;

:::::
dashed

::::
line),

:::
and

::
24

::::::
January

:::::
2013

:::
(day

:::
55;

::::
solid

::::
line)

:
at
:::::::
00 UTC.

::::
Grey

::::
lines

::::
show

:::::
isobars

:::::::::
(horizontal)

:::
and

::::::::
isotherms

:::::::
(skewed),

::::::::::
respectively.

::::::
Colored

:::::
dashed

::::
lines

:::::
denote

:::
dry

::::
(red)

:::
and

:::::
moist

::::
(blue)

:::::::
adiabats,

::::::::::
respectively.

::::
Green

:::::
dotted

::::
lines

:::::
denote

:::::::
constant

:::::::
saturation

::::::
mixing

:::::
ratios.

considering these spatial differences to study anomalous Arctic winter seasons. We further characterized Arctic seasons based

on the seasonal substructure of surface temperature (T2m), precipitation (P ) and ES . Continuous seasonal anomalies, indicat-610

ing constantly anomalous conditions of the same sign throughout a whole season, can be observed for T2m and ES except for

the open ocean, where strong surface heat flux variability prevents continuous ES anomalies. Distinct outlier seasons can be

observed featuring exceptional seasonal-mean anomalies in one or several parameter(s).

To define and identify anomalous and extreme seasons objectively, we introduce a novel, multi-variate method. Using PCA,615

we define anomalous and extreme seasons by means of an anomaly magnitude based on the combination of seasonal anomalies

of T2m, P , surface heat fluxes and surface net radiation. This
:::::
Unlike

::::::::::::
conventional,

::::::::
univariate

::::::::::
approaches,

:::
we

::
do

:::
not

:::::::::
pre-define

:::
and

::::
thus

:::::::
prioritize

::::
one

::::::::
particular

::::::::
parameter

:::
by

::::::
simply

::::::::
choosing,

::::
e.g.,

:::
the

:::::::
warmest

::
or

::::::
wettest

:::::::
seasons.

:::::::
Instead,

:::
our multi-variate

approach has the advantage over a univariate approach that it also allows to identify seasons that arise from an unusual com-

bination of seasonal anomalies that taken alone are not particularly unusual. We
::::
This

:::::::::::
consequently

:::::
leads

::
to

::::::::
different

:::::
types620

::
of

:::::::
extreme

::::::
seasons

:::
in

:::::
terms

::
of

::::
their

:::::::::
individual

::::::::
anomalies

::::::
which,

::::::::
however,

:::::
share

:
a
:::::::
similar

:::::::::::
"unusualness"

:::
as

::::::::
expressed

:::
by

:::
the

:::::::
anomaly

:::::::::
magnitude

::::
dM .

::
In

:::::
order

::
to

:::::
reach

::
a
:::::::::
significant

:::
dM::::::

value,
::
at

::::
least

::::
one

::
of

:::
the

:::::::::
considered

::::::::
variables

:::
or

:
a
:::::::::::
combination

::::::
thereof

::::
must

:::
be

::::::
clearly

:::::::::
exceptional

:::::::::
compared

::
to

:::::
other

:::::::
seasons.

:::
We

::::
can

::::
show

::::
that

:::
all

::
of

:::
our

:::::::
extreme

:::::::
seasons

::::
have

::::
very

:::::
large

::::::::
anomalies

:::
for

::
at

::::
least

:::
one

:::::::::
parameter

:::
and

::::
thus

:::::
would

:::::
most

:::::::
probably

:::
be

:::::
found

::
to

::
be

:::::::
extreme

::::
with

::
a

::::
more

:::::::::::
conventional

::::::::
approach
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::
as

::::
well.

:::
We

::::
find

:::
that

::::
our

::::::::
identified

:::::::::
anomalous

:::::::
seasons

::::
often

:::::
result

:::::
from

::::::
various

:::::::::::
combinations

:::
of

::::::
unusual

::::::::
seasonal

:::::::::
anomalies,625

:::::
which

::::::
allows

::
us

::
to

:::::::
analyse

:
a
:::::::
broader

::::::::
spectrum

::
of

:::::::
unusual

::::::
seasons

::::
with

::::::
regard

::
to

::::
their

::::::::::
underlying

::::::::
processes

:::
and

:::::::::::
atmospheric

::::::::
dynamics.

:::::::
Further,

:::::
using

:
a
::::::::::
multivariate

::::::::
approach

::::::
allows

::
us

::
to

:::::::
compare

:::::::
extreme

::::
and

:::::::::
anomalous

:::::
Arctic

:::::::
seasons

::::::::::
considering

:::
the

:::::::::::
heterogeneity

::
of

:::
the

:::::
Arctic

:::::::
surface.

:::
We

:
analyze sub-regions with climatologically high, mixed or low sea ice cover separately,

thus accounting for regional differences in the surface conditions, which have a strong impact on the variability of these pa-

rameters. With this approach, we find that our identified extreme and anomalous seasons result from various combinations of630

unusual seasonal anomalies.

Based on this definition of extreme seasons, we analyzed the atmospheric processes leading to three selected extreme and

anomalous
:::::
winter

:
seasons by evaluating the relative importance of different synoptic features, namely cyclones, blocks and

cold air outbreaks (CAO). This helps improving the understanding of the formation of such seasons and underlines the manifold635

processes that can cause a season to become particularly unusual. The results of our analysis for three different case studies

can be summarized as follows:

1. Seasonal substructure: Extreme and anomalous Arctic winter seasons show a high variability in their substructure and the

synoptic processes determining their anomaly magnitude. This magnitude can be due to a continuous seasonal anomaly

in one parameter such as it is the case for the constantly positive temperature anomaly during the exceptionally warm640

winter 2011/12 in the Kara-Barents
::::
Kara

:::
and

:::::::
Barents Seas. However, also the combination of several noticeable but not

exceptional seasonal anomalies can result in a similarly large anomaly magnitude. Furthermore, extreme conditions do

not need to persist during a whole season as we can see for the winter of 2012/13 in the High Arctic, where several weeks

of persistent cold and dry conditions caused seasonal anomalies that are sufficiently large for the season to be identified

as anomalous.645

2. Atmospheric processes: Various synoptic processes can cause Arctic winters to become anomalous or extreme. An

increase in cyclone frequency often leads to enhanced transport of warm and moist air into the respective region, which

is particularly important for the formation of precipitation in the higher latitudes. Episodes of prevailing atmospheric

blocking usually favor the persistence of positive surface temperature anomalies due to subsidence-induced adiabatic

warming. Recurrent synoptic events such as cyclones, blocking and CAO episodes can strongly influence the entire650

season
:
,
:::::::::
depending

:::
on

::::
their

:::::::
location

:::::::
relative

::
to

:::
the

::::::::::
considered

:::::
region. Similarly, the absence of synoptic activity can

be important for the development of extreme conditions as can be seen in the case of the High Arctic extreme winter

2012/13. Contrasting synoptic conditions can lead to extreme seasons in the Kara-Barents
:::
Kara

::::
and

::::::
Barents

:
Seas, which,

however, show very different characteristics. Further, the frequency of CAOs strongly influences surface temperature

anomalies and changes in ES mainly due to the impact on air-sea interaction.655

3. Surface preconditioning: Regions with varying sea ice coverage can experience preconditioning due to long-term anoma-

lies in sea ice concentration (SIC) and sea surface temperature (SST), leading to anomalous initial conditions at the

beginning of the season and thus influencing the sea ice formation and ES throughout the following winter. Large SIC
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and SST anomalies, which developed and persisted throughout the preceding 1.5 years, led to record-low SIC and above

average SST in the Kara-Barents
::::
Kara

:::
and

:::::::
Barents Seas at the beginning of the winter of 2016/17. Due to the increased660

amount of open water area, predominantly negative surface heat flux anomalies prevailed throughout the season, result-

ing in an exceptionally negative seasonal ES anomaly. This suggests that extreme and anomalous seasons in regions

with a climatological sea ice concentration between 10 % and 90 % can be caused by such a preconditioning, whereas

extreme and anomalous seasons in regions with continuous sea ice extent are mainly driven by atmospheric processes.

One of the main limitations of this study is the short time-period for which the ERA5 data is currently available. As our goal665

is to study anomalous seasons, the number of suitable cases is strongly limited. Future analysis of large ensemble simulations

of the CESM climate model will allow us to further statistically quantify and confirm the results of this study. The importance

of long-term components such as the near-surface ocean processes leading to possible preconditioning of anomalous seasons

have only been briefly considered in this study. Further analysis of anomalies in surface oceanic heat transport and its influence

on sea ice formation and melt and sea surface temperatures will allow us to quantify the relative importance of short-term670

atmospheric and long-term oceanic forcing in driving the processes leading to Arctic extreme seasons.
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PIOMAS data set can be obtained from the Polar Science Center web page (http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-

anomaly/data/). Scripts used to produce the analyses and figures in this study are available on request from the authors.

Author contributions. KH performed most of the analyses, produced all figures and wrote the initial draft of the manuscript. All authors675

contributed to the design of the study, the understanding and interpretation of the results and the writing of the paper.

Competing interests. The authors declare that they have no competing interests.

Acknowledgements. KH and MB acknowledge funding by the European Research Council 485 (ERC) under the European Union’s Horizon

2020 research and innovation programme (project INTEXseas, grant agreement no. 787652). We thank Mauro Hermann and Matthias

Röthlisberger for input and helpful discussions, and Michael Sprenger (all ETH Zurich) for his help with preparing the ERA5 data. KH thanks680

Katharina Heitmann for feedback on the first draft of the manuscript. The authors acknowledge MeteoSwiss and ECWMF for providing

access to the ERA5 reanalyses.
:::
We

:::::
thank

::::
Irina

::::::
Rudeva,

:::
two

:::::::::
anonymous

:::::::
reviewers,

::::
and

::
the

:::::
Editor

::::::
Camille

::
Li

:::
for

::::
their

:::::::::
constructive

:::::::
feedback

:::
that

:::::
helped

::
to

:::::
clarify

:::
and

::::::::
strengthen

:::
the

:::::::::
presentation

::
of

:::
our

:::::
results.

36



References

Arrhenius, S.: On the influence of carbonic acid in the air upon the temperature of the ground, Philos. Mag. J. Sci., 5, 237–276,685

https://doi.org/https://doi.org/10.1080/14786449608620846, 1896.

Binder, H., Boettcher, M., Grams, C. M., Joos, H., Pfahl, S., and Wernli, H.: Exceptional air mass transport and dynamical drivers of an

extreme wintertime Arctic warm event, Geophys. Res. Lett., 44, 12 028–12 036, https://doi.org/10.1002/2017GL075841, 2017.

Blunden, J. and Arndt, D. S.: State of the Climate in 2016, Bull. Amer. Meteor. Soc., 98, Si–S277,

https://doi.org/10.1175/2017BAMSStateoftheClimate.1, 2017.690

Boisvert, L. N., Petty, A. A., and Stroeve, J. C.: The impact of the extreme winter 2015/16 Arctic cyclone on the Barents–Kara Seas, Mon.

Wea. Rev., 144, 4279–4287, https://doi.org/10.1175/MWR-D-16-0234.1, 2016.

Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and trends, 1979-2010, https://doi.org/10.5194/tc-6-881-2012, 2012.

Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J.,

and Jones, J.: Recent Arctic amplification and extreme mid-latitude weather, Nat. Geosci., 7, 627–637, https://doi.org/10.1038/ngeo2234,695

2014.

Coy, L. and Pawson, S.: The major Stratospheric Sudden Warming of January 2013: Analyses and forecasts in the GEOS-5 data assimilation

system, Mon. Wea. Rev., 143, 491–510, https://doi.org/10.1175/MWR-D-14-00023.1, 2015.

Croci-Maspoli, M., Schwierz, C., and Davies, H. C.: A multifaceted climatology of atmospheric blocking and its recent linear trend, J. Clim.,

20, 633–649, 2007.700

Cullather, R. I., Lim, Y.-K., Boisvert, L. N., Brucker, L., Lee, J. N., and Nowicki, S. M. J.: Analysis of the warmest Arctic winter, 2015-2016,

Geophys. Res. Lett., 43, 10 808–10 816, https://doi.org/10.1002/2016GL071228, 2016.

Curry, J. A., Schramm, J. L., and Ebert, E. E.: Sea ice-albedo climate feedback mechanism, J. Clim., 8, 240–247,

https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2, 1995.

Dickson, R., Lazier, J., Meincke, J., Rhines, P., and Swift, J.: Long-term coordinated changes in the convective activity of the North Atlantic,705

Prog. Oceanogr., 38, 241–295, https://doi.org/10.1016/S0079-6611(97)00002-5, 1996.

Ding, Q., Schweiger, A., L’Heureux, M., Battisti, D., Po-Chedley, S., Johnson, N., Blanchard-Wrigglesworth, E., Harnos, K., Zhang, Q.,

Eastman, R., and Steig, E.: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice, Nat. Clim. Change,

7, 289–295, https://doi.org/10.1038/nclimate3241, 2017.

Gabriel, K. R.: The biplot graphic display of matrices with application to principal component analysis, Biometrika, 58, 453–467,710

https://doi.org/https://doi.org/10.2307/2334381, 1971.

Gabriel, K. R.: Analysis of Meteorological Data by Means of Canonical Decomposition, J. Appl. Meteorol., 11, 1071–1077,

https://doi.org/https://doi.org/10.1175/1520-0450(1972)011<1071:AOMDBM>2.0.CO;2, 1972.

Graf, M. A., Wernli, H., and Sprenger, M.: Objective classification of extratropical cyclogenesis, Q. J. Roy. Meteor. Soc., 143, 1047–1061,

https://doi.org/10.1002/qj.2989, 2017.715

Graversen, R. G. and Burtu, M.: Arctic amplification enhanced by latent energy transport of atmospheric planetary waves, Q. J. Roy. Meteor.

Soc., 142, 2046–2054, https://doi.org/10.1002/qj.2802, 2016.

Graversen, R. G. and Wang, M.: Polar amplification in a coupled climate model with locked albedo, Climate Dyn., 33, 629–643,

https://doi.org/10.1007/s00382-009-0535-6, 2009.

37

https://doi.org/https://doi.org/10.1080/14786449608620846
https://doi.org/10.1002/2017GL075841
https://doi.org/10.1175/2017BAMSStateoftheClimate.1
https://doi.org/10.1175/MWR-D-16-0234.1
https://doi.org/10.5194/tc-6-881-2012
https://doi.org/10.1038/ngeo2234
https://doi.org/10.1175/MWR-D-14-00023.1
https://doi.org/10.1002/2016GL071228
https://doi.org/10.1175/1520-0442(1995)008%3C0240:SIACFM%3E2.0.CO;2
https://doi.org/10.1016/S0079-6611(97)00002-5
https://doi.org/10.1038/nclimate3241
https://doi.org/https://doi.org/10.2307/2334381
https://doi.org/https://doi.org/10.1175/1520-0450(1972)011%3C1071:AOMDBM%3E2.0.CO;2
https://doi.org/10.1002/qj.2989
https://doi.org/10.1002/qj.2802
https://doi.org/10.1007/s00382-009-0535-6


Harden, B. E., Renfrew, I. A., and Petersen, G. N.: Meteorological buoy observations from the central Iceland Sea, Geophys. Res. Atmos.,720

120, 3199–3208, https://doi.org/10.1002/2014JD022584, 2015.

Hermann, M., Papritz, L., and Wernli, H.: A Lagrangian analysis of the dynamical and thermodynamic drivers of Greenland melt events

during 1979-2017, Weather Clim. Dynam., 1, 497–518, https://doi.org/https://doi.org/10.5194/wcd-1-497-2020, 2020.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,

A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee,725

D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E.,

Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut,

J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.

Johannessen, O. M., Kuzmina, S. I., Bobylev, L. P., and Miles, M. W.: Surface air temperature variability and trends in the Arctic: new

amplification assessment and regionalisation, Tellus A, 68, 28 234, https://doi.org/10.3402/tellusa.v68.28234, 2016.730

Laliberté, F. and Kushner, P. J.: Midlatitude moisture contribution to recent Arctic tropospheric summertime variability, J. Clim., 27, 5693–

5707, https://doi.org/10.1175/JCLI-D-13-00721.1, 2014.

Lindsay, R. W.: Temporal variability of the energy balance of thick Arctic pack ice, J. Clim., 11, 313–333, https://doi.org/10.1175/1520-

0442(1998)011<0313:TVOTEB>2.0.CO;2, 1998.

Liu, C. and Barnes, E. A.: Extreme moisture transport into the Arctic linked to Rossby wave breaking, J. Geophys. Res.: Atmos., 120,735

3774–3788, https://doi.org/10.1002/2014JD022796, 2015.

Marshall, J. and Schott, F.: Open-ocean convection: Observations, theory, and models, Rev. Geophys., 37, 1–64,

https://doi.org/10.1029/98RG02739, 1999.

Martius, O. and Rivière, G.: Rossby wave breaking: climatology, interaction with low-frequency climate variability, and links to extreme

weather events, in: Dynamics and predictability of large-scale, high-impact weather and climate events, edited by Li, J., Swinbank,740

R., Grotjahn, R., and Volkert, H., pp. 69–78, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781107775541.006,

2016.

Messori, G., Woods, C., and Caballero, R.: On the drivers of wintertime temperature extremes in the High Arctic, J. Clim., 31, 1597–1618,

https://doi.org/10.1175/JCLI-D-17-0386.s1, 2018.

Nath, D., Chen, W., Zelin, C., Pogoreltsev, A. I., and Wei, K.: Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold745

weather over Eurasia: Role of planetary wave reflection, Scientific Reports, 6, 24 174, https://doi.org/10.1038/srep24174, 2016.

Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The

extreme melt across the Greenland ice sheet in 2012, Geophys. Res. Lett., 39, L20 502, https://doi.org/10.1029/2012GL053611, 2012.

North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J.: Sampling errors in the estimation of Empirical Orthogonal Functions, Mon. Wea.

Rev., 110, 699–706, 1982.750

Ohmura, A.: Present status and variations in the Arctic energy balance, Polar Sci., 6, 5–13, https://doi.org/10.1016/j.polar.2012.03.003, 2012.

Olonscheck, D., Mauritsen, T., and Notz, D.: Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations, Nature

Geoscience, 12, 430–434, https://doi.org/10.1038/s41561-019-0363-1, 2019.

Papritz, L.: Arctic lower-tropospheric warm and cold extremes: Horizontal and vertical transport, diabatic processes, and linkage to synoptic

circulation features, J. Clim., 33, 993–1016, https://doi.org/10.1175/JCLI-D-19, 2020.755

Papritz, L. and Dunn-Sigouin, E.: What configuration of the atmospheric circulation drives extreme net and total moisture transport into the

Arctic, Geophys. Res. Lett., 47, e2020GL089 769, https://doi.org/10.1029/2020GL089769, 2020.

38

https://doi.org/10.1002/2014JD022584
https://doi.org/https://doi.org/10.5194/wcd-1-497-2020
https://doi.org/10.1002/qj.3803
https://doi.org/10.3402/tellusa.v68.28234
https://doi.org/10.1175/JCLI-D-13-00721.1
https://doi.org/10.1175/1520-0442(1998)011%3C0313:TVOTEB%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011%3C0313:TVOTEB%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011%3C0313:TVOTEB%3E2.0.CO;2
https://doi.org/10.1002/2014JD022796
https://doi.org/10.1029/98RG02739
https://doi.org/10.1017/CBO9781107775541.006
https://doi.org/10.1175/JCLI-D-17-0386.s1
https://doi.org/10.1038/srep24174
https://doi.org/10.1029/2012GL053611
https://doi.org/10.1016/j.polar.2012.03.003
https://doi.org/10.1038/s41561-019-0363-1
https://doi.org/10.1175/JCLI-D-19
https://doi.org/10.1029/2020GL089769


Papritz, L. and Spengler, T.: A Lagrangian climatology of wintertime cold air outbreaks in the Irminger and Nordic Seas and their role in

shaping air-sea heat fluxes, J. Clim., 30, 2717–2737, https://doi.org/10.1175/JCLI-D-16-0605.1, 2017.

Petty, A. A., Stroeve, J. C., Holland, P. R., Boisvert, L. N., Bliss, A. C., Kimura, N., and Meier, W. N.: The Arctic sea ice cover of 2016:760

a year of record-low highs and higher-than-expected lows, The Cryosphere, 12, 433–452, https://doi.org/10.5194/tc-12-433-2018, 2018.

Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature feedbacks in contemporary climate models, Nat. Geosci., 7,

181–184, https://doi.org/10.1038/ngeo2071, 2014.

Pithan, F., Svensson, G., Caballero, R., Chechin, D., Cronin, T. W., Ekman, A. M. L., Neggers, R., Shupe, M. D., Solomon, A., Tjernström,

M., and Wendisch, M.: Role of air-mass transformations in exchange between the Arctic and mid-latitudes, Nat. Geosci., 11, 805–812,765

https://doi.org/10.1038/s41561-018-0234-1, 2018.

Pope, J. O., Bracegirdle, T. J., Renfrew, I. A., and Elvidge, A. D.: The impact of wintertime sea-ice anomalies on high surface heat flux

events in the Iceland and Greenland Seas, Clim. Dynam., 54, 1937–1952, https://doi.org/10.1007/s00382-019-05095-3, 2020.

Röthlisberger, M., Hermann, M., Frei, C., Lehner, F., Fischer, E. M., Knutti, R., and Wernli, H.: A new framework for identifying and

investigating seasonal climate extremes, J. Clim. (in press), https://doi.org/10.1175/JCLI-D-20-0953.1, 2021.770

Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.: Uncertainty in modeled Arctic sea ice volume, J. Geophys. Res.,

116, C00D06, https://doi.org/10.1029/2011JC007084, 2011.

Schwierz, C., Croci-Maspoli, M., and Davies, H. C.: Perspicacious indicators of atmospheric blocking, Geophys. Res. Lett., 31, L06 125,

2004.

Segtnan, O. H., Furevik, T., and Jenkins, A. D.: Heat and freshwater budgets of the Nordic Seas computed from atmospheric reanalysis and775

ocean observations, J. Geophys. Res., 116, C11 003, https://doi.org/10.1029/2011JC006939, 2011.

Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Glob. Planet. Change, 77, 85–96,

https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.

Serreze, M. C. and Francis, J. A.: The Arctic amplification debate, Climatic Change, 76, 241–264, https://doi.org/10.1007/s10584-005-9017-

y, 2006.780

Simmonds, I. and Rudeva, I.: The great Arctic cyclone of August 2012, Geophys. Res. Lett., 39, L23 709,

https://doi.org/10.1029/2012GL054259, 2012.

Sorteberg, A. and Walsh, J. E.: Seasonal cyclone variability at 70◦N and its impact on moisture transport into the Arctic, Tellus A, 60,

570–586, https://doi.org/10.1111/j.1600-0870.2008.00314.x, 2008.

Sprenger, M., Fragkoulidis, G., Binder, H., Croci-Maspoli, M., Graf, P., Grams, C. M., Knippertz, P., Madonna, E., Schemm, S., Škerlak,785

B., and Wernli, H.: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim, B. Am. Meteotol. Soc., 98,

1739–1748, https://doi.org/10.1175/BAMS-D-15-00299.1, 2017.

Stroeve, J., Frei, A., McCreight, J., and Ghatak, D.: Arctic sea-ice variability revisited, Ann. Glaciol., 48, 71–81,

https://doi.org/10.3189/172756408784700699, 2008.

Talley, L. D.: Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components, Prog.790

Oceanogr., 78, 257–303, https://doi.org/10.1016/j.pocean.2008.05.001, 2008.

Tyrlis, E., Manzini, E., Bader, J., Ukita, J., Nakamura, H., and Matei, D.: Ural blocking driving extreme Arctic sea ice loss, cold

Eurasia, and stratospheric vortex weakening in autumn and early winter 2016–2017, J. Geophys. Res.: Atmos., 124, 11 313–11 329,

https://doi.org/10.1029/2019JD031085, 2019.

39

https://doi.org/10.1175/JCLI-D-16-0605.1
https://doi.org/10.5194/tc-12-433-2018
https://doi.org/10.1038/ngeo2071
https://doi.org/10.1038/s41561-018-0234-1
https://doi.org/10.1007/s00382-019-05095-3
https://doi.org/10.1175/JCLI-D-20-0953.1
https://doi.org/10.1029/2011JC007084
https://doi.org/10.1029/2011JC006939
https://doi.org/10.1016/j.gloplacha.2011.03.004
https://doi.org/10.1007/s10584-005-9017-y
https://doi.org/10.1007/s10584-005-9017-y
https://doi.org/10.1007/s10584-005-9017-y
https://doi.org/10.1029/2012GL054259
https://doi.org/10.1111/j.1600-0870.2008.00314.x
https://doi.org/10.1175/BAMS-D-15-00299.1
https://doi.org/10.3189/172756408784700699
https://doi.org/10.1016/j.pocean.2008.05.001
https://doi.org/10.1029/2019JD031085


Vavrus, S.: The impact of cloud feedbacks on Arctic climate under greenhouse forcing, J. Clim., 17, 603–615, https://doi.org/10.1175/1520-795

0442(2004)017<0603:TIOCFO>2.0.CO;2, 2004.

Webster, M. A., Parker, C., Boisvert, L., and Kwok, R.: The role of cyclone activity in snow accumulation on Arctic sea ice, Nat. Commun.,

10, 5285, https://doi.org/10.1038/s41467-019-13299-8, 2019.

Wernli, H. and Papritz, L.: Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting, Nat. Geosci., 11,

108–113, https://doi.org/10.1038/s41561-017-0041-0, 2018.800

Wernli, H. and Schwierz, C.: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatol-

ogy, J. Atmos. Sci., 63, 2486–2507, https://doi.org/10.1175/jas3766.1, 2006.

White, D., Hinzman, L., Alessa, L., Cassano, J., Chambers, M., Falkner, K., Francis, J., Gutowski, W. J., Holland, M., Holmes, R. M.,

Huntington, H., Kane, D., Kliskey, A., Lee, C., McClelland, J., Peterson, B., Rupp, T. S., Straneo, F., Steele, M., Woodgate, R.,

Yang, D., Yoshikawa, K., and Zhang, T.: The Arctic freshwater system: Changes and impacts, J. Geophys. Res., 112, G04S54,805

https://doi.org/10.1029/2006JG000353, 2007.

Woods, C. and Caballero, R.: The role of moist intrusions in winter Arctic warming and sea ice decline, J. Clim., 29, 4473–4485,

https://doi.org/10.1175/JCLI-D-15-0773.1, 2016.

Woods, C., Caballero, R., and Svensson, G.: Large-scale circulation associated with moisture intrusions into the Arctic during winter, Geo-

phys. Res. Lett., 40, 4717–4721, https://doi.org/10.1002/grl.50912, 2013.810

40

https://doi.org/10.1175/1520-0442(2004)017%3C0603:TIOCFO%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017%3C0603:TIOCFO%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017%3C0603:TIOCFO%3E2.0.CO;2
https://doi.org/10.1038/s41467-019-13299-8
https://doi.org/10.1038/s41561-017-0041-0
https://doi.org/10.1175/jas3766.1
https://doi.org/10.1029/2006JG000353
https://doi.org/10.1175/JCLI-D-15-0773.1
https://doi.org/10.1002/grl.50912

