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Abstract. Automatic determination of fronts from atmospheric data is an important task for weather prediction as well as for

research of synoptic scale phenomena. In this paper we introduce a deep neural network to detect and classify fronts from

multi-level ERA5 reanalysis data. Model training and prediction is evaluated using two different regions covering Europe and

North America with data from two weather services. We apply label deformation within our loss function which removes the

need for skeleton operations or other complicated post processing steps as used in other work, to create the final output. We5

obtain good prediction scores with Critical Success Index higher than 66.9% and a Object Detection Rate of more than 77.3%.

Frontal climatologies of our network are highly correlated (greater than 77.2%) to climatologies created from weather service

data. Comparison with a well-established baseline method based on thermodynamic criteria shows a better performance of our

network classification. Evaluated cross sections further show that the surface front data of the weather services as well as our

network classification are physical plausible. Finally, we investigate the link between fronts and extreme precipitation events10

to showcase possible applications of the proposed method. This demonstrates the usefulness of our new method for scientific

investigations.
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cence does not affect the Crown copyright work, which is re- usable under the Open Government Licence (OGL). The Creative Commons

Attribution 4.0 License and the OGL are interoperable and do not conflict with, reduce or limit each other.15

1 Introduction

Atmospheric fronts are ubiquitous structural elements of extra-tropical weather. The term front refers to a narrow transition

region between airmasses of different density and/or temperature (see, e.g., Thomas and Schultz, 2019b). These airmass bound-

aries play an important role for understanding the dynamics of midlatitude weather and are usually related to clouds. Further

fronts are often associated with significant weather, such as intense precipitation and high gust speeds(see, e.g., Catto and20

Dowdy, 2021; Catto et al., 2015; Martius et al., 2016). Hence, fronts in the sense of separating polar from more subtropical air-

masses play a vital part of the communication of weather to the public and the public perception of weather in general, although

this aspect may have lost some attention due to the use of colourful apps. Frontal surfaces exist also on smaller scales, e.g. in
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the context of sea-breeze circulation or local circulation patterns in mountainous regions. Even tropical weather systems might

indeed produce similar features of transition regions of different airmasses, but due to other mechanisms than in extra-tropical25

weather systems. The focus here and in much of the literature is on larger-scale fronts that can extend over several hundred

kilometres and are often associated with extra-tropical cyclones (Schemm et al., 2018). In addition, also quasi-stationary fronts

can extend over large distance, but they do not move strongly over time, e.g. the Mei-Yu front (e.g. Hu et al., 2021).These

stationary fronts are as well foci of significant surface weather. Unfortunately, there is no generally accepted front definition,

see, e.g. the discussion in Schemm et al. (2018) and Thomas and Schultz (2019a). Thus, the detection of fronts often relies30

on different measures, usually based on physical variables and including physical hypotheses or theories as detailed below.

Additionally, it is still on debate if a front detection should be guided by determining surface fronts (as, e.g., on the analysis

charts of weather services), or even more on the physical (horizontal and vertical) structure (see also the summary in Uccellini

et al., 1992; Sanders, 1999).

Nevertheless, determining the position and propagation of surface fronts plays an important role for weather forecasting,35

and, of course, for research on synoptic scale phenomena. The traditional manual approach to front detection is based on the

expertise of weather analysts at operational meteorological services, along some (mostly empirical) guidelines. With the advent

of large, gridded data-sets, e.g. reanalysis from different weather centres, as e.g. ECMWF or NCEP, in the second half of the

past century the drive for objective means to detect fronts automatically set in (see, e.g., Hewson and Titley, 2010). Currently

used methods are typically relying on detecting strong gradients in either temperature and humidity fields (e.g., by using40

equivalent potential temperature or wet-bulb temperature) or in wind fields (Schemm et al., 2015). The former methodology

goes back to the work by Renard and Clarke (1965) and is represented by Hewson (1998), who suggested an automatic method

to detect fronts in fairly coarse data sets based on the so-called “thermal front parameters”, derived from thermodynamic

variables. In these and subsequent studies this is often related to the second spatial derivative of the temperature, and one or

more “masking parameters”, i.e. thresholds of thermal gradients along the front or in adjacent regions. This or conceptually45

similar methods have been used in numerous studies to determine the global or regional climatological distribution of fronts

(e.g. Berry et al., 2011; Jenkner et al., 2010).

For the investigation of fronts on the southern hemisphere Simmonds et al. (2012) suggested an alternative approach that

investigates the Eulerian time rate of change of wind direction and speed in the lower troposphere at a given location. A

comparison of the two methods to identify fronts on a global climatological scale by Schemm et al. (2015) revealed some50

agreement between the fronts detected, but also regional difference and systematic biases in the detection of certain front

types by both algorithms: For example, the “thermal” method detects more reliably warm fronts than the method based on

lower tropospheric wind speed and direction. In addition, the orientation of detected fronts differs in general between the two

methods. In consequence Schemm et al. (2015) also find differences in the global distribution of fronts and the amplitude of

seasonal variations in front occurrence frequency.55

While it is well known that different front detection methods provide different outputs (e.g. Schemm et al., 2015; Hope et al.,

2014), an objective ground-truth is difficult to find. Most studies developing or testing automatic detection schemes rely on

manual analysis as the “gold standard” to test the accuracy and for tuning free parameters in the automatic detection schemes

2



(e.g., Hewson, 1998; Berry et al., 2011; Bitsa et al., 2019). However, it should be noted that manual analysis is affected to a

large degree by subjective decisions, and hence the focus, interest and expertise, of the person conducting the analysis. Shakina60

(2014) reports results from an inter-comparison study of different manual front analysis carried out independently in different

divisions of the Russian Meteorological service up until the 1990s. Comparing the different archives agreement on the presence

or absence of a front in any one 2.5◦ × 2.5◦ box was found in 84.8 % of cases. However, if only the presence of fronts in any

one grid box is considered the agreement dropped to 23 % to 30 % depending on the type of front. Shakina (2014) further

suggests that disagreement mainly arises from the detection and positioning of secondary or occluded fronts which typically65

are associated with less marked changes in surface weather. It is likely that the differences between manual analysis by different

forecasters in the meantime have not reduced, but they may potentially be reduced by strict guidelines for forecasters on the

key decision features for positioning fronts.

Despite a none negligible subjectivity of manual analysis, it still offers many advantages over automatic methods:

1. In contrast to most automatic detection methods many different aspects, including temperature, wind, and humidity70

fields, surface pressure, but also surface precipitation and wind, are taken into account.

2. Manual analysis does not rely strongly on the choice of (arbitrary) thresholds that are needed in most automatic front

detection algorithms.

3. Experience of analysts can be taken into account, especially on regional scales (e.g. with complicated terrain as in the

Alps)75

In order to address the over-reliance on specific variables some recent studies have suggested methods that combine not only

temperature and humidity data but also include information on the wind field (e.g. Ribeiro et al., 2016; Parfitt et al., 2017), or

information on Eulerian changes in mean sea-level pressure (e.g. Foss et al., 2017). Nevertheless these extended algorithms that

are so far mainly used in regional studies still rely on choosing appropriate thresholds for the magnitude of thermal gradients

or changes in the wind direction and speed.80

The necessity of manually designing metrics and selecting thresholds for automatic front detection can be at least partly

overcome by employing statistical methods and machine learning approaches. The key idea with this approach is that based

on manual analysis a complex statistical method retrieves as much consistent information on patterns, important variables, and

thresholds as is available in manual analyses and coinciding state of the atmosphere, e.g. from reanalysis data-sets. Previous

attempts on using machine learning approaches for front detection are discussed in more detail in the following section.85

Bochenek et al. (2021) used a random forest to predict fronts over Europe using data from the German Weather Service

(Deutscher Wetterdienst, DWD). Their results indicate that it is possible to detect fronts with this method, however it does not

seem to be very robust, as the probability of object detection varies greatly between the shown samples.

Recently different groups have used Artificial Neural Networks (ANNs) to predict frontal lines from atmospheric data. Biard

and Kunkel (2019) used the MERRA-2 data-set to predict and classify fronts over the North American continent. Their network90

also classifies their predicted fronts using the four types: warm, cold, and stationary fronts, as well as occlusions. They used

labels provided by the North American Weather Service (NWS).
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Lagerquist et al. (2019) used the North American Regional Reanalysis (NARR) data-set (Mesinger et al., 2006), to predict

synoptic cold and warm fronts over the North American continent also using the NWS labels. While the network of Biard and

Kunkel (2019) creates an output on the input domain, the network of Lagerquist et al. (2019) predicts the probability for a95

single pixel and needs to be applied to each pixel consecutively. Both methods rely on postprocessing steps like morphological

thinning to create their final representation of frontal data. Additionally, both methods only use a 2D mask for each input

variable not making use of multiple pressure or height levels. Matsuoka et al. (2019) used a U-Net architecture (Ronneberger

et al., 2015; Shelhamer et al., 2017) to predict stationary fronts located near Japan.

In this study we present a new method for automatic front detection based on machine learning using meteorological reanal-100

ysis as input data and trained with information on surface fronts provided by two different weather services (NWS and DWD).

The overall aim is to investigate the degree to which machine learning approaches are able to replicate manual analysis on a

case-study and climatological scale and the degree to which the learned features are consistent with meteorological expecta-

tions on the physical properties characterising a frontal surface. Our provided network uses the U-Net approach to predict and

classify all four types of fronts and it does not require morphological post processing. We evaluate our approach similar to105

Lagerquist et al. (2019) using an object based evaluation method. Unlike the previous methods we incorporate data from two

different weather services, NWS and DWD, and also evaluate on the two different regions covered by these data-sets. We addi-

tionally compare our predicted fronts against the method developed by Schemm et al. (2015), using a thermal front parameter

(TFP) as an example of a conventional automatic front detection method. We refer to it in the following as ”baseline method”.

As input data we use the ERA5 reanalysis data (Hersbach et al., 2020) from the European Centre for Medium-Range Weather110

Forecasts (ECMWF) at a 0.25◦ grid at multiple pressure levels for each variable. This data-set exhibits a higher resolution than

the NARR data (32 km grid) used by Lagerquist et al. (2019) and MERRA-2 data (1◦ grid) used by Biard and Kunkel (2019).

In contrast to these studies, we also used multiple pressure levels to refine our results.

Although we are aware of the conceptual differences between determining surface fronts and the complex 3D structure of

fronts, we use the surface maps as a ground truth, i.e. as a proxy for the complex structures called fronts. However, in the later115

evaluation it turns out that the detected surface fronts represent the expected physical properties of airmass boundaries in a

meaningful way.

In Section 2 we describe our used network architecture, data and evaluation methods, respectively. In Section 3 we explain

our evaluation methods and display our evaluation results on the training and test data set. In addition we showcase applications

in terms of determining the variation of physical properties across fronts (3.2 and relating fronts to extreme precipitation events120

(3.3). We close with a summary of the study and a short outlook for future improvements as well as further applications of the

new method for scientific purposes.

2 Materials and Methods

For each spatial grid point our proposed algorithm predicts a probability distribution, describing how likely it is that the point

belongs to each of our possible five classes: warm front, cold front, occlusion, stationary front, or background. Our method125
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predicts that probability from a 4-dimensional input consisting of multiple channels located on a 3-dimensional multilevel

geospatial grid, which was flattened to a 3-dimensional input by combining the atmospheric channel and level dimension. For

this task we use a convolutional neural network (CNN) architecture to automatically learn atmospheric features that correspond

to the existence of a weather front at spatial grid points. We use a supervised learning approach, in which we provide ground

truth data of frontal data sampled from two different weather services (surface fronts). We adjust hidden parameters of the130

CNN in order to optimize a loss function measuring the quality of our weather front prediction. CNN architecture and training

will be explained in further detail in this section. Our network was implemented, trained, and tested using Pytorch 1.6 (Paszke

et al., 2019). Parallel Multi-GPU training was implemented using Pytorch’s DistributedParallel package. The provided code

was run using Python 3.8.2 and is freely available (see below).

2.1 Data135

We will briefly describe which channels and gridpoints were used as training input from the ERA5 reanalysis data (Hersbach

et al., 2020). Furthermore, we will describe the format of the corresponding label data of fronts obtained from NWS and DWD;

in the case of the DWD label data, we additionally describe the pre-processing of the DWD data.

2.1.1 ERA5 Reanalysis Data

Our model input consists of a multichannel multilevel spatial grid provided by ECMWFs ERA5 reanalysis data-set. Each140

channel denotes a different atmospheric variable, while levels consist of a subset taken from the L137 vertical level definition

(ECMWF, 2021). Data is represented on a spatial grid with a grid-spacing of 0.25◦ in both latitudinal and longitudinal direc-

tion. Since we do not expect to obtain relevant information from high altitude level data, we decided to restrict ourselves to

every fourth level within the inclusive interval [105,137], representing 9 model levels between the surface and about 700 hPa.

This range contains both the ground level information as well as the 850 hPa pressure level information, both of which are145

commonly used to detect fronts. Pressure values are defined as parameters of an affine transformation of the surface level

pressure, which is why we manually added the surface pressure field to the data using the merge operation of the Climate

Data Operators (CDO) (Schulzweida, 2019). This allows us to calculate the pressure at each gridpoint and level. We further

only use 5 ERA5 multilevel variables as input for our network: temperature (T ), specific humidity (q), zonal wind velocity

(u, East-West), meridional wind velocity (v, North-South), and vertical velocity (w). In addition the surface pressure (sp) and150

longitudinal distance per pixel in km relative to 27.772 km (kmPerLon) are considered. The distance between two pixel at a

certain degree latitude is derived by assuming a spherical shape of the globe and is only used as a single level variable. Surface

pressure on the other hand is used to estimate the pressure at each model level using the corresponding level parameter to create

another multilevel network input. All resulting data is normalized with respect to a global mean and variance sampled from

data of the year 2016. The resulting mean and variance values are listed in Table 1.155

While ERA5 reanalysis data is available for the whole globe the available ground truth labels only reside within the analysis

region of their corresponding weather services. We therefore cannot use ERA5 data outside these regions. For this reason we
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Table 1. Mean and variance of the individual variables used for normalization of input data.

variable (unit) mean variance (in unit2)

T K 275.355461 320.404803

q kg kg−1 5.57926815 · 10−3 2.72627785 · 10−5

u ms−1 1.27024432 67.4232481

v ms−1 0.10213897 43.6244384

w Pa s−1 5.87718196 · 10−3 4.77972548 · 10−2

sp hPa 865.211548 1494.6063

kmPerLon km/◦ 0.64 0.09

Table 2. The input and output regions for the respective weather service analysis data-set used during training and the global input region.

Levels are only used for network input. The output regions are also used during evaluation against the weather service labels. Every fourth

vertical level between levels 105 and 137 is chosen to reduce the amount of input data, also in terms of redundant information.

Weather Service Latitudes Longitudes Levels

DWDinput [30◦N,75◦N ] [−50◦E,40◦E[ [105,137,4]

DWDoutput [35◦N,70◦N ] [−45◦E,35◦E[ -

NWSinput [30◦N,75◦N ] [−140◦E,−55◦E[ [105,137,4]

NWSoutput [35◦N,70◦N ] [−135◦E,−60◦E[ -

Global ]−90◦N,90◦N ] [−180◦E,180◦E[ [105,137,4]

decided to restrict our usage of ERA5 data to rectangular subgrids, each of which being completely within the analysis region

of the respective weather service analysis.

The extent of these regions is described in Tab. 2 as DWDinput and NWSinput. Pixels at the border of our input may lose160

critical information to successfully identify a front due to the input crop. As a result detections on the outer 5◦ (20 pixel) of the

input domain are not evaluated during training. While the network still outputs these pixel, they do not contain valid detections

and should therefore be removed from the evaluation. As a result the effective output region is smaller than the input region,

as indicated in Tab. 2. This is also shown in Fig. 1 as the difference in shade within each weather service region. Prior to

evaluation we create detections for each sample using the global input data. Evaluations against the weather service labels are165

performed using the corresponding output regions. Comparisons against the baseline method use the same regions restricted to

latitudes spanning [35◦,60◦]N instead. The evaluation in section 3.3 does not rely on the weather service data and is therefore

evaluated within [−60◦,60◦]N and [−175◦,175◦]E. The restriction of the longitudes is caused by the smaller output regions,

as explained in this section.
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Figure 1. Bounding boxes for the two regions used for training and evaluation against the weather service labels. The brighter area is used

as input, but is not used for evaluation.

2.1.2 NWS Front Label Data170

For training on the North American continent we use the HiRes Coded-Surface-Bulletins (csb) of the North American National

Weather Service (National Weather Service, 2019). This data ranges from 2003 up to 2018 and was previously used by Biard

and Kunkel (2019) and Lagerquist et al. (2019). Each front in a csb file consists of an identifier, describing the type of front,

followed by a series of coordinate pairs on a 0.1◦ grid, defining a polyline of the front. We do not perform any pre-processing

on this data. In accordance with our available data we restricted the use of the latter to the years 2012 to 2017 using only175

snapshots in a 6 hour interval to keep the amount of data balanced compared to the DWD data during training. The NWS data

set contains labels for the following front types: warm front, cold front, occlusion, and stationary front.

2.1.3 DWD Front Label Data

For training over Europe and the Northern Atlantic we use label data extracted from the surface analysis maps of the Deutscher

Wetterdienst (DWD) for the years 2015 to 2019. Unlike the Coded-Surface-Bulletins, these maps are not provided as polylines,180

but rather as PNG images of a region containing both the North Atlantic and Western Europe (see Fig. 2 (a)). Each of these

images has a resolution of 4389× 3114 pixel. To use the labels we extract each individual front, by creating coordinate pairs,

which describe the front as a polyline, similar to a csb. Within an image different types of fronts are color coded, which allows

us to easily separate them from the background. Our algorithm first filters all fronts of a specific type by filtering all pixel of

the corresponding color. In a second step we erase all additional symbols on each line. This includes symbolic identifiers like185

half-circles and triangles, indicating the propagation direction of a front, as we do not need this information. Also otherwise,

these symbols could create false positive coordinate points in the label data. Subsequently, latitude and longitude coordinate

pairs along each line are extracted in order to describe each front in terms of a polyline. In Fig. 2 (b) we show an example of
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(a) (b)

Figure 2. Example of well extracted fronts (b) from an image provided by the DWD (a) (Source: DWD). In panel (b) blue and red lines

correspond to cold and warm fronts as in the original image (a), green lines correspond to occlusions which are pink in the input image. Note

that stationary fronts are originally depicted as alternating warm and cold fronts. For this reason we cannot distinguish those from regular

cold and warm fronts.

a processed image file, redrawn onto the same projection as the input image. Blue and red lines in both panels correspond to

cold and warm fronts respectively, while green lines correspond to occlusions, which are pink in the left panel.190

In certain cases our method fails to correctly extract the frontal lines. These cases lead to gaps within a front, wrongly

extracted objects or wrongly connected fronts. Gaps originate from two factors. One is that another object is drawn on top

of a frontal line, effectively splitting the front into two parts. The other is an aggregation of multiple front-symbols on a

short segment. As our method removes sections where a symbol is placed before reconnecting the remaining points, crowded

placement of these symbols may make the remaining part of the front too short to be considered relevant and as such will be195

omitted. Wrongly extracted objects occur mostly due to tropical storm symbols that are depicted in the same color as a warm

front. As such our extraction method wrongly extracts these objects as well. Finally, errors can occur when we try to sort the

extracted coordinate pairs of a single front. In some cases the sorting method may end up stuck in a local minimum, resulting

in a wrong order of points. An example of such a faulty extracted image is shown in Fig. 3. However, these are relatively rare,

only account for a small portion of fronts within a sample and many are going to be masked by the lower resolution of ERA5,200

which is why we ultimately decided to ignore these cases for this work.

We can extract information for the following front types: warm front, cold front, and occlusion. Since stationary fronts are

indicated by alternating warm and cold fronts, we cannot extract this information from the images as obtained from DWD; this

would interfere with the classification of warm and cold fronts.
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(a) (b)

Figure 3. Example of badly extracted fronts (b) from an image provided by the DWD (a) (Source: DWD). Green Circle: Object that is not

a front, but has the same color coding, is wrongly extracted as a front. Orange Circle: Unrelated symbol is drawn over the front. The front

could not be extracted completely. Yellow Circle: Frontal symbol is placed in an area with high curvature. The curvature is not extracted

exactly, as the symbol is removed during the procedure and the loose ends are connected with a straight line.

2.2 Network Design and Training205

2.2.1 Network Architecture

Neural networks are a machine learning technique where a network consisting of several layers is used to extract feature

representations of an input at different levels. Each layer transforms its input into an output map, the layer’s feature map. These

feature maps can then be used as an input for consecutive layers which enables the network to learn more detailed features

within the data. In a Convolutional Neural Network (CNN) the most common transformation function is a convolution of the210

input image with a convolution mask where each entry is a trainable, latent parameter of the network. During training these

parameters are adjusted to optimize a loss function, which measures the quality of the output of the network. In our case

we use a U-Net Architecture originally introduced by Ronneberger et al. (2015) for biomedical segmentation. The proposed

architecture consists of several consecutive blocks that gradually extract features from the data and reduce the spatial dimension

of the input data to extract features on multiple scales (Fig. 4). These blocks are followed by a number of expansive blocks215

which gradually increase the resolution up to the original scale. Additionally at each resolution scale a so called skip connection

allows the final feature map of an encoding block to directly serve as additional input to the corresponding decoding block,

displayed as grey arrows in Fig. 4. These skips improve the networks ability to localize the features, as the upsampled features

only hold coarse localization information. In our network we use convolutional layers as explained before. Additionally we

use Rectified Linear Unit (ReLU), Batch Normalization, Pooling, Upsampling and 2D-DropOut layers, whose functionality220

we will briefly explain. The dropout chance at each 2D-DropOut layer is set to 0.2.
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– ReLU layers are used to introduce non-linearity into the network. They transform each input x as ReLU(x) = max(0,x)

– Batch Normalization layers normalize the batched input to a mean of 0 and variance of 1. They can have additional

learnable affine parameters.

– Pooling layers transform several input grid points to a single output gridpoint. Common operations are averagePooling225

or maxPooling where the grid points are combined calculating the average or maximum of the input, respectively. This

operation is used to reduce the resolution of the feature map.

– Upsample layers are a simple upsampling of a grid point to increase the resolution of the feature map.

– 2D-Dropout layers randomly set all values in a channel to 0 to reduce overfitting.

A sketch of the used architecture is shown in Fig. 4. We use Pytorch’s DistributedParallel package to enable training on230

multiple GPUs in parallel. Training is performed on a single node, with each GPU acting on a fixed shard of the available data.

2.2.2 Data-Set Augmentation

In each epoch and for each timestamp we randomly select one of the available weather service labels for the given timestamp.

Depending on which weather service was chosen we crop a 128× 256 pixel sized sub-grid residing within the corresponding

weather services input region (see Table 2) from the ERA5 data. We use this smaller crop instead of the complete region to235

increase the number of training samples, reduce the memory footprint on the GPU during training, and to ensure that all input

dimensions are multiples of 8. The extracted label data is also cropped by removing each vertex, where neither the vertex itself

nor a neighboring vertex is located within the extent of the ERA5 crop. To further increase sample count via data augmentation

we also perform random horizontal and vertical flips on the data. It is important to note that, whenever data is horizontally

(vertically) flipped the sign of the input variable v (u) has to be flipped as well, as these variables describe a vector field rather240

than a stationary value. Flipping of the data might also lead to a better representation of fronts in the Southern Hemisphere,

which are “mirrored” at the equator (see video supplement Niebler (2021)).

2.2.3 Training

Our model is trained using stochastic gradient descent with Nesterov momentum of 0.9 to minimize the loss function. The

initial learning rate is set to 0.005 ·#Ranks, where #Ranks corresponds to the number of processes used for the parallel245

training. We train the network for several epochs. Within each epoch the algorithm randomly trains on a permutation of the

complete training data set. Every 10 epochs we measure the training loss. If the test loss does not improve for 10 test phases we

divide the learning rate by 10 up to a minimum of 10−7 and reset the count, if the learning rate was changed. If the test loss does

not improve for 20 test phases (200 epochs) and we cannot reduce the learning rate anymore we stop training. Additionally

we set a maximum of 10000 training epochs or 3 days time as stopping criteria. At each test step, we save a snapshot of the250

network if the test loss is better than the currently best test loss. Our final network is the resulting network which yielded the

lowest test error.
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Figure 4. U-Net architecture used in this paper. The first convolution of the input data uses a 1× 1 sized kernel instead of 5× 5. Decode

and Encode blocks are explained in the boxes at the bottom of the image. Each Decode and Encode block consist of 3 sequential blocks:

convolution, ReLU and BN. U ×V describes the image size per channel. Cin and Cout describe the number of channels of the input and

output of an encode or decode block. The copy operation simply copies the blue box at the start of the arrow into the white box at the end.

The white and blue boxes then describe the concatenation of the output from the copy and upsample operations. The number at the left hand

side of each block denotes the spatial input dimension. The shown sizes are those used during training, however the initial spatial dimension

can be chosen freely as long as it is divisible by 8. At each red (green) arrow the dimension is divided (multiplied) by 2. The number on top

of each block denotes the number of channels for each block and must not be changed.

11



2.2.4 Label Extraction

As described by Lagerquist et al. (2019) the frontal polylines are subject to two non-negligible causes of bias: inter- and

intra-meteorologist. The first bias describes the effect that two meteorologists may disagree on the exact location of a front,255

the occurrence of a front at all, or which exact shape the frontal curve follows. The second bias describes the effect that the

same meteorologist may be biased on the placement of frontal line due to fronts placed at previous analysis times by the

same person. The transformation of these curves into poly-lines and the application onto a different resolution is subject to

creating additional label displacements. While these problems are present in most human labeled data it is more peculiar in this

specific case because the ideal poly-line should have a width of only a single pixel. As a result each ever so slight displacement260

introduces a large per pixel disparity between two fronts, as the intersection of the sets of pixels that describe these fronts

ends up being close to non existent. This has at least two negative effects. First, the gradient information is really sparse, as a

close prediction will be considered false positive just as a far off prediction, as can be seen in the example of Fig. 5 a. Further

translating the green line to the right, will barely affect the count of intersecting pixels with the red line, even though one would

consider the detection becoming worse the further it moves from the label. Secondly, the previously mentioned label offset265

due to personal bias may lead to the case that a labeled front is not located exactly at the physical frontal position, essentially

creating a false label with wrong underlying atmospheric properties. Due to the low intersection count, a correctly placed

detection will now score badly.

One way to handle this might be to widen the extracted front labels. While this approach introduces further false positive

labels slight translations in the detection are less penalized as they are more likely to be covered due to the larger width of the270

labeled data. Additionally the network is inclined to also detect wider frontal lines, making it even easier to create intersections.

In the same way the effect of positional bias of the label placement is also reduced as the widened label is more likely to cover

the physically correct location, if a small translational bias exists. However, this bias is not completely negated. From our

studies and the results of previous studies (e.g., Matsuoka et al., 2019; Lagerquist et al., 2019; Biard and Kunkel, 2019) it

seems apparent that a deep learning architecture learns that a bias in label placement exists and as a result tends to predict275

enlarged lines, trying to cover the uncertainty caused by the bias. Using enlarged labels further enhances this effect, leading to

even larger line width, which in return leads to a low spatial accuracy of the detections. To regain positional accuracy previous

work used a morphological post-processing step to extract thin lines from wider network predictions.

In this work we use a different approach, as illustrated in Fig. 5 panels b and c, to counteract this initial loss of positional

accuracy. Instead of widening the label, we deform the given polylines prior to evaluation, by translating the vertices within a280

restricted search radius (panel b). All possible deformations are considered and evaluated according to a matching function and

the highest scoring deformation is then used for evaluation (panel c). This approach encourages the network to predict fronts

with a high spatial certainty, as the labels themselves remain thin, while the deformation models the positional bias.

A polyline j consists of a series vj of vertices vj,i, where each vj,i describes the coordinate pair of the vertex as it is

extracted from the weather service label. Additionally each deformed polyline contains a series of translations trj , consisting of285
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a translation vector trj,i = (uj,i,wj,i), which describes the translation of vj,i within the polyline j. A segment of the deformed

polyline j is then edge ej,i connecting vj,i+trj,i and vj,i+1+trj,i+1. We calculate the matching score of a segment as follows:

– calculate the positions of pixel of the line connecting vj,i+ trj,i and vj,i+1 + trj,i+1

– sum the values of all pixel in the network output that are on this line

– weight the sum by 1+ exp(−0.5((uj,i+1

σ )2 +(
wj,i+1

σ )2))290

– reduce the result by the number of pixels in the line connecting vj,i and vj,i+1

The matching score of a polyline is considered the sum of the matching scores of each line segment of the deformed polyline.

The third step models the assumption that the provided labels are generally placed correctly and that strong deformations are

less likely. Therefore a low deformation is preferred to a strong deformation if the intersection with the network output is the

same. This matching procedure operates ignorant of the classification results and only takes the presence or absence of any type295

of front at a given pixel into account. We restricted ourselves to deformations where −k ≤ uj,i,wj,i ≤ k with k = 3, keeping

the deformation radius small to only counteract the positional bias of the label, which we expect to be small. Additionally we

chose σ = k. We do not change classification information of the labels during the procedure. Thus each front is extracted as

the class provided by the weather service. This matching procedure was implemented using C++ and Pybind11 (Jakob et al.,

2017).300

This method comes at the risk, that instead of predicting the position of the front the network may end up detecting a

systematic displacement of the front within the range of the (2k+1)× (2k+1) grid. We believe this could happen for two

possible reasons: (i) the label bias exhibits a systematic displacement itself, and (ii) k is chosen too large. In the first case

the error lies within the labels and it is generally questionable whether or not these labels are suitable for training at all. The

parameter k controls at which distance from the labeled front the detection may still be considered correct. With increasing305

k the incentive to place the detection close to the provided label reduces, diminishing the spatial accuracy of the predictions.

Therefore we have chosen k = 3, allowing each vertex to displace itself up to 3 pixel in each direction, limiting the scope of

movement to a sensible range.

As an example Fig. 5 shows how this algorithm can help to solve the problem of a correct detection being penalized by

a biased label. We assume that the green line (Detection 1) is a correct detection with appropriate underlying atmospheric310

properties, while the yellow line (Detection 2) is an artifact caused by unfinished training of the network. Additionally the red

line was drawn biased and is therefore not located at the appropriate position, regarding the underlying atmospheric features. In

panel (a) the correct prediction has very few pixels intersecting with the label, similar to the wrong prediction. Not performing

any deformation would wrongly count several pixels of the green detection as false positives, while only resulting in a similarly

low number of pixels considered true positive similar to the yellow detection. However when using the deformation algorithm315

most pixels of the green detection correctly count as true positives, while the yellow detection is correctly classified as false

positive. A deformation towards Detection 2 does not occur in this example, as the yellow line is out of range for most vertices.

Most segments will therefore not intersect with the yellow line leading to generally lower matching scores than the displayed
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Figure 5. Sketch of our label adjustment method. (a) Initial Weather Service label with polyline vertices (blue dots) and 2 possible detections.

Detection 1 initially scores lower than Detection 2 due to a lower intersection with Label. (b) Display of how a vertex of Label might be

adjusted within a search radius for Detection 1. The possibly optimal position for the vertex regarding Detection 2 is not within the search

radius of the vertex. Deformation will therefore not be able to create a good intersection of the upper part of Detection 2 and Label. A similar

situation occurs for the three vertices at the bottom right of Label. (c) Possible resulting Adjusted Label after each Vertex was adjusted. The

Label was deformed onto Detection 1 as it creates the best matching score. Detection 2 is too far from several vertices of Label and cannot

score a similar matching score with any deformation of Label. As a result Detection 1 now scores higher than Detection 2.

blue line. The latter further displays the importance of the choice of k for preventing the label from deforming onto a wrong

detection.320

2.2.5 Loss Functions

During training we extract the label lines as described in Section 2.2.4. As a loss function we decided to use a loss based on

Intersection over Union (IoU), which we evaluate for each output channel individually, before combining them by a weighted

average. This loss function inherently circumvents the problem that in each channel most of our output belongs to the back-

ground as it does not contain a front. While the original formulation of IoU is used for sets and therefore a strictly binary325

labeling, we used an adjusted version that works with floating point probabilities. This loss function is also used by Matsuoka
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et al. (2019). However, they only evaluate it on a single output channel. The definition of loss for a single output channel is

given by the following equation:

L(p,x) = 1−

∑
i

pi ·xi∑
i

pi · pi+
∑
i

xi ·xi−
∑
i

pi ·xi
(1)

Here L denotes the loss function, x is the extracted label image, and p the prediction of our network. pi and xi are the ith330

pixel of either p or x. We subtract the loss function from 1, as we will minimize our loss function during training, as the IoU

normally increases the better the prediction becomes. L(p,0) evaluates always to 1 regardless of p, which means we do not

obtain much information from such an label. When combining our network’s output channels, we try to adjust for this problem.

We define a variant of L, denoted as L0, that simply omits evaluation for all L0(p,0) by setting the result to 0. In all other

cases L0 = L. These omitted cases therefore will not influence the training gradient. As our network generates a multichannel335

output we calculate a loss for each channel individually and combine the results. The first output channel corresponds to the

background label, which corresponds to the absence of fronts. We invert this output, by subtracting it from 1, to get a value

describing the presence of fronts. As a result we obtain 5 output channels describing fronts (front, warm front, cold front,

occlusion, stationary front) denoted as k ∈ 0,1,2,3,4. Additionally in each batch b we have batchsize samples bn and for each

bn we have a detection pbn and a label xbn . The respective data in the channel k is then denoted as pbn,k and xbn,k. For each bn340

we calculate Lbn,0 = L(pbn,0,xbn,0). For the classification channels k > 0, we calculate L0(pbn,k,xbn,k) instead and denote

these results as L0
bn,k

correspondingly. By doing so, we may omit some samples where no label is present within the respective

channels. To compensate we define a weight sb,k = batchsize
nzb,k

for k > 0, where nzb,k is the number of samples in b where there

is no label in channel k. This weight is used to balance the potentially different counts of labels for the individual channels.

The resulting loss for one bn ∈ b is calculated according to345

Ebn = 0.2 Lbn,k +0.8

4∑
k=1

sb,kL
0
bn,k

4
(2)

The values 0.2 and 0.8 are chosen to formulate a weighted average over all channels. In the case of nzb,k = 0 we set sb,kL0
bn,k

=

0. In this case channel k will not evaluated at all within the current batch. The loss for the complete batch can then be calculated

as the mean of all Ebn within the batch b:

Eb =

∑
bn∈b

Ebn

batchsize
(3)350

2.3 Baseline Method

We compare our results against a baseline method developed and used at ETH Zurich. The method introduced by Jenkner et al.

(2010) and later modified by Schemm et al. (2015) uses thermal gradients and other information to predict fronts. While the
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Table 3. Distribution of our data into training, validation and test data sets. For each data set the covered time frame and number of labels

are shown. All models use the same validation and test data.

Data set years samples

test data 2016 1464

validation data 2017 1460

training both 2012-2014, 2015/03 - 2015/12, 2018, 2019 8526

training NWS 2012-2014, 2015/03 - 2015/12 5608 (only NWS label)

training DWD 2015/03-2015/12, 2018, 2019 4142 (only DWD label)

method was originally designed to work on a 1◦ resolution grid, we adjusted the hyper parameters of the method to allow

it to run on a 0.5◦ grid1. In the baseline method, i.e. that designed for the ERA-Interim data-set with a grid spacing of 1◦,355

a minimum equivalent potential temperature gradient of 4 · 10−2 Kkm−1, a minimum advection velocity of 3 m s−1, and a

minimum front length of 500 km is used. We decided to keep these physical values identical to the original algorithm to retain

similar physical properties of the front. However, we have altered parameters used for the a-priori smoothing of the equivalent

potential temperature gradient field (number of filter applications as described in Jenkner et al. (2010) increased from 5 to 7),

the smoothing of frontal lines (smoothing parameter changed from 5 to 15), as well as the minimum size of front objects in360

number of grid-points (increased from 15 to 20). The largest impact comes from adjusting the smoothing of the equivalent

potential temperature gradient field. Using these altered settings, the number of fronts detected in the northern and southern

extra-tropics increases by about 30 %, but the spatial distribution of fronts is very similar to the original ERA-Interim data-set

with some exceptions in the vicinity of steep terrain (not shown). Our network works on a 0.25◦ resolution grid and outputs on

the same domain. Therefore, when comparing against the baseline method we resample the network output to a 0.5◦ resolution365

using a 2D maximum pooling operation. The authors of the baseline method mention that the provided baseline should only

be applied to the midlatitudes. When comparing against the baseline we therefore restrict ourselves to the midlatitudes of the

northern hemisphere for a fair evaluation.

2.4 Evaluation methods

We will briefly explain how the data is processed for the evaluation and how the Critical Success Index (CSI) is calculated.370

2.4.1 Trained Models and Data set distribution

We distribute our data into a test (year 2016) and a validation (year 2017) data set and create 3 training data sets as described

in Tab. 3. We train a total of 3 models, one for each training set. The models trained using training NWS (training DWD) are

additionally restricted to only use label data from the NWS (DWD) during training. Each model is trained using 6 GPUs on a

single node of the Mogon II cluster of the Johannes Gutenberg University. Each node contains 6 Nvidia GeForce GTX 1080375

1A tuning of the method for the 0.25◦ resolution was not possible, since features on small scales disturb the evaluation of the gradients
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Ti GPUs and an Intel Xeon CPU E5-2650 v4 with 24 cores and hyperthreading. Data was staged in prior to training to enable

reading from a local SSD rather than the parallel file system. The models trained using training NWS and training DWD are

only used in section 3.1.1 with results presented in tables 4 and 5 as well as in the SI in tables S1 and S2. In all other cases the

model using training both is applied.

2.4.2 Test Data processing380

For the evaluation we process each input file in the test data set as follows:

– Apply the respective model on the global input region of the current sample.

– Apply a softmax activation function to the raw network output to generate a probability mask for the sample.

– Create a binary mask by setting each entry in the probability mask to 1 if it is greater than 0.45, else to 0.

– Use one iteration of 8-connected binary dilation and calculate all different connected components. Each connected385

component is considered an individual front.

– Filter the labeled image with the undilated binary mask to remove the dilation effect.

– Remove all fronts that consist of less than 2 pixels.

– Write the binary mask to disk.

During evaluation we then load the corresponding binary mask from disk and crop it to a sub-region when necessary. Results390

of the baseline method and the weather service labels are already provided in binary format.

2.4.3 Front to object conversion

Prior to evaluation the generated binary masks of our network output are transformed into front-objects in two steps.

– Use one iteration of 8-connected binary dilation and calculate all different connected components. Each connected

component is considered an individual front.395

– Filter the labeled image with the undilated binary mask to remove the dilation effect.

The same transformation is applied to the provided weather service fronts. Note that some provided weather service fronts are

separate lines in the label file, but end up as a single longer front due to being connected due to the coarser grid used in our

analysis.

2.4.4 Front-Object matching400

A predicted front Fp is considered to be matched to the weather service label if the median distance of each pixel of Fp to the

nearest labeled pixel of the same class in the weather services label image is less than a detection radius of D. The same is
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applied vice versa for the weather service fronts compared against the network output. Each class of front can only be matched

to pixels of the same class, however each frontal object is matched against the whole set of pixels of the same class, rather than

just a single other object.405

For the evaluation we define two distinct regions, namely (i) the evaluation region, which is the region out of which we take

the fronts we want to match against any other fronts, and (ii) the comparison region, which is the region in which the algorithm

checks for possible matches for the fronts within the evaluation region. In our evaluation the comparison region is the same

as the evaluation region with an additional extension of 10◦ in each direction. The advantage of looking for matches within

this comparison region instead of the evaluation region, is to reduce false results caused by the crop of the evaluation region:410

For example, fronts at the edge of the evaluation region may be split into multiple fronts due to the crop skewing the count of

individual fronts. Alternatively a front located at the edge of the evaluation region may be counted as unmatched, because the

possible match was cropped out. Using the comparison region we will resolve most of these cases. A sketch of this procedure

is shown in Fig. S1. Note that using this larger region for the matching purposes does not add any fronts to the evaluation

nor does it affect the matching radius D. This change only allows each front to better use its search radius D to find possible415

matches unaffected by input crop.

2.4.5 Critical Success Index calculation

We evaluate the detection quality of our network and the baseline method by calculating the Critical Success Index (CSI) similar

to Lagerquist et al. (2019). As ground truth the provided weather service labels of surface fronts are used. We define nMWS as

the count of fronts provided by a weather service, that could be matched against the prediction, while nWS is the count of all420

provided fronts. Similarly, nMD describes the count of all detected fronts, that could be matched against the weather service

fronts, while nD describes the total count of detected fronts. With these values we can then calculate the Critical Success Index

(CSI), Probability of Object Detection (POD), and Success Rate (SR) as described in Eq. 4, 5, and 6, respectively.

POD =
nMWS

nWS
(4)

SR=
nMD

nD
(5)425

CSI =
1

1
POD + 1

SR − 1
(6)

As mentioned by Lagerquist et al. (2019) these measurements are also applied in other scenarios, like the verification of tornado

warnings by the NWS (Brooks, 2004). The SR describes the probability that a predicted front corresponds to an actual front

from the labeled data-set, while the POD describes the probability that an actual front is detected by the network. SR and

POD could easily be maximized at the cost of the other, by either not predicting anything or classifying each pixel as a front430

instead. The CSI serves as a measurement that penalizes such degenerate optimizations as it maximizes only when both values

yield good results. Generally speaking a high CSI score is preferable. Whether it is more important to have a high POD or SR

depends on the task at hand and whether it is more important that the detection is more sensitive or more accurate.
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Figure 6. Fronts from provided labels of the NWS (a) and DWD (d) as well as the corresponding network generated outputs ((b) and (e))

displayed on top of equivalent potential temperature. Colors indicate the frontal type, whereas unclassified fronts are displayed yellow. The

labels are the same for both rows. The difference images (c, NWS) and (f, DWD) show a direct comparison of frontal placement by the

weather service (red) and the network (blue) ignoring classification. All displayed examples are at 14 September 2016, 00:00:00 UTC.

3 Results and Discussion

In this section we first evaluate the CSI of our network detections against the weather services data and compare the detections435

from the network to those from the baseline method (section 3.1.1). We additionally create climatologies for both automatic

methods and calculate the pearson correlation against climatologies created from the weather service data (section 3.1.3).

Secondly, we present further results of our networks output where we look into physical quantities across the frontal surface to

infer physical plausibility of our network’s detections. Finally, we evaluate the relation of fronts to extreme precipitation events

to highlight a possible scientific application scenario for the presented method (section 3.3).440

3.1 Performance Evaluation and Comparison against Baseline

3.1.1 Front Detection Quality

In Fig. 6 we provide an image showing an example of the networks output compared to the label of the corresponding weather

service. The image shows that the network tends to create thin fronts, as desired. The detections also appear to have a generally

smoother shape compared to the weather service labels. The general shape of the fronts appears plausible, even though there445

are disagreements between the detections and labels regarding both the shape and class of fronts. For a better impression of

the networks output we also provide a video supplement showing the network output on a global scale Niebler (2021). Further

details are provided in Section S4 in the SI.
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To quantify the quality of our predictions we evaluate the CSI, POD, and SR for a matching radius of D = 250 km on our

test data set . The results are listed in Tables 4 and 5 for the binary task which only considers the classes front and no-front450

as well as the individual scores for each of the four frontal classes. As evaluation region we use the corresponding weather

services output region as defined in Tab. 2.

The scores show that the network excels at the pure front detection task with CSI scores of 66.9% (DWD) or 68.3% (NWS).

At the same time the network evaluates with a POD and SR exceeding 77.3%. POD tends to be higher than SR for the NWS

data, while on the DWD data SR tends to be higher than POD. Considering individual front classes, the classification scores455

are overall lower with a class CSI ranging between 36.4% and 56.8%. Across all tests warm and stationary fronts appear to

be harder to classify for the network than cold fronts or occlusions. This effect is more pronounced on the NWS data-set. A

possible explanation is the lack of a clear distinction of these two front classes from the DWD data, which in return leads

to more false classifications due to the ambiguity. We can further see that training on a single region does not provide a

good generalization onto the other region, which is expressed by a lower CSI scores when training on only the DWD (NWS)460

data and evaluating on the respective other region, i.e., NWS (DWD) data. At the same time training on both regions yields

comparable scores as the networks trained on a single region. This clearly shows that using the network trained on both regions

is preferable. We will therefore continue our evaluation with only this model. The difference between the regions may be

originating in different synoptic structures of cyclones and their associated fronts over the North American continent and over

the North Atlantic. This implies that the inclusion of further data-sets, for example data-sets used by Matsuoka et al. (2019) or465

generally data of the southern hemisphere, may improve the network performance even further. This would be also interesting

with regard to a thorough evaluation of the network performance on the southern hemisphere. We want to point out here that

the inclusion of additional training data of similar structure than the used NWS/DWD data can be carried out easily, the method

is designed to be very flexible.

We also evaluated results where each object can only be matched against a single object of the corresponding class instead470

of the whole set. The resulting scores are listed in Tables S1 and S2. We observe a drop in POD from 77.3 (83.4) to 70.8

(76.9) when evaluating on DWD (NWS) data, while SR barely changes. This indicates that our network tends to not fully

cover long frontal regions with a single front but rather multiple smaller, disjoint fronts. Each of these can still be matched with

the long front, but the long front cannot be matched with any one of them due to their insufficient length leading to the lower

object detection rate. Interestingly, we also do not observe the same change in POD when only considering the classification475

scores. This further indicates that the previously mentioned fragmentation does not occur within the individual classes but

rather at the transition between classes. When the weather service labels several fronts of different classes as connected, the

generation of the binary label merges all these fronts into a single long front. If the network then is able to detect the individual

fronts, but does not detect them as connected, the conversion to the binary detection will result in several shorter fragments

instead. A similar effect may occur if some parts of the long front are simply not detected at all. However, the low change480

in the classification scores indicates that the first effect is more pronounced. In the bottom row of Fig. 6 an example of such

a fragmentation can be seen, where the network detects the central front as two separate fronts, while the provided label is a

single connected front. Using the initially introduced matching method, where each front can be matched with the whole set of
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Table 4. CSI, POD and SR values for D = 250 km evaluated on DWD data for 2016. Warm fronts tend to be detected worse than the

other classes while cold fronts are generally well detected. Stationary fronts are not available for DWD labels and are therefore not listed.

Evaluation regions contain latitudes within ]35◦,70◦]N .

Training region NWS DWD Both

CSI POD SR CSI POD SR CSI POD SR

Binary 51.1 % 65.4 % 70.1 % 68.4 % 78.7 % 84.0 % 66.9 % 77.3 % 83.2 %

Warm 20.3 % 22.8 % 65.1 % 49.3 % 58.1 % 76.6 % 49.2 % 57.6 % 77.0 %

Cold 39.5 % 47.9 % 69.2 % 56.6 % 67.8 % 77.3 % 56.1 % 66.3 % 78.5 %

Occlusion 35.4 % 44.0 % 64.6 % 51.9 % 69.5 % 67.3 % 52.4 % 67.2 % 70.3 %

a class the fragmentation problem can be overcome. At the same time SR and classification scores are barely affected which

shows that this method is suitable for our task.485

3.1.2 Comparison against Baseline

We additionally evaluated the CSI score on a coarser 0.5◦ resolution grid and compare the results against the baseline algorithm

evaluated on the same grid. The used baseline does not classify its results which is why we only display and compare the task

of front detection and forgo any classification results. Due to the previously mentioned fragmentation issues, we only evaluate

the results where each front may be matched against the complete set of fronts rather than just a single front object. The490

baseline algorithm is only designed for application in the midlatitudes and should not detect stationary fronts. Hence for this

comparison we further restrict our evaluation region to fit within the midlatitudes of the northern hemisphere and remove

stationary fronts from the labels and network output. There may be an offset between the placement of a front by the baseline

and the weather services as the baseline locates its fronts at the center of a passing front rather than the leading edge. While

we believe that the used matching procedure already respects such a difference we also evaluated the baseline method using495

D = 500km, i.e. doubling the search radius compared to that used in the evaluation of our network. As shown in Table 6 our

network (NET) outperforms the baseline algorithm (baseline) in all evaluated scenarios and metrics with a more than twice as

high CSI score when using D = 250km. Even when the baseline is evaluated with a larger search radius of D = 500km the

network outperforms it with a difference in CSI scores of more than 10%, even though the network is still evaluated using the

smaller search radius of D = 250km.500

3.1.3 Comparison of Frontal Climatologies

To further investigate the soundness of our front detection we created frontal climatologies for the year 2016 for the provided

weather service labels, our network, and the baseline method. While the respective weather services only provide labels within

their analysis region, both the network and the baseline can be executed on the entire globe. As in section 3.1.2 we explicitly

remove stationary fronts from both the NWS label data-set as well as the network output, when creating those climatologies.505
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Table 5. CSI, POD and SR values for D = 250km evaluated on the NWS data 2016. Warm fronts tend to be detected worse than the other

classes while cold fronts are generally well detected. The network trained purely on DWD data could not learn stationary fronts, as they are

not included in the training data and stationary fronts are therefore not listed. Evaluation regions contain latitudes within ]35◦,70◦]N .

Training region NWS DWD Both

CSI POD SR CSI POD SR CSI POD SR

Binary 67.3 % 81.9 % 79.1 % 49.7 % 57.0 % 79.6 % 68.3 % 83.4 % 79.1 %

Warm 37.3 % 56.5 % 52.4 % 22.5 % 44.1 % 31.6 % 36.4 % 58.1 % 49.3 %

Cold 55.6 % 70.1 % 73.0 % 41.2 % 51.8 % 66.8 % 56.8 % 73.1 % 71.8 %

Occlusion 48.7 % 72.5 % 59.8 % 36.1 % 62.7 % 46.0 % 49.0 % 73.4 % 59.5 %

Stationary 44.6 % 59.4 % 64.1 % − 43.2 % 56.2 % 65.2 %

Table 6. Comparison of the CSI, POD and SR of the baseline algorithm against our network for the data of 2016, restricted to the midlatitudes

in the northern hemisphere. As the baseline algorithm does not classify fronts we use the binary-classification evaluation for our network.

(Quasi-)stationary fronts were removed from the network output as well as the NWS label, because the baseline algorithm should not identify

them. For the DWD label these could not be reliably removed due to the label’s ambiguity. We can see that the baseline algorithm is better

in predicting fronts in the DWD region than in the NWS region. Evaluation was performed at D = 250km for NET and baseline250, while

D = 500km was used for baseline500. However, the network performs better in terms of all three measures for both regions.

Method Evaluation on DWD Region Evaluation on NWS Region

CSI POD SR CSI POD SR

baseline250 31.2 % 44.4 % 51.2 % 21.9 % 42.7 % 31.1 %

baseline500 56.4 % 68.0 % 76.6 % 48.1 % 69.9 % 60.7 %

NET 69.9 % 78.0 % 87.1 % 60.2 % 78.8 % 71.8%

This is done as the baseline method does not include fronts propagating at less than 3 ms−1. The baseline method was designed

for application within the midlatitudes and results outside the midlatitudes should be taken with care. We therefore restrict

our quantitative evaluation to regions within the midlatitudes. We nonetheless present the climatology on the global area

to emphasize the difference in performance of the network compared to the baseline method outside the midlatitudes. The

resulting climatologies are shown in Fig. 7.510

First, we compare the climatology for the North Atlantic / European region from the manually labeled data-set with the

climatology of network generated fronts. In the DWD climatology the North Atlantic storm track is clearly visible as a band

of heightened front occurrence stretching from the East coast of North America to the Channel (Fig. 7 c). Frontal activity is

tampering off inwards of the European west coast. The climatology of the network generated fronts has a very similar overall

structure with a strongly enhanced frontal frequency in the storm track region (Fig. 7 a). Frontal frequency is somewhat larger515

at the beginning of the storm track compared to the DWD climatology. This may be related to the training with North American
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manual analysis, which naturally has a stronger focus on the early cyclone lifecycle than the European data. Over the Channel

and North Sea Coast of Europe frontal frequency in the network generated data-set is somewhat lower than in the DWD data-

set, which may be related to the inclusion of stationary fronts in the latter but not the former. We have seen also in the previous

section that very weak warm fronts, as may exist further into the European continent are often not detected by the network. In520

both data-sets a slightly enhanced frontal frequency around Iceland is evident.

Next, we compare the climatology for the North American region from the manually labeled data-set with the climatology of

network generated fronts. The manual labels indicate the onset of the storm track with enhanced frontal frequencies just off the

North American East Coast and secondary peaks in frontal frequencies in the lee of the Rocky Mountains and along the West

Coast (Fig. 7 d). The climatology of network generated fronts captures all three maxima in the frontal frequency in roughly525

the same location (Fig. 7 a). However, frontal frequency in the lee of the Rocky Mountains and along the West Coast are more

pronounced in the network generated climatology. We are under the impression that the network tends to assign labeled warm

fronts as stationary and vice versa. These shifts may explain the different frontal frequency.

Finally, we compare the global climatology of network generated front labels to those generated by the baseline algorithm

(compare Fig. 7 a and b). The striking first difference between the two climatologies is the much larger spatial extend of530

regions with high frontal frequency in the second data-set. This is evident both in the storm track regions on both hemispheres

but also the subtropical regions. In the subtropics regions of large gradients in equivalent potential temperature exist and these

are picked up by the baseline algorithm. However, their structure and origin differs from fronts in the extratropics. It appears

that the network is able to detect this difference in the structure, while focusing solely on equivalent potential temperature and

frontal propagation speed is not enough information to differentiate these structures.535

In absence of any manual data-set that can serve as ground truth it is difficult to judge the physical meaningfulness of the

climatological patterns emerging from either algorithm and indeed in the case of the subtropics may strongly depend on the

purpose and definition of what is considered a frontal structure. In the storm track regions on both hemispheres both data-sets

show consistently enhanced frontal frequencies over similar geographic regions. They only differ in the zonal extend of the

regions with enhanced activity and the absolute values of frontal frequencies. In the only region, where we have an independent,540

manually generated data-set often considered as the “ground truth”, the climatology of network generated fronts is in closer

agreement with the former than the climatology from the baseline algorithm. For the southern hemisphere or the North Pacific

we currently do not have any such data-set available.

The second striking difference is the high frontal frequency along orographic barriers in the climatology from the baseline

algorithm, i.e. along the Andes, Greenland, Himalaya and Antarctic coast line. These maxima in frontal activity are largely545

absent from the climatology of network generated fronts consistent with the manually labeled data-sets. It appears that the

network correctly discriminates between temperature and humidity gradients arising only because of the presence of significant

topography and those caused by dynamically generated air mass boundaries. In contrast, focusing solely on the advection

speeds in regions of large equivalent potential temperature gradients seems not to suffice.

Overall, the global picture emerging from the extrapolation of the network trained on the North American, North Atlantic550

and European domain performs well also on a global scale and correctly identifies regions of high frontal activity expected from
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Table 7. Extent of the regions used during comparison of climatologies. These regions correspond to the output regions used during training

limited to [35◦N,60◦N ].

Weather Service Latitudes Longitudes

DWD ]35◦N,60◦N ] [−45◦E,35◦E[

NWS ]35◦N,60◦N ] [−135◦E,−60◦E[

previous investigations and the known general circulation patterns. While physically plausible, this is of course no vigorous

evaluation of the performance of the extrapolation to different regions of the globe. Future work should investigate this aspect

in a more quantitative manner with manually labeled data-sets from other parts of the globe. However, overall the investigation

of the front climatology agrees well with physically expected patterns and climatologies from manually generated frontal555

data-sets. This lends additional physical credibility to the network generated frontal labels.

A physically plausible global climatological pattern further suggests that the learned frontal identification can be extrapo-

lated from the training region. We found that for this it is necessary to include data from two sufficiently different geographic

regions, i.e. North America and North Atlantic / Europe, as well as to augment the data-set by including also zonally mir-

rored examples of the frontal cases (not shown). The latter was found to be particular important for a good performance in560

the southern hemisphere. This is also visible in the video supplement, where the general shape, composition and motion of

fronts detected in the southern hemisphere appears plausible. At first the qualitatively good results on the southern hemisphere

appear to contradict our claim in the previous section, that training on a single region is insufficient of extrapolation to other

regions. However, we believe that this is due to the fact that this region is mostly covered by sea. As a result there is far less

orographic influence in the southern regions. As such the simple mirroring of data from the North Atlantic may be sufficient565

to learn a seemingly good model for the sea covered regions of the southern hemisphere. Nonetheless this is only a qualitative

observation, that needs to be explicitly evaluated, if appropriate data is available.

To quantify the former qualitative discussion of the climatologies we evaluated the Pearson correlation coefficient of the

created climatologies within the regions described in Table 7. The resulting correlation coefficients, provided in Table 8, show

that our network outperforms the baseline algorithm in both regions with correlation coefficients greater than 77.2%. For both570

regions the network results are more than 10% higher than those of the baseline. This effect is more pronounced on the DWD

data-set, which might be caused by the ambiguity of stationary fronts.

3.2 Variation of Physical Variables across Frontal Surfaces

In the previous section we showed that our proposed network can reliably detect fronts as they are provided by the weather575

services. In this chapter we evaluate various physical quantities across the detected frontal zone qualitatively, to assess whether

or not the detected fronts express plausible physical features. Since some automatic methods as e.g. the baseline method rely

on gradients of certain thermodynamic variables, we investigate these variables for the fronts detected by our network. Thus,
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Figure 7. Global frontal climatologies as derived from the ERA5 data for the year 2016 and climatologies from the weather service data-sets.

(a) Global frontal climatology from the network executed on the 0.25◦ grid and resampled to 0.5◦ resolution. The network does not provide a

valid prediction for the outer 5◦, as the effective output domain is smaller than the input domain. For this reason no fronts are displayed here.

(b) Global frontal climatology of the baseline algorithm. Note that the algorithm is not designed for application outside the midlatitudes and

should only be evaluated outside the gray shaded regions. (c) Climatology of the DWD front labels. (d) Climatology of the NWS front labels.

The represented front count was clipped at 70 for visual representation, regions with higher front counts are shown in red. Stationary fronts

are explicitly excluded from the climatology of network generated data and NWS labeled data. The global climatology from the baseline

algorithm does not include fronts propagating at less than 3 ms−1. The DWD data-set may include stationary fronts, as we were unable to

reliably separate them from warm or cold fronts.

Table 8. Pearson correlation coefficient of the climatology computed with the baseline algorithm (baseline) and our trained hetwork (NET)

against the climatologies created from the provided labels of the weather services for 2016. The columns denote the weather services, against

which the methods were evaluated. Correlations are computed for the midlatitude regions covered by the analysis from the weather services.

Stationary fronts were excluded from all climatologies except the DWD labels.

Method Correlation with DWD Correlation with NWS

baseline 58.4% 65.7%

NET 79.6% 77.2%

we can evaluate if these fronts are detected in a completely different way or feature similar frontal characteristics as those

detected by the thermodynamic methods or manual analysis.580

25



For this purpose, we create cross-sections perpendicular to the frontal surface for each pixel that corresponding to a front in

4 steps:

– Estimate the direction normal vector of the front at the given point

– Sample points in the normal direction centered at the given point on the front

– Calculate the mean wind direction along the sampled points585

– Use the sign of the dot product of the mean wind direction vector and the normal front vector to sort the sampled points

along wind direction

These cross sections are computed at the 850hPa level, since the TFP methods usually are based on variables on this level.

For the comparison with the thermodynamic front detection methods we use the variable equivalent potential temperature (θe).

Additionally, the variables temperature, relative humidity, and (absolute) wind speed are chosen, showing important features590

of different front types. These variables are taken from the ERA5 data-set, while the position of the fronts is determined by

either our network, the baseline method, or the weather service analyses. We used MetPy v1.0.1 to derive θe and the relative

humidity (May et al., 2021). We further used GeoPy v2.2.0 (https://github.com/geopy/geopy) to calculate the position of our

sample points.

The mean cross-section for the DWD frontal data-set is presented in Figures 8 and 9. The corresponding plots for the595

NWS front data-set are shown in the supplement (Figures S2 and S3). In Fig. 8 (a) we evaluated the variation in equivalent

potential temperature (θe) at 850hPa based on fronts locations (i) identified by the machine learning algorithm (dashed lines)

and (ii) indicated in the surface analysis from the DWD (solid lines). For both front location data-sets θe is clearly increasing

(decreasing) across the frontal surface for cold (warm) fronts, as would be expected from the physical definition of these

features. For the identified cold fronts the across-frontal temperature variation is on average larger than for the DWD labels.600

For warm fronts the across-frontal change in θe is similar for both detections, albeit the decrease ahead of the passing front

is stronger for the machine learning detections. Warm fronts identified by DWD are on average located at slightly cooler

temperatures. This may be explained by the assignment of some warm fronts with weak temperature gradients to the additional

category of stationary fronts by our machine learning algorithm, a category non-existent in the DWD data-set. For occluded

fronts there is only a small across-frontal variation in θe as could be expected and again this is consistent across both data-sets.605

For most automatic front detection algorithms the across-frontal θe gradient is of importance; this quantity is shown in

Fig. 8 (b). The θe gradient is calculated using finite differences using the sampled temperature cross-sections. Again we see

very similar patterns for both the DWD and our front data-set. In both data-sets the frontal surface is located at the onset

of a region with strong change in the horizontal θe gradient. This is consistent with the physical definition of frontal zones

and agrees with the manually designed automatic front detection algorithms. Generally the network detected fronts exhibit a610

stronger gradient compared to those in the weather service analysis for all types of front. Taking the gradient of the θe gradient

(See Fig. 8 (c)) we obtain a magnitude similar to the TFP, where the direction is defined by the normal of our detected front
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with respect to the wind direction instead of the 2D gradient of θe. For simplicity we will refer to it as approximate TFP in the

following.

Several conventional methods place the front at the position where the gradient of the TFP is zero. We can clearly see this for615

the provided DWD labels, where all 3 types of front have a minimum of the approximate TFP at the frontal position. For cold

fronts our networks placement seems to agree with this. For stationary fronts the signal is less clear but the front also appears

to be located at the extremum of the approximate TFP. Differently, warm fronts and occlusions are placed with an offset of

approximately 60km to the extremum of the approximate TFP. Nonetheless we also believe that this offset is reasonable. This

shows that both our used labels but also the network’s detections are plausible with respect to the theoretical background used620

for TFP methods.

As mentioned before fronts are typically placed where the gradient of the TFP equals zero, which is thought to describe

the leading edge of a front, such as it occurs with the weather service labels. The used baseline method however is different

in that regard as it locates a front where the TFP equals zero, which corresponds to the center of the frontal area. This of

course creates an inherent offset in the fronts position. Following our evaluation as described above, we can estimate this offset625

is approximately 130km (80km) for warm (cold) fronts. Note that both distances are lower than the evaluation distances of

250km and 500km used for the computation of performance scores in the preceding section. This highlights that the difference

in CSI should not be fully accounted for by methodological difference but rather supports our statement that the network is

better at the detection and placement of fronts than the baseline.

In Figure 9 we additionally show the temperature (b), relative humidity (c) and absolute wind speed (d) across the frontal630

zone. The temperature variation across the frontal zone is quite similar for network and weather service detected fronts and

is physically reasonable. For instance, the temperature difference for warm and cold fronts are clearly visible; also the values

agree quite well. For the relative humidity, there are some differences in the absolute values; the network detected fronts have

usually enhanced relative humidity values. However, qualitatively the variation of relative humidity across the frontal zone

is well captured. For warm fronts, and also occlusions, there is a pronounced maximum in RH ahead of the front, which635

indicates the typical frontal cloudiness. A similar signature can be seen for cold fronts, where the maximum is only slightly

shifted relative to the surface front position. For the absolute wind speed we see similar values for the different fronts (detected

by network and weather services), but no pronounced structure. Note here, that the mean absolute wind speed for stationary

fronts is quite high (|u| ∼ 6− 8m s−1) compared to the threshold criterion used by the TFP method. However, the standard

deviation is also quite high (σu ∼ 4m s−1). A reason for this might be that the position of stationary fronts is not well captured640

by the network (also because they are only available in the NWS training data-set). Due to the uncertain position, the mean

values are smeared out over a large range around the detected position. Nevertheless, the absolute wind speed at stationary

fronts is much smaller than the wind speed at the others, which matches with the physical expectation that stationary fronts are

moving quite slow - a feature still well captured by the network.

When comparing the frontal zone structure over North America according to NWS labels and our generated labels, generally645

also consistent structures are found (see SI) with deviations mirroring broadly those identified for the DWD data.
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Figure 8. Average value of variables at 850hPa across fronts in direction of wind. Mean of (a) equivalent potential temperature (θe), (b) θe-

gradient and (c) gradient of θe-gradient with front positions determined by DWD manual analysis (solid, WS) and by our network (dashed,

ML). For (b) and (c) we additionally display the 0 level.

Overall, from the good agreement in physical structures across the identified frontal surfaces as detected by our algorithm

and from the manual weather service analysis we conclude that our algorithm detects physically meaningful positions. The

positioning of the frontal surfaces is further consistent with physical intuition and interpretation prevalent in literature, and also

with the physical constrains for the detection of fronts by an automatic method based on thermodynamic variables.650

We can finally remark that even using the surface front as a proxy for the synoptic scale phenomena front (as transition of air

masses), the related structures either for the fronts manually determined by the weather services or automatically determined

by our network are physically meaningful. This analysis shows that indeed we can use surface fronts as a ground truth for the

detection of fronts in reanalysis data sets.

3.3 Correlation to extreme precipitation events655

In the previous section we showed that our model detects fronts in accordance with physical expectations. We further showed

that our method generally agrees with the theory of TFP methods, further demonstrating that our model predicts physically

plausible fronts. In this chapter we will further validate our results and at the same time provide an example of how our

proposed method may be applied in a scientific context aside from pure front detection for operational weather forecasts. To do

this we evaluate how weather fronts as detected by our network are connected to extreme precipitation. We present the results660

(i) for the occurrence of extreme precipitation if there is already a front (Sect. 3.3.2), and (ii) for the presence of a front if an

extreme event occurs at a grind point (3.3.4).

3.3.1 Data and Terminology

Catto and Pfahl (2013) previously investigated the co-occurrence of fronts and extreme precipitation using a front detection

algorithm based on Thermal Front Parameters (TFP) and the ERA-Interim data set. Due to the used front detection algorithm665
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Figure 9. Average value of variables at 850hPa across front in direction of wind. (a) Mean of the equivalent potential temperature (θe), (b)

temperature, (c) relative humidity and (d) absolute wind speed with front positions determined by DWD manual analysis (solid, WS) and by

our network (dashed, ML).
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they evaluated their results on a 2.5◦ spatial resolution and they only use the 6 hourly accumulated precipitation variable of

ERA-Interim.

Differently to Catto and Pfahl (2013) our front detection can be applied on the 0.25◦ resolution of the ERA5 data-set to

provide a more detailed evaluation. Additionally, ERA5 provides data at an hourly interval allowing us to evaluate at a 6 times

higher temporal resolution. Unlike Catto and Pfahl (2013) we decided to use the 1 hourly accumulated total precipitation670

to match the temporal resolution of our data samples. As all evaluation data is taken directly from the ERA5 grid we do

not need to perform any resampling of data. We evaluate the data on a near global region spanning from [−60◦N,60◦N ]

and [−175◦E,175◦E]. Grid points poleward of 60◦ are excluded as in Catto and Pfahl (2013), while the restriction in the

longitudinal direction is caused by our network’s reduced output domain size. We further mask regions with high topography

(> 2000m) from the evaluation. This filtering mostly removes stationary fronts associated with mountainous terrain.675

Extreme precipitation is defined as any precipitation exceeding the 99th percentile of precipitation at a given grid point

over the considered 9 year period (2010-2018). The correlation of fronts with extreme precipitation events and vice-versa is

investigated for the year 2016 only. We define that a grid point is considered to be associated with any event (e.g. a front or

extreme precipitation) if such an event occurs within an predefined attribution radius. If not explicitly stated otherwise the

attribution radius is chosen similar to Catto and Pfahl (2013) to be 2.5◦, albeit our attribution radius is a bit more accurate,680

due to the higher resolution of the ERA5 grid. To decide whether a connection between extreme precipitation and fronts is

significant we conduct a statistical test using statsmodels v0.12.2 (Seabold and Perktold, 2010) for the quantile regression.

For our investigations, we adopted the test procedure as described in the study by Pfahl and Wernli (2012). A more detailed

description of the methodology of this section can be found in the SI in Section S5.

3.3.2 Extreme precipitation associated with fronts685

In Tables 9 and 10 the proportion of extreme precipitation events at grid points that can be associated with a front (R1) is

presented for different regions. For comparison with the former work by Catto and Pfahl (2013), we report values for the global

evaluation, i.e. including the tropics, although the application of front detection methods in these regions remains questionable.

In addition, we present a more detailed analysis for different parts of the midlatitudes (Tab. 10). We can clearly observe that a

high proportion of extreme precipitation events can be associated with fronts when considering sea covered regions. Filtering690

out mountainous regions, the correlation between extreme precipitation and fronts increases compared to the full mid-latitude

data-set. Over flat terrain, the frontal systems can develop in a quasi idealized fashion, thus warm, cold and occlusion fronts

can develop quite undisturbed. Thus, extreme precipitation is mostly linked to the large scale features, whereas over (steep)

terrain local effects can disturb the frontal development and / or generate extreme precipitation by other processes. This effect

also explains why R1 is higher for the southern midlatitudes or hemisphere compared to their northern counterparts. Further695

we can see thatR1 is higher for the midlatitudes than for the tropics for all types except stationary fronts, where we observe the

opposite effect. This is expected as it coincides with the frontal frequency at these locations and the presence of other processes

generating extreme precipitation, e.g. organised deep convection. While stationary fronts are more often detected near high

altitude regions, above land surface, and at the ITCZ, the other types of fronts tend to occur more often over the ocean, e.g. the
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storm tracks in Atlantic and Pacific. This is in accordance with the correlations shown in Tabs. 9 and 10, where we can see the700

same connections for R1.

Figure 10 displays R1 for each frontal type at each grid cell. For this plot all high altitude regions are gray shaded (light

gray), while all regions where no significant connections between fronts and extreme precipitation could be found are white

shaded. Further we masked all regions where no extreme precipitation event was found using a dark gray overlay. This occurs

since extreme precipitation is defined using all years from 2010 to 2018, while correlations to fronts are only investigated for705

the year 2016. In some storm track regions over the ocean more than 90% of all extreme precipitation events can be associated

to a front. Overall extreme precipitation appears to be more often associated with cold fronts than warm fronts. In the northern

midlatitudes we can see that extreme precipitation events associated with warm fronts occur farther north than those associated

with cold fronts. For occlusions this is even clearer as the highest proportion of extreme precipitation associated with occlusions

is found close to 60◦N . For the southern hemisphere, a similar tendency can be seen, even though the local maxima in the710

correlation are not as clearly visible. As previously mentioned stationary fronts are less often found over midlatitude oceanic

regions and therefore unsurprisingly almost no extreme precipitation events are associated with stationary fronts there. In

contrast, extreme precipitation events in the tropics, especially at the ITCZ, are more likely to be associated with stationary

fronts. Similarly the eastern parts of North America and land surfaces near the north eastern Pacific coast of Asia also have a

relatively high percentage of extreme precipitation events associated with stationary fronts.715

Note that for the tropics the detection of fronts is quite questionable. However, for comparison with Catto and Pfahl (2013)

using a TFP front detection method, these regions are included, although front detection methods are generally designed for

and therefore applicable in a meaningful way only to the extratropics. Overall our results are in good agreement with those

derived in Catto and Pfahl (2013).

3.3.3 Extreme precipitation associated with fronts relative to frontal frequency720

In Fig. 11 we display R1 as a function of the frequency of a point being associated with a front (Pa(fr)) at all. Additionally we

plotted the 1st and 99th percentile derived from the statistical test (details see S5.2) as well as the identity as orientation. The

lines and box plots can be interpreted as follows: If the box plot is above the 99th percentile line, we can conclude that the

correlation between extreme precipitation events and fronts is significant in terms of our statistical test.

For warm fronts, cold fronts and occlusions we find that both the median and the mean of each bin exceed the 99th percentile725

even for small front frequencies, i.e. a significant correlation between fronts and extreme precipitation exists. For stationary

fronts this appears less clear: Up to 20% frontal frequency the curve connecting the medians indicates a significant correlation

between extreme precipitation and stationary fronts, before flattening towards points with larger frontal frequencies. Consider-

ing for all types of fronts together (Fig. 11 a) the the mean and median R1 exceeds the 99th percentile for all frontal frequency

bins except the largest Pa(fr) bin. This clearly indicates a strong connection between fronts and extreme precipitation.730
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3.3.4 Fronts associated with extreme precipitation

In the previous section we have shown that a high percentage of extreme precipitation events are associated with a front. We also

found that outside the tropics this connection is statistically significant according to the performed test (details found in S5).

However, we are also interested in the proportion of fronts that are associated to extreme precipitation events (R2). Similar to

Fig. 10 we plotted R2 per grid point in Fig. 12. Light gray and white shaded regions are masked as before, while regions where735

no front of the corresponding type occurred are shaded in dark gray. In general, over large swaths of the midlatitudes more

than 40% of fronts are associated with extreme precipitation. Also regions, where a front is less likely to occur, tend to have

a higher percentage of fronts being associated with extreme precipitation. This is very clear for the occlusions: according to

the climatology presented earlier occlusions are predominantly found in the more poleward midlatitude region, but occlusions

occurring close to 30◦N/S are almost always associated with extreme precipitation. The decrease of R2 for regions with a740

higher relative frontal frequency (Pfr) can at least partially be explained by the definition of extreme precipitation events, as

it inherently limits the amount of such events. If Pfr exceeds that amount it is likely that several fronts may not be associated

with an extreme precipitation event, even though strong precipitation still occurs. This is somewhat dampened by the fact that

forR2 a grid point with a front only needs to be within the attribution radius to an extreme precipitation event giving each front

several grid points to be associated to. Compared to Catto and Pfahl (2013) our results show the same tendencies, but in our745

analysis a larger fraction of fronts is associated with extreme precipitation events than in their work.

Overall our results show a significant connection between extreme precipitation and fronts detected by our network. Our

results generally agree with the results of the previous study by Catto and Pfahl (2013). We additionally investigated the

correlation between fronts and extreme precipitation on a higher resolution, i.e. for two smaller attribution radii of 5px (1.25◦)

and 2px (0.5◦). The qualitative features (i.e. the regions with high correlations) remain the same but the correlation magnitude750

is reduced due to the smaller radius of influence. The respective figures can be found in the SI as Fig. S4. This once again

highlights the potential of our network to be used in future scientific research. Such investigations cannot be carried out with

classical TFP methods, since they are on a global scale (i.e. using fixed thresholds) most likely restricted to low resolution data

sets. This underlines the benefit of our new method over existing ones.

4 Conclusions755

Atmospheric fronts are important features, which are usually associated with synoptic scale weather systems. Since fronts are

usually connected with significant weather, e.g. clouds and precipitation, and occasionally with extreme precipitation events,

they are of high interest for weather forecasts but also in terms of scientific research of such events. While the term front

refers to a sharp transition between air masses of different characteristics (e.g. in terms of temperature, humidity etc.), there is

unfortunately not a generally accepted definition of a front. This is also reflected in many different approaches to detect fronts760

automatically, e.g. using (multiple) gradients of thermodynamic variables, or even recently using machine learning techniques.

In this study we present a new method for automatic front detection based on a neural network, which uses ERA5 reanalysis

data. As a ground truth for training and validation, we use surface front data from two different weather services (NWS and
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Figure 10. Proportion of extreme precipitation events, which are associated with a front. Regions with high topography are shaded in light

gray, while areas where no extreme precipitation events occurred in 2016 are shaded in dark gray. Regions where no significant correlation

between extreme precipitation and fronts was found are blanked. Results are shown for (a) any front, (b) warm fronts, (c) cold fronts, (d)

occlusions, and (e) stationary fronts.
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Figure 11. Fraction of extreme precipitation events grouped by frontal frequency as boxplots. Including 1st and 99th percentile of the

statistical test. Results are shown for (a) any front, (b) warm fronts, (c) cold fronts, (d) occlusions, and (e) stationary fronts.
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Figure 12. Proportion of fronts, which are associated with an extreme precipitation event. Regions with high topography are shaded in light

gray, while areas where no fronts of the corresponding class where detected in 2016 are shaded in dark gray. Regions where no significant

correlation between extreme precipitation and fronts was found are blanked. Results are shown for (a) any front, (b) warm fronts, (c) cold

fronts, (d) occlusions, and (e) stationary fronts.
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Table 9. Average proportion of extreme precipitation events associated with a front for different regions in 2016. Results are shown separately

for the entire globe ([−60◦60◦]N), northern and southern hemisphere ([0◦,60◦]N and S, respectively), and tropics ([−30◦,30◦]N).

Region all warm cold occlusion stationary

global 0.591762 0.207308 0.259069 0.137746 0.152227

northern hemisphere 0.523959 0.158889 0.205674 0.115030 0.176706

southern hemisphere 0.658888 0.255434 0.312175 0.160145 0.127472

tropics 0.419067 0.074942 0.144921 0.023774 0.225288

global land 0.426572 0.097443 0.168555 0.080147 0.186018

global sea 0.665551 0.256384 0.299502 0.163476 0.137133

Table 10. Average proportion of extreme precipitation events associated with a front for different regions in 2016 for the midlatitudes

([30◦,60◦]N and S, respectively).

Region all warm cold occlusion stationary

midlatitudes 0.761661 0.337388 0.372848 0.248444 0.080310

northern midlatitudes 0.678892 0.270840 0.311021 0.212936 0.133108

southern midlatitudes 0.843307 0.402863 0.432948 0.284470 0.027839

midlatitudes no mountain 0.780816 0.354091 0.383997 0.260504 0.071064

midlatitudes sea 0.851108 0.415874 0.425085 0.295962 0.029676

midlatitudes land 0.565787 0.165520 0.258460 0.144388 0.191187

midlatitudes land, no mountain 0.596549 0.192130 0.276355 0.167556 0.179444

DWD) covering significant parts of the Northern hemisphere; for validation a disjoint subset of this data set is used. We train the

network on a loss function, that allows to classify and predict fronts across the input regions. Our applied loss function results765

in the network predicting clearly localized fronts without the need of morphological post processing thinning operations. The

network is able to predict fronts with a Critical Success Rate higher than about 66.9%, and an Object Detection Rate higher

than about 77%.

For a better evaluation of the quality of the method, we compare the network output with a baseline method, which uses

a traditional approach operating on thermodynamic variables (TFP approach). For both methods a climatology of fronts is770

derived. In this direct comparison, the new method outperforms the baseline method in the direct comparison with the data

from the weather services. We can show that we cannot simply transfer a locally trained network onto any other region but

rather need to train on several data-set to obtain a reliable general front detection. The climatology results indicate that a

transfer on oceanic regions maybe feasible, however this has to be evaluated in future research. It is also desirable to further

investigate up to which degree extrapolation onto different regions is possible and to investigate whether or not generalization775

onto global data is possible from just a few subregions.
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The evaluation of physical properties relative to the network detected fronts shows that our detected fronts generally ex-

hibit similar properties as those usually looked for in classical methods. As an example gradients in the equivalent potential

temperature are shown. In addition, a similar quantity as for classical TFP methods is determined from equivalent potential

temperature. In the comparison of these quantities relative to fronts determined by the weather services and detected by the780

network, respectively, we find very good agreement; in addition, they exhibit the same features as would be detected by a TFP

method. This also shows that our ground truth data, surface fronts originating from two weather services, is a suitable choice;

although surface fronts are detected, they show the correct structure in terms of thermodynamic variables. Thus, surface fronts

can serve as a proxy for the detection of fronts, however our analysis shows that the resulting fronts are meaningful.

In a final application, we investigate the connection of fronts with extreme precipitation events. This investigation is guided785

by the former investigation by Catto and Pfahl (2013); however, our network allows us to fully use the available resolution of

ERA5 and to investigate characteristics of fronts at a high spatial and temporal resolution leading to a more detailed inves-

tigation. For the midlatitudes the connection between extreme precipitation events and front occurrence is found to be most

prominent, with the strongest correlation over flat terrain, especially over the ocean. This application shows that our new front

detection method is not only just a tool for operational weather forecasting, but is also useful for scientific investigations. Since790

the method can be applied on high resolution data, this is a clear benefit of the new method over existing TFP methods, which

are usually restricted to low resolution data set or heavily rely on smoothing operators. In addition, the method is quite flexible,

it is quite straightforward to include new training data sets, as e.g. surfaces fronts for the southern hemisphere. In addition,

there is no principle obstacle for using meteorological data sets with higher resolution as input for the method.

In future work separating the detection from the classification task may be beneficial, seeing the good detection rates of795

the presented network in the binary case. We would also like to further explore the application and effect of other methods to

handle the label bias, such as the method described by Acuna et al. (2019). In terms of research in the field of meteorology,

we want to apply this method for further research on the connection of frontal systems with other phenomena, e.g. for the

investigation of clouds at different heights around fronts or transport phenomena associated with frontal systems.

Code and data availability. The latest code is available at https://github.com/stnie/FrontDetection. A doi will be submitted later. ERA5800

Reanalysis data can be accessed via the ECMWF climate data center. Used NWS frontal label is available with doi: 10.5281/zenodo.2642801

(National Weather Service, 2019). Access to the DWD data may be granted by the DWD.

Video supplement. A video supplement showing predicted fronts for January 2016 is available at https://av.tib.eu/media/54716 (Niebler,

2021)
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