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Abstract. The study of tropical tropospheric disturbances has led to important challenges from both observational and the-

oretical points of view. In particular, the observed wavenumber-frequency spectrum of tropical oscillations, also known as

Wheeler-Kiladis diagram, has helped bridging the gap between observations and the linear theory of equatorial waves. Here

we have obtained a similar wavenumber-frequency spectrum for each equatorial wave type by performing a normal mode

function (NMF) decomposition of global Era-Interim reanalysis data, with the NMF basis being given by the eigensolutions of5

the primitive equations in spherical coordinates, linearized around a resting background state. In this methodology, the global

multi-level horizontal velocity and geopotential height fields are projected onto the normal mode functions characterized by

a vertical mode, a zonal wavenumber, a meridional quantum index and a mode type, namely Rossby, Kelvin, mixed Rossby-

gravity and westward and eastward propagating inertio-gravity modes. The horizontal velocity and geopotential height fields

associated with each mode type are then reconstructed on the physical space, and the corresponding wavenumber-frequency10

spectrum is calculated for the 200 hPa zonal wind. The results reveal some expected structures, such as the dominant global-

scale Rossby and Kelvin waves constituting the intraseasonal frequency associated with the Madden-Julian Oscillation. On

the other hand, some unexpected features such as westward propagating Kelvin waves and eastward propagating westward

inertio-gravity waves are also revealed by our observed 200 hPa zonal wind spectrum. These intriguing behaviours represent a

large departure from the linear equatorial wave theory and can be a result of strong nonlinearities in the wave dynamics.15

1 Introduction

The study of tropical tropospheric oscillations is one of incredible complexity due to the interaction of multiple scales, strong

nonlinearities and multiple competing physical phenomena (Khouider et al., 2012), including the Madden-Julian Oscillation
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(MJO) (Zhang, 2005), tropical convection (Kiladis and Weickmann, 1992), convectively coupled waves (Kiladis et al., 2009),20

interactions with the extra-tropics (Ferranti et al., 1990), interactions with the stratosphere (Raphaldini et al., 2020d), tropical

cyclones (Emanuel, 2003), tropical rainfall (Gadgil, 2003; Mayta et al., 2020), among others, each of these topics with crucial

socio-economic and environmental impacts.

From the theoretical framework, some of the first successful attempts of tropical meteorology originated from the modelling

of waves on the equatorial beta-plane, going back to the works of Matsuno and others in the 1960s (Matsuno, 1966; Lindzen,25

1967; Yanai and Maruyama, 1966). The waves arising in this type of system, either shallow water or primitive equations (Majda,

2003; Gill, 1982), on the equatorial beta plane, have their mid-latitude counterparts such as the Rossby and inertio-gravity

waves, but also some modes that are unique of the equatorial region arise such as Kelvin and mixed Rossby-Gravity modes.

The latter modes were recently shown to have deep theoretical roots due to topological invariants, behaving as interfacial waves

between different media (Delplace et al., 2017).30

An important step towards the connection between the equatorial wave theory and observations was initially achieved in

Takayabu (1994a), Pires et al. (1997) and Wheeler and Kiladis (1999). These studies obtained the wavenumber vs. time fre-

quency spectrum of tropical oscillations from either the dynamical field variables or the outgoing long-wave radiation (OLR),

revealing a striking correspondence between the observed time frequencies and the theoretical predictions from the linear equa-

torial wave theory. These and subsequent studies (e.g., Wheeler et al., 2000) have been regarded as observational evidence for35

the existence of convectively coupled equatorial waves. In the simplest theories, the convectively coupled waves are oscillations

that resemble the free linear modes, but with slower frequencies due to the coupling of the waves with moist convection; these

theories are reviewed in Kiladis et al. (2009). Besides the observed oscillations that exhibit a good correspondence with the

linear (free or convectively coupled) equatorial waves, Kiladis et al. (2009) also gave insight into the structure of the Madden-

Julian Oscillation, which does not correspond to any of the linear equatorial wave modes (Zhang, 2005). The correspondence40

between the time-frequency spectrum of observed OLR or velocity field oscillations with the linear eigenfrequency of equato-

rial waves suggest that one may isolate the field variables associated with a single wave type by filtering out the corresponding

band in the wavenumber-frequency spectrum. This type of decomposition has been carried out in a number of studies (e.g.,

Wheeler et al., 2000). In this context, departures from the linearized theory may have several origins such as a non-resting

basic state (Yang et al., 2003; Dias and Kiladis, 2014), more complex mechanisms of moisture coupling (Khouider and Majda,45

2006, 2007) as well as nonlinear effects (Khouider et al., 2012) and the coupling with oceanic processes (Ramirez et al., 2017).

An alternative, and mathematically more rigorous, approach to decompose a given set of velocity and pressure fields into

their corresponding eigenmodes is to project them onto the orthogonal basis set given by the equatorial wave eigenfunctions.

This procedure was carried out, for instance, in Gehne and Kleeman (2012) using the equatorial beta-plane shallow water

model. Despite the simplicity of their model equations, they show some important results such as the role of long barotropic50

Rossby waves in generating spectral peaks on synoptic scales. A normal mode decomposition approach combined with space-

time spectral analysis was also put forth by Castanheira and Marques (2015), who studied the coherence between the OLR

signal and the normal-mode decomposed fields.
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In the present study, we use a similar procedure to those documented in Gehne and Kleeman (2012) and Castanheira and

Marques (2015), in which the contribution of each mode type to the field variables is obtained from the projection onto the55

corresponding mode eigenvector rather than the spectral peak bands in the wavenumber-frequency domain. In this context, as in

Castanheira and Marques (2015), the basis function set associated with the modal decomposition is given by the eigensolutions

of the spherical geometry primitive equations linearized around a resting background state. In this way, the corresponding

normal mode functions (NMF) consist of the eigenfunctions of a rigid lid boundary condition Sturm-Liouville problem as

vertical structure functions and the eigenfunctions of the Laplace’s tidal equations, the so-called Hough verctor harmonics60

(Longuet-Higgins, 1968; Kasahara, 1976, 1977), as the horizontal structure functions. We use ERA-Interim reanalysis data

from the European Centre for Medium-Range Weather Forecasts (Dee et al., 2011) to decompose the velocity and geopotential

height fields onto the NMF basis. The projection procedure was first proposed by Kasahara and Puri (1981); here we use a

particular implementation of this procedure provided by the open source MODES software described in Žagar et al. (2015).

This procedure has been successful in describing different atmospheric phenomena such as the MJO (Žagar and Franzke, 2015)65

and the QBO (Raphaldini et al., 2020c, d).

After the normal mode decomposition of the horizontal velocity and geopotential height fields, we obtained the wavenumber-

frequency spectrum of the reconstructed 200 hPa zonal velocity field associated with each mode type, namely Rossby (R),

Kelvin (K), mixed Rossby-gravity (MRG) and eastward/westward propagating inertio-gravity modes (EIG/WIG), using the

methodology proposed by Kiladis et al. (2009). The results reveal some surprising departures from the expected linear wave70

theory. For instance, waves propagating in the opposite direction to what is expected from the linear theory (e.g., WIG waves

propagating eastward), as well as significant departures from the linear eigenfrequencies. We argue that these discrepancies

can be attributed to the role of strong nonlinearities in the wave dynamics.

2 Normal mode function and equatorial wave theory

2.1 Normal mode function75

As previously mentioned, the basis functions utilized here for the projection of the 3-dimensional global field data set are the

normal modes of the compressible primitive equations in the spherical coordinate frame, linearized around a resting background

state. Following the formulation of Kasahara and Puri (1981), these equations can be written using the so-called σ-coordinate

system as follows:

∂u

∂t
− 2Ωsin(φ)v =− 1

acos(φ)
∂P

∂λ
, (1)80

∂v

∂t
+ 2Ωsin(φ)u=−1

a

∂P

∂φ
, (2)

∂

∂t

[ ∂
∂σ

( σ

RΓ0

∂P

∂σ

)]
−∇ ·V = 0, (3)
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In the equations above, V = (u,v) refers to the horizontal wind field, with u and v indicating its zonal and meridional

components, respectively, and σ = p/ps is the vertical coordinate, where p and ps are the pressure and surface pressure fields,

respectively; (λ, φ) refers to the regular longitude-latitude coordinate system, Ω is the Earth rotation rate, R the dry air gas

constant, a the average Earth’s radius, Γ0 the static stability parameter of the stably stratified background atmosphere and

P = gz+RT0(σ) lnps,

with T0 corresponding to the background temperature, z the geopotential height and g the gravity acceleration. Assuming the

rigid lid boundary conditions dσ
dt = 0 at σ = 0 and at σ = 1, Kasahara and Puri (1981) showed that the eigensolutions of system

(1)-(3) above can be expressed as:85




u(λ,φ,σ,t)

v(λ,φ,σ,t)

P (λ,φ,σ,t)


= X(α)

m,k,n(φ)exp[ikλ− iω(α)
m,k,nt]Gm(σ) (4)

In (4), k is the zonal wavenumber, m and n are the indices that characterize the vertical and meridional structures of the

eigenmodes, respectively, and the index α distinguishes the wave type, as will be discussed later. In this context, the vertical

structure functions Gm(σ) satisfy the following Sturm-Liouville problem

d

dσ

( σg

RΓ0

dGm
dσ

)
+

1
Hm

Gm = 0 (5)90

dGm
dσ

= 0 at σ = 0 (6)

dGm
dσ

+
Γ0

T0
Gm = 0 at σ = 1 (7)

where the separation constant Hm is labeled as equivalent height (Taylor, 1936) and is determined from the eigenvalues of the

boundary-value problem above. To find these eigenvalues and their corresponding eigenfunctions, we have used the numerical

procedure proposed in Kasahara and Puri (1981), which consists of solving the matrix eigenvalue problem obtained from the95

finite-difference representation of equations (5)-(7). The solutions corresponding to the first 40 eigenvalues are displayed in

Fig. 1. One notices that the first 5 modes exhibit a barotropic structure in the troposphere, that is, they do not change sign

throughout this region. In addition, the higher the vertical mode index m, the more oscillatory structure the eigenfunction

exhibits. In particular, the last 10 modes are highly oscillatory in the troposphere but have only weak oscillations in the

stratosphere.100

On the other hand, the meridional structure vector function X(α)
m,k,n = [u(α)

m,k,n(φ), iv(α)
m,k,n(φ),gh(α)

m,k,n(φ)]T , also known as

Hough vector functions (Hough, 1898; Kasahara, 1976, 1977), and the eigenfrequencies ω(α)
m,k,n satisfy the following eigen-
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value problem

−ω(α)
m,k,nu

(α)
m,k,n− 2Ωsin(φ)v(α)

m,k,n +
gkh

(α)
m,k,n

acosφ
= 0, (8)

ω
(α)
m,k,nv

(α)
m,k,n + 2Ωsin(φ)u(α)

m,k,n +
g

a

dh
(α)
m,k,n

dφ
= 0, (9)105

ωm,k,nh
(α)
m,k,n +

Hm

acosφ

[
ku

(α)
m,k,n +

d(v(α)
m,k,n cosφ)
dφ

]
= 0, (10)

together with the assumption that h(α)
m,k,n = 0 at the poles. The eigenvalue problem presented above, also known as Laplace’s

tidal equations, can only be solved numerically, unless asymptotic approximations are made as in Longuet-Higgins (1968).

In the open-source MODES software utilized here, the eigenfrequencies and the corresponding Hough vector eigenfunctions

X(α)
m,k,n are obtained from the numerical procedure described in Kasahara (1976) and Swarztrauber and Kasahara (1985).110

According to Kasahara (1976), the eigensolutions of (8)-(10) can be divided into the symmetric and antisymmetric eigenmodes.

For the symmetric modes, u(α)
m,k,n and h(α)

m,k,n exhibit an even symmetry about the equator and v(α)
m,k,n an odd symmetry, whereas

the antisymmetric modes are characterized by u(α)
m,k,n and h(α)

m,k,n exhibiting an odd symmetry and v(α)
m,k,n an even one. As will

be shown later, the symmetric (antisymmetric) modes are labeled by an odd (even) meridional quantum index n. Longuet-

Higgins (1968) classified the mode types of (8)-(10) as the first kind oscillations, which correspond to the high-frequency115

westward/eastward propagating inertio-gravity waves, and the second kind oscillations or rotational modes representing the

so-called Rossby-Haurwitz waves. The Kelvin wave corresponds to the first eastward propagating symmetric mode of the first

kind oscillations, while the mixed Rossby-gravity waves refer to the first antisymmetric rotational mode (Kasahara, 1976).

2.2 Equatorial wave theory

Although we have utilized the normal mode functions on the sphere for the eigenmode decomposition of the observed large-120

scale atmospheric fields, since the Hough vector functions can only be obtained numerically, it is useful to make an analogy with

the equatorial wave theory in order to show approximate analytical expressions for the meridional structure functions X(α)
m,k,n.

In fact, for small values of the equivalent height Hm, the Hough vector functions can be approximated by the eigensolutions of

the equatorial β-plane version of (8)-(10) (Gill, 1982). These eigensolutions of the equatorial β-plane shallow-water equations

can be expressed in terms of the orthogonal basis of parabolic cylinder functions (Matsuno, 1966; Majda, 2003; Gill, 1982).125

The meridional structure of the non-dispersive1 Kelvin wave is written as:

X(K)
m,k =




e−ξ
2/2

0

e−ξ
2/2


 . (11)

1The equatorial Kelvin wave dispersion relation is given by ω(K)
m,k = k

√
gHm.

5

https://doi.org/10.5194/wcd-2021-21
Preprint. Discussion started: 30 April 2021
c© Author(s) 2021. CC BY 4.0 License.



where

ξ =
y

(√
gHm
β

) 1
2
,

with y representing the meridional displacement from the equator and β = 2Ω/a the equatorial value of the Rossby parameter.

The mixed Rossby-gravity (MRG) wave and the first anti-symmetric eastward propagating inertio-gravity wave (EIG) have

meridional structure functions of the form:130

X(α)
m,k,0 =




ξe−ξ
2/2

ω
(α)
m,k,0+k

√
gHm

ie−ξ
2/2

ξe−ξ
2/2

ω
(α)
m,k,0+k

√
gHm




, (12)

with the eigenfrequencies ω(α)
m,k,0 satisfying

ω
(α)
m,k,0 = k

√
gHm

[1
2
± 1

2

(
1 +

4β
k2
√
gHm

) 1
2
]

(13)

where the negative (positive) sign in (13) refers to α=MRG (α= EIG).

For the other EIG, as well as for the Rossby (R) and westward propagating inertio-gravity (WIG) waves, the meridional135

structure functions are given by

u
(α)
m,k,n =

1
2

(ω(α)
m,k,n− kcm)Dn+1(ξ) +n(ω(α)

m,k,n + kcm)Dn−1(ξ) (14)

v
(α)
m,k,n = i((ω(α)

m,k,n)2− k2c2m)Dn(ξ) (15)

h
(α)
m,k,n =

1
2

(ω(α)
m,k,n− kcm)Dn+1(ξ)−n(ω(α)

m,k,n + kcm)Dn−1(ξ) (16)

where Dn(ξ) =Hn(ξ)e−ξ
2/2 is the Hermite function, with Hn(ξ) representing the n−th degree Hermite polynomial2,

cm =
√
gHm and the eigenfrequencies ω(α)

m,k,n satisfy the dispersion relation

(ω(α)
m,k,n)2

gHm
− k2− kβ

ω
(α)
m,k,n

= (2n+ 1)
β√
gHm

.

3 Data and methods140

We have used the Era-Interim (ERAI) reanalysis data from the European centre of Medium Weather Forecast (Dee et al., 2011)

for the 1980-2019 period. The data set consists of horizontal velocity and geopotential height fields, and its spatial resolution

is of 2.5o× 2.5o.
2Hn(ξ) are defined such that

∫∞
−∞Hm(y)Hn(y)e−y2

dy = δm,n
√
π2nn!
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Figure 1. Vertical structure functions corresponding to the first 40 vertical modes of the normal mode decomposition.

3.1 Normal Mode Decomposition

From the orthogonality and completeness of the normal mode functions described in Section 2.1, the observed atmospheric145

fields can be expanded in a normal mode function series as follows:



u(λ,φ,σ,t)

v(λ,φ,σ,t)

P (λ,φ,σ,t)


=

+∞∑

m=0

+∞∑

k=−∞

+∞∑

n=0

∑

α

C
(α)
m,k,n(t)X(α)

m,k,n(φ)eikλGm(σ) (17)

In this way, given the observations of the horizontal winds, pressure and geopotential height fields, the spectral coefficients

C
(α)
m,k,n(t) are obtained by the projection of the observed fields onto a particular eigenmode characterized by a vertical mode

index m, a zonal wavenumber k, a meridional quantum index n and a mode type labeled by α:150
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C
(α)
m,k,n(t) =

1∫

0

2π∫

0

π/2∫

−π/2

[
u(λ,φ,σ,t)u(α)

m,k,n(φ) + v(λ,φ,σ,t)v(α)
m,k,n(φ) +P (λ,φ,σ,t)gh(α)

m,k,n(φ)
]
e−ikλGm(σ)a2 cos(φ)dφdλdσ

(18)

The decomposition illustrated above is performed using the open source MODES software (Žagar et al., 2015). Details

on the numerical procedures are provided in Žagar et al. (2015) and Kasahara and Puri (1981). The coefficients C(α)
m,k,n(t)

obtained from (18) can be used to compute filtered reconstructions of the atmospheric fields; for instance, the reconstruction

of the dynamical fields associated with a single mode type:155




u(α)(λ,φ,σ,t)

v(α)(λ,φ,σ,t)

P (α)(λ,φ,σ,t)


=

+∞∑

m=0

+∞∑

k=−∞

+∞∑

n=0

C
(α)
m,k,n(t)X(α)

m,k,n(φ)eikλGm(σ) (19)

3.2 Wheeler-Kiladis diagram

The Wheeler-Kiladis diagram corresponds to the frequency-wavenumber spectrum of tropical disturbances. This technique,

initially documented in Takayabu (1994a) and then in Wheeler and Kiladis (1999), constructs the diagram based on OLR

signals. However, since normal mode decomposition comprises only velocity and geopotential height fields, we chose the zonal160

component of the velocity field (u) at the 200hPa level to construct the Wheeler-Kiladis diagram. The implementation was made

using NCAR command language available at https://www.ncl.ucar.edu/Document/Functions/Diagnostics/wkSpaceTime.shtml,

NCL (2019). The procedure consists in performing the Fourier Transform regarding both zonal and time dependencies of the

corresponding field averaged within the equatorial belt. This procedure results in a raw spectrum, which is usually difficult

to interpret. Thus, Wheeler and Kiladis (1999) proposed to remove the background red-noise spectrum from the calculated165

spectrum in order to emphasize local maximum signals throughout the k−ω space. In this context, Wheeler and Kiladis

(1999) defined the background spectrum as a smoothed version of the raw spectrum obtained by applying a 1-2-1 filter to the

raw spectrum in the k−ω space. The Wheeler-Kiladis diagram results from the division of the the raw spectrum at each point

(k,ω) by the smoothed background spectrum.

4 Results170

For illustrative purposes, Figure 2 shows the 200hPa horizontal wind and geopotential fields at 12UTC of January 1st, 2001.

Figure 2(a) displays the original fields, while the remaining panels illustrate their filtered versions for specific wave types

according to equation (19). The flow pattern displayed in Fig. 2(a) is clearly dominated by the subtropical jet streams having

planetary-scale waves embedded. As this flow pattern is of rotational character, with relative small divergence, it is essentially

due to the contribution of the rotational modes, as can be clearly demonstrated by the comparison of Figs. 2(a) and (b). Figure175
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(a) (b)

(c) (d)

(e) (f )

(g)

Figure 2. Snapshot of the horizontal velocity and geopotential fields at 200 hPa (a) and their decomposition onto the normal mode function

basis for rotational modes (b), the baroclinic component of the rotational modes (c), eastward inertio gravity (EIG) modes (d), westward

inertio-gravity modes (e), Kelvin wave (f) and the mixed Rossby-Gravity mode (g).
9
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2(c) is the same as Fig. 2(b) but with the vertical modes having a barotropic structure in the troposphere (m= 1,2,3,4,5)

being excluded. The flow pattern illustrated in Fig. 2(c) is still dominated by the subtropical jets, but with equally important

contributions in some regions of the tropics, most notably in the Pacific sector. Figures 2(d) and (e) present the contribution

of eastward and westward inertio-gravity waves, respectively, to the horizontal wind and geopotential fields displayed in Panel

(a). As a consequence of the dominance of the rotational modes to the flow pattern illustrated in Fig. 2(a), the dynamical fields180

due to the activity of the inertio-gravity modes is of much weaker magnitude, as can be observed in Figs. 2(d) and (e). It is

also clear in Figs. 2(d) and (e) the divergent character of the flow associated with the high-frequency waves. The Kelvin wave

contribution is presented in figure 2(f). As expected, the Kelvin component is characterized by a symmetric about the equator

zonal flow in phase with the geopotential field, with both exhibiting a strong trapping near the equator. The mixed Rossby-

gravity mode contribution displayed in Fig. 2(g) is also strongly confined near the equator, but exhibiting a strong symmetric185

about the equator meridional flow and an antisymmetric about the equator geopotential field.

4.1 The Wheeler-Kiladis diagram (WK)

Fig. 3 shows the WK diagram for the 200hPa zonal wind field. Figs. 3(a), (b) and (c) display the symmetric part of the spectrum,

while Figs. 3(d), (e) and (f) present the antisymmetric part. The wavenumber-frequency spectrum has been computed from

the raw data set in panels (a) and (d), while the remaining panels show wavenumber-frequency spectra computed from the190

reconstruction of the zonal wind field by considering only the barotropic (panels b and e) and baroclinic (panels c and f)

components. The barotropic component refers to the vertical modes m= 1,2,3,4 and 5, which exhibit a barotropic structure

throughout the troposphere, while the baroclinic component refers to the remaining vertical modes (m> 5). Figs. 3(a) and

(d) are similar to the wavenumber-frequency spectra of tropical disturbances that have been documented in the literature (e.g.,

Takayabu, 1994a; Wheeler and Kiladis, 1999; Kiladis et al., 2009), and are presented here for comparison purposes. From195

Fig. 3(a) one notices a significant spectral peak band following the linear dispersion relation of the Kelvin waves between

wave-numbers 1 and 10. Another significant spectral peak observed in Fig. 3(a) refers to westward propagating synoptic-scale

disturbances with wavenumbers 1-5, a spectral domain that corresponds to the barotropic Rossby-Haurwitz waves (e.g., Gehne

and Kleeman, 2012). The strongest power signal of the symmetric part of the observed 200hPa zonal wind field spectrum occurs

at wave-number 1 with an intraseasonal time-scale, which might be associated with the Madden Julian Oscillation (MJO). It is200

also noticeable the significant spectral peak associated with large-scale (k = 3−7) westward inertio-gravity waves, along with

some significant signals above the dispersion curves associated with Rossby waves. The antisymmetric part of the spectrum

(Fig. 3d) shows a strong signal along the dispersion relation of the eastward propagating inertio-gravity3 modes with zonal

wavenumbers 3-10.

The most remarkable difference between the wavenumber-frequency spectrum presented in Figs. 3 (a) and (d) and those205

wavenumber-frequency spectra of outgoing long-wave radiation (OLR) presented in the literature refers to the peak at planetary-

scale (wavenumber 1-2) having an intraseasonal time-scale associated with the MJO. While this spectral peak here is strongly

3The first antisymmetric eastward propagating inertio-gravity mode can also be thought of as the eastward branch of the continuum spectrum of the mixed-

Rossby-gravity mode. See Kiladis et al. (2016) and Dias and Kiladis (2016) for a further discussion.
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concentrated at planetary-scale, the corresponding intraseasonal peak associated with the OLR presented by Kiladis et al.

(2009) is more elongated along the zonal wavenumber spectrum, showing a dispersion relation dω(k)/dk ≈ 0. This difference

might be attributed to the fact that the circulation associated with moist convection might contain less kinetic energy than the210

large-scale circulation, which is dominated by Rossby and Kelvin waves. In addition, as the OLR field is a proxy of convection

activity, its spectrum should contain the multiple scales associated with the convection organization (see, for instance, Majda

and Stechmann, 2009; Khouider and Majda, 2006; Khouider et al., 2012).

The wavenumber-frequency spectrum of the barotropic (m= 1− 5) component of the 200hPa zonal wind field shows that

the peak associated with westward propagating synoptic-scale disturbances with wavenumbers 1-5 and a period of T ∼ 5215

days observed in Fig. 3(a) is indeed associated with barotropic waves. On the other hand, the baroclinic component of the

symmetric part of 200mb zonal wind spectrum (Fig. 3c) is largely dominated by a spectrum that follows the Kelvin waves,

with a particularly strong spectral peak with k = 1 and a period of T ∼ 30 days that may be attributed to the Madden Julian

Oscillation. Regarding the antisymmetric component of the 200mb zonal wind WK spectrum, one notices that its baroclinc

component (Fig. 3f) is very similar to the corresponding full spectrum (3d) and is dominated by a spectral peak following220

the dispersion relation of the eastward propagating inertio-gravity mode. The barotropic component, on the other hand, shows

spectral peaks in different regions of the spectrum, including a narrow peak related to k = 1 westward propagating disturbances

with intraseasonal timescale, possibly associated with the MJO. Spectral peaks with characteristic periods of T = 5− 10 days

and zonal wavenumbers k = 1−5 exhibiting westward propagation, as well as a spectral peak with a period of T = 3−5 days

and wavenumber k = 6− 9 exhibiting eastward propagation, are also observed.225

In order to help us to interpret the results presented in Fig. 3, we present in Figure 4 the energy spectrum as a function of the

zonal wavenumber k and the vertical index m. From Fig. 4 one observes that the spectrum is dominated by disturbances with

large spatial scales (k = 1−5) and a barotropic structure in the troposphere m= 1−5, which agrees with the spatial structure

displayed in Figure 2 that exhibits most part of total energy concentrated in the subtropical jets.

4.2 Rossby modes230

Figure 5 shows the wavenumber-frequency spectrum (WK diagram) computed from the normal mode decomposition of the

200mb zonal wind field that retains only the rotational modes, with all the vertical modes (Figs. 5a and d) and with only

the barotropic (Figs. 5b and e) and baroclinic (Figs. 5c and f) components. Figs. 5(a), (b) and (c) display the symmetric

part of the spectrum, while Figs. 5(d), (e) and (f) present the antisymmetric part. For the symmetric part of the full vertical

mode spectrum, one notices in Fig. 5a an energy concentration on the wave-number 1 with eastward propagation that is235

associated with the global-scale circulation pattern related to the Madden Julian Oscillation (see, for instance, the MJO skeleton

theory composed of global-scale Rossby and Kelvin waves presented in Majda and Stechmann (2009)). A significant spectral

peak is also found on synoptic time-scales (3-6 day period) with westward propagation, which was proposed by Gehne and

Kleeman (2012) to be due to barotropic Rossby-Harwitz wave activity. This spectral peak on synoptic-scale having westward

propagation is more pronounced and more closely related to the barotropic Rossby wave dispersion relation in the symmetric240

WK spectrum evaluated from the barotropic component of the zonal wind field presented in Fig. 5b. From the symmetric
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(a) (b) (c)

(d) (e) (f )

Figure 3. Frequency-wavenumber spectrum (Wheeler-Kiladis diagram) of the zonal wind field at 200hPa, for the symmetric (panels a, b and

c) and antisymmetric (panels d, e and f) parts of the spectrum; panels (a) and (d) refer to the full spectrum of vertical modes, whereas panels

(b) and (e) show the barotropic component and panels (c) and (f) the baroclinic component of the corresponding spectra.

baroclinic component displayed in Fig. 5c, one observes that the synoptic-scale spectral peak is significantly reduced by

removing the barotropic waves, thus confirming the findings of Gehne and Kleeman (2012). On the other hand, the intense

spectral peak at k = 1 associated with the MJO remains by removing the vertical modes with a barotropic structure in the

troposphere. This is in agreement with the fact that the global-scale circulation associated with the MJO is characterized by a245

tropospheric baroclinic structure (Madden and Julian, 1972). The antisymmetric part of the spectrum (Fig. 5d) shows a signal

roughly following the dispersion relation of the MRG mode, which is also evident in the baroclinic part of this spectrum

(Fig. 5f). The wavenumber-vertical mode spectrum of the rotational modes is presented in Figure 6, which is very similar in

structure with the spectrum without any modal filtering presented in Figure 4, with the energy being concentrated in low zonal

wavenumbers and low vertical indices. It is also possible to note a secondary peak with a baroclinic structure in the troposphere250

associated with the vertical modes m= 7− 10.
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Figure 4. Energy spectrum of the atmospheric oscillations as a function of the zonal wavenumber and the vertical mode index.
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(a) (b) (c)

(d) (e) (f )

Figure 5. Frequency-wavenumber spectrum (Wheeler-Kiladis diagram) of the 200hPa zonal wind field associated with the rotational modes.

Panels (a), (b) and (c) refer to the symmetric part, while panels (d), (e) and (f) refer to the antisymmetric part. The full spectrum of vertical

modes is presented in panels (a) and (d); the barotropic component of the corresponding parts is displayed in panels (b) and (e), whilst the

baroclinic component is illustrated in panels (c) and (f).

4.3 Westward inertio-gravity (WIG) modes

Now we present the Wheeler-Kiladis diagram computed from the contribution of unbalanced modes for the corresponding

zonal wind field. Fig. 7 presents the wavenumber-frequency spectrum (WK diagram) computed from the normal mode decom-

position of the 200mb zonal wind field that retains only the westward inertio-gravity (WIG) modes, including all the vertical255

modes (Figs. 7a and d) and only the barotropic (Figs. 7b and e) and baroclinic (Figs. 7c and f) components. Figs. 7(a), (b)

and (c) display the symmetric part of the spectrum, while Figs. 7(d), (e) and (f) present the antisymmetric part. The WIG

modes are particularly important since they have been evoked to explain the large-scale envelope of the MJO as a result of

the interaction between WIG and eastward inertia-gravity (EIG) waves (see, for instance, Yang and Ingersoll, 2013). The WK

diagram obtained from the WIG mode contribution to the zonal wind field displayed in Fig. 7 reveals some surprising aspects260

of the WIG wave propagation that strongly departs from the free linear theory of WIG wave propagation. Indeed, from Fig.
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Figure 6. Energy spectrum of the rotational mode component of the atmospheric oscillations as a function of the zonal wavenumber and

vertical mode.
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7a it is noted the symmetric part of the spectrum exhibiting a strong spectral peak in the vicinity of the WIG wave dispersion

relation for wave-numbers k = 1− 7, in agreement with the linear theory. However, strong spectral peaks are also found along

the dispersion curve of the Kelvin waves with zonal wavenumbers 4-14. This result might be an indicative of coherent non-

linear interaction and wave synchronization involving Kelvin and WIG waves. This theoretical mechanism involving coherent265

nonlinear interaction through phase synchronization has been explored in the contexts of plasma physics (Chian et al., 2010)

and solar physics (Raphaldini et al., 2020a). Other significant spectral peaks are found along the dispersion relation of Rossby

waves for k = 1− 6. Fig. 7 also reveals other spectral peaks centered in the intraseasonal timescale, which is probably associ-

ated with the Madden-Julian Oscillation. The baroclinic component of the symmetric part of the WIG wave spectrum presented

in Fig. 7c largely resembles the spectrum presented in Fig. 7a, suggesting that the baroclinic component of the WIG waves is270

the dominant one, possibly due to the strong coupling of these waves with moist convection (Yang et al., 2003). In addition,

the significant spectral peak of WIG waves with eastward propagation and a typical period within the intraseasonal timescale

(T ∼ 30 days) is suggestive of the role of the WIG waves in the Madden-Julian Oscillation. The role of gravity waves in the

MJO is highlighted in a number of theories, such as the gravity wave theory of the MJO (Yang et al., 2007; Yang and Ingersoll,

2013), and the multi-cloud theory of convection parameterization documented in Khouider and Majda (2006) and Khouider275

and Majda (2007).

The power spectrum of the antisymmetric part, on the other hand, is much weaker, as can be observed in Fig. 7d for the full

vertical mode spectrum as well as for its decomposition into barotropic (Fig. 7e) and baroclinic (Fig. 7f) components.

The wavenumber-vertical mode spectrum of the WIG waves (Figure 8) differs from that of the rotational modes, since the

primary peak in the vertical mode index is characterized by a baroclinic structure in the troposphere (m= 6− 9). This result280

may be expected, since the divergent modes are associated with moist convection.

4.4 Eastward inertio-gravity (EIG) modes

The wavenumber-frequency spectrum computed from the contribution of eastward inertio-gravity (EIG) waves for the 200hPa

zonal wind field is presented in Fig. 9. In this normal mode reconstruction of the zonal wind field, the Kelvin waves are not

considered as its contribution will be analysed separately in the next item of this section. As in Figs. 4, 5 and 7, panels a, b and285

c (d, e and f) display the symmetric (antisymmetric) part of the spectrum. In addition, panels (a) and (d) refer to the calculations

with the full set of vertical modes, while panels (b) and (e) (c and f) display the results of the calculations with only the vertical

modes 1≤m≥ 5 (m≥ 6). The symmetric part of the spectrum (Figure 9a) shows some isolated spectral peaks near the linear

dispersion curve of planetary-scale EIG modes. The symmetric part of the spectrum for the barotropic EIG modes (Figure

9b) presents a strong and broad peak on the Kelvin wave dispersion curve within the zonal wavenumber range of k = 4− 8;290

the same signal extends toward the EIG dispersion curve for k = 8. There is also a spectral peak at the WIG wave dispersion

curve at k = 7− 9. The spectrum of the baroclinic EIG waves (Figure 9c) is quite similar to the full EIG spectrum (Figure

9a). Its analysis shows some moderate peaks close to the dispersion relation of the Kelvin waves. This suggests that some type

of nonlinear interaction between EIG and Kelvin modes may occur, for instance with Kelvin waves exciting EIG waves as it

propagates. Narrower regions of significant power are also noticeable in the spectrum along the linear dispersion relation of295
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(a) (b) (c)

(d) (e) (f )

Figure 7. Frequency-wavenumber spectrum (Wheeler-Kiladis diagram) of the 200hPa zonal wind field associated with the westward inertio-

gravity modes. Panels (a), (b) and (c) refer to the symmetric part, while panels (d), (e) and (f) refer to the antisymmetric part. The full

spectrum of vertical modes is presented in panels (a) and (d); the barotropic component of the corresponding parts is displayed in panels (b)

and (e), whilst the baroclinic component is illustrated in panels (c) and (f).

the EIG modes for low wavenumbers, k = 1− 4, along with a moderate peak around the 30-day period close to the dispersion

relation of the equatorial Rossby waves at high wavenumbers. For the antisymmetric part of the spectrum of the EIG modes,

one observes a region of high power peak following the dispersion relation of the first antisymmetric EIG mode with low

wavenumbers, k = 1− 5.

Therefore, the results displayed in Fig. 9, in general, suggest that the EIG modes seem to be slave modes whose propagation300

is determined by other waves, such as the Kelvin and Rossby modes. The wavenumber-vertical mode spectrum of the EIG

modes presented in Figure 10 is similar to that of the WIG modes, with a primary peak in the vertical mode index around

m= 6− 10 and the energy decaying with the zonal wavenumber.

There is a long standing problem in tropical dynamics to understand the lack of strong and broad spectral power along the

dispersion relation of the EIG modes other than the first antisymmetric one, for instance when observed from the OLR field305

(Wheeler et al., 2000). The results presented in this section show that the spectral peaks on the symmetric part are weak (or,
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Figure 8. Energy spectrum of the westward inertio-gravity mode component of the atmospheric oscillations as a function of the zonal

wavenumber and vertical mode.
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at most, moderate) and isolated along the EIG mode dispersion relation, which is in agreement with previous investigations

(Wheeler et al., 2000; Takayabu, 1994b; Kiladis et al., 2009).

4.5 Kelvin modes

The wavenumber-frequency spectrum computed from the contribution of the Kelvin waves for the 200hPa zonal wind field310

is presented in Fig. 11. Fig. 11a refers to the calculations with the full set of vertical modes, while Figs. 11b and c refer to

the spectral reconstruction of the zonal wind field with only the barotropic (1≤m≥ 5) and baroclinic (m≥ 6) components,

respectively.

Fig 11a shows a narrow peak having a high power around the zonal wavenumber k = 1 and the intraseasonal timescale

(30-70 days). This observed spectral peak is probably a manifestation of the role of the Kelvin mode in the morphology of315

the Madden-Julian Oscillation. Žagar et al. (2015), for instance, showed that the zonal wavenumber-1 Kelvin wave has an

important contribution to the MJO. Recently, Raphaldini et al. (2020b) suggested that among the dominant planetary-scale

waves of the MJO, the Kelvin mode is the first to be excited, transferring energy to the Rossby modes afterwards. In addition,

one notices from Fig 11a a significant power in the intraseasonal range of frequencies for larger wavenumbers (k = 9− 15),

suggesting that these Kelvin modes also significantly contribute to the MJO envelope. Another point to be noticed in Fig. 11320

is that the Kelvin waves with intermediate wavenumbers (k = 3− 9) do not seem to have a strong contribution to the MJO. It

is also observed regions of strong power along the linear dispersion relation of the Kelvin waves, specially for wavenumbers

5-15. The most striking point on the results is regarding the spectral peaks on Kelvin waves with different frequencies, for

instance, the ones oscillating in synoptic timescales (4-7 days) with wavenumbers k = 12−15 and eastward propagation (Fig.

11b). The most surprising result refers to the presence of strong power in the westward part of the spectrum, which appears325

to be predominantly due to the baroclinic part of the spectrum. We hypothesize here that it may be an indication of strong

turbulent behavior associated with highly energetic convective events related to the Kelvin waves. Another important aspect of

Kelvin waves that may be the origin of strong turbulence, and therefore a spectrum that largely departs from the linear theory, is

that the Kelvin waves are non-dispersive and, consequently, their nonlinear dynamics may be described by a Burger equation,

which admits wave breaking and shock formation in a finite time (see, for instance, Boyd, 1980; Ripa, 1982; Boyd, 1998).330

As in the corresponding spectra of the inertio-gravity waves, the wavenumber-vertical mode spectrum of the Kelvin waves

(Fig. 12) shows a primary peak for vertical indices associated with a baroclinic structure in the troposphere m= 6− 10, a

signature of the important role of these waves in tropical convection (Fig. 11c).

4.6 Mixed Rossby-Gravity (MRG) waves

The wavenumber-frequency spectrum computed from the contribution of MRG waves to the 200hPa zonal wind field is illus-335

trated in Fig. 13. It is shown that the spectrum is dominated by a narrow and elongated peak with wavenumbers k = 1− 2 and

characteristic timescale of T 2−5 days, with an westward propagation, and a secondary peak with eastward propagation around

wavenumbers k = 5− 10 (Fig. 13a). The spectra computed from the corresponding barotropic and baroclinic components are

similar, however the barotropic component shows a more intense concentration of the power spectrum around these regions
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(a) (b) (c)

(d) (e) (f )

Figure 9. Frequency-wavenumber spectrum (Wheeler-Kiladis diagram) of the 200hPa zonal wind field associated with the eastward inertio-

gravity modes. Panels (a), (b) and (c) refer to the symmetric part, while panels (d), (e) and (f) refer to the antisymmetric part. The full

spectrum of vertical modes is presented in panels (a) and (d); the barotropic component of the corresponding parts is displayed in panels (b)

and (e), whilst the baroclinic component is illustrated in panels (c) and (f).

and also an elongation of these structures toward lower frequencies (Fig. 13b). The wavenumber-vertical mode spectrum (Fig.340

14) of the MRG modes shows a strong dominance of the barotropic structure in the troposphere m= 1− 4, with a slowly

decaying spectrum up to k 8 in the zonal direction, along with a stepper slope for larger wavenumbers.

5 Discussion

In the present study we have analysed the space-time spectrum of equatorial disturbances by computing the wavenumber-

frequency spectrum of normal mode decomposed dynamical fields obtained from the Era-Interim (ERAI) reanalysis data.345

In this approach, the large-scale atmospheric dynamical fields are projected onto the normal mode functions defined as the

eigensolutions of the compressible primitive equations in spherical coordinates, linearized around a resting background state.

From filtered versions of the spectral reconstruction of these dynamical field variables considering only a single mode type
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Figure 10. Energy spectrum of the eastward inertio-gravity wave component of the atmospheric oscillations as a function of the zonal

wavenumber and vertical mode.
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(a) (b) (c)

Figure 11. Frequency-wavenumber spectrum (Wheeler-Kiladis diagram) of the 200hPa zonal wind field associated with the Kelvin modes.

The full spectrum of vertical modes is presented in panel (a), while panels (b) and (c) refer to the barotropic and baroclinic components,

respectively.

(Rossby, Kelvin, WIG, EIG, and MRG modes), as well as their tropospheric barotropic and baroclinic components, we have

computed the wavenumber-frequency spectrum using the methodology proposed by Wheeler and Kiladis (1999) for the 200hPa350

zonal wind field. Unlike other studies in the literature (e.g., Wheeler and Kiladis, 1999; Castanheira and Marques, 2015;

Takayabu, 1994a, b) that analysed the OLR spectrum to focus on the coupling of the waves with moist convection, here we

analysed a dynamical field variable to primarily investigate the departures of the wave spectra from that predicted by the linear

theory.

Our results show some aspects that agree with the linear theory, for instance, the barotropic Rossby modes showing a spectral355

peak that clearly follows the dispersion relation according to the linear theory. In addition, part of the Kelvin mode power

spectrum follows what is predicted by the linear theory, with an elongated spectral peak, seemingly a non-dispersive character,

having an eastward propagation. Part of the power spectrum obtained for the WIG modes, corresponding to wavenumbers

k = 1− 7, is shown to follow the linear dispersion relation as well.

On the other hand, we also found some spectral peaks that largely departure from what is expected from the linear theory.360

First, for Kelvin waves, we verified a rather complex distribution of the energy throughout the wavenumber-frequency spec-

trum, especially for large wavenumbers. A possible explanation for this result stems from the non-dispersive nature of the

Kelvin wave, which imply a strong nonlinear coupling among all of its harmonics, which may lead to wave breaking and shock

formation in a finite time (see, for instance, Boyd, 2018, and references therin), and therefore a strong turbulence. Similarly,

the obtained wavenumber-frequency spectrum for the inertio-gravity waves show a very peculiar phenomenon: their propaga-365

tion seem to be "slaved" by other modes. For instance, the power spectrum obtained for the EIG modes, specially for their

barotropic component, clearly follows the dispersion relation of the Kelvin waves, while the power spectrum obtained for the

WIG modes suggests a propagation along the dispersion relation of the equatorial Rossby waves, barotropic Rossby waves,
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Figure 12. Energy spectrum of the Kelvin mode component of the atmospheric oscillations as a function of the zonal wavenumber and

vertical mode.
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(a) (b) (c)

Figure 13. Frequency-wavenumber spectrum (Wheeler-Kiladis diagram) of the 200hPa zonal wind field associated with the mixed Rossby-

gravity modes. The full spectrum of vertical modes is presented in panel (a), while panels (b) and (c) refer to the barotropic and baroclinic

components, respectively.

MJO and Kelvin waves. These results suggest a synchronization effect of the inertio-gravity modes with other, possibly more

energetic, modes as documented in some of the MJO theories (see, for instance, Yang and Ingersoll, 2013, 2014).370

Another important result refers to the analysis of EIG mode power spectra that sheds light on the question of the absence of

strong and broad spectral power peaks in the vicinity of the dispersion relation of EIG modes (except the first antisymmetric

one that is a continuum eastward extension of the MRG modes) on the Wheeler-Kiladis diagram. This fact was first highlighted

by Takayabu (1994b) and then by the subsequent work of Wheeler et al. (2000) on the OLR field. Here, we showed that there

are weak (or, at most, moderate) and isolate power peaks along the dispersion relation of these EIG modes. In contrast, the375

barotropic component of these EIG modes depicted significant energy following the dispersion relation of the Kelvin waves,

whereas weak spectral peaks are observed on the baroclinic component, which is the one that mostly contribute to convection

and therefore to the OLR field. Further theoretical investigations need to be done in the direction of understanding the lack of

strong spectral peaks on the wavenumber-frequency spectrum associated with the baroclinic EIG modes and on the departure

of the barotropic EIG W-K diagram from the linear dispersion relation.380

Recently, some studies (Rostami and Zeitlin, 2019, 2020) revisited the problem of the equatorial wave geostrophic ad-

justment in the presence of moist-convective processes. In particular, Rostami and Zeitlin (2020), with a two-layer moist-

convective nonlinear shallow water model, showed that Kelvin and Rossby modes might fuse into a hybrid structure, linked

through a region of enhanced condensation, and this region is related to westward inertio-gravity waves. These results suggest

that a combination of moist-convective and nonlinear processes might explain the spectral peaks associated with equatorial385

Rossby waves, barotropic Rossbys waves, MJO, and Kelvin waves found in the observed wavenumber-frequency spectrum of

the westward inertio-gravity wave field.
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Figure 14. Energy spectrum of the mixed Rossby-gravity mode component of the atmospheric oscillations as a function of the zonal

wavenumber and vertical mode.
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It is a common practice in the studies of tropical dynamics to filter the field variables within the spectral range associated

with the observed peaks along the dispersion relation of a certain linear eigenmode and to attribute the resulting filtered field

as being due to the activity of that corresponding eigenmode (see, for instance, Wheeler et al., 2000; Kiladis et al., 2009).390

Our results show that this practice must be used with caution, since we have shown some observed spectra computed from

the contribution of a certain mode type to the 200hPa zonal wind field exhibiting peaks close to the dispersion relation of

another eigenmode. One example refers to the wavenumber-frequency spectrum computed from the contribution of westward

and eastward inertio-gravity waves displaying spectral peaks along the dispersion relation of the Kelvin waves. Furthermore,

a significant portion of the computed WIG mode spectrum showed peaks along the dispersion relation of equatorial Rossby395

waves. These results suggested that gravity waves often have their propagation "slaved" to other modes. We argue a possible

physical explanation for this phenomenon including a nonlinear wave synchronization and coherent wave interaction that have

been reported in the literature of astrophysical magnetohydrodynamical flows (Raphaldini et al., 2020a; Chian et al., 2010;

Miranda et al., 2015).
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