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Abstract. The Arctic atmosphere is strongly affected by anthropogenic warming leading to long-term trends in surface tem-

perature and sea ice extent. In addition, it exhibits strong variability on time scales from days to seasons. While recent research

elucidated processes leading to short-term extreme conditions in the Arctic, this study investigates unusual atmospheric con-

ditions on the seasonal time scale. Based on a principal component analysis in the phase space spanned by the seasonal-mean

values of surface temperature, precipitation, and the atmospheric components of the surface energy balance, individual seasons5

are objectively identified that deviate strongly from a running-mean climatology, and that we define as extreme seasons. Given

the strongly varying surface conditions in the Arctic, this analysis is done separately in Arctic sub-regions that are climatolog-

ically characterized by either sea ice, open ocean, or mixed conditions.

Using ERA5 reanalyses for the years 1979-2018, our approach identifies 2-3 extreme seasons for each of winter, spring,10

summer, and autumn, with strongly differing characteristics and affecting different Arctic sub-regions. Two extreme winters

affecting the Kara and Barents Seas are selected for a detailed investigation of their substructure, the role of synoptic-scale

weather systems, and potential preconditioning by anomalous sea ice extent and/or sea surface temperature at the beginning

of the season. Winter 2011/12 started with average sea ice coverage and was characterized by constantly above-average tem-

peratures during the season related mainly to frequent warm air advection by quasi-stationary cyclones in the Nordic Seas.15

In contrast, winter 2016/17 started with reduced sea ice and enhanced sea surface temperatures in the Kara and Barents Seas,

which, together with increased frequencies of cold air outbreaks and cyclones, led to large upward surface heat flux anomalies

and strongly increased precipitation during this extreme season.

In summary, this study shows that extreme seasonal conditions in the Arctic are spatially heterogeneous, related to different20

near-surface parameters, and caused by different synoptic-scale weather systems, potentially in combination with surface pre-

conditioning due to anomalous ocean and sea ice conditions at the beginning of the season. The framework developed in this

study and the insight gained from analyzing the ERA5 period will be beneficial for addressing the effects of global warming

on Arctic extreme seasons.
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1 Introduction25

Near-surface atmospheric conditions in the Arctic show a high variability on synoptic to inter-annual temporal scales, which is

superimposed on a strong, long-term warming trend (e.g., Serreze and Barry, 2011; Cohen et al., 2014). Key drivers of variabil-

ity on the synoptic to weekly time scale are interactions with the mid-latitudes for instance via air mass exchanges (e.g., Woods

et al., 2013; Laliberté and Kushner, 2014; Graversen and Burtu, 2016; Messori et al., 2018; Papritz and Dunn-Sigouin, 2020)

and air mass transformations within the Arctic (Ding et al., 2017; Pithan et al., 2018; Papritz, 2020). Both air mass exchanges30

and transformations are found to be related to synoptic weather systems. On longer time scales, in contrast, memory effects

and feedback mechanisms such as the sea ice albedo feedback (Arrhenius, 1896; Curry et al., 1995), the water vapor and cloud

feedbacks (Vavrus, 2004; Graversen and Wang, 2009; Boisvert et al., 2016), as well as the temperature feedback (Pithan and

Mauritsen, 2014) play an important role. Given this broad spectrum of processes, this leads to the question how variability on

various temporal scales is inter-connected. In this study, we focus on the seasonal scale and it is our goal to analyze the role35

of intra-seasonal processes, including synoptic-scale weather systems, for the emergence of seasonal extremes in the Arctic.

The following paragraphs provide the relevant background on the key near-surface meteorological parameters in the Arctic and

how they are interrelated. Furthermore, we discuss the role of different synoptic-scale weather systems for the variability of

these parameters and the occurrence of short-term extremes and seasonal anomalies in the Arctic.

40

Near-surface temperature, the components of the surface energy budget - including radiative and turbulent heat fluxes - as

well as surface precipitation are especially important parameters linking the variability of the atmosphere with that of the ocean

and the cryosphere. Large fluctuations in the surface energy budget, which themselves are closely linked to air temperature

fluctuations, contribute to the variability of sea ice (Stroeve et al., 2008; Olonscheck et al., 2019), the ocean mixed layer as

well as open ocean convection (e.g., Marshall and Schott, 1999). Radiative and sensible heat fluxes drive the variability of45

the surface energy budget components over sea ice (Lindsay, 1998), whereas over open ocean turbulent heat fluxes dominate

(Segtnan et al., 2011). Precipitation variability influences snow cover, which is strongly linked to the albedo feedback, and it

affects the freshwater balance of the Arctic Ocean and the Nordic Seas (Serreze and Francis, 2006; White et al., 2007), which

jointly with turbulent heat fluxes impacts the thermohaline circulation (Dickson et al., 1996; Talley, 2008).

50

The three parameters - near-surface temperature, surface energy budget, and surface precipitation - do not vary independently

from each other but they are interlinked. Thereby, the surface boundary conditions, i.e., sea ice vs. open ocean, strongly affect

the type of linkages between parameters as well as feedback processes due to vastly different heat capacities. On synoptic time

scales, for instance, warm and cold air advection strongly influence heat fluxes over the open ocean, where the most intense

upward fluxes occur in cold air outbreaks (Harden et al., 2015; Papritz and Spengler, 2017; Pope et al., 2020). On longer time55

scales, surface air temperature changes are largely influenced by variations in the sea surface temperature via surface sensi-

ble heat fluxes (Johannessen et al., 2016). In addition, incoming shortwave radiation is absorbed and can be released to the

atmosphere later. Over sea ice, in contrast, temperature is to a large degree determined by the surface energy balance, which
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includes radiative and turbulent heat fluxes, conductive heat fluxes across the ice and latent energy for freezing and melting

(Serreze and Francis, 2006). In winter, when the incoming shortwave radiation is strongly reduced, the surface sensible heat60

flux and net surface longwave radiation mainly determine the surface energy balance in regions covered by sea ice (Ohmura,

2012). These considerations reveal that a meaningful identification of extreme seasons in terms of the surface temperature,

energy budget and precipitation parameters must take their co-variability and the underlying surface boundary conditions into

account.

65

The role of synoptic-scale weather systems for inter-annual variability in the Arctic has been subject of multiple recent stud-

ies, which emphasized especially the importance of cyclones (Simmonds and Rudeva, 2012; Messori et al., 2018), blocking

anticyclones (Wernli and Papritz, 2018; Papritz, 2020), and Rossby wave breaking (Liu and Barnes, 2015). Air mass exchanges

between the mid-latitudes and the Arctic region are often facilitated by cyclones, which, on one hand, transport warm and moist

air to higher latitudes (Sorteberg and Walsh, 2008; Messori et al., 2018), causing there an increase in downward heat fluxes70

as well as the formation of clouds and precipitation. On the other hand, the advection of cold and dry air in the cyclones’

cold sector enhances ocean evaporation and heat fluxes into the atmosphere. Additionally, extreme moisture transport into the

Arctic is often associated with events of Rossby wave breaking (Liu and Barnes, 2015), which can be strongly linked to the

evolution of surface cyclones (Martius and Rivière, 2016). Air mass transformations within the Arctic can similarly result in

anomalous conditions. Recent studies emphasized the importance of polar anticyclones and blocking events in the High Arctic75

for driving subsidence-induced adiabatic warming, leading to anomalies in surface temperature and net surface radiation which

cause increased sea ice melting (Wernli and Papritz, 2018; Papritz, 2020). In winter, radiative heat loss under clear-sky condi-

tions can lead to extreme cold conditions, whereas cloud formation favors the trapping of longwave radiation, thus providing a

positive warming feedback and causing an increase in surface temperature (Burt et al., 2016; Boisvert et al., 2016; Woods and

Caballero, 2016). Similarly, a persistent and strong tropospheric polar vortex over the pole can isolate polar air masses and re-80

sult in anomalously cold conditions due to enhanced radiative cooling (Messori et al., 2018; Papritz, 2020). Therefore, air mass

transport and air mass transformation can significantly influence the Arctic surface energy balance. Whereas the modification

of turbulent heat fluxes is of particular importance over the open ocean, the impact on radiative fluxes, for instance due to an

increase in the atmospheric moisture content, is highly relevant in regions covered by sea ice.

85

Several studies have analyzed short-term Arctic extreme events and the involved dynamical processes, for instance the un-

usual warm event in winter 2015/16, which led to above freezing temperatures close to the North Pole (Cullather et al., 2016)

and caused significant sea ice melting in the Kara and Barents Seas (Boisvert et al., 2016). Binder et al. (2017) were able to

show that several pathways of exceptional air mass transport caused this warm event. Another example is an extreme melt event

on the Greenland ice shield in July 2012 (Nghiem et al., 2012), which was found to be related to a blocking anticyclone and90

associated anomalous long-range transport of warm and humid air masses from the South (Hermann et al., 2020). Such extreme

weather events can have significant long-term effects, particularly due to their impact on sea surface temperatures and sea ice

extent. For instance, Simmonds and Rudeva (2012) have shown that a particularly intense Arctic cyclone in summer caused
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the dispersion and separation of sea ice, leaving the main sea ice pack more exposed and thus vulnerable to further melting.

Similarly, the described extreme warm event in December 2015 caused positive anomalies in sea surface temperature and neg-95

ative anomalies in sea ice concentration in the Kara and Barents Seas, which persisted throughout the year 2016 (Blunden and

Arndt, 2017). Single events of extreme weather, causing episodes of strongly anomalous conditions such as exceptionally high

or low surface temperatures, can thus have a major impact on seasonal-mean surface temperature, the formation and melting

rates of sea ice, and on minimum and maximum sea ice extent.

100

Despite these insights, so far only little attention has been given to systematically understanding the characteristics of extreme

seasonal-mean conditions in the Arctic, and the role of synoptic weather systems in their formation. Therefore, our study aims

to address the following research questions:

1. How spatially (in)homogeneous are the seasonal-mean near-surface atmospheric conditions in the Arctic in winter and

summer?105

2. How can extreme seasons be defined objectively, based on a combined analysis of different key surface parameters in

Arctic sub-regions?

3. In which way do synoptic-scale weather systems such as cyclones, blocks and marine cold air outbreaks determine the

sub-structure of extreme seasons?

4. What is the role of surface preconditioning , i.e., of early season anomalies of sea surface temperature and/or sea ice110

concentration for the formation of extreme seasons?

To address these research questions, a novel method will be introduced to determine the “unusualness" of a season, which

we define based on a combination of various surface parameters. Our study is organized as follows: Data and methods are

described in Section 2. Section 3 presents an overview of the seasonal variability of surface temperature, surface precipitation,

and of the surface energy budget components. In Section 4 we define anomalous and extreme seasons in the Arctic based on115

seasonal anomalies of these parameters, and analyze their substructure in distinct Arctic sub-regions. Detailed analyses of three

Arctic extreme seasons and the involved atmospheric synoptic-scale processes are presented in Section 5, followed by the main

conclusions in Section 6.

2 Data and methods

2.1 ERA5 data120

To perform a detailed analysis of Arctic extreme seasons, the ERA5 reanalysis dataset of the European Centre for Medium-

Range Weather Forecasts (ECMWF) is used (Hersbach et al., 2020). Hourly atmospheric fields and short-range forecasts

were spatially interpolated to a 0.5◦×0.5◦ horizontal grid on model levels. The study period includes winters [December-

February (DJF)] from 1979/80 to 2017/18 as well as springs [March-May (MAM)], summers [June-August (JJA)] and autumns
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[September-November (SON)] from 1980 to 2018. Based on the ERA5 dataset, we additionally consider synoptic features such125

as extratropical cyclones and blocks identified following the methods presented in Sprenger et al. (2017). Here, cyclones are

defined as objects covering the area around a sea level pressure minimum, delimited by the outermost closed sea level pressure

contour (Wernli and Schwierz, 2006). Blocks are identified based on the deviation of vertically averaged potential vorticity

between 150 and 500 hPa from the monthly climatological mean. Contiguous areas where this value falls below −1.3 pvu are

tracked in time and tracks that persist for at least 5 days are considered as blocks (Schwierz et al., 2004; Croci-Maspoli et al.,130

2007).

Further, we define marine cold air outbreaks (CAOs) based on the exceedance of the 900 hPa sea-air potential temperature

difference (θSST − θ900) by + 4 K (cf. Papritz and Spengler, 2017), whereby we exclude grid points over land or with a sea

ice concentration of more than 50 %. As outlined below, particularly anomalous seasons are identified based on seasonal-mean135

anomalies of the following six variables in specific regions: 2 m temperature (T2m), precipitation (P , defined as the sum of

convective and large-scale precipitation), surface sensible heat flux (HS), surface latent heat flux (HL), net surface shortwave

radiation (RS) and net surface longwave radiation (RL). The last four variables are relevant for the surface energy balance and

their sum is denoted byES . Positive signs denote energy fluxes into the surface, whereas negative signs are indicative of energy

fluxes into the atmosphere. We use short-range forecasts for the fluxes P ,HS ,HL,RS andRL and analyses for the other fields.140

Abbreviation Variable name Unit

ES sum of HS , HL, RS and RL [W m−2]

HL surface latent heat flux [W m−2]

HS surface sensible heat flux [W m−2]

P precipitation [mm day−1]

RL net surface longwave radiation [W m−2]

RS net surface shortwave radiation [W m−2]

SIC sea ice concentration

SST sea surface temperature [K]

T2m 2 m temperature [K]

Table 1. List of variable names used in this study.

To compute anomalies, a transient climatology is calculated at every grid point as follows. First, daily-mean values of the

variables are smoothed with a 21-day running mean filter. In a second step, the 9-year running mean is computed for each

calendar day. Thus, the seasonal cycle is retained in the climatology, but decadal variations and long-term trends related to the

overall warming of the Arctic are removed. The climatology is kept constant at the beginning and end of the study period when145

no 9-year running mean can be calculated. Examples of this filtering procedure are shown in the supplementary material, where
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Fig. S1a and b shows the original T2m time series in the Kara and Barents Seas and illustrates that the 9-year running mean

can effectively eliminate also non-linear long-term trends (T2m in the Kara and Barents Seas steeply increases in the decade

from 2000-2010). Seasonal-mean anomalies are then defined as deviations of the seasonal-mean values from this transient

climatology. With this approach (also used by Messori et al. (2018) and Papritz (2020)), the identified extreme seasons appear150

relatively uniform throughout the study period (see Table 2 and Tables S3-S6 in the supplementary material). Throughout the

study, we denote daily anomalies of a variable χ as χ∗, seasonal-mean anomalies as χ∗ and seasonal-mean absolute anomalies

as |χ∗|. Please note that in the case of absolute anomalies combined with spatial averaging, we first compute the absolute

anomalies and then perform the spatial averaging.

( (

((

Figure 1. Sub-regions defined based on SICclim in (a) DJF, (b) MAM, (c) JJA, and (d) SON. The labels refer to: NOI: Nordic Seas Ice,

NOM: Nordic Seas Mixed, NOS: Nordic Seas Sea, KBI: Kara and Barents Seas Ice, KBM: Kara and Barents Seas Mixed, KBS: Kara and

Barents Seas Sea, ARI: Arctic Residual Ice, ARM: Arctic Residual Mixed, ARS: Arctic Residual Sea. Green and red boxes denote the areas

of the Kara and Barents Seas and Nordic Seas regions, respectively.
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2.2 Definition of sub-regions155

Extreme seasons will be identified in three distinct geographical regions, the Nordic Seas (NO), endpoint of the Atlantic storm

track (e.g., Wernli and Schwierz, 2006) and area of deep water formation (e.g., Dickson et al., 1996), the Kara and Barents Seas

(KB), which are strongly affected by recent changes in sea ice concentration (e.g., Cavalieri and Parkinson, 2012), and the re-

maining Arctic poleward of 60◦ N (AR, containing the Arctic Ocean), which is to some extent dynamically de-coupled from the

mid-latitudes. Grid points above land are excluded. It is one goal of this study to analyze the characteristics of Arctic extreme160

seasons with respect to climatological conditions. As the variables, especially the surface heat fluxes and surface radiation are

strongly dependent on the surface conditions (e.g., Pope et al., 2020), the regions are additionally subdivided in each season

according to the climatological seasonal-mean sea ice concentration (SICclim). A distinction is made between areas where, on

all days of the considered season in the time period covered by this study, mainly sea ice is present (Ice, SICclim > 0.9), mainly

open ocean is present (Sea, SICclim < 0.1), and regions of intermediate SICclim (Mixed, 0.1≤SICclim≤ 0.9). Furthermore we165

require a minimum size of a sub-region of 105 km2. With these criteria, three sub-regions are defined in each region, which

results in overall seven distinct sub-regions in JJA and SON and nine distinct sub-regions in DJF and MAM (Fig. 1). For ex-

ample, ARM denotes the sub-region with intermediate sea ice cover in the High Arctic and NOS the sub-region with mainly

open ocean in the Nordic Seas. In these sub-regions and based on the surface parameters listed above, anomalous and extreme

Arctic seasons are defined using a method based on principal component analysis (PCA) as detailed in the following.170

2.3 Definition of anomalous and extreme seasons

To determine in an objective way whether a season is anomalous or extreme, a PCA is performed for each sub-region. For

that purpose, the seasonal anomalies of the six variables (referred to as precursors) are standardized with their inter-seasonal

standard deviation to ensure comparability and equal weighting of the different parameters. Here, the variables HS , HL, RS

and RL, which all contribute to the surface energy balance (ES), are weighted by the maximum standard deviation of the175

four ES components, thus emphasizing variables contributing more strongly to ES variability. We use the PCA to reduce the

dimensionality of the six-parameter phase space to two dimensions by focusing on the first and second principal component

(P̃C1 and P̃C2). P̃C1 and P̃C2 maximize the so-called “explained variance", which is the explained proportion of the total

inter-seasonal variability in the six-dimensional phase space of the precursors.

180

To define extreme and anomalous seasons, P̃C1 and P̃C2 are first rescaled by their respective standard deviation (σ1 and

σ2), such that outliers in both PCs are treated similarly independent of the variance explained by P̃C1 and P̃C2, thus providing

a measure for the unusualness of each season with respect to each of the principal components (from now on, we will refer to

these rescaled components as PC1 and PC2). Then, the Euclidian distance in the reduced phase space spanned by the two

rescaled components, the so-called “Mahalanobis distance" (dM ), is calculated as:185

dM =
√
PC12 +PC22 =

√
P̃C1

2

σ12
+
P̃C2

2

σ22
. (1)
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This measure dM can now be used to quantify how strongly a particular season deviates from climatology, representing the

combination of the seasonal anomalies of the six variables. We therefore refer to dM as “anomaly magnitude" of a particular

season. Seasons with dM ≥ 3 are defined as “extreme seasons", and seasons with 3>dM ≥ 2 as “anomalous seasons".

190

Figure 2. Schematic PCA biplot with PC1 along the x-axis and PC2 along the y-axis. Grey dots represent single seasons, red (orange) dots

show extreme (anomalous) seasons. Blue lines represent the projections of the original parameters onto the first two principal components.

Values of dM=2 and dM=3 are shown by orange and red circles, respectively.

The phase space of the rescaled principal components can be illustrated using a biplot (Fig. 2), similar as in Graf et al.

(2017). The axes of such a plot represent PC1 and PC2, respectively, and each dot represents one season in the study period,

whereby anomalous and extreme seasons are shown as colored dots. The closer two dots are, the more similar are the anoma-

lies of the corresponding seasons. Radial vectors show the relative contribution of the precursor variables to PC1 and PC2,

whereby the projected values of a vector on both axes illustrates the weight on the respective PC. In the case shown in Fig. 2,195

the vector for T2m is mainly aligned along PC2, thus T2m variability is important for the second principal mode of variability

in the six-dimensional phase space. Relatively longer (shorter) vectors indicate a larger (smaller) contribution of the precursor

to the explained variance. If two vectors are approximately perpendicular, the precursors are uncorrelated. This interpretation

of correlations is more precise, the higher the explained variance by PC1 and PC2 (Gabriel, 1971, 1972). The relative position

of each season in the biplot (i.e., the scores) with respect to the precursor vectors indicates the contribution of the different200

precursor variables to the anomaly magnitude dM in the considered season. For instance, seasons with a positive T2m anomaly
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are positioned in the direction of the T2m vector and seasons with a negative T2m anomaly in the opposite direction.

In the example given in Fig. 2, the variables T2m and P show no correlation, whereas HS and HL are positively correlated

and HS and P are strongly anti-correlated. Further, T2m shows the largest contribution to the variance explained by PC1 and205

PC2 (mainly determining PC2) whereas HL, RS and RL mostly contribute to PC1. RS contributes the least to the explained

variance. Two seasons with dM ≥ 3 are marked as extreme season 1 (ES1) and extreme season 2 (ES2). Their score vectors are

roughly orthogonal to each other, which indicates that a different combination of anomalies and thus different processes are

decisive for explaining their large anomaly magnitudes. In this example, ES1 is mainly determined by a positive T2m anomaly,

while ES2 is an anomalously wet season with negative surface heat flux anomalies, as the respective precursor vectors are210

directed more or less directly towards (P ) respectively away (HL, HS) from ES2.

3 Spatial and temporal variability of Arctic seasons

In order to characterize Arctic seasons in general, we first analyze the co-variability of seasonal-mean anomalies of surface

temperature (T2m∗), precipitation (P ∗) and surface energy balance (ES∗) in the three regions, considering the varying surface

conditions of the different sub-regions (Fig. 3). We are interested in correlations between the seasonal anomalies, how their215

magnitudes vary between the regions, and in aspects of the seasonal substructure (e.g., is an anomalously warm season con-

stantly warm?). Here, correlations with a p-value below 0.05 are defined as statistically significant.

In winter, warm seasons are generally wetter and cold seasons are drier (Fig. 3a-c), except for sub-regions NOS and KBS

(see also Table S1 in the supplement). In regions with SICclim > 0.9 (Fig. 3a), T2m∗ and P ∗ are strongly positively correlated,220

thus warm winters are almost always (in 79.8 % of the cases) wet and tend to have a positive ES anomaly (and again vice

versa for cold winters). In contrast, regions with SICclim < 0.1 in the Nordic Seas and Kara and Barents Seas show either a

weak negative or no significant correlation between T2m∗ and P ∗ (Fig. 3c). Over the open ocean, warm winters show strongly

positive, and cold winters negative ES∗ values. Regions with intermediate sea ice extent (Fig. 3b) do not show this correlation

between T2m∗ and ES∗, but warm winters tend to be wet and cold winters dry, similar to the ice sub-regions.225

In summer, no correlation between T2m∗ and P ∗ is found, but 73.3 % of the warm summers show a positive ES∗ and 72.5 %

of the cold summers a negative ES∗, independent of the surface conditions (Fig. 3d-f and supplementary Table S2). Regional

differences are much smaller during summer, indicating more homogeneous conditions among the sub-regions.
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Figure 3. Seasonal-mean anomalies of P (P ∗; mm day−1, along x-axis), T2m (T2m
∗; K, along y-axis) and ES (ES∗; W m−2, color) for

39 seasons in (a-c) DJF and (d-f) JJA for sub-regions with (a, d) SICclim > 0.9, (b, e) 0.1≤SICclim≤ 0.9 and (c, f) SICclim < 0.1. Tables S1

and S2 in the supplement show correlations and respective p-values for the described relations between the different parameters in each

sub-region.

In addition to the previously discussed seasonal-mean anomalies, the intra-seasonal variability of the individual parameters230

is an important and complementary characteristic of Arctic seasons. As we will show in the following, the strength of the intra-

seasonal variability can depend, in particular, on the surface conditions. To compare the intra-seasonal variability of T2m∗, P ∗

and ES∗, we consider in Fig. 4 seasonal-mean absolute anomalies |T2m∗|, |P ∗| and |ES∗|, which are defined as the seasonal

mean of the spatially-averaged absolute daily anomalies. They are used as a measure for the overall spatio-temporal variability

of the individual parameters throughout a season. Distinct clusters occur for the different sub-regions in winter (Fig. 4a). Re-235

gions mostly over sea ice show only small variations in ES∗ and P ∗, except for NOI, implying a relatively small amplitude of

day-to-day and inter-seasonal fluctuations of these variables. In the Kara and Barents Seas, sub-regions KBI and KBM show

high variability in daily and seasonal T2m anomalies but a similarly small |P ∗|. Sub-regions over the open ocean, where T2m

anomalies are typically smaller and less variable, show smaller values of |T2m∗|. P and especially ES variability is strongly

enhanced over the open ocean due to intensified air-sea interaction. The clear distinction of the seasonal-mean absolute anoma-240

lies between the different sub-regions reveals the spatial inhomogeneity of Arctic meteorological conditions in winter, which
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is due to varying surface conditions as well as differences in seasonal variability between distinct Arctic Seas. This also serves

as an a posteriori confirmation of our approach to separately consider Arctic extreme seasons in these sub-regions.

In summer, the variability of the three analyzed parameters is smaller due to reduced meridional gradients of surface temper-245

ature and radiation causing smaller T2m and ES fluctuations (Fig. 4b). Similar to winter, sub-regions over the open ocean show

a relatively large |ES∗| and a larger variability of P can be observed in the Nordic Seas compared to the Kara and Barents Seas,

probably due to reduced moisture availability in the latter region. However, as the surface conditions between the sub-regions

become more homogeneous, the regions do appear in less distinct clusters as for winter with the exception of the sub-region

ARI which covers most of the perennial sea ice and shows, as in winter, only a small variability of the three parameters. It250

is further noteworthy that |T2m∗| and |P ∗| are positively correlated, indicating a larger |P ∗| in summer seasons where T2m

fluctuates more.

(a) DJF (b) JJA
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Figure 4. Seasonal-mean absolute anomalies of P (|P ∗|; mm day−1, along x-axis), T2m (|T2m
∗|; K, along y-axis) and ES (|ES∗|; W m−2,

color) for 39 seasons and (a) 9 sub-regions in DJF and (b) 7 sub-regions in JJA. Blue symbols mark average values for each sub-region.

To better understand the seasonal substructure of Arctic winters and summers, we compare the seasonal-mean anomalies

with the seasonal-mean absolute anomalies for T2m, P and ES in selected sub-regions in DJF (Fig. 5) and JJA (Fig. 6; for

remaining sub-regions see supplementary Figs. S2 and S3). The ratio of seasonal-mean and seasonal-mean absolute anomalies,255
χ∗

|χ∗|
, is indicative of the temporal persistency of an anomaly throughout a season. Thus, the location of a season in the diagrams

provides information about the substructure of the season in terms of the considered parameter. In general, the further to the

right, the more positive is the seasonal-mean anomaly of the shown parameter and the further to the left, the more negative.

The closer the seasonal-mean anomaly is to the seasonal-mean absolute anomaly (dots close to the outer stippled grey line

representing χ∗

|χ∗|
=±1), the more persistent the anomaly is throughout the season. Thus, seasons with 0.8≤

∣∣∣ χ∗

|χ∗|

∣∣∣ ≤ 1 have260
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almost continuously positive or negative daily anomalies. With a smaller value of χ∗

|χ∗|
, the seasons are located further away

from the outer stippled grey lines, meaning that positive or negative anomalies in the respective parameter occur more episod-

ically throughout the season. The closer a season is positioned towards the blue dashed line where χ∗ = 0 and thus χ∗

|χ∗|
= 0, the

more positive and negative daily anomalies cancel each other, leading to a weak overall seasonal anomaly. The value of |χ∗| is
further indicative of the magnitude of the daily anomalies throughout a season. A season located at the top of the plot shows265

stronger daily anomalies than a season with the same χ∗

|χ∗|
ratio but a smaller |χ∗|.

For example, a season can be anomalously warm, because the daily-mean T2m values are larger than the climatology on

almost all days of the season, resulting in T2m
∗

|T2m
∗|
≈ 1. With a decreasing ratio of the anomaly metrics, e.g., T2m

∗

|T2m
∗|

= 0.5, the

season is still anomalously warm, but it results from several warm episodes alternating with weaker and/or shorter periods with270

negative T2m∗ values. If T2m
∗

|T2m
∗|
≈ 0, cold and warm episodes cancel each other leading to a weak overall seasonal anomaly.

Comparing seasons with the same T2m
∗

|T2m
∗|

, the ones positioned further along the y-axis (showing larger values of T2m∗ and

|T2m∗|) show a larger variability in T2m with more intense warm and/or cold episodes.
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Figure 5. Seasonal-mean anomalies (χ∗, along x-axis) vs. seasonal-mean absolute anomalies (|χ∗|, along y-axis) in DJF for (a-d) T2m (K),

(e-h) P (mm day−1), and (i-l) ES (W m−2) in sub-regions ARI, KBI, ARM and KBM. The ratio of the two measures, χ∗

|χ∗|
, is additionally

visualized by grey dashed lines. χ∗

|χ∗|
=±1 is shown by stippled grey lines and χ∗

|χ∗|
= 0 is shown by a dashed blue line. Red (orange) markers

represent extreme (anomalous) seasons (see Sect. 2.3) and selected case study seasons are labeled. Remaining sub-regions are shown in

supplementary Fig. S2.

The seasonal substructures of the three parameters differ. In particular during summer, several seasons show continuously

positive or negative T2m∗ (Figs. 6a-d and S3a-c), including several clear outlier seasons (Figs. 6c, d and S3a). In winter, the275

overall T2m variability is much larger than in summer and only very few seasons show distinct T2m∗ outliers (Figs. 5a-d and

S2a-e). Further, no continuously positive or negative P ∗ can be observed (Figs. 5e-h and 6e-h, resp. Figs. S2f-j and S3d-f),

indicating that even in very wet seasons precipitation is episodic and includes dry periods. In addition, and maybe less obvious,

also the driest seasons feature some precipitation events. The tilted shape of the scatter plots for P indicates that wet seasons

tend to show a larger |P ∗| than dry seasons, resulting from the skewness of the parameter P . For ES , in the sub-regions NOM,280

KBM and KBS, different distributions of the anomalies occur in DJF and JJA. Winters with a negative ES∗, which is often

caused by several episodes of cold air outbreaks (Papritz and Spengler, 2017), tend to show enhancedES variability throughout
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the season (Figs. 5l and S2l, o) compared to winters with a positive ES∗, where CAOs are less frequent. The opposite occurs

in summer, when periods of increased net surface radiation can cause a positive ES∗ and enhanced |ES∗| compared to seasons

with a negative ES∗ (Fig. 6i, k and S3g).285
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Figure 6. Same as Fig. 5 but for JJA in sub-regions ARI, ARM, KBM and KBS. The extreme summer 2016 is labeled in (c, g, k) due to its

role in the preconditioning of the extreme winter 2016/17 (see subsection 5.2). Remaining sub-regions are shown in supplementary Fig. S3.

4 PCA results

In the previous section, we discussed the co-variability of T2m, P and ES and regional differences for Arctic winter and

summer seasons as well as the seasonal substructure of these parameters. In a next step, we identify and then characterize

anomalous Arctic seasons, based on the combination of the seasonal-mean anomalies of the three surface parameters. To this

end, a PCA is performed for each season (DJF, MAM, JJA, SON) and sub-region, as explained in Sect. 2.3. Figures 7 and 8290

show the resulting biplots for DJF and JJA (for MAM and SON see Figs. S5 and S6 in the supplementary material). Depend-

ing on the region and sub-region, the contributions of the precursor variables to the principal components PC1 and PC2 vary,
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which usually explain about 80%− 90% of the total variance in the combined seasonal anomalies. Further we can show that,

following the method introduced in North et al. (1982), the first two PCs in DJF and JJA are, with exception of sub-region

ARM in JJA, always statistically distinguishable from the others (see supplementary Fig. S4). This implies that by considering295

PC1 and PC2, we capture most of the variance.

In winter, sub-regions over ice show a positive correlation between T2m∗ and P ∗ (Fig. 7a, d, g). This correlation is particularly

strong in the High Arctic, where precipitation events during winter are predominantly caused by synoptic weather systems

that transport warm and moist air masses into the region (e.g., Webster et al., 2019; Papritz and Dunn-Sigouin, 2020). T2m∗,300

P ∗ and RL∗ mainly determine PC1 and thus the direction of maximum variance in the phase space spanned by all precursor

variables in ice sub-regions. Surface sensible and latent heat flux anomalies are positively correlated and mostly uncorrelated

with T2m∗ and P ∗ as they contribute mostly to PC2.

Similarly, sub-regions with intermediate sea ice concentration show a positive correlation of T2m∗ and P ∗ (Fig. 7b, e, h),305

although slightly weaker than over ice for regions KB and NO. Again, the heat fluxes are mostly uncorrelated with T2m∗ and

slightly negatively correlated with P ∗, particularly HL
∗. RL∗ is contributing less to the variance in mixed regions, which

indicates a comparatively lower importance of radiation compared to heat fluxes for determining the seasonal variability.

Over the open ocean (Fig. 7c, f, i), a positive correlation between the heat flux anomalies and T2m∗ can be observed, indi-310

cating increased surface fluxes from the ocean into the atmosphere during periods with anomalously cold temperatures. Unlike

over ice, the maximum variance over open water is mainly determined by the surface heat fluxes. P ∗ is mostly uncorrelated to

the other variables and strongly related to PC2, reflecting that precipitation can occur in warm conditions (e.g., warm sector of

a cyclone) and in cold conditions (CAO).

315

Arctic summer seasonal variability is mainly determined by T2m∗, P ∗ and RS∗, whereby T2m∗ and P ∗ are mostly uncor-

related in all regions (Fig. 8). Whereas T2m∗ shows only weak correlations with other parameters in general, P ∗ is strongly

anti-correlated with RS∗ in sub-regions NOS and ARS (Fig. 8f and i), most likely due to the presence of clouds during precip-

itation events. In sub-regions ARI and ARM (Fig. 8g and h), RL∗ additionally influences the seasonal variability and strongly

correlates with T2m∗, again emphasizing the importance of clouds in this region.320
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Season Sub-

regions

dM T2m
∗ [K] P∗ [mm day−1] ES

∗ [W m−2] Area [105 km2]

DJF 2004/05 ARS 3.2 –0.13 (–0.07) [21–] +1.30 (+2.73) [1+] –47.10 (–2.00) [1–] 3.5

DJF 2012/13 KBI 3.0 +0.13 (+0.05) [18+] +0.02 (+0.12) [19+] –29.48 (–3.07) [1–] 5.4

DJF 2016/17 KBI 3.4 +0.41 (+0.16) [16+] +0.25 (+1.96) [2+] –29.00 (–3.02) [2–] 5.4

KBM 3.3 +1.61 (+0.59) [13+] +0.67 (+3.44) [1+] –54.20 (–3.03) [1–] 10.7

KBS 3.1 +0.83 (+0.65) [14+] +0.98 (+3.03) [1+] –19.14 (–0.81) [8–] 6.8

JJA 2013 ARI 3.2 –0.53 (–2.90) [1–] +0.32 (+1.75) [4+] –10.9 (–3.21) [1–] 14.3

JJA 2016 KBM 3.1 +1.36 (+3.27) [1+] +0.23 (+1.18) [7+] +0.52 (+0.91) [8+] 11.6

NOM 3.3 +1.13 (+3.47) [1+] –0.37 (–1.10) [8–] +9.27 (+1.65) [4+] 5.1

MAM 19901 NOI 3.7 +0.37 (+0.27) [17+] –0.16 (–0.37) [16–] –1.51 (–0.47) [12–] 1.3

ARI 4.1 +3.08 (+3.45) [1+] +0.25 (+3.81) [1+] +2.36 (+1.23) [4+] 80.9

MAM 1996 NOM 3.3 +1.32 (+1.20) [6+] –0.54 (–1.25) [4–] +33.96 (+2.69) [1+] 5.8

SON 1995 KBM 3.0 +0.68 (+0.42) [16+] –0.06 (–0.27) [15–] –27.11 (–2.99) [1–] 10.7

SON 2007 ARM 3.3 +1.33 (+1.40) [8+] +0.06 (+0.78) [11+] –15.2 (–3.47) [1–] 52.7

SON 2018 ARI 3.2 +1.63 (+1.36) [4+] +0.31 (+3.07) [1+] –2.76 (–1.60) [4–] 32.3

Table 2. Extreme seasons in DJF, JJA, MAM and SON, including the affected sub-regions and respective Mahalanobis distance (dM , see

Sect. 2.3), the seasonal-mean anomalies of T2m, P and ES (standardized seasonal-mean anomalies in parentheses) and affected area per

sub-region. The rank of each seasonal-mean anomaly with respect to all seasons is given in brackets, with "1+" denoting rank 1 in terms of a

positive anomaly (e.g., wettest season) and "1–" denoting rank 1 in terms of a negative anomaly (e.g., driest season).

4.1 Arctic extreme and anomalous seasons

As explained in Sect. 2.3, by using a threshold for the anomaly magnitude (dM ≥ 3), seasons that appear as clear outliers in

their respective PCA biplot are defined as extreme seasons, whereas seasons located at the edges of the point cloud formed by

all seasons are characterized as anomalous seasons (3>dM ≥ 2). The two thresholds are chosen pragmatically to distinguish325

seasons with different anomaly magnitudes and to classify the seasons with the largest anomaly magnitude as “extreme sea-

sons". Using these thresholds we find 2 extreme seasons in DJF, JJA and MAM, respectively, and 3 extreme seasons in SON

1Extreme season MAM 1990 in sub-region NOI shows rank [1+] for RS , rank [7+] for HS , rank [9–] for HL and rank [1–] for RL. Although single

components of ES show rank 1, but in opposite directions, this leads to an overall medium rank [12–] for ES .
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(Table 2). With this total number of extreme seasons, the return period of such a season corresponds to approximately 40 years,

which has been used as an adequate measure for defining extreme seasons by several studies, e.g., Röthlisberger et al. (2021).

The number of sub-regions where one particular season is identified as extreme varies between one and three, however the330

varying size of the sub-regions and thus significant differences in the extent of the affected area have to be considered. Further

we identify on average 3.3 anomalous seasons per sub-region in DJF, 5 anomalous seasons per sub-region in JJA, 4.7 anoma-

lous seasons per sub-region in MAM and 4.4 anomalous seasons per sub-region in SON (see supplementary Tables S3-S6).
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Figure 7. PCA biplot for all sub-regions in DJF with PC1 and PC2 along the x- and y-axis, respectively. Every season is represented by

a grey dot, red and orange dots show extreme and anomalous seasons, respectively. Blue lines represent the coefficients of the precursor

variables. Red and orange circles represent dM=3 and dM=2, the thresholds used for extreme and anomalous seasons, respectively. Selected

case study seasons are labeled.

18



(a) KBI (b) KBM (c) KBS

(d) NOI (e) NOM (f) NOS

(g) ARI (h) ARM (i) ARS

PC
2

PC1

RSRL

T2m
P

HL

HS

P

RS

T2m
HS

HL

RL

T2m

P

RS

RL

HLHS

T2m

P

RSRL HS

HL

T2m

P

RS

RL

HSHL

P

RS

RL

HS

HL

T2m

T2m

P

RS

RL
HS

HL

2016

2016

Figure 8. Same as Fig. 7 but for JJA. No biplots are shown for the sub-regions KBI and NOI, because they fall below the minimum size

threshold of 105 km2 in summer. The extreme summer 2016 is labeled in (b, e) due to its role in the preconditioning of the extreme winter

2016/17 (see subsection 5.2).

After identifying Arctic extreme and anomalous seasons as well as the surface parameters determining their variability in the335

different sub-regions, we are now interested in the substructure of such seasons with respect to T2m, P and ES . Therefore, we

briefly reconsider Figs. 5 and 6 and focus on the extreme and anomalous seasons, shown by red and orange dots, respectively,

in comparison to all seasons in the study period. By design, extreme seasons with dM ≥ 3 have very large anomalies for at least

one parameter (see ranks for seasonal-mean anomalies in Table 2), for example the strong positive P ∗ in the extreme winter
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in KBM (Fig. 5h) or the negative ES∗ in both extreme winters in KBI (Fig. 5j). In summer, all extreme seasons are character-340

ized by a strong T2m∗ outlier (Fig. 6a, c, d), which coincides with ES∗ outliers in ARI and KBM (Fig. 6i, k). Similarly, most

anomalous seasons also show outliers or anomalies near the edge of the point cloud for at least one parameter. However, some

anomalous seasons do not show very strong anomalies in one particular parameter, which implies that for these seasons it is

the combination of several parameters that makes them anomalous. In a given region, several extreme or anomalous seasons

can have similar seasonal anomalies, for instance both extreme winters in KBI (Fig. 5b, f, j) and two anomalous and one ex-345

treme summer[s] in ARI (Fig. 6a, e, i), indicating similar characteristics and most likely also underlying processes causing the

anomalous nature of these seasons. However, in other regions with multiple anomalous seasons, they show a similar behavior

in one but a contrasting behavior in another variable. For example, the anomalous and extreme winters in KBM both have a

positive T2m∗ but different signs in their respective ES∗ (Fig. 5d and l). We thus expect different processes to be responsible

for these seasons to be anomalous.350

Based on the results of the PCA analysis and Fig. 5, the following winter seasons are chosen for detailed case studies to

better understand their seasonal substructure as well as the underlying processes: The winters 2011/12 and 2016/17 in the Kara

and Barents Seas and the winter 2012/13 in ARI. We do not consider the extreme winter in ARS in 2004/05, as ARS is only a

very small region that consists of two remote fragments and thus the meaningful analysis of the involved processes would be355

less straightforward. Furthermore this selection allows to, on one hand, contrast two seasons in the same geographical region,

and on the other hand also point out differences in terms of the underlying processes in a region at the edge of the Arctic and

in the High Arctic. This choice of case study seasons is subjective and motivated by the intention to reveal the diversity and

complexity of the involved processes. It is further strongly limited by the available amount of suitable seasons for in-depth

investigation. Choosing two winter seasons in the same region allows us to emphasize inter-annual variability, while avoiding360

additional effects of seasonal variations.

5 Case Studies

5.1 DJF 2011/12

The winter of 2011/12 is classified as an anomalous season in KBI and KBM. In both sub-regions, this winter shows the largest

positive T2m∗ during the 39-year study period (Fig. 5b and d). The time series in Fig. 9a shows that the daily-mean surface365

temperature is continuously above the climatology in the KB region (consistent with the fact that the dots in Fig. 5b and d are

close to the diagonal), and during more than 50% of the season outside the sigma range of the anomalies in the considered

period (indicated by grey shading in Fig. 9a-e). In KBI, T2m∗ is the main contributor to this season’s anomaly magnitude,

supported by positive P ∗ and RL∗ (Figs. 5b and f, and 7a). In KBM, positive T2m∗ and HS
∗ mainly determine the exceptional

character of this winter (Figs. 5d and 7b), which also leads to one of the most positive ES∗ compared to all winters in the study370

period (Fig. 5l).
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In DJF 2011/12, T2m∗ is + 6.6 K in KBI and + 4.7 K in KBM. In the whole region, during December, T2m values are

continuously around + 6 K above climatology, before approaching more average levels at the beginning of January (Fig. 9a).

The largest T2m∗ values are reached in February. The SIC anomaly shows an opposite behavior and is continuously negative,375

reaching values close to climatology only at the beginning of the season and during the period with reduced T2m∗ in January

(Fig. 9c). Similarly to the other variables, here we calculate the SIC anomaly using a transient climatology, as this effectively

removes non-linear SIC trends in the Kara and Barents Seas (see Fig. S1c and d in the supplement). Daily-mean ES values are

strongly correlated with daily-mean T2m, resulting in mostly positive ES∗ during the particularly warm episodes and shorter

periods of negative ES∗ when T2m∗ is reduced (Fig. 9b). The positive ES∗ is mainly due to a strongly positive HS
∗, i.e.,380

strongly reduced heat fluxes into the atmosphere. During the period with the largest T2m∗ in February, when the surface air

temperatures exceed 0 °C at several grid points on multiple days, even positive HS values occur over the open ocean (not

shown). Daily P values show only small deviations from climatology, except for the first five days of the season and in the

beginning of February (Fig. 9d).

385
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Figure 9. Time series of daily-mean (a) T2m (in °C), (b) ES (in W m−2), (c) SIC, (d) P (in mm day−1) and (e) sea-level pressure (SLP, in

hPa) averaged in the region of the Kara and Barents Seas (KBI, KBM, and KBS) in DJF 2011/12 (black lines). The transient climatology

is shown by grey lines. Grey shading shows the standard deviation of daily-mean anomalies in all winter seasons relative to the respective

transient climatology. Blue, orange, and green heatmaps at the bottom of the figure show the daily-mean coverage of the region by cyclones,

blocks, and CAOs, respectively (the darker the color the higher the coverage). Relative frequency anomalies of the three weather systems are

given in percentages. The horizontal axis indicates days since the start of the season with day 1 corresponding to 01 December.

It is now interesting to compare the time series of the basic variables with the occurrence of specific weather systems. The

colored heatmaps at the bottom of Fig. 9 provide information about the occurrence of cyclones, blocks and CAOs in the Kara

and Barents Seas. As each weather system is identified as an object described by a two-dimensional binary field (grid points

that belong to a system have a value of 1 and other grid points have a value of 0), the weather system frequency field is

calculated by time averaging of these binary fields. For example, if a cyclone mask covers a grid point at 25 % of all times,390

then time averaging of the binary fields yields 0.25, corresponding to a cyclone frequency of 25 %. Here, the color intensity

is representative for the daily-mean weather system frequency averaged over the area of the sub-region, thus it indicates the

percentage of the sub-regions’ area that overlaps with a cyclone, blocking or CAO mask on a daily basis. The relative frequency

anomaly of a specific weather system in a specific season is calculated as:

f seas− f clim

f clim
∗ 100 (2)395
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where fseas and fclim denote the spatially averaged seasonal-mean weather system frequencies for the season and the climatol-

ogy, respectively. The repeated passage of cyclones (Fig. 9, blue heatmap) originating from the Nordic Seas (not shown) ensures

the continuous transport of warm and moist air into the Kara and Barents Seas during several periods, mostly in December and

February. Yet, in the wintertime average, cyclone frequency in this region was slightly below climatology (as further discussed

in section 5.3). At the same time, CAO frequency (Fig. 9, green heatmap) was strongly reduced while blocking frequency was400

substantially increased (Fig. 9, red heatmap) in this season compared to climatology. CAOs, which often occur after the pas-

sage of a cyclone in the cyclones’ cold sector, as can be seen for example around days 30, 43 and 77, usually lead to a strong

decrease in T2m and ES (associated with intense surface fluxes). Therefore, the relative lack of CAOs in this winter favors the

persistence of above average T2m. In addition, several blocking episodes around days 34, 61 and 71 are associated with notable

peaks of T2m and ES . Animations S1-3 in the supplementary material show daily synoptic plots for the three case studies and405

further illustrate the interplay of the synoptic systems and the occurrence of the anomalies in the considered surface parameters.

5.2 DJF 2016/17

The winter 2016/17 is classified as extreme in all sub-regions of the Kara and Barents Seas. The PCA biplot shows that in KBI

and KBM the anomaly magnitude of this winter is mainly determined by negative surface flux anomalies, especially of HS410

(Fig. 7a and b). In KBS, a positive P ∗ is the strongest contributor to the anomaly magnitude (Fig. 7c) and in KBM this winter

occurs with a strong positive P ∗ outlier (Fig. 5h). In fact, it is the winter with the most precipitation in the Kara and Barents

Seas during the study period. Further, in KBI and KBM, a strongly negative ES∗ occurs as a clear outlier with respect to other

winters (Fig. 5j and l). Finally, T2m∗ shows a positive anomaly in KBM and KBS, which, however, is not exceptional (Fig. 5d).

415
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Figure 10. Same as Fig. 9 but for DJF 2016/17. Purple vertical lines indicate the three time steps shown in Fig. 11, 09 January 2017 (day 40),

31 January 2017 (day 62) and 07 February 2017 (day 69), respectively.

Several precipitation events result in the strongly positive P ∗ which often can be linked to the passage of a cyclone (Fig. 10d,

blue heatmap). Only very few episodes show P ∗ values below climatology, e.g. at the beginning of February when the occur-

rence of a block causes dry conditions (Fig. 10d, red heatmap). The positive T2m∗ results from several episodic warm events

with a duration of ∼ 5–10 days (Fig. 10a), each deviating more than + 5 K from climatology. There are, however, also several

periods that are colder than climatology and characterized by CAOs (Fig. 10, green heatmap), leading to a small seasonal-420

mean anomaly. A negative SIC anomaly occurs throughout the season (Fig. 10c), which is especially pronounced in KBM

(not shown), with strong decreases in SIC following warm and wet episodes linked to the passage of cyclones (Fig. 10, blue

heatmap). In the supplementary Fig. S7 we show an example, using PIOMAS sea ice data (Schweiger et al., 2011), of how the

passage of several cyclones between days 17 and 24 can be associated with the momentarily reduction of the sea ice coverage

in the Kara and Barents Seas.425

In general, daily-mean ES correlates well with daily-mean T2m. The frequent occurrence of CAOs favors strong upward

surface heat fluxes (i.e., strongly negative ES), further enhanced by the increase in open water area due to the preceding sea

ice retreat. Most cyclones pass the Kara and Barents Seas from west to east during this winter (supplementary animation S2),
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often causing the consecutive passage of the cyclones’ warm and cold sector in the considered sub-region. The resulting pos-430

itive relative frequency anomaly of CAOs in combination with the negative SIC∗ causes a strongly negative ES∗ (Fig. 10b),

which is particularly pronounced in KBI and KBM and results mainly from negative HL
∗ and HS

∗.

As pointed out previously, the anomalous conditions during this winter are related to different synoptic weather systems. Fig-

ure 11 exemplifies three characteristic but different synoptic circulation patterns associated with anomalously warm conditions435

(Fig. 11a, c) and anomalous surface fluxes (Fig. 11b, d). In January, a sequence of multiple cyclones continuously transport

warm air from the southwest towards the Kara and Barents Seas (Fig. 10, blue heat map, and supplementary animation S2).

Figure 11a shows a typical situation where a cyclone from the Nordic Seas propagated into the Kara and Barents Seas region,

leading to anomalously warm conditions in its warm sector and precipitation along its cold front. Figure 11b shows the case

of a strong CAO in the wake of a cyclone. It causes enhanced upward surface heat fluxes over the open ocean, resulting in440

a strongly negative ES anomaly as discussed in the previous paragraph (Fig. 11d). The persistent large-scale situation during

a warming episode in February 2017, when a stationary block over northern Scandinavia in combination with a strong cy-

clone to the South of Greenland leads to anomalously warm conditions in its northern periphery (Fig. 10, red heatmap, and

supplementary animation S2) is shown in Fig. 11c. Next to the enhanced poleward transport of mid-latitude air favored by this

pattern, subsidence-induced adiabatic warming additionally causes high surface temperatures for the duration of the block (cf.445

Papritz, 2020). At the same time, the presence of the block suppresses precipitation in the region, resulting in one of the driest

periods of the season (Fig. 10d). In supplementary Fig. S8, we show the differences in the air mass origin for the warm events

in mid-January and mid-February (days 47-50 and 73-76, respectively) by using air parcel trajectories.
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Figure 11. Synoptic situation on (a) 09 January 2017 (day 40), (b) 31 January 2017 (day 62), and (c) 07 February 2017 (day 69). Daily

anomaly of potential temperature at 900 hPa (θ900; K, color). Sea ice edge (SIC = 0.5, solid yellow line), climatological sea ice edge

(SICclim = 0.5, dashed yellow line), cyclone mask (dashed black contour) and blocking mask (dashed green contour) at 00 UTC on the

considered days. Daily ES anomaly (ES∗; W m−2, color) on 31 January 2017 (day 62) is shown in (d). Sea-level pressure (SLP) is shown

by grey contours in intervals of 10 hPa. The region of the Kara and Barents Seas is marked by orange hatching.

Besides synoptic processes, preconditioning potentially plays an important role for the occurrence of an extreme season, as450

we aim to discuss now. From Fig. 10c, it can be seen that SIC in the Kara and Barents Seas was already exceptionally low at

the start of the winter season, in fact, the sea ice extent on 01 December was the lowest on this date for the entire study period.

The sea surface temperature (SST) shows a significantly positive anomaly of about + 1 K on average, which favors a delayed

freeze-up in the region and at the same time also more intense upward sensible and latent heat fluxes. These initial surface

conditions provide an important precondition for the strongly negative ES∗, which itself is decisive for the anomaly magnitude455

of this winter. Analysing SIC and SST anomalies in the Kara and Barents Seas during the previous seasons in 2016 shows that

they developed since the previous winter (SIC) or spring 2016 (SST, see Fig. 13b, which will be discussed in section 5.3). At the

end of 2015, an extreme warm event (e.g., Boisvert et al., 2016; Binder et al., 2017) led to a significant thinning of the sea ice in
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the Kara and Barents Seas, causing an early start of the melt season in 2016 and subsequently increased SST values in MAM,

coinciding with a positive T2m∗ in the same region. The summer of 2016 does occur as an extreme season in sub-regions KBM460

and NOM (Fig. 8b and e) and as an anomalous season in KBS (Fig. 8c), mainly due to a strong T2m∗ of on average + 1.4 K in

the Kara and Barents Seas, which was facilitated by a reduction in total cloud cover and thus strongly enhanced RS . Together

with the already existing positive SST anomaly this extremely warm summer led to record low SIC and ice-free conditions in

the Barents Sea from July to September (Petty et al., 2018). Strong blocking over large parts of the Arctic during October and

November 2016 caused positive surface temperature anomalies across the whole Arctic region (Tyrlis et al., 2019) as well as465

strong positive ES anomalies, favoring the persistence of the negative SIC and positive SST anomalies (Blunden and Arndt,

2017) until the beginning of DJF 2016/17. In summary, the winter 2016/17 was extreme in the Kara and Barents Seas due

to a combination of preconditioning and favorable synoptic conditions, resulting in strong precipitation and surface heat flux

anomalies.

5.3 Comparison of DJF 2011/12 and DJF 2016/17470

Comparing both anomalous winters in the Kara and Barents Seas, it becomes already evident from the PCA biplots (Fig. 7a and

b) that the processes leading to their respective anomaly magnitude differ strongly, as the vectors pointing to the two seasons

in the biplot are nearly orthogonal. As discussed in the previous subsections, the winter of 2011/12 is dominated by contin-

uously positive daily T2m anomalies favored by a reduced frequency of CAO events, whereas in DJF 2016/17 the negative

heat flux anomalies and exceptionally positive P ∗, enhanced by strongly reduced sea ice cover are most important. We have475

further seen that both seasons feature large variability in the substructure of the respective parameters. To better understand

the underlying processes leading to these differences, we will now analyze the synoptic situation in both seasons in more detail.
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(a) DJF 2011/12 (b) DJF 2016/17

(c) DJF 2011/12 (d) DJF 2016/17
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Figure 12. Seasonal-mean (a, b) cyclone frequency and (c, d) blocking frequency anomalies for (a, c) DJF 2011/12 and (b, d) DJF 2016/17.

Region of the Kara and Barents Seas is marked with green contour.

In DJF 2011/12, cyclone frequency was strongly enhanced over the Nordic Seas concomitant with a reduction in the Kara

and eastern Barents Seas (Fig. 12a), which favored the frequent advection of warm air masses into the Barents Sea. Enhanced480

cyclone activity was restricted to the Nordic Seas and the western Barents Sea where several cyclones slowed down and be-

came stationary (see supplementary animation S1). As a result, during several days of this winter, the warm sector of a cyclone

was located in the Barents Seas, causing an increase in surface temperatures, whereas its cold sector was positioned in the

Nordic Seas. Thus, the frequency of cold air outbreaks was reduced in the region of the Kara and Barents Seas, favoring the

formation of a positive T2m∗. In addition, recurrent blocks over the Ural mountains (Fig. 12c) contributed to above average485

surface temperatures. In DJF 2016/17, in contrast, cyclone activity was close to climatology (Fig. 12b) as cyclones crossed the

region (see supplementary animation S2), but instead blocking frequency over Scandinavia was strongly enhanced (Fig. 12d).

Subsidence-induced warming and long-range transport of warm air masses contributed to several warm episodes (see Fig. S8

in the supplement). However, an enhanced frequency of CAOs, facilitated by the frequent passage of cyclones combined with
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reduced SIC and warm ocean temperatures, limited T2m∗ but contributed to a strongly negative ES∗. Thus, the patterns of490

synoptic activity were partly reversed between the two seasons, yet they contributed substantially to their anomalous nature.

Further, it becomes evident that the impact of cyclones on surface anomalies depends critically on their track relative to the

region of interest.
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Figure 13. Standardized seasonal-mean anomalies of SIC (SIC∗; along x-axis) and SST (SST∗; in K, along y-axis) in the Kara and Barents

Seas for the entire study period (grey dots) including all seasons. Colored dots highlight the eight seasons preceding (a) the anomalous winter

2011/12 and (b) the extreme winter 2016/17, and the grey line shows the pathway of these seasons’ anomalies.

In addition to the synoptic activity, we found the influence of preconditioning in SIC and SST values to be of great importance495

for DJF 2016/17. Figure 13b shows persistent negative SIC∗ and positive SST∗ throughout the preceding 1.5 years. Comparing

the initial conditions for the winter of 2011/12, the influence of the previous seasons appears smaller, as SIC and SST values

are close to normal at the beginning of the winter and seasonal-mean anomalies in spring, summer and autumn 2011 show

much weaker anomalies than in 2016 (compare Fig. 13a and b).

5.4 DJF 2012/13500

After analysing two anomalous winters in the Kara and Barents Seas, we now discuss another anomalous Arctic winter in

the High Arctic to better understand the different dynamical processes leading to such seasons in Arctic regions with distinct

surface conditions. In the region of the High Arctic, the winter of 2012/13 is classified as strongly anomalous in ARI mainly

due to its negative T2m∗ and P ∗ (Fig. 7g), making it one of the coldest and driest winters in this sub-region (Fig. 5a and e).

A negative RL∗, i.e., less net longwave radiation, resulting in an overall strongly negative ES∗ contributes additionally to the505

anomaly magnitude of this winter (Fig. 5i). Figure 14a shows that the T2m anomaly mainly results from deviations up to −8K

from the climatology during the second half of the season, which is quite a substantial anomaly considering the size of the

29



spatially averaged area, whereas the first half of the season is close to climatology. From mid-January on, ES values are also

consistently below average and little to no precipitation occurs until the end of the winter (Fig. 14b and e). It is evident that

only the second half of the season features exceptional conditions, indicating that anomalies do not have to persist throughout510

a whole season to make it anomalous.
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Figure 14. Same as Fig. 9 but averaged in sub-region ARI in DJF 2012/13.

The anomalies during the second half of the season coincide with a decrease of synoptic activity over the High Arctic.

Specifically, the relative cyclone and blocking frequency anomalies in ARI are slightly and strongly reduced, respectively,

especially in the second half of the season. In December, several cyclones and blocks affect the prevalent conditions in the515

High Arctic (Fig. 14, blue and red heatmaps and supplementary animation S3). Between days 20 and 25, a strong intrusion of

warm and moist air facilitated by adjacent blocking and cyclone systems in the Bering Sea causes a strong precipitation event,

coinciding with increasing surface mean temperatures and a local decline in sea ice coverage (Fig. 14a, c, d). At the same time,

a displacement of the polar vortex occurs, which subsequently leads to a splitting of the polar vortex and a sudden stratospheric

warming event at the beginning of January 2013 (Coy and Pawson, 2015; Nath et al., 2016). As the region of the High Arctic520

is positioned beneath the saddle point of the resulting two cyclonic vortices in the stratosphere, relatively calm conditions lead

to the development of a high-pressure system in the Laptev Sea, which evolves into a strong and persistent polar high during

January (Fig. 14e). Figure 15 shows that there is no upper-level anticyclone or block present in the High Arctic during that
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period. This suggests that the strong high-pressure system at the surface is most likely of a thermodynamic origin caused by

cold and dense air below an inversion layer (as can be seen in the skewT-logp diagram in Fig. 16), resulting from persistent525

radiative cooling and inducing a first drop in T2m∗ at the end of January (Fig. 14a).

In February, the calm conditions in the High Arctic remain and prolong the isolation of the cold and dry air in this region.

Again, a lack of notable upper-level forcing can be observed (see supplementary Fig. S9). With the increasing dryness of the

air, persistent longwave radiative cooling of the surface results in a dome of very cold air, causing the formation of another

surface high-pressure system during the second half of February and one of the strongest negative monthly T2m anomalies in530

this region. The formation of the dome of cold air is evident as a strong inversion in the skewT-logp diagram (Fig. S10).

(a) (b)

Figure 15. Synoptic situation on (a) 20 January 2013 (day 51) and (b) 24 January 2013 (day 55). Daily-mean geopotential height at 300 hPa

(in m, color). Sea level pressure (grey contours, in intervals of 10 hPa) and blocking mask (dashed green contour) at 00 UTC on the considered

days. Black star at 173 °E, 78.5 °N shows location of skewT-logp profile in Fig. 16. Sub-region ARI is marked by orange hatching.

Comparing winter 2012/13 in ARI with the two anomalous winters in the Kara and Barents Seas reveals fundamentally

different characteristics, resulting mainly from the regionally varying synoptic activity but also the prevalent surface conditions.

While preconditioning does not play an important role in the High Arctic, which is mainly covered by sea ice, the long-term

development of SIC and SST anomalies in areas with varying SIC can significantly influence the initial conditions of winters in535

the Kara and Barents Seas. Each of the three seasons has its own substructure and different combination of anomalies resulting

in the respective anomaly magnitude. Besides the rather straightforward “persistent anomaly in one parameter" as is the case

for DJF 2011/12, we show that, with our approach to define extreme and anomalous seasons based on a multi-variate anomaly

magnitude, there are many different pathways for such a season to develop. In DJF 2012/13, several weeks of consistent

extreme conditions resulted in a whole anomalous season, although the first half of the winter was relatively normal. And in540
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Figure 16. SkewT-logp diagram at 173 °E, 78.5 °N (black star in Fig. 15). Temperature is shown along the x-axis (in °C) and pressure along

the y-axis (in hPa). Black lines show the ambient temperature profile for 20 January 2013 (day 51; dotted line), 22 January 2013 (day 53;

dashed line), and 24 January 2013 (day 55; solid line) at 00 UTC. Grey lines show isobars (horizontal) and isotherms (skewed), respectively.

Colored dashed lines denote dry (red) and moist (blue) adiabats, respectively. Green dotted lines denote constant saturation mixing ratios.

2016/17, it was not only extraordinary atmospheric conditions but also the preconditioning by an anomalous evolution of the

surface conditions during the previous months that led to an extreme Arctic winter.

6 Discussion and conclusions

In this study, Arctic winters (DJF) and summers (JJA) have been characterized based on seasonal anomalies of surface param-

eters including temperature, radiation, heat fluxes and precipitation for distinct regions considering varying surface conditions.545

In winter, strong spatial differences can be observed dependent on the prevailing surface conditions (i.e., open ocean vs. sea

ice), especially in terms of the surface energy balance components (ES), whereas in summer there is less spatial variability

due to reduced surface temperature and radiation gradients. Regions with a climatological sea ice concentration of above 90%

show only smallES variability mainly determined by changes in the net surface thermal radiation, as solar radiation and air-sea

interactions are strongly reduced, particularly in the high latitudes. In contrast, areas with predominantly open water surface550

show a large seasonal variability in the surface energy balance primarily driven by fluctuations in the surface heat fluxes. Tem-

perature anomalies do show a distinct spatial variability as well, featuring relatively large fluctuations in sea ice covered areas

in the Kara-Barents and Nordic Seas and reduced variability over the open ocean. The Nordic Seas are further characterized

by an increased precipitation variability compared to the Kara and Barents Seas and the High Arctic, whereby the latter shows
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smaller variability for all analyzed parameters.555

We further characterized Arctic seasons based on the seasonal substructure of surface temperature (T2m), precipitation (P )

andES . Persistent seasonal anomalies, indicating constantly anomalous conditions of the same sign throughout a whole season,

can be observed for T2m and ES except for the open ocean, where strong surface heat flux variability prevents continuously

positive or negative daily ES anomalies. Distinct outlier seasons can be observed featuring exceptional seasonal-mean anoma-560

lies in one or several parameter(s).

To define and identify anomalous and extreme seasons objectively, we introduce a multi-variate method. Using PCA, we

define anomalous and extreme seasons by means of an anomaly magnitude based on the combination of seasonal anomalies

of T2m, P , surface heat fluxes and surface net radiation. Unlike conventional, univariate approaches, we do not pre-define and565

thus prioritize one particular parameter by simply choosing, e.g., the warmest or wettest seasons. Instead, our multi-variate

approach has the advantage that it also allows to identify seasons that arise from an unusual combination of seasonal anomalies

that taken alone are not particularly unusual. This consequently leads to different types of extreme seasons in terms of their

individual anomalies which, however, share a similar "unusualness" as expressed by the anomaly magnitude dM . In order to

reach a significant dM value, at least one of the considered variables or a combination thereof must be clearly exceptional570

compared to other seasons. All of our extreme seasons have very large anomalies for at least one parameter and thus would

most probably be found to be extreme with a more conventional approach as well. We show that our identified anomalous

seasons often result from various combinations of unusual seasonal anomalies, which allows us to analyze a broader spectrum

of unusual seasons with regard to their underlying processes and atmospheric dynamics. Further, using a multivariate approach

allows us to compare extreme and anomalous Arctic seasons considering the heterogeneity of the Arctic surface. We analyze575

sub-regions with climatologically high, mixed or low sea ice cover separately, thus accounting for regional differences in the

surface conditions, which have a strong impact on the variability of these parameters.

Based on this definition of extreme seasons, we analyzed the atmospheric processes leading to three selected extreme and

anomalous winter seasons by evaluating the relative importance of different synoptic features, namely cyclones, blocks and580

cold air outbreaks (CAO). This helps improving the understanding of the formation of such seasons and underlines the manifold

processes that can cause a season to become particularly unusual. The results of our analysis for three different case studies

can be summarized as follows:

1. Seasonal substructure: Extreme and anomalous Arctic winter seasons show a high variability in their substructure and the

synoptic processes determining their anomaly magnitude. This magnitude can be due to a persistent seasonal anomaly585

of the same sign in one parameter such as it is the case for the constantly positive temperature anomaly during the ex-

ceptionally warm winter 2011/12 in the Kara and Barents Seas. However, also the combination of several noticeable but

not exceptional seasonal anomalies can result in a similarly large anomaly magnitude. Furthermore, extreme conditions

do not need to persist during a whole season as we can see for the winter of 2012/13 in the High Arctic, where several
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weeks of persistent cold and dry conditions caused seasonal anomalies that are sufficiently large for the season to be590

identified as anomalous.

2. Atmospheric processes: Various synoptic processes can cause Arctic winters to become anomalous or extreme. An

increase in cyclone frequency often leads to enhanced transport of warm and moist air into the respective region, which

is particularly important for the formation of precipitation in the higher latitudes. Episodes of prevailing atmospheric

blocking usually favor the persistence of positive surface temperature anomalies due to subsidence-induced adiabatic595

warming. Recurrent synoptic events such as cyclones, blocking and CAO episodes can strongly influence the entire

season, depending on their location relative to the considered region. Similarly, the absence of synoptic activity can

be important for the development of extreme conditions as can be seen in the case of the High Arctic extreme winter

2012/13. Contrasting synoptic conditions can lead to extreme seasons in the Kara and Barents Seas, which, however,

show very different characteristics. Further, the frequency of CAOs strongly influences surface temperature anomalies600

and changes in ES mainly due to the impact on air-sea interaction.

3. Surface preconditioning: Regions with varying sea ice coverage can experience preconditioning due to long-term anoma-

lies in sea ice concentration (SIC) and sea surface temperature (SST), leading to anomalous initial conditions at the

beginning of the season and thus influencing the sea ice formation and ES throughout the following winter. Large SIC

and SST anomalies, which developed and persisted throughout the preceding 1.5 years, led to record-low SIC and above605

average SST in the Kara and Barents Seas at the beginning of the winter of 2016/17. Due to the increased amount of

open water area, predominantly negative surface heat flux anomalies prevailed throughout the season, resulting in an

exceptionally negative seasonal ES anomaly. This suggests that extreme and anomalous seasons in regions with a clima-

tological sea ice concentration between 10 % and 90 % can be caused by such a preconditioning, whereas extreme and

anomalous seasons in regions with continuous sea ice extent are mainly driven by atmospheric processes.610

One of the main limitations of this study is the short time-period for which the ERA5 data is currently available. As our goal

is to study anomalous seasons, the number of suitable cases is strongly limited. Future analysis of large ensemble simulations

of the CESM climate model will allow us to further statistically quantify and confirm the results of this study. The importance

of long-term components such as the near-surface ocean processes leading to possible preconditioning of anomalous seasons

have only been briefly considered in this study. Further analysis of anomalies in surface oceanic heat transport and its influence615

on sea ice formation and melt and sea surface temperatures will allow us to quantify the relative importance of short-term

atmospheric and long-term oceanic forcing in driving the processes leading to Arctic extreme seasons.

Code and data availability. ERA5 data can be downloaded from the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/). The

PIOMAS data set can be obtained from the Polar Science Center web page (http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-

anomaly/data/). Scripts used to produce the analyses and figures in this study are available on request from the authors.620
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