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Abstract  

Heavy precipitation is one of the most devastating weather extremes in the western Mediterranean region. Our capacity to 

prevent negative impacts from such extreme events requires advancements in numerical weather prediction, data assimilation 10 

and new observation techniques. In this paper we investigate the impact of two state-of-the-art data sets with very high 

resolution, Global Positioning System-Zenith Total Delays (GPS-ZTD) with a 10 min temporal resolution and radiosondes 

with ~700 levels, on the representation of convective precipitation in nudging experiments. Specifically, we investigate 

whether the high temporal resolution, quality, and coverage of GPS-ZTDs can outweigh their lack of vertical information or 

if radiosonde profiles are more valuable despite their scarce coverage and low temporal resolution (24h to 6h). The study 15 

focuses on the Intensive Observation Period 6 (IOP6) of the Hydrological Cycle in the Mediterranean eXperiment (HyMeX; 

24 September 2012). This event is selected due to its severity (100 mm/12h), the availability of observations for nudging and 

validation, and the large observation impact found in preliminary sensitivity experiments. We systematically compare 

simulations performed with the COnsortium for Small scale MOdelling (COSMO) model assimilating GPS, high- and low 

vertical resolution radiosoundings in model resolutions of 7 km, 2.8 km and 500m. The results show that the additional GPS 20 

and radiosonde observations cannot compensate errors in the model dynamics and physics. In this regard the reference COSMO 

runs have an atmospheric moisture wet bias prior to precipitation onset but a negative bias in rainfall, indicative of deficiencies 

in the numerics and physics, unable to convert the moisture excess into sufficient precipitation. Nudging GPS and high-

resolution soundings corrects atmospheric humidity, but even further reduces total precipitation. This case study also 

demonstrates the potential impact of individual observations in highly unstable environments. We show that assimilating a 25 

low-resolution sounding from Nimes (southern France) while precipitation is taking place induces a 40 % increase in 

precipitation during the subsequent three hours. This precipitation increase is brought about by the moistening of the 700 hPa 

level (7.5 gkg-1) upstream of the main precipitating systems, reducing the entrainment of dry air above the boundary layer. The 

moist layer was missed by GPS observations and high-resolution soundings alike, pointing to the importance of profile 

information and timing. However, assimilating GPS was beneficial for simulating the temporal evolution of precipitation. 30 

Finally, regarding the scale dependency, no resolution is particularly sensitive to a specific observation type, however the 2.8 



2 

 

km run has overall better scores, possibly as this is the optimally tuned operational version of COSMO. Future work will aim 

at a generalisation of these conclusions, investigating further cases of the autumn 2012 and the Icosahedral Nonhydrostatic 

Model (ICON) will be investigatted for this case study to assert whether its updates are able to improve the quality of the 

simulations.  35 

1 Introduction 

In the Western Mediterranean Heavy Precipitation Events (HPEs) cause fatalities and large economic losses every year 

(Petrucci et al., 2018). Many of these events occurs during autumn, since this is the time when large-scale systems (northerly 

troughs, extratropical cyclones) coincide with large mesoscale moisture transports, advected with the southerly flow (Toretti 

et al., 2010; Pinto et al., 2013; Dayan et al., 2015; Gilabert and Llasat, 2017). This creates the propitious humidity and 40 

instability conditions for convective systems that get triggered due to orography, wind convergence or thermodynamic 

processes (Ricard et al., 2012; Khodayar et al., 2016). The representation of such events is still a challenge for current 

Numerical Weather Prediction (NWP) models. The relatively short temporal and spatial scales of convective phenomena, from 

minutes to less than a day and from 100 to 102 km (Markowski and Richardson, 2010), make it challenging to forecast 

accurately where and when an HPE will develop. One of the identified sources of error is the misrepresentation of the spatial 45 

distribution of atmospheric moisture. Current models have shown a large sensitivity of convective precipitation to small 

differences in moisture distribution (Lintner et al., 2017, Virman et al., 2018). Hence, it is hoped that using sub-kilometre 

resolution and sub-hourly frequencies in atmospheric models and Data Assimilation (DA) systems can lead to substantial 

improvements for HPE prediction. 

DA is a key ingredient to the initial value problem of NWP (Bauer et al., 2015), as the frequent assimilation of high-quality 50 

observations helps adjust the NWP model towards the true atmospheric state. Recent advancements in observation systems 

and high-performance computing have brought progress for DA of new observations (Carlin et al, 2017; Kwon et al., 2018; 

Borderies et al., 2019; Federico et al., 2017, Mazzarella et al., 2017). GPS measurements of ZTDs are an especially interesting 

observation type, since they can sample the Integrated Water Vapour (IWV) amount at minute temporal-resolution (Bock et 

al., 2016). Past publications have shown improvements of GPS data for screen-level temperature and humidity (Mile et al., 55 

2019; Mascitelli et al., 2019), lower to middle tropospheric moisture (Singh et al., 2019; Bastin et al., 2019; Caldas-Alvarez 

and Khodayar, 2020) and 24-hour precipitation (Hdidou et al., 2020; Fourrié et al., 2020). The advantages of this product are 

its high temporal resolution, that it is all-weather (provides IWV estimates in cloudy as well as clear sky situations), has large 

accuracy (Bock et al., 2016, Bock et al., 2019; Jones et al., 2019) and has a dense coverage over European countries. However, 

being an integrated quantity, GPS measurements bear no information of the vertical distribution of humidity (Guerova et al., 60 

2016). This deficit can be decisive in some situations since sufficient moisture even in shallow atmospheric layers can make 

the difference between convective triggering or suppression. For example, Davolio et al. (2017) find a good impact on 

precipitation forecasts from assimilating constructed humidity profiles reaching the upper free troposphere . Federico et al. 
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(2019) show that assimilating derived humidity profiles from radar reflectivity and lighting data induces a moist bias possibly 

due to the inability of the system to correctly redistribute the humidity into shallower vertical layers. This is one of the reasons 65 

why, to date, radiosondes have remained the backbone of DA systems (Kwon et al., 2018). Radiosondes can supplement the 

lack of vertical information of GPS observations, however at the expense of a coarser temporal resolution (in best cases, every 

6 h) and lower spatial coverage (~ 30 stations in western Europe). To bring the best value from radiosonde assimilation, 

targeted observations can help sample atmospheric conditions at the right place and time, e.g. in regions upstream of areas 

prone to heavy precipitation (Campins et al., 2013). In this regard, a higher number of levels per sounding can bring potential 70 

improvement, already assessed for validation purposes (Benjamin et al., 2010).  

Past modelling and observational studies demonstrated that a good account of the spatial distribution of atmospheric moisture 

is crucial for the representation of convective intensities (Keil et al., 2008, Lintner et al., 2011, Honda et al., 2015, Schumacher 

et al., 2015, Schlemmer et al., 2015, Lintner et al., 2017, Virman et al., 2018). Consensus exists that a moist Planetary Boundary 

Layer (PBL) is needed for convective triggering and maintenance (Lee et al., 2018). However, the dependency on moisture at 75 

the Lower Free Troposphere (LFT) is less established. Dry mid-levels can lead to a faster organisation of mesoscale clusters 

through stronger cold pools (Zuidema et al., 2017) but also reduce the strength of connective updrafts through entrainment of 

drier air. Several authors have highlighted the important role of mid-level moisture in aiding the transition from shallow to 

deep moist convection (Lintner et al., 2011; Neelin et al., 2009; Bernstein et al., 2016; Zhuang et al., 2018; Khodayar et al., 

2018), as a sufficiently moist LFT prevents excessive entrainment (Honda et al., 2015), helps convection penetrate possible 80 

intrusions and maintains the buoyancy of the rising parcels.  

In addition to DA, convection-permitting model resolution has brought important advancements in the simulation of heavy 

precipitation (Chan et al 2012; Prein et al., 2015; Coppola et al., 2018; Meredith et al., 2020). However, the question regarding 

how fine model resolutions should be, beyond the kilometre scale, in the so-called grey-zone (Barthlott and Hoose; 2015) is 

still open. Several papers have found improvements from using model resolutions of 1.5 km or higher (Kendon et al., 2012; 85 

Martinet et al., 2017; Bonekamp et al., 2018 and Lovat et al., 2019), whereas others found no significant gain (Chan et al., 

2012; Panosetti et al., 2016; Lee et al., 2019). A possible reason is the fact that the appropriate settings for running current 

models at such high resolutions are not yet ready. In this context it is interesting to assess the sensitivity of the impact of new 

observations such as GPS and high-resolution soundings to model resolution.  

Assessing the capabilities of current NWP systems for heavy precipitation is one of the aims of HyMeX, an international 90 

project aiming at a better understanding of the hydrological cycle in the Mediterranean (Ducrocq et al., 2014). The Special 

Observation Period 1 (SOP1) between 01 September and 05 November 2012 provides an unprecedented collection of data that 

is used in this study for assimilation, validation, and process-understanding. The event we focus on occurred on 24 September 

2012, during Intensive Observation Period 6 (IOP6), and brought precipitation amounts of over 100mm in 12h to southern 

France, the Alps, the Gulf of Genoa, and northeastern Italy (Hally et al., 2014; Ribaud et al., 2016). This HPE showed a 95 

negative impact of GPS DA in preliminary assimilation tests, related to an overall reduction of atmospheric moisture and 

precipitation amount (between -40% and -10% depending on model resolution). Given this unexpected result, we will 



4 

 

investigate here in more detail which characteristics of the GPS DA were detrimental for the representation of precipitation. 

To do so, we will systematically assess the impact of nudging GPS, operational soundings, and high-resolution soundings 

using COSMO simulations with – for this case unprecedently fine – grid-spacings of 7 km, 2.8 km and 500m. The employed 100 

nudging scheme (Schraff and Hess, 2012) is well suited for such studies (Federico et al., 2019; Bastin et al., 2019) and 

compares well against other DA schemes (Schraff et al., 2016). The employed methods will be outlined in Section 2. Section 

3 discusses the meteorological situation during IOP6 and the model runs used as reference. Section 4 presents the results of 

the data impact studies. Conclusions are given in Section 5. 

2. Data and Methods 105 

2.1 Observations  

2.1.1 GPS-derived Zenith Total Delays (ZTD) and Integrated Water Vapour (IWV) 

The GPS data set used for the nudging was specifically produced for the HyMeX project, merging measurements from 25 

European national and regional networks commonly post-processed for the first time to cover the period September 2012 to 

March 2013 (Bock et al., 2016). GPS measurements provide information of the total delay endured by the microwave signals 110 

emitted by GPS satellites in the Zenith direction (Zenith Total Delay; ZTD). These are expressed in units of mm, accounting 

for the excess length of the optic path introduced by the refractivity of the Earth’s atmosphere (Businger et al., 1996). The 

contribution to the delay due to the interaction with water vapour molecules is called the “wet” delay and can be obtained from 

the ZTD. This is the assimilated variable in the nudging experiments, which is proportional to the IWV.  The data set used in 

this paper has a temporal resolution of 10 minutes, an outstanding spatial coverage over all southwestern European countries 115 

(see Fig.1b) and was produced using the GIPSY/OASIS II v6.2 software (Bock et al., 2016). It enjoys a very high quality due 

to its data screening procedure, including range and outlier checks for mean ZTD and its standard deviation, as well as 

ambiguity and daily number checks. Compared against the product from the Network of European Meteorological Services 

(EUMETNET) Global Navigation Satellite System (GNSS) Water Vapour Programme (E-GVAP), the HyMeX data set shows 

no significant biases (Bock et al., 2016).  120 

HyMeX, also provides an IWV data set with 1h resolution, derived from the ZTD estimations (Fig. 1b). We employ this IWV 

data set for comparison against our simulations. The mean temperature and surface pressure values at the GPS station locations, 

which are needed for the IWV derivation, were obtained from a product provided by the Technical University of Vienna and 

AROME western Mediterranean operational analysis, respectively. A validation of the IWV product against operational 

radiosondes showed a good performance, with biases of less than 1.5 mm for the whole HyMeX period (Bock et al., 2016). 125 
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2.1.2 The operational and the HyMeX high-resolution soundings   

Operational atmospheric sounding data are provided by Météo-France and the HyMeX database teams through the HyMeX-

MISTRALS web repository (https://mistrals.sedoo.fr/HyMeX/). The data set consists of atmospheric soundings during the 

period 1995–2017, covering the western Mediterranean countries (blue triangles in Fig. 1b), operated by national and regional 

European atmospheric weather institutions and distributed through the Global Telecommunication System (GTS). The 130 

soundings have 30 vertical levels on average and have been validated against GPS measurements with good agreement. 

Deviations of only ± 3 % in IWV were found by Bock et al. (2016) for the soundings.  

In addition, we employed the unique high-resolution soundings of the HyMeX SOP1 in the nudging experiments. These were 

conducted at locations upstream of areas prone to heavy precipitation (red markers in Fig. 1b). They have a much finer vertical 

resolution with over 700 levels up to 300 hPa. We employed soundings from twelve stations over France (continental and 135 

Corsica) and Spain. Modem-M10 sondes were launched at Ajaccio (Corsica), Nimes, and Barcelona, Graw sondes, operated 

by the Karlsruhe Institute of Technology, at Corté and Inra (Corsica), and Vaisala sondes in southern France and Spain.  

2.1.3 Meteosat Second Generation (MSG) Brightness Temperature 

Brightness temperature is an estimation of the radiation emitted by a surface, converted to temperature through Planck’s law, 

assuming a black body. It provides a clue of the height of cloud tops and is especially useful for deep penetrating convective 140 

clouds. In this paper we use the All-Sky radiances product, obtained by the Spinning Enhanced Visible and InfraRed Imager 

(SEVIRI) instrument on-board the Meteosat Second Generation satellite constellation. In particular, the InfraRed (IR) channel 

IR10.8 is used for detection of organized convective systems. The data are accessible upon registration at 

https://www.eumetsat.int/website/home/Data/DataDelivery/index.html. 

2.1.4 Rain Gauges (RG) and Multi-Source Weighted-Ensemble Precipitation (MSWEP) 145 

The RG data set used for validation in this paper is available for accumulation periods of 1h, 6h or 24h, has a dense coverage 

of Spain, France, Italy, and Croatia, and on average over 4000 stations active per sampled hour. The data set is made available 

by Météo-France by means of the MISTRALS/HyMeX repositories. The version used for this study is V4, which includes 

high-resolution measurements from Italy and Croatia as compared to older versions. Several quality checks are included in 

this version, such as consistency validations among the different accumulation periods, removal of duplicates and dismissal of 150 

blacklisted stations.  

The MSWEP product is used for validation of our model results. We use version V2.1 with a temporal resolution of 3h and a 

spatial resolution of 0.1° during 1979–2015. We examine the period 22–25 September 2012. A full description of the data set 

can be found in Beck et al. (2017). MSWEP is a gridded precipitation dataset merging satellite, re-analysis and gauge-based 

estimates, utilizing, among others, the Climate Prediction Center Morphing Technique (CMORPH), Precipitation Estimation 155 

From Remotely Sensed Information Using Artificial Neural Networks (PERSIANN), Tropical Rainfall Measuring Mission 

https://mistrals.sedoo.fr/HyMeX/
https://www.eumetsat.int/website/home/Data/DataDelivery/index.html
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(TRMM), ERA-interim (reanalysis) and Climate Prediction Center (CPC) and Global Precipitation Climatology Center 

(GPCC; gauge) observations. The MSWEP product shows a good correlation with the independent FLUXNET gauge network 

with median values of 0.65 for the Pearson correlation coefficient. RMSE median values were of 4.5 mm d -1, showing better 

results than TRMM TMPA 3B42 or WFDEI-CRU (Beck et al. 2017). We selected this precipitation data set for model 160 

validation given it profits from the combined value of satellite precipitation products as well as RG.  

2.2 The COSMO model 

COSMO uses the non-hydrostatic, thermo-hydrodynamical equations in a limited area approach (Schättler et al., 2012), 

considering the wind components, temperature, pressure perturbation, the cloud water content, and the specific humidity as 

prognostic variables. Optionally, also cloud ice, snow and graupel can be considered (Schättler et al., 2012). The model levels 165 

are based on a height coordinate that follows the terrain. The rotated grid is an Arakawa C type with Lorenz vertical grid 

staggering. The dynamical solver is a second order leapfrog time-split scheme after Skamarock and Klemp (2002). COSMO 

includes physical parameterizations for the processes that are not explicitly represented. The grid-scale clouds and precipitation 

parameterization uses a bulk scheme continuity model including water vapour, cloud water, cloud ice, rain, snow and graupel 

as water species. Convection is parameterized using the Tiedtke scheme (1989), a bulk-mass-flux formulation dependent on 170 

mass, heat, moisture, and momentum fluxes, including a cloud model, simulating processes such as condensation/deposition, 

evaporation within the updraft and evaporation below cloud base. The radiation scheme follows the Ritter and Geleyn 

description (1992) and is applied with a lower temporal frequency and lower resolution than that of the rest of the model to 

reduce computational costs. The soil model is the Terra Multi-Layer (ML) model that is based upon the two-layer scheme by 

Jacobsen and Heise (1982). Finally, the surface data uses the GLOBE dataset (Hastings et al., 1998) with a 1 km resolution 175 

adequately interpolated (extrapolated) to the scale of the different resolutions used (7 km, 2.8 km, and 500m).   

One of the main assets of COSMO is its flexibility to be used with different horizontal resolutions, each of which requires 

specific configuration settings. For finer spatio-temporal scales, more processes are explicitly resolved at the expense of higher 

computational costs. In this work we employ horizontal grid spacings of 7 km, 2.8 km, and 500m. The most relevant differences 

between the 7 km and the 2.8 km set-ups are (a) the increase of levels from 40 to 50, (b) the reduction of time step from 60s 180 

to 20s, and (c) the use of only a shallow convection parametrization scheme in 2.8 km. The formulation of the latter is analogous 

to the deep scheme, except for the reduced vertical extent of clouds (limited to ∆𝑝 = 250 ℎ𝑃𝑎; Baldauf et al., 2011) and the 

neglection of dynamic entrainment (Doms et al., 2011). This scheme is inactive in sub-kilometre simulations, i.e. in our 500m 

simulation. Other changes are (a) a further increase of vertical levels to 80, (b) a time step of 2s, and (c) the use of a 3D 

Turbulent Kinetic Energy (TKE) diagnostic closure for the turbulence parametrization. In the 7 km and 2.8 km configurations, 185 

the closure of the turbulence parametrization scheme is 1D in that it neglects all horizontal fluxes in the so-called boundary-

layer approximation (Doms et al., 2011). In the 3D TKE closure case, the vertical shear production term can come from local 

sources as well as from advection, and the pressure correlation term is explicitly calculated, which is especially useful over 

complex terrain (Goger et al., 2018).  
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2.2.1 The COSMO Nudging scheme  190 

The DA method used in this work is the Nudging scheme (Schraff and Hess, 2012). Nudging is an empirical DA method 

consisting of relaxing the model’s prognostic variables towards the observations. This is done by adding a term to the modelled 

numerics and physics (𝐹(𝜑𝒎𝒐𝒅, 𝒙, 𝑡)) for a given prognostic variable (𝜑) at location (𝒙) and time (𝑡) that depends on the 

difference between the observation (k) and the model (𝜑𝑘
𝑜𝑏𝑠 − 𝜑𝑚𝑜𝑑(𝒙𝒌, 𝑡)), the temporal, spatial and quality weighting factors 

(𝑊𝑘(𝒙, 𝑡) = (𝑤𝑘 ∑ 𝑤𝑗𝑗⁄ ) ∙ 𝑤𝑘), depending in turn on a relative weight for each observation type (𝑤𝑗) and a coefficient with 195 

units of frequency (𝐺𝜑), see Eq. 1. The nudging is performed at each model time step when observations are available. 

𝜕

𝜕𝑡
𝜑(𝒙, 𝑡) = 𝐹(𝜑𝒎𝒐𝒅, 𝒙, 𝑡) + 𝐺𝜑 ∙ ∑ 𝑊𝑘(𝒙, 𝑡) ∙ [𝜑𝑘

𝑜𝑏𝑠 − 𝜑𝑚𝑜𝑑(𝒙𝒌, 𝑡)]𝑘                             [1] 

In this work, we nudge atmospheric specific humidity (GPS and radiosondes), temperature (radiosondes) and wind 

(radiosondes). These are the quantities assimilated operationally at forecasting centres from GPS and radiosonde measurements 

(Kwon et al., 2018). The nudging scheme is especially suited for these experiments, since it corrects the atmospheric fields 200 

during run time, with the same frequency as the sampling of observations. Additionally, it has shown good results in analysing 

humidity fields, especially at upper levels (Schraff et al., 2016; Bastin et al., 2019) and is computationally less expensive than 

other schemes (Variationals or Hybrids) given its simplicity (Guerova et al., 2016).   

Nudging of GPS and radiosondes   

The COSMO nudging scheme only allows the assimilation of prognostic variables. In the case of the radiosondes, COSMO 205 

reads profiles of temperature, wind and humidity assigning all observations to a grid point in model space. Given that the grid 

points cannot correctly represent wavelengths of 2∆𝑥  or less, the assignment is performed with no interpolation in the 

horizontal direction (Schraff and Hess, 2012). The observations are averaged over each model layer for temperature and wind 

and interpolated to the representative height of each model level for humidity. Therefore, the higher the number of vertical 

model levels, the more the assimilation will profit from higher vertical resolution in the radiosondes. The impact of the analysis 210 

increments on the neighbouring grid points is controlled through lateral (𝑤𝑥𝑦), vertical (𝑤𝑧) and temporal weights (𝑤𝑡) through 

the equation 𝑤𝑘 = 𝑤𝑥𝑦 ∙ 𝑤𝑧 ∙ 𝑤𝑡 ∙ 𝜀𝑘,  where 𝜀𝑘 accounts for the quality and representativeness of the observation. At the exact 

time-space location of the observation 𝑤𝑥𝑦 , 𝑤𝑧 and 𝑤𝑡  are set to 1. 

The temporal spreading is controlled by the nudging coefficient, which is set to 6.10-4 s-1, this corresponds to an e-folding 

decay of half an hour. For radiosondes the assimilation time window is set between -3 and +1 hours. The vertical spreading 215 

weight follows a Gaussian in height differences, accounting for the hydrostatic relation and the ideal gas law (Eq. 2). Where 

𝑔 is the gravitational acceleration, 𝑅 is the gas constant, 𝑇𝑣 is the virtual temperature of the observations, ∆𝑧 is the height 

difference between model and observations and 𝑙𝑛𝑝𝑐 is the correlation scale, equal to 1 √3⁄ . More details can be found on the 

models documentation (Schraff and Hess, 2012).    

𝑤𝑧 = 𝑒𝑥𝑝 {
−[𝑔 𝑅⁄ 𝑇𝑣|∙ ∆𝑧]

𝑙𝑛𝑝𝑐
}

2

                           [2] 220 
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Horizontally, the spreading is performed using a second-order autoregressive function of the distance between the observation 

location and the target point (∆𝑟) divided by correlation scale (s), see Eq. (3). The values of s range between 58 and 100 km, 

depending on the model level for radiosondes and are reduced by 45 % for GPS data to avoid conflicting neighbouring 

observations, given its larger surface coverage (Schraff and Hess, 2012), The correlation scale is invariant under resolution 

changes as in its operational set-up. The impact of adapting s, to different model resolutions is not investigated here, as this 225 

would be out of the scope of the paper. It is advised however, further testing of different values of the correlation scale for 

higher resolutions to address any potential conflicts of assimilated observations with e.g. an increased resolution of the model’s 

orography.   

𝑤𝑥𝑦 = (1 + ∆ 𝑟 𝑠⁄ ) ∙ 𝑒−∆𝑟 𝑠⁄                                        [3] 

To assimilate GPS data, COSMO converts the ZTD information into IWV (see Section 2.1.1) utilizing simulated surface 230 

pressure at the station (𝑝𝑠) and mean temperature (𝑇𝑚) at run time from the assigned grid point. Given IWV is not a prognostic 

variable, a specific humidity profile needs to be constructed (𝑞𝑣
𝑚𝑜𝑑). This is done by means of an iterative process that scales 

the IWV simulated at that location and time (𝐼𝑊𝑉𝑚𝑜𝑑) with that of the observation (𝐼𝑊𝑉𝑜𝑏𝑠). The profile is constructed at the 

different model levels according to 

𝑞𝑣𝑖+1
𝑚𝑜𝑑 = 𝑞𝑣𝑖

𝑚𝑜𝑑 ∙
𝐼𝑊𝑉𝑖+1

𝑜𝑏𝑠

𝐼𝑊𝑉𝑖
𝑚𝑜𝑑  .                  [4] 235 

The process continues until the IWV error is lower than 0.1 % or after 20 iterations (Schraff and Hess, 2012). In the remainder 

of the process the constructed profile is treated in the same way as the one derived from radiosondes with the exceptions that 

(a) no vertical weights are needed, since the profile is constructed over model levels directly and (b) temporally, GPS data are 

interpolated linearly given their minute temporal resolution. Both for radiosonde and GPS observations, the nudging scheme 

sequentially carries out quality checks for new input observations. These checks consist of dismissal of observations with large 240 

biases; bias corrections, e.g. humidity biases in Vaisala soundings, and gross error checks to truncate the range of the 

observations within realistic limits.  

2.3 Experimental set-up 

We run 3-day simulations between 22 September 2012 00:00 UTC and 25 September 2012 00:00 UTC. We simulate this 

period with COSMO, using three horizontal resolutions of 7 km, 2.8 km, and 500m in a one-way nesting strategy (Fig. 1a). 245 

Integrated Forecasting System (IFS) simulations from the European Centre for Medium-Range Weather Forecasts (ECMWF) 

with a resolution of 25 km force the 7 km runs, which in turn force the 2.8 km and finally these force the 500m simulations. 

The following rationale guides the nudging experiments. The study period is run in all three resolutions as pure forecast runs 

(named CTRL-7, CTRL-2.8, CTRL-500), which are used as references to compare against simulations nudging GPS, 

operational RADiosondes (RAD, ~ 20 levels) and High-Resolution radiosondes (HR, ~700 levels) and all possible 250 

combinations between them (see Table 1), in all three resolutions. The nudging is performed continuously processing new 

observations as soon as they are available for the time step under integration. This implies that the average frequency for 
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nudging of GPS is 10 minutes and between 6 and 12h for radiosondes. We use almost 1000 GPS stations, 32 RAD sounding 

stations and 12 HR stations (Fig. 1b). All simulations of the same resolution are forced with the same boundary conditions. 

For instance, all 500m simulations are forced by CTRL-2.8. This is done to ensure that the different impacts observed in the 255 

simulations are due to the use of different observations and not from different forcing data. A total of 21 simulations were 

performed (see Table 1). The study focuses on two investigation areas, the Cévennes-Alpine area in southern France (FR) and 

the north western Mediterranean basin (RhoAlps), see Fig.1b. The extension of FR has been selected for study of local 

instability, moisture and wind conditions influencing convective activity over the area. RhoAlps covers the extension of the 

four main heavy precipitation foci (see Fig. 2b). 260 

 

 

Figure 1: (a) Nested simulation domains for the different resolutions. (b) Spatial distribution of nudged measurements, GPS, 

operational RADiosoundings (RAD) and High-Resolution soundings (HR), and investigation domains FR and RhoAlps (boxes).  

 265 
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Table 1. Summary of simulations nudging radiosondes and GPS observations. In total 18 simulations with nudging plus three control 

runs were performed. The simulations with combined nudging of observations maintain the same assimilation frequency and 

number of levels for the different observations. The resolution of the GLOBE orography data set is 1 km. The TERRA-ML model 

is used for the soil atmosphere interactions parametrizations. 280 

2.4 Verification metrics 

2.4.1 99-Percentile of three hourly precipitation aggregates 

We validate extreme precipitation intensity simulated by COSMO against MSWEP. To this end we upscale COSMO’s grid to 

the MSWEP spatial resolution (0.1°). Then we obtain 3-hourly precipitation aggregates for the grid points within the 

investigation area. The 99-percentile is obtained from the sample of all 3-hourly precipitation intensities at each grid point 285 

during the day of precipitation i.e., for eight time steps during 24 September 2012. 

2.4.2 Temporal Correlation 

In Section 4.1, we validate the precipitation temporal correlation of the different simulations against observations (MSWEP). 

To this end, we calculate the Pearson’s correlation coefficient between the model’s spatially averaged precipitation (𝑚𝑜𝑑) and 

that of the observations (𝑜𝑏𝑠) as in Joliffe and Stephenson (2011) for 3-hourly aggregates during the day of precipitation (24 290 

September 2012).  

𝑟𝑚𝑜𝑑,𝑜𝑏𝑠 =
∑ (𝑚𝑜𝑑𝑖−𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅)(𝑜𝑏𝑠𝑖−𝑜𝑏𝑠̅̅ ̅̅ ̅)24ℎ

𝑖

√∑ (𝑚𝑜𝑑𝑖−𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅)224ℎ
𝑖 √∑ (𝑜𝑏𝑠𝑖−𝑜𝑏𝑠̅̅ ̅̅ ̅)224ℎ

𝑖=1

                 [5] 

Where the sums run for all eight time steps (i) of the 3-hourly aggregates during 24 September 2012. The spatial averaging is 

performed over the investigation area RhoAlps, where only land points are considered due to the lack of data of MSWEP over 

the sea; all simulations are coarse-grained to the MSWEP resolution.  295 

Model Configuration 

   

 Assimilation Configuration 

Resol. Forcing Lev. Convec. Turb. Orogr. Soil  Observations Freq. Lev. 

7 km IFS 40 
Tiedtke 

Deep 

1D 

TKE 

GLOBE 

(1 km) 

TERRA

ML 

 

3x7= 

21 sims. 

 

 

 

RAD (Oper. Rads.) ~ 6 h ~20 

HR (High-res. Rads.) ~6 h ~700 

2.8 km CTRL-7 50 
Tiedtke 

Shallow 

1D 

TKE 

GPS  10 m Int. 

GPS-RAD  
Combined 

instruments 500 m CTRL-2.8 80 - 
3D 

TKE 

RAD-HR 

GPS-RAD-HR 

         CTRL (No obs.)  
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For its interpretation it should be noted that the forecasting efficiency of Pearson’s correlation coefficient is non-linear, i.e. 

small improvements of 𝑟𝑚𝑜𝑑,𝑜𝑏𝑠 for values closer to 1 imply larger forecasting efficiency than improvements of the same extent 

for values closer to 0 (Jacques et al., 2018).  

2.4.3 Fractions Skill Score (FSS) 

The FSS provides an estimate of the agreement in the fraction of surface affected by precipitation between observations and 300 

simulations. After coarse-graining the simulations to the resolution of the observations (MSWEP, 0.1°), each grid point within 

the investigation area (both for observations and simulations) is given a value of 1 if precipitation is larger than 20 mm d-1 and 

0 to the remainder grid points. We selected this precipitation threshold to be able to have defined precipitation structures within 

the investigation area (Roberts and Lean, 2008; Skok and Roberts, 2016). We obtain the fractions of area, affected by 

precipitation in the model (𝑓𝑚𝑜𝑑) and the observations (𝑓𝑜𝑏𝑠) for moving sub-boxes. The fractions are computed as the ratio of 305 

the number of grid points with value 1 (𝑛𝑝𝑟𝑒𝑐𝑖𝑝) divided by the total number of grid points (𝑛𝑡𝑜𝑡), of the moving sub-boxes 

(𝑓 = 𝑛𝑝𝑟𝑒𝑐𝑖𝑝 𝑛𝑡𝑜𝑡⁄ ). The size of the sub-boxes is defined by the Neighbour Length (N). We choose the maximum possible N 

to guarantee the largest skill of the forecast. The maximum N is defined by the number of grid points in the shortest dimension 

of the investigation area. In our case this is the latitude dimension (𝑛𝑙𝑎𝑡 = 42). N has to fulfil the condition 𝑛𝑙𝑎𝑡 = 2𝑁 − 1, 

hence the neighbour length (N) of the moving boxes is 20. The FSS is computed as shown in Eq. 6.   310 

𝐹𝑆𝑆 = 1 −
1

𝑀
∑ (𝑓𝑚𝑜𝑑−𝑓𝑜𝑏𝑠)2𝑀

𝑖=1
1

𝑀
(∑ 𝑓𝑚𝑜𝑑

2𝑀
𝑖=1 +∑ 𝑓𝑜𝑏𝑠

22
𝑖=1 )

                 [6] 

Where M is the number of moving sub-boxes. Eq. 6 corresponds to what is defined in Roberts and Lean (2008) as Asymptotic 

Fractions Skill Score (AFSS). This asymptotic value is reached when the number of neighbours is the largest. It provides the 

largest skill of the verification and if there is no bias between the model and the observations AFSS equals one. On the other 

hand the lower limit of the model’s skill is defined by the target FSS defined as 𝐹𝑆𝑆𝑡𝑎𝑟𝑔𝑒𝑡 = 0.5 + 𝑓𝑜𝑏𝑠 2⁄  and is denoted by 315 

a dashed line in Fig.5c. Below this threshold the forecast has no skill.  

2.4.3 Root Mean Square Error (RMSE) and Mean Bias (MB) 

The validation of IWV and specific humidity simulated with COSMO is quantified through the RMSE and MB (Eq. 7 and 8) 

in Section 4.2, where i is the running index for all available observations (N): 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑚𝑜𝑑𝑖 − 𝑜𝑏𝑠𝑖)

2𝑁
𝑖                   [7] 320 

𝑀𝐵 =
1

𝑁
∑ (𝑚𝑜𝑑𝑖 − 𝑜𝑏𝑠𝑖)

𝑁
𝑖                   [8] 
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3 The HyMeX IOP6 (24 September 2012) 

In the night of 24 September 2012 several Mesoscale Convective Systems (MCSs) were active over southern France, the Alps 

and the Italian Gulfs of Genoa and Venice (Hally et al., 2014; Ferretti et al., 2014). Over the course of 12h, RG recorded totals 

as large as 100 mm over Montélimar, the Swiss Alps and at the Austrian-Italian border (Fig 2b). In total four regions can be 325 

characterized by heavy precipitation: the Rhone valley (France), Lugano (Switzerland), La Spezia (Italy) and Udine (Italy). 

The synoptic situation was dominated by an upper-level trough situated over western Europe and a surface low to the northwest 

of Ireland during the night of 23 September 2012 (Hally et al., 2014; Taufour et al., 2018). The associated cold front moved 

over southern France, the Alps and north-eastern Italy in the course of 18 hours, as the surface low moved from Ireland to the 

Baltic Sea. A squall line developed over southern France at 00:00 UTC on 24 September 2012 (Fig. 2a), reaching its mature 330 

phase at 03:00 UTC and splitting into two smaller MCSs at 05:00 UTC (Ribaud et al., 2016). The MCSs moved from north-

western to north-eastern Italy after midday (Pichelli et al., 2017; Fig. 2a). The cyclonic circulation swept in air from the 

Mediterranean over the Gulf of Lions, the Gulf of Genoa and up to Venice through the Adriatic Sea (Hally et al., 2014). The 

additional low-level moisture supported the unstable conditions needed for convective development and fed the active systems 

until their decay after 20:00 UTC on 24 September 2012.   335 

 

 

Figure 2. Synoptic overview of IOP6. (a) Brightness temperature of the MSG-SEVIRI instrument channel 9 (MSG-0 degree, all-sky 

radiances, https://www.eumetsat.int/) and isolines of mean sea level pressure simulated by COSMO (7 km) on 24 September 2012 at 

06:00 UTC. (b) 24-hourly accumulated precipitation from the HyMeX RG data set. The dark boxes FR and RhoAlps denote the 340 
investigation areas.  

COSMO is able to represent the event, capturing the four main precipitation spots and the main features such as the squall line 

addressed by Hally et al. (2014). To demonstrate this, Fig. 3 represents the spatial distribution of 24-hourly aggregated rainfall 

simulated by COSMO (Figs. 3b–d) and observed by MSWEP (Fig. 3a). Overall, the MSWEP precipitation product represents 

well the event over the area albeit an underestimation over Liguria and an overestimation north of the Rhone valley and over 345 

the Alps , compared to RG. Regarding COSMO, the precipitation intensities stay within the observed range despite a tendency 

for underestimating the 24-hourly aggregations (Figs. 2b and 3). Irrespective of resolution, COSMO struggles to represent the 

https://www.eumetsat.int/
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observed amounts as large as 100 mm. Differences also occur in the precipitation structure and location with some dependency 

on the model resolution. CTRL-7 (Fig. 3b) shows the location of the convective line over FR shifted towards the Alps and a 

too narrow and intense precipitation structure over the Udine maximum. CTRL-2.8 (Fig. 3c) shifts the precipitation maxima 350 

over FR northward and splits the Udine maximum into two, one over Udine and the other one over the Gulf of Venice. Finally 

CTRL-500 (Fig. 3d) represents a narrower convective line over FR with a better agreement with observations and as CTRL-

2.8, a split maximum over north-eastern Italy.  

 

 355 

Figure 3. Spatial distribution of daily precipitation during 24 September 2012 00:00 UTC to 25 September 00:00, estimated by the 

MSWEP v2.1, 3-hourly, 0.1° (a) and simulated by CTRL-7 (b), CTRL-2.8 (c) and CTRL-500 (d). The labels within the RhoAlps box 

shows the values of the spatial averages used in Fig. 5a for validation of the precipitation totals.   

4 Impact of GPS, operational RADs and HR radiosonde nudging 

4.1 Precipitation  360 

The different observation types impact precipitation independently of the model resolution. Figure 4, analogously to Fig. 3, 

shows the spatial distribution of 24-hourly aggregated rainfall. In this case only the 500m resolution is shown given the 
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similarities with the results from the coarser resolutions (7 km and 2.8 km) that are provided in the Supplementary Material 

(SM).  

Nudging GPS data induces a reduction of precipitation, most strongly over the western slope of the Alps and Lugano, 365 

decreasing precipitation from 50 mm to 15 mm, and over the Udine region with a reduction of from 50 to 10 mm (Fig. 4a). No 

shifting of the location of maxima occurs as no dynamic impacts like changes in the wind direction and intensity seem to be 

introduced by the GPS nudging (not shown). This agrees with previous studies showing a weak impact of assimilating 

thermodynamic profiles through Latent Heat Nudging on horizontal wind (Jacques et al., 2018). Nudging RAD observations 

brings an increase in precipitation, both in intensity and extension (Fig. 4b). The areas most affected are located to the east of 370 

the Rhone valley, over Lugano, and Udine with up to 150 mm, well above the 50 mm simulated in CTRL-500.. Nudging HR 

soundings brought, overall, a marked decrease of precipitation amount over Lugano (Alps) and Udine, compared to CTRL. 

Intensities over these two spots are as low as 10 mm in the HR-500 simulation (Fig. 4c). This is not the case however, for HR-

2.8. . Finally, combining all observation types for nudging (GPS-RAD-HR-500, Fig 4d) yields a structure similar of that of the 

RAD simulations but with a weaker precipitation increase (Fig. 4b). It is worth mentioning the existence of model artifacts in 375 

the eastern part of the domain (Fig. 4d, for instance), which evidence the difficulties of dynamically downscaled simulations 

in initializing the microphysical species at the boundaries. This, however does not affect the conclusions of this study.  
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Figure 4. As Fig. 3 but for GPS-500 (a), RAD-500 (b), HR-500 (c) and GPS-RAD-HR-500 (d). The analogous analyses using the 7 380 
km and 2.8 km grids are shown in the SM.  

In the following we validate the assessed impact of the different observation types quantitatively by comparing precipitation 

observations (MSWEP) against the COSMO simulations. The use of MSWEP (resolution of 0.1°) is motivated by the fact that 

it is a gridded product needed for the validation of precipitation correlation and structure. We validate for 24 September 2012 

over investigation area RhoAlps, the spatially averaged 24-hourly aggregated precipitation (Fig. 5a), the 99th percentile of 3-385 

hourly aggregated rainfall intensities (Fig. 5b) and the FSS (Fig. 5c). How these metrics are computed is introduced in Sect. 

2.4. For the verification, all COSMO results have been coarse-grained to the native MSWEP grid. 

Figure 5a confirms that all CTRL runs underestimate precipitation amount by about 4 mm. CTRL-7 shows the best result, 

since CTRL-2.8 and CTRL-500 emphasize more localized precipitation structures, which after spatial averaging contribute 

less to the final total. The simulations with nudged GPS data, further reduce the precipitation amount, worsening the values in 390 

the comparison against observations for all resolutions with averages of approximately 8 mm only. The sole simulation able 

to increase the precipitation amount sufficiently is RAD with values between 15 and 12 mm. This, as seen in Fig. 3b, is due to 

larger precipitation over the western Alps and Switzerland. Nudging HR, similarly to GPS reduces the 24-hly precipitation 

resulting in worse scores. In this regard the higher vertical resolution of HR did not bring added value for this case study, 

compared to RAD. Finally, the combination of several observation types brings counteracting effects for all resolutions, 395 

dominated by drying induced by GPS and HR. Also noteworthy is the fact that for GPS, GPS-RAD, HR, RAD-HR and GPS-

RAD-HR the most suitable resolution is 2.8km. 

 In Fig. 5b, the analysis of 99-percentile intensities shows that CTRL represents intensities of extreme precipitation comparable 

to those of MSWEP. This implies that for this case a good simulation of extreme precipitation intensities did not imply a good 

prediction of the 24hly aggregates (Fig.5a). CTRL-7 and CTRL-2.8 show similar intensities but CTRL-500 has somewhat 400 

lower rates (by ~5 mm). A plausible explanation is the use of a 3D closure for the turbulence scheme (see Table 1). Verrelle 

et al. (2015) showed that a 3D closure for the turbulence scheme induces larger horizontal diffusion in the area of the cloud 

base reducing convective intensity. GPS shows weak extreme precipitation intensities for all resolutions, with the best results 

for GPS-2.8 (20 mm). On the contrary, RAD shows a large increase with 3-hly precipitation intensities in the order of 27 mm. 

The HR simulations show weak precipitation (between 16 mm and 23 mm), analogously to the underestimation of 24h sums 405 

showed in Fig. 4a and 4c. Regarding the combined observations (GPS-RAD-HR), the use of RAD increases the precipitation 

intensities to more realistic values.  

Finally, the FSS analysis (Fig. 5c) shows a good performance of the CTRL runs (𝐹𝑆𝑆 ≈ 0.85). Nudging GPS reduces the FSS 

score due to the excessive precipitation reduction, which is consistent for all resolutions. RAD improves the representation of 

the precipitation structure (𝐹𝑆𝑆 ≈ 0.95) due to the wider rain areas over Switzerland and the Rhone valley and the eastward 410 

shift to the western side of the Alps (Fig. 4b) HR also shows no added value for the improvement of precipitation area. 

Combined observations (GPS-RAD-HR), show little scale dependency and an improvement for the structure thanks to the 

impact of RAD. For this metric the 2.8 km grid shows the best value.   
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 415 

Figure 5: a) Accumulated precipitation amount during 24 September 2012, spatially averaged over RhoAlps, for COSMO, RG and 

MSWEP. (b) 99th percentile in mm/3h over the investigation area RhoAlps during 24 September 2012. (c) FSS of 24h precipitation 

amount. 

To understand the temporal evolution of the event, Fig. 6a shows spatially averaged precipitation over the investigation area 

RhoAlps. Precipitation as measured by MSWEP starts on 23 September at 21:00 UTC (black line in Fig. 6a), over the western 420 

part of the RhoAlps domain, reaching a steady maximum of 3 mm h-1 in the spatial averages between 06:00 UTC and 18:00 

UTC of 24 September (MSWEP; black colour). The convective decay is effective after 18:00 UTC where the last cells over 

the Italian-Slovenian border start to reduce their intensity. All simulations (colour lines in Fig. 6a) capture the event with a 
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good representation of its initiation hour, however simulating its decay between 3h and 2h earlier. As in Fig. 4, only the results 

for the 500m resolution are shown. The analogous results for the 7 km and 2.8 km grid are given in the SM, which show a 425 

similar response to the different observation types. CTRL-500 (blue), GPS-500 (red) and HR-500 (green) show for most of 

the event’s duration a spatially averaged intensity lower than MSWEP (between 0.5 mm h-1 and 1 mm h-1), explaining the 

differences in the 24-hourly aggregations (Figs. 4 and 5). Only the simulations including the operational soundings, RAD-500 

(yellow), and GPS-HR-RAD-500 (purple), show a precipitation increase in agreement with the spatial distributions (Figs. 4b, 

4d and 5). The temporal evolution shows that precipitation increase occurs after 24 September 06:00 UTC and reaches 4.5 mm 430 

h-1 for the former and 3 mm h-1 for the latter. In Section 4.3 we analyse the causes of the vast moisture increase in RAD.  

To provide a quantitative score of the agreement in the temporal evolution of precipitation between observations (MSWEP; 

black line in Fig. 6a and the simulations; coloured lines), Fig. 6b shows the temporal correlation for the spatially averaged 3-

hourly aggregations (as presented in Fig. 6a, see Sect. 2.4.2). CTRL-7 performs better than CTRL-2.8 and CTRL-500 with a 

correlation of up to 0.9 against MSWEP, due to a better location of precipitation variations at each grid point related to its 435 

more similar resolution to that of the observations (~ 11 km). Nudging GPS data improves the temporal representation of 

precipitation of COSMO for all grid types (Fig. 6b). This is related to a smoother representation of the precipitation increase 

between 03:00 and 06:00 UTC and a flatter curve in contrast to other observation types (Fig. 6a). This is possibly due to the 

ability of the GPS nudging to improve the representation of the arrival of moisture and consequent increase, associated with 

precipitation initiation. RAD and HR bring little improvement, with even some deterioration for RAD-7. HR also brings some 440 

improvement due to a good representation of the timing of convective decay. Combining the different observation types (GPS-

RAD-HR) brings a mixed impact (improvement by GPS and HR, worsening by RAD), which conceals the dependency on the 

used model resolution (𝑟 = 0.82). 

 

Figure 6: Temporal evolution of spatially averaged precipitation (a) and anomaly correlation validation of the precipitation temporal 445 
evolution (b). All simulations have been coarse-grained to the MSWEP spatial resolution (0.1°). Spatial averages are performed for 

3-hourly data. The corresponding results of a) for the 7 km and 2.8 km simulations can be found in Figs. S3a and S4a of the SM. 

We conclude from the previous analysis that (a) only RAD brings an improvement to the simulation of precipitation, (b) GPS 

and HR excessively reduce the simulated precipitation, which could be related to model errors in COSMO, (c) GPS brings 

added value in simulating the timing of the event and (d) there is overall little dependency on model resolution 450 
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4.2 Atmospheric Moisture 

Large moisture amounts were advected with the southwesterly to southeasterly flow up the Rhone valley during 23 September 

2012. . Figure 7 shows the evolution of spatially averaged hourly IWV from the 500m COSMO simulations and GPS. For the 

following assessment we applied a correction to IWV for height differences between the model surface and the station altitude 

following Bock and Parracho (2019). The correction is based on an empirical linear relationship between IWV biases and 455 

height differences (dh) following the equation 𝑑𝐼𝑊𝑉/𝐼𝑊𝑉 = −4 ∙ 10−4 ∙ 𝑑ℎ. Grid points with surface height differences 

larger than 500 m are dismissed. The average impact of these corrections does not exceed 1 % of IWV. The results for 2.8 km 

and 7 km can be found in the SM. The highest GPS-IWV amount (27 mm; black line in Fig. 7, underneath the coloured lines) 

persists for 12 hours over the study region starting on 24 September at midnight. CTRL-500 (blue line in Fig.7) reproduces 

the IWV temporal evolution fairly well until 10:00 UTC on 23 September, when a period of considerable overestimation (+ 2 460 

mm) begins, lasting until 05:00 UTC, well after convective precipitation had started. After 10:00 UTC, CTRL-500 matches 

better with the GPS-IWV observations. An overestimation of IWV by COSMO had already been assessed by previous studies 

(Caldas-Alvarez and Khodayar, 2020) and was also shown for the non-hydrostatic model AROME in Bastin et al. (2019). 

Nudging GPS (red line in Fig. 7) reduces the IWV overestimation until 06:00 UTC on 24 September. This observation type 

brings the best agreement with observations throughout the complete event. This is as expected, provided that the GPS-IWV 465 

observations are not independent from the assimilated GPS-ZTDs. Nudging RAD (yellow) also corrects the IWV 

overestimation until 05:00 UTC 24 September. However, an abrupt IWV increase takes place after 05:00 UTC 24 September, 

with differences up to 2 mm against observations lasting for about 5 hours. Nudging HR (green) corrects the IWV 

overestimation until the beginning of the event (21:00 UTC 23 September), however drying excessively the investigation area 

until 24 September 18:00 UTC. Nudging all observation types together (GPS-RAD-HR; purple) corrects the IWV 470 

overestimation until 21:00 UTC on 23 September 2012 (purple line in Figs. 7).  

 

Figure 7: Temporal evolution of spatially averaged IWV (b) for the simulations with the 500m grid. IWV is obtained through 

interpolation to the location of the GPS stations, applying a height correction following Bock et al. (2005 and Parracho (2019). The 

corresponding results for the 7 km and 2.8 km simulations can be found in Figs. S3b and S4b of the SM. 475 

The temporal evolution in Fig.7 has shown a) the correction of the moisture overestimation by all observation types and b) the 

relationship between IWV fluctuations and the timing of heavy precipitation over the RhoAlps area. To provide a quantitative 
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assessment of the moisture representation in COSMO for this event, Table 2 shows the time averaged RMSE (left) and MB 

(right) between the COSMO simulations and the GPS measurements at the station locations. The MB is obtained as the MOD-

OBS differences (Sect. 2.4). The results show that assimilating the GPS observations reduces RMSE and MB compared to 480 

CTRL (Tab.2). Nudging RAD shows likewise a reduction of RMSE and MB in the convection permitting grids (2.8 km and 

500m). This is however not seen for 7 km. Finally, the corrections induced in GPS-RAD-HR, dominated by the influence of 

the GPS measurements, provide added. 

 

Table 2. Root Mean Square Error (RMSE; left) and Mean Bias (MB; right) of spatially and temporally averaged IWV between GPS 485 
and COSMO (22 September to 25 September 00:00 UTC) over RhoAlps. The averages are obtained from hourly IWV values, at the 

GPS station locations. The COSMO simulations have been coarse-grained to a common grid of 8 km grid spacing for this 

comparison. And a height correction on model data based on Bock and Parracho (2019) has been applied.    

RMSE [mm] | MB [mm] CTRL GPS RAD HR GPS-RAD-HR 

7 km 0.79 | 0.18 0.27 | 0.05 0.94 | -0.46 0.88 | 0  0.39 | 0.06 

2.8 km 1.11 | 0.52 0.27 | 0.02 0.87 | -0.46 0.71 | -0.06 0.37 | -0.01 

500m 0.94 | 0.4 0.33 | -0.1 0.63 | 0.09 0.8 | -0.25 0.39 | -0.14 

 

The fact that the GPS and HR observations improve the IWV representation, but generate too little precipitation, is indicative 490 

of errors in the model’s numerics and physics for this case study. The results suggest that COSMO struggles to turn its 

excessive moisture content into precipitation, thus leaving the atmosphere too humid.  

To understand how IWV errors are distributed in the vertical profile, Fig. 8 shows the MB (straight lines) and RMSE (dashed 

lines) of specific humidity between COSMO and four operational radiosondes of the RAD data set (Nimes, Milano, San Pietro, 

and Udine, see Fig. 1.b). All four stations are in the lowlands (height < 100m) to avoid biases due to surface height differences. 495 

Although this comparison is not done against an independent data set, it provides valuable information of the vertical levels at 

which the nudging of the different observations has the largest impact. Furthermore, given that both the operational and the 

special high-resolution HyMeX radiosondes were used in the nudging experiments, no other vertical humidity profiles with 

high-accuracy were available for an independent comparison during this period.  

CTRL-7 (Fig. 8a, blue) shows a MB within acceptable values (between -0.2 g kg-1 and 0.2 g kg-1). Similar RMSE and MB are 500 

found for GPS-7 (red) and RAD-7 (yellow), however the latter with a slightly more negative MB ( -0.2 g kg-1) throughout the 

complete profile, indicating a drier model at the selected four low-height stations. HR-7 (green) shows the largest deviations 

both for RMSE (up to 1.2 g kg-1 at 850 hPa) and MB with an overestimation below 950 hPa and an underestimation above. 

GPS-RAD-HR-7 (purple) has the best MB and RMSE (~ 0.6 g kg-1) demonstrating the added value of combining these 

observation types. The 2.8 km resolution (Fig. 8b) shows a somewhat different vertical distribution of specific humidity for 505 

CTRL-2.8 (blue) with an overestimation of the MB between 800 hPa and 600 hPa up to 0.3 g kg-1. GPS-2.8 (red) shows similar 

values of the RMSE, compared to its CTRL counterpart. The vertical gradient of MB is similar to CTRL-2.8 although 
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somewhat drier in GPS-2.8 in agreement with the IWV reduction assessed in Fig. 7 and Tab.2. This leads to the largest MB to 

be found in the PBL (~ -0.2 g kg-1) in GPS-2.8 (Fig. 8b; red). RAD-2.8 (yellow) has very good MB (0.2 g kg-1) and RMSE 

values (0.8 g kg-1), as expected, given the dependence on the observations in this comparison. This influence can also be seen 510 

for the good scores of GPS-RAD-HR-2.8 (purple). For the 500m resolution (Fig.8c), CTRL-500 (blue) shows an 

underestimation of moisture in the PBL and an overestimation above 800 hPa, up to 0.2 g kg-1. The impact of the different 

observation types is analogous to that observed in the 2.8 km simulations with the exception of HR-500 (green; Fig. 8c). 

 

 515 

Figure 8: Mean Biases (solid lines) and RMSE (dashed lines) of specific humidity between the operational soundings for (a) the 7 

km, (b) 2.8 km and (c) and 500 m simulations. The differences are obtained at the four stations within the investigation area RhoAlps 

(Milano, Nimes, Udine, San Pietro) and are averaged for all stations and for the complete simulation period (00:00 UTC 22 

September to 00:00 UTC 25 September 2012).  

The previous assessment leads to the conclusions that a) COSMO misrepresents the humidity vertical gradient for this case 520 

study (too wet between 500 hPa and 850 hPa), also found for another case study of the HyMeX period in Caldas-Alvarez and 

Khodayar, (2020); and b) nudging GPS did not help improve the representation of the vertical humidity gradient, as the 

correction at each level is applied based on the first guess. The latter explanations imply that COSMO should have simulated 

stronger convective updrafts to generate more precipitation at the surface and larger transport of moisture from the PBL to the 

LFT in the CTRL and GPS simulations.   525 

4.3 The relevance of the Nimes 05:00 UTC sounding  

The good scores shown by RAD in the precipitation evaluation (Fig. 5) and the large increase of IWV and precipitation are 

worth an in-depth analysis of the impact of RAD on the humidity distribution and convective processes responsible for the 

remarkable precipitation increase. Figure 9 summarizes relevant information about the impact of RAD on humidity and 

precipitation. Between 23 September and 24 September, before the arrival of the cold front, vast moisture amounts were 530 

transported up the Rhone valley by the southwesterly circulation (arrow in Fig. 9a). The moisture gathering up the valley 
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preconditions the HPE. Once precipitation starts, the Nimes RAD sounding at 05:15 UTC (hereafter referred to as 

Nimes_0515) measured 6.5 g kg-1 of specific humidity at 700 hPa (Fig. 9b). Compared to other soundings (either operational 

or high-resolution) released in the area (Fig. 9b), Nimes_0515 measured between 1.5 g kg-1 and 2.5 g kg-1 more specific 

humidity. For example, over Candillargues at 03:14 UTC on 24 September specific humidity at 700 hPa was 5 g kg-1 and over 535 

Marseille at 05:55 UTC it was lower than 4 g kg-1. This implies that after its assimilation, specific humidity at that level was 

considerably increased due to this one particular sounding. To demonstrate this aspect Fig. 9c shows that the reference runs of 

COSMO (CTRL-7 in blue) at that time over Nimes have a 700 hPa level 1.5 g kg-1 drier than the observation. Hence the 

correction of humidity at that level after 05:15 UTC is crucial for the precipitation increase observed for RAD.  

The Gaussian horizontal spreading of information induced by the Nudging scheme (Schraff and Hess, 2012) and the transport 540 

of humidity with the south-westerly mean flow causes much wetter mid-levels over the Rhone valley and over the western 

Alps. This impact was similar for all resolutions. To demonstrate quantitatively this impact, Fig. 9d shows relative precipitation 

differences in % between the RAD-7 simulation and an auxiliary RAD-7 simulation where the Nimes_0515 sounding is 

dismissed. The results show that the contribution to precipitation of the Nimes_0515 sounding is a 40% increase spatially 

averaged over the whole domain and up to 70% downstream of Nimes.  545 

 

 

Figure 9. (a) Location of the stations with RAD and HR profiles between 23 September 23:23 UTC and 24 September 05:55 UTC, 

as well as cold front position and direction of the mean flow. (b) Radiosonde measurements (RAD and HR) in the area. (c) Skew-T 

log p diagram of the Nimes radiosonde at 05:15 UTC on 24 September and the simulation of the profile by CTRL-500, interpolated 550 
to the station location. (d) Precipitation differences between RAD-7 and the same simulation without the Nimes sounding shown in 

(c). 
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The large impact of the Nimes_0515 sounding gives important clues as to whether GPS systems were able to compensate 

radiosondes for this case study. With no means to measure the vertical distribution of humidity, GPS struggles to bring the 

expected improvement in precipitation representation. The reason why other soundings close to Nimes in time and space did 555 

not measure such a large humidity amount at 700 hPa is still unknown. The large spatial heterogeneity of this variable might 

have played a decisive role and its undersampling has already been identified as a factor limiting heavy precipitation simulation 

(Khodayar et al., 2018). Unfortunately, no other humidity observations exist for that time and location (LIDAR, pressurized 

balloons or dropsondes). Another possible explanation is an ascent of the Nimes_0515 sounding through a precipitating system. 

In that case a saturated atmosphere would be present at 700 hPa where the sounding was launched. This implies existing errors 560 

in COSMO regarding the underestimation of humidity at the LFT (see Fig. 8) and the need of excessive moisture and rain are 

compensated by this one sounding. This highlights the relevance and complications of targeted observations for DA. Moreover, 

it also highlights that, for this case study, the accurate location and timing of that one sounding were more relevant for 

precipitation simulation than the higher vertical resolution offered by the HR data set. Spatial distances of 60 km and temporal 

differences of 30 minutes are enough to miss/capture a crucial measurement of water vapour.  565 

4.3.1 Impact on moisture flux, instability, and wind circulation 

In order to better understand the precipitation increase due to nudging, we now investigate its impact on moisture advection, 

temperature, and instability. We focus on the 700 hPa level due to the humidity differences assessed earlier in this section. The 

temporal period analysed are the 6 hours following the large precipitation increase in RAD and the investigation area is now 

FR (Fig. 1), where the largest impact of the Nimes_0515 sounding was seen. Only the 500m results are shown given the 570 

analogous impact in the other two resolutions, the results for the 7 km and 2.8 km grid can be found in the SM. 
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Figure 10: Box-and-whisker-plots showing the median, quartiles and extremes of specific humidity (a), wind speed (b), moisture flux 

(c), temperature (d), CAPE (e) and KO-index (f) at 700 hPa. All the values have been obtained from hourly COSMO output between 575 
05:00 UTC and 10:00 UTC of 24 September 2012 over the study region FR.  

Figure 10a shows that CTRL-500 (blue) and GPS-500 (red) have a similar distribution of specific humidity at 700 hPa, with 

median values of 5.3 g kg-1 and extremes as large as 6.5 g kg-1. The impact of exclusively nudging RAD (yellow) soundings 

is an increase of specific humidity. This is mostly due to the influence of the Nimes_0515 sounding as discussed above. The 

impact of HR (Fig. 10.a), in contrast, is a reduction of the median and larger variability compared to CTRL-500. The GPS-580 

RAD-HR-500 (purple) simulation shows increased humidity, mostly due to the RAD contribution. Regarding horizontal wind 

speed (Fig. 10b), GPS-500 (red), HR-500 (green), and GPS-RAD-HR-500 (purple) show hardly any differences compared to 

CTRL (blue). However, the Nimes_0515 sounding  enhances the speed at this level, probably due to enhanced convection 

inducing stronger winds. The impact for moisture flux at 700 hPa (Fig. 10c) can be understood as the combination of humidity 

and wind changes. CTRL-500 (blue), GPS-500 (red), and HR-500 (green) show very similar median values of moisture flux, 585 

close to 0.12 kg ms-1. For their part, RAD-500 (yellow) and GPS-RAD-HR-500 (purple) show an increased moisture flux with 

extreme values reaching 0.2 and 0.19 kg ms-1, respectively (Fig.10c). Regarding temperature (Fig. 10.d), GPS-500 (red) 

slightly reduces the values, likewise specific humidity. Due to weaker convection less latent heat is released in the process of 

condensation and less mixing occurs from the PBL to the free troposphere. However, the RAD-500 (yellow) simulation shows 

larger extremes. This further supports the hypothesis that the Nimes_0515 sounding sampled in a precipitation area affected 590 

by latent heating and vertical moisture fluxes. Finally, GPS-RAD-HR-500 (purple) shows 75th percentile values up to 4.5°C 

influenced by the RAD and HR measurements. Regarding atmospheric instability, Fig. 10.d represents Convective Available 

Potential Energy (CAPE; Moncrieff and Miller, 1976), and Fig. 10.e KO-index (Andersson et al., 1989). CAPE provides a 

quantitative estimation of the energy available for lifting of a hypothetical air parcel in the lowest 50 hPa of the atmosphere. 
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The KO-index provides an estimation of potential instability. CTRL-500 (blue) shows the largest atmospheric instability (high 595 

CAPE, low KO-index). The nudged simulations show lower instability (CAPE and KO-index). In the case of GPS-500 (red) 

and HR-500 (green) explicable from the drying of the atmospheric profile down to the surface, which reduces equivalent 

potential temperature (𝜃𝑒) for both CAPE and KO-index calculations. For RAD-500 (yellow) and GPS-RAD-HR-500 (purple), 

the moisture increase at 700 hPa is interpreted as an increase of 𝜃𝑒  at that level, hence leading to a less steep lapse rate 

decreasing CAPE (Figs 10e) and increasing KO-index. It is worth noting that for this case study, not only the low-level 600 

conditional instability defines the environment for convection but also the cold front and upper-level divergence that release 

potential instability. From this analysis we conclude that after 05:00 UTC the humidity increase at 700 hPa was the dominating 

factor invigorating convection.   

5 Conclusions  

This study assessed the impact of nudging GPS column water vapour estimates, operational soundings, and high-resolution 605 

soundings on high-resolution model simulations using an autumn convective precipitation event in the western Mediterranean 

as a case study (HyMeX-IOP6). The high density of observations obtained in the framework of HyMeX allowed a thorough 

investigation of assimilation experiments to systematically assess the added value, advantages and disadvantages of the 

individual observation types and the sensitivity to model resolution. For example GPS lacks vertical information but has a vast 

coverage in the western Mediterranean and a temporal resolution of ten minutes, whereas high resolution radiosondes have a 610 

high vertical resolution (~ 700 levels) but a scarce coverage and sub-daily temporal resolution (6h to 12h). We performed the 

sensitivity experiments using the COSMO model and the Nudging scheme in model resolutions of 7 km, 2.8 km, and 500m. 

The main conclusions are: 

a) COSMO shows deficiencies in representing the mechanisms of heavy precipitation for this case study, which could 

not be corrected by nudging additional observations. The reference runs (no assimilated data) showed a moist bias 615 

before precipitation onset and an underestimation of precipitation, indicating that COSMO is unable to transform the 

excess of moisture (especially at the mid-levels into precipitation). Nudging GPS and HR data corrected this moist 

bias but also further reduced precipitation, leading to worse verification scores irrespective of resolution.  

b) Nudging operational radiosondes, however, brought a clear improvement in the representation of 24-h precipitation, 

precipitation intensities and spatial structure. The improvement was brought about by a large precipitation increase 620 

(+ 40% in the 7 km simulations) after 05:00 UTC on 24 September lasting 3 hours. This was mainly caused by the 

assimilation of one particular sounding in southern France (i.e. from Nimes at 05:15 UTC on 24 September), probably 

embedded in a precipitating convective cell, south of the main convective systems. The main mechanism was an 

increase of specific humidity of 2.5 gkg-1 at the 700 hPa level, 5 hours after precipitation initiation, which likely 

reduced the entrainment of dry air and led to higher moisture availability. 625 
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c) The large impact brought about by an individual sounding implies, on the one hand, that traditional sounding systems, 

which need manned operations and have a lower spatial coverage and temporal resolution will still be needed, even 

when GPS networks are also available. This is further supported by the difficulties of GPS observations to correct the 

vertical distribution of specific humidity. On the other hand, it implies that targeted observations, such as the ones 

carried out in HyMeX can in fact be decisive for assimilation in convective situations. Especially, for variables with 630 

large spatial and temporal variability such as atmospheric moisture.  

d) The overall performance and type of impact of each observation type were not dependent on the used model 

resolution. The 2.8 km resolution showed marginally better precipitation scores for all used observations suggesting 

that a computationally more expensive resolution of 500m is not needed for this case study. As 2.8 km is the 

operational configuration, model parameters are optimally set for this resolution possibly giving in an advantage that 635 

could be eliminated with a re-tuning for 500m.   

e) We would like to highlight the added value of GPS nudging in improving the temporal evolution of precipitation. 

GPS improves the anomaly correlation for all resolutions suggesting that nudging together GPS and soundings can 

benefit both from the temporal evolution improvement and the vertical resolution of the radiosondes.  

The fact that COSMO underestimates the precipitation amount with a too moist pre-convective environment in this case points 640 

to model errors in the physical parameterizations or numerics, which assimilation procedures could not compensate. The results 

for this case study provide a first assessment, but further cases should be analysed to allow for generalization of the findings. 

Moreover, in follow-up work we investigate all precipitation events of the autumn 2012 and whether physics updates in the 

framework of the development of the successor model ICON have been able to reduce the highlighted problems.  

6 Code availability 645 

The COSMO model is only accessible after request to the consortium and after agreeing on the terms and licences at 

http://www.cosmo-model.org/. Parts of the model documentation are freely available at https://doi.org/10.1127/0941- 

2948/2008/0309. 

7 Data availability  

The simulation data for precipitation and IWV used to produce Figs. 3b-d, 4, 5, 6, 7, 9d, S1, S2, S3, S4, and Tab. 2, as well as 650 

post-processed humidity, instability, temperature, and wind model data used for Figs 8, 9b-c, 10, S5 and S6, are accessible at 

https://bwdatadiss.kit.edu/review/access/06ec49a7e16a1ba080e8ee1fbcd292eee364e18807be6f583c585de1483d58e7. 

Regarding observations, all data sets were provided by other groups or institutions, hence access is only possible after 

agreement with the corresponding authors. Most of which belong to the HyMeX/MISTRALS data repository. All observational 

data sets are referenced and contact details are provided when available. 655 
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