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Abstract. Issuing skillful forecasts beyond the typical horizon of weather predictability remains a challenge actively addressed

by the scientific community. This study evaluates winter subseasonal reforecasts delivered by the CNRM and ECMWF dynam-

ical systems and identifies that the level of skill for predicting temperature in Europe varies fairly consistently in both systems.

In particular, forecasts initialized during positive NAO phases tend to be more skillful over Europe at week 3 in both systems.

Composite analyses performed in an atmospheric reanalysis, a long-term climate simulation and both forecast systems un-5

veil very similar temperature and sea-level pressure patterns three weeks after NAO conditions. Furthermore, regressing these

fields onto the 3-week prior NAO index in a reanalysis shows consistent patterns over Europe but also other regions of the

northern hemisphere extratropics, thereby suggesting a lagged teleconnection, either related to the persistence or recurrence of

the postive and negative phases of the NAO. This teleconnection, conditioned to the intensity of the initial NAO phase, is well

captured by forecast systems. As a result, it is a key mechanism for determining a priori confidence in the skill of wintertime10

subseasonal forecasts over Europe as well as other parts of the northern hemisphere.

1 Introduction

Skillful weather and climate predictions for horizons beyond two weeks could benefit many users (White et al., 2017). Lately,

so-called subseasonal-to-seasonal (S2S) forecasts have gained considerable attention and effort from the scientific community

in multiple aspects, including the characterization of sources of predictability, such as atmospheric teleconnections, the initial-15

ization and generation of ensemble forecasts, the calibration and tailoring of the raw model outputs for enhanced usability and

uptake by the application community (Merryfield et al., 2020). The S2S horizon has been often considered as a "predictability

desert" based on mean statistics and traditional methods and analyses inspired from seasonal-to-decadal climate prediction,

but the most recent studies reveal instead so-called windows of opportunity based on the fact that under certain circumstances,

and for specific events and regions, S2S predictability can be considerably increased (Mariotti et al., 2020). This conditional20

predictability is illustrated by a number of case studies showing the successful anticipation of extreme climate events by dy-

namical forecast systems beyond 15-day lead time (Domeisen et al., In revision). Rather than a predictability desert, the S2S

horizon appears more like a “predictability well" intermittently fed by these windows of opportunity. Timely drawings from the

well, i.e. a priori identification of the windows of opportunity, are a major asset in an operational context for the development
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and uptake of climate services relying on subseasonal forecasts, but it remains a scientific challenge with some promising25

examples. For instance, Mayer and Barnes (2021) recently related the accuracy of North-Atlantic geopotential height forecasts

issued by a neural network to their level of confidence. Their approach also allows to pinpoint the most relevant remote tropical

regions leading to higher forecast skill.

At the subseasonal scale, European and Eastern North American climate are influenced by the phase of the North Atlantic

Oscillation (NAO), the leading mode of climate variability over the North Atlantic sector (Cattiaux et al., 2010; Seager et al.,30

2010; Luo et al., 2020). The positive (NAO+) and negative (NAO-) phases of the NAO correspond to two well-identified

weather regimes characterizing recurrent synoptic-scale atmospheric patterns in winter, along with the Atlantic Ridge (AR)

and Scandinavian Blocking (BLO) (e.g. Vautard, 1990). The NAO is sometimes considered as the local manifestation of a

hemispheric variability pattern called Northern Annular Mode or Arctic Oscillation (AO). AO and NAO are strongly correlated

in present climate (Hamouda et al., 2021).35

The tropics-extratropics teleconnection described by Cassou (2008) and Lin et al. (2009) illustrates the major role of the

Madden-Julian Oscillation (MJO) phase in pre-conditioning North Atlantic weather regimes. Recently, Lee et al. (2019) found

evidence of El-Niño Southern Oscillation (ENSO) modulating the strength of this teleconnection which largely contributes to

the subseasonal predictability of the North Atlantic (Vitart, 2017). More generally, the tropical background state and variability

are essential to induce subseasonal predictability of the northern hemisphere circulation, especially in winter, provided that the40

climate phenomena supporting the teleconnection, such as the atmospheric upper-level jet are adequately simulated (Yamagami

and Matsueda, 2020). The stratosphere is another key precursor to the variability and predictability of the wintertime northern

hemisphere circulation (Domeisen et al., 2020). A correct initialization (Zuo et al., 2016), together with a good representation

of the stratosphere-troposphere coupling (Kolstad et al., 2020) accordingly contributes to skillfully forecast the NAO. The

combination of ENSO evolution and stratospheric processes also drives the extended range NAO predictability (Sun et al.,45

2020).

Other studies have focused on the predictability conditioned by the wintertime weather regimes occurring at initialization

time. Based on a specific set of weather regimes affecting North America, Vigaud et al. (2018) demonstrated the capacity

of the ECMWF subseasonal forecast system to successfully predict some of them up to two weeks. Robertson et al. (2020)

built on this study to emphasize the value of this weather regime approach for identifying forecasts of opportunity over North50

America, with high skill up to 30 days ahead for specific events or seasons. The flow-dependent variations of the subseasonal

forecast skill over Europe was also evidenced (Ferranti et al., 2018), with a relatively good capacity of the ECMWF system

to reproduce the preferred transitions between weather regimes. Ferranti et al. (2015) identified differences in medium-range

weather forecast performances conditional to the regime flow in the initial conditions with initial NAO- states leading to more

skillful forecasts. Beyond approaches based on weather regime prediction, Minami and Takaya (2020) recently found that55

Northern Hemisphere 500 hPa geopotential height was more predictable when following strong negative initial AO, due to an
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eddy-zonal flow feedback that contributes to persist this mode of atmospheric variability. This study emphasizes the role played

by large-scale extratropical atmospheric dynamics in subseasonal predictability, on top of tropical and stratospheric precursors.

Our main goal here is to further explore the relationship between the circulation flow present in the forecast initial conditions,

hereafter initial weather regimes, and subseasonal predictability of the 2m-temperature in winter over a broad North Atlantic60

European domain. In this study we analyze jointly the ECMWF forecast system, and the most recent CNRM (Météo-France)

subseasonal forecast system, launched in October 2020. The next section presents these forecast systems, as well as reference

data and methods adopted in this study. The main results are then developed in a dedicated section. The last section provides

concluding remarks and prospects.

2 Data and methods65

2.1 Forecast systems

Subseasonal forecasts delivered by CNRM have been routinely feeding the S2S database (Vitart et al., 2017) since 2015 with

forecasts issued every Thursday. Lately, the CNRM forecast system version 1 (Ardilouze et al., 2017) has been superseded

by a version 2 used in this study. Unlike the ECMWF extended range forecast system (which also feeds the S2S database),

the CNRM upgraded system has been designed for research purposes and is not intended for operational aspects. Since the70

ECMWF system is often acknowledged as the most skillful system in several intercomparison comparison studies (e.g. Zheng

et al., 2019; Specq et al., 2020), it will serve as a benchmark in the present work to assess the performance of the new CNRM

system. The main characteristics of both forecast systems are described in table 1.

In this manuscript, ’reforecast’ and ’forecast’ indistinctly refer to retrospective forecasts, also named ’hindcast’ in other

studies. The comparison of ECMWF and CNRM prediction systems is facilitated by their comparable reforecast ensemble75

size and a common 20-year reforecast period. Here, we consider the December-to-March extended winters from 1997/1998 to

2016/2017.

However, because of different reforecast designs, initial dates do not exactly match between the two systems. This issue is

addressed as follows. We first select for each winter 16 consecutive CNRM start dates (i.e. Thursdays) after November 13th,

so that week 3 and 4 are always included within the December to March 4-month period. Then for each of these 320 (16x20)80

CNRM initial dates, we pick the closest date among the available ECMWF initial dates. Since ECMWF forecasts are issued

twice a week, the resulting date from this selection either matches the CNRM counterpart or precedes/follows it by no more

than two days, depending on the reforecast year. Note that each reforecast is evaluated against the corresponding reanalysis

dates, to ensure a perfectly fair inter-model comparison.

Forecast and observed daily anomalies are considered rather than full fields, in order to remove the model bias : for the nth85

32-day forecast (n ≤ 16) of a given winter, daily anomalies are computed by subtracting the 32-day climatology as a function

of leadtime, corresponding to the mean of the nth forecasts of the 19 other winters.
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Table 1. Characteristics of the CNRM and ECMWF subseasonal reforecasts

Characteristic CNRM ECMWF

Model CNRM-CM6-1 HR (Voldoire et al., 2019) ECMWF IFS CY43R3

Horizontal resolution TL359 (∼50 km) Tco639 (∼15 km) up to day 15, Tco319

(∼31km) after day 15

Vertical resolution 91 levels up to 0.01 hPa 91 levels up to 0.01 hPa

Ocean resolution 0.25◦, 75 levels 0.25◦, 75 levels

Reforecast ensemble size 10 11

Reforecast frequency Thursdays Bi-weekly

Reforecast system fix on-the-fly

Atmospheric/Land initial conditions ERA5 (Hersbach et al., 2020) ERA-Interim (Dee et al., 2011)

Ocean/sea-ice initial conditions Mercator Ocean International ORAS5

Ensemble generation Stochastic dynamics (Batté and Déqué, 2016) Perturbed initial conditions (Singular vectors,

Ensemble Data Assimilation) + Stochastic

physics (SPPT and SKEB schemes)

In this study, we follow a frequently used convention in the S2S community to define weekly lead times (e.g. Vitart, 2004;

Specq et al., 2020; de Andrade et al., 2021) : week 1 goes from day 5 to day 11, week 2 from day 12 to 18, week 3 from day

19 to 25 and week 4 from day 26 to 32.90

For the composite analysis described in section 3.3.1, in addition to the forecast systems, we make use of a 300-year long

pre-industrial simulation (known as piControl) of the same model used in the CNRM system, namely CNRM-CM6-1-HR,

and performed in the framework of the Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016). This

experiment is useful to assess the behavior of the model internal variability without any drift from initial conditions nor forcing

interference stemming either from initialization or volcanic and anthropogenic aerosols as well as greenhouse gas emissions.95

Additionally, this simulation provides enough years to work on densely populated composite samples, thereby ensuring an

enhanced robustness of the results.

2.2 Reference dataset and forecast skill metrics

The ERA5 reanalysis (Hersbach et al., 2020) serves as the reference for daily sea-level pressure and daily-mean 2-meter tem-

perature. This reanalysis, although resulting from a model output, assimilates a wide array of observations, and will therefore100
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be considered as our observational reference. For simplicity, we will use the term "observation" - albeit abusively - to refer to

ERA5 in the rest of the manuscript. Because ERA5 and ECMWF reforecasts are derived from two versions of the same model,

one may object that ERA5 is not a suitable reference for this study. To verify if the assessment of the ECMWF predictions

is favoured by the choice of this reanalysis, we have compared some of the results obtained with ERA5 to results using the

JRA-55 (Kobayashi et al., 2015) reanalysis as a reference. Given the very limited differences found (not shown), we have105

chosen to pursue with ERA5 only.

A common score to evaluate a subseasonal forecast system is the point-wise Pearson correlation between the ensemble

mean forecasts and the corresponding observations over the entire reforecast period. Grid-point time correlation is a classic

deterministic score, whose significance is here determined by a two-sided Student t-test at the 95% confidence level.

In order to evaluate the skill of an individual forecast, we also compute the anomaly correlation coefficient (ACC) which110

shows the level of spatial agreement between the forecast and observed patterns. This is performed over a domain covering

Europe (hereafter EUR, 12◦W,41◦E,34◦N,65◦N). The domain boundaries are displayed on the map of figure 1. For ACCs, the

significance is obtained by a bootstrapping method applied to the ensemble members of the forecasts: we compute the ACCs

of 100 draws among the 10 (11) members of the CNRM (ECMWF) forecast and consider the forecast skillful if at least 95% of

the 100 ACCs exceed zero. For the sake of convenience, our definition of skillful individual forecasts is arbitrary, and should115

be understood as “forecasts with the highest ACCs”. It does not imply that they systematically outperform climatological

forecasts. This point is addressed by means of the probabilistic skill evaluation (see below). The root mean square error

(RMSE) measuring the distance between the ensemble mean forecast and observation regardless of the sign of the anomaly

has also been computed for individual forecasts, and normalized by the interquartile range of the observation. However, this

score has only been used to confirm a result found with the ACC in section 3.1.120

In addition to deterministic scores, the ensemble forecasts can be evaluated by means of probabilistic skill metrics. The

continuous ranked probability score (CRPS) is the quadratic difference between the cumulative distribution function (CDF)

of an ensemble forecast and the empirical CDF of the observation. The smaller the CRPS, the more accurate the forecast. Let

� (G) be the forecast CDF for the variable G (e.g. weekly-mean 2-meter temperature), and H the corresponding observation,

then the analytical expression of the CRPS is :125

�'%( =

∫
R

(� (G) − 1(G ≥ H))23G (1)

where 1 is the indicator function.

It is also insightful to compute a continuous ranked probability skill score (CRPSS) for a dynamical forecast system by

comparing its CRPS (�'%( 5 ) with that of a climatological forecast (�'%(2) so that :

�'%(( = 1−
�'%( 5

�'%(2
(2)130
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CRPSS ranges between -∞ and 1, 1 corresponding to a perfect forecast. Negative CRPSS values indicate that dynamical

forecasts are less accurate than climatological forecasts. In this study, we consider 16 forecasts per winter over 20 years.

Therefore, for the nth (n ≤ 16) forecast of a given year, the corresponding climatological forecast consists in a 19-member

ensemble forecast grouping the nth forecasts of the 19 other years. To take into account the differences in ensemble size

between the forecasts and their corresponding climatological forecasts, a so-called ’fair’ version of the CRPSS is computed,135

via an unbiased estimator for the score that would be obtained as the ensemble size increases to infinity (Ferro et al., 2008;

Ferro, 2014).

2.3 Weather regimes and NAO index

The computation of weather regimes is performed on the ERA5 1979-2017 extended winter, i.e. the months of November

to March (hereafter NDJFM). It consists in a k-means clustering of daily maps of sea-level pressure (SLP) anomalies of140

the North-Atlantic Europe (NAE) domain defined by the boundaries 90◦W,30◦E,20◦N and 80◦N. In order to facilitate this

clustering, an Empirical Orthogonal Function (EOF) analysis is applied to the SLP anomaly maps, for which the 19 leading

modes are retained, explaining more than 90% of the SLP variance. The four resulting clusters correspond to the typical North-

Atlantic weather regimes widely described and used in the literature (e.g. Michelangeli et al., 1995). By decreasing order

of frequency, these regimes are identified as positive phase of the North-Atlantic oscillation (NAO+), Scandinavian blocking145

(BLO), negative phase of the North-Atlantic oscillation (NAO-) and Atlantic ridge (AR). Each winter day of the reanalysis

and the model simulations is then assigned to the weather regime for which the root mean square distance between the regime

centroid and the map of SLP anomaly is minimal. Note that in this study, we have also tested a similar approach with a

regime persistence criterion. More precisely, only sequences of 3 days or more corresponding to the same weather regime are

effectively assigned to this regime. The impact of this persistence criterion is discussed at the end of section 3.2.150

The assessment of teleconnections is facilitated by the use of a NAO index that quantifies this oscillation. Here, it is calculated

as the normalized time series of the first principal component, resulting from the projection of the daily ERA5 SLP anomaly

field on the leading EOF. For further robustness and because there are multiple ways to define the NAO (Pokorná and Huth,

2015), a comparison is made with another NAO index computed independently by the U.S. National Oceanic and Atmospheric

Administration (NOAA) (NOAA Climate Prediction Center NAO index, 2020) on 500 hPa geopotential height fields from the155

NCEP/NCAR reanalysis and using a different method (Barnston and Livezey, 1987). Despite the many differences between

the two daily NAO indices, their correlation for NDJFM 1979-2017 is as high as 0.77.

3 Results

In this section, we start with a general skill assessment to obtain a compared overview of the model ability to predict 2-meter

temperature at the subseasonal horizon. The second and third subsections address the question of flow-dependence and the160

consequences on the forecast skill.
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3.1 Skill of the subseasonal forecast systems

3.1.1 Northern hemisphere assessment

The pointwise Pearson correlation between forecasts and observation is shown for week 1 to week 4 forecast times in figure 1.

Figure 1. Correlation between week 1 to week 4 2-meter temperature forecasts and the corresponding observation for CNRM (a to d) and

ECMWF (e to h) forecast systems. Stippling indicates grid points where correlation is not significantly positive at the 95 % confidence level.

The numbers show the spatial correlation between CNRM and ECMWF maps for each week. Green boxes indicate the focus region (EUR)

and forecast lead-time (week 3) targeted in section 3.1.2.

It clearly shows for both systems the sharp decrease of skill after week 1, and also the better performance of the ECMWF165

system for the 4 weeks. This result was somehow expected given the much finer spatial resolution of the ECMWF system

(Vitart, 2017). The skill difference could also originate from the better fit between the ECMWF forecast system and the

ERA-Interim initial conditions, derived from another version of the same IFS model, in particular for the land surface slow-

evolving components such as snow cover, soil moisture and deep soil temperature. Nonetheless, discussing the impact on skill

of ECMWF and CNRM modelling and forecasting strategies is out of the scope of this study.170
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For both models, the correlation at week 3 remains positive for large parts of the Northern hemisphere extratropics, albeit

weakly over continents. At week 3 and 4, the ECMWF forecasts still show significant correlation over most of Europe, while

this is only true over Eastern Europe for CNRM. Overall, while ECMWF exhibits higher skill than CNRM, the large-scale pat-

terns of gridpoint correlation are strikingly similar between both models, as confirmed by the high values of spatial correlations

reported on Figure 1.175

However, positive correlations do not guarantee that these forecasts are more useful than a simple climatological forecast.

To document this issue, we compare the CRPS probabilistic score with that of a climatological forecast, by means of the fair

CRPSS (see section 2.2). On these maps (fig. 2), white and blue shadings indicate regions where the forecasts do not perform

better than the climatology. This score highlights the much better performance of ECMWF over CNRM as early as week 2.

The skill patterns look like those found in the correlation analysis, but they are more drastic. For example at week 3, over180

Europe, the CNRM system shows only remnant skill near the Baltic sea, and the ECMWF over the North of the continent as

well as a limited portion of Central Europe. The contrast between the two systems is even more striking over North America.

The comparatively poor CRPSS of CNRM could be the consequence of a lack of ensemble spread, resulting in a too narrow

distribution of forecasts, which denotes overconfident predictions. The complementary analysis shown in Appendix A, which

compares the intra-ensemble standard deviation of the two systems from week 1 to week 4, tends to confirm this hypothesis.185

Interestingly, the systems remain relatively skillful over the Mediterranean sea but also the sea of Okhotsk, the Kara, Barents

and Labrador seas, and, to a certain extent, the Baltic sea. This could be a consequence of persisting sea-surface temperature

(for the Mediterranean) and sea-ice extent (for the Arctic and North Atlantic seas) anomalies leading to enhanced subseasonal

predictability to the near-surface atmosphere (Chevallier et al., 2019; Bach et al., 2019), although indisputable evidence would

require a dedicated study.190

From now on, our work focuses on the predictability of week 3 only.

3.1.2 Focus on Europe

The forecast skill of EUR 2-meter temperature is assessed from the 320 reforecasts at week 3 for both systems, by means of

the ACC. This score varies considerably between dates. Thus, in order to investigate the degree of consistency between models

forecast skill, Figure 3 plots the distribution of ECMWF ACC against CNRM ACC over EUR, for each of the reforecast195

dates. Dots depict the 320 reforecasts and filled contours the corresponding probability density function. Red dots show the

reforecasts where ACCs are significant at the 95 % level for both systems. This distribution is fairly symmetric, albeit slightly

skewed towards higher values for ECMWF, which is consistent with results found in the previous section. This is also revealed

by the mean and median points (black and grey triangles, respectively), located slightly above the H = G identity line. The

standard deviation of ACCs is similar (0.42 for CNRM vs. 0.40 for ECMWF). More interestingly, the correlation between200

CNRM and ECMWF ACCs reaches 0.52. The correlation is even higher (0.61) when considering the RMSE of the individual

forecasts instead of the ACC (not shown). The scatter plot also reveals that the most skillful concurrent forecasts (red dots) are

less scattered and more grouped along the H = G identity line than other forecasts that are more spread out. They correspond
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Figure 2. Fair CRPSS for week 1 to week 4 forecasts for CNRM (a to d) and ECMWF (e to h) forecast systems, against climatological

forecasts (see text). Red shades indicate that the actual forecasts are more skillful than the climatological counterparts.

to the maximum of the probability density function, plotted in green and yellow shades. This suggests that high skill forecasts

contribute more to the correlation than low skill counterparts. In other words, CNRM and ECMWF systems are more prone to205

issue concurrently good forecasts than concurrently poor ones.

The synchronicity found in the level of skill between the CNRM and ECMWF week 3 forecasts therefore indicates the

existence of a common source of predictability concerning the EUR region.

We now investigate the distribution of skillful forecasts along the 20 year period considered in this study. The barplots in

figure 4 show a relatively consistent interannual variability : the number of yearly skillful forecasts for ECMWF, in red, is210

significantly correlated to that of CNRM, in blue (r=0.61). We reprocessed figures 3 and 4 after removing a linear trend derived

from the DJFM ERA5 2-meter temperature averaged over the Europe domain. We found no significant changes in the ACC

distribution and correlation (0.519 instead of 0.521), nor in the interannual variability of skillful forecasts (not shown). Limited

changes in the number of significantly positive ACCs per year and per forecast system before and after detrending confirm the

minimal influence of the warming trend on the forecast skill.215
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Figure 3. Scatter plot (dots) and probability density function (contours) of ECMWF ACC in function of the corresponding CNRM ACC for

each of the 320 wintertime reforecasts of EUR 2-meter temperature at week 3. Red dots mark ACCs significant at the 95 % confidence level

for both CNRM and ECMWF. The black and grey triangles correspond to the mean and the median point respectively, and the black solid

line to the H = G identity line

In any case, 2009-2010 stands out as the winter with the maximum number of skillful forecasts of the 20-year period for

both CNRM and ECMWF systems either considered jointly (green bars) or separately (blue and red bars). Since that winter

is characterized by a record-breaking negative NAO index (Cattiaux et al., 2010), we have computed the correlation between
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the yearly number of skillful forecasts and a winter mean NAO index (December-to-March) derived from our daily NAO index

datasets. The correlation is not significant if the NAO index is computed by averaging daily NAO indices (not shown). However,220

when computed as the mean of daily absolute values of the ERA5 NAO index (brown broken line in fig. 4), the correlation

found is significant. This is also true with the NOAA NAO index, with A ranging from 0.44 to 0.66. This result suggests that

S2S EUR forecasts are more frequently skillful during winters characterized by a strong NAO index, either positive or negative.

Figure 4. Yearly number of skillful forecasts for CNRM (blue), ECMWF (red) and both systems (green) computed on EUR week 3 tem-

perature forecasts. The brown broken line shows the absolute value of the winter NAO index derived from ERA5 (see text). The ’r’ values

reported in the legend correspond to the correlation of this index with the yearly number of skillful forecasts.

Therefore, the next section focuses more specifically on the relationship between forecast skill and weather regimes.
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3.2 Relationship between forecast skill and initial weather regime225

We now consider the first 4 days after initialization as a relevant time window to discuss about initial weather regime. We

argue that the choice of using 4 days instead of the single first day allows more robustness, since the latter may sometimes lie

in between two different regimes. This 4-day window is also consistent with the S2S convention that defines the first forecast

week as starting from day 5 onwards (see section 2.1).

We count separately for each member the occurrence of each weather regime assigned to the first 4 days of the forecast230

members, among the 68 EUR forecasts out of 320, that are concurrently skillful for CNRM and ECMWF.

In this sample of 68 skillful reforecasts, the frequency of initial NAO+ days is significantly higher, and that of initial BLO

days lower than in the 252 other reforecasts, for both forecast systems (Table 2). The frequency of NAO- initial days is also

higher in CNRM but not significantly for ECMWF.

Table 2. Initial weather regime frequency in % of skilful forecasts over EUR. Numbers in parentheses indicate the frequency for all the other

forecasts. Bold characters highlight where the regime frequencies of skilful forecasts are significantly different from those in parentheses at

the 95 % confidence level as determined by bootstrap.

Weather regime NAO+ BLO NAO- AR

CNRM 39.2 (26.5) 14.9 (30.5) 29.6 (22.6) 16.3 (20.4)

ECMWF 38.2 (27.8) 17.5 (26.8) 27.8 (23.1) 16.5 (22.3)

If skillful forecasts tend to start more frequently with NAO conditions, we would like to verify the reciprocal, i.e. how235

skillful the forecasts starting with NAO conditions are. To this end, instead of subsampling the forecasts according to their

level of skill, we now cluster the 320 forecasts in 4 groups determined by their initial weather regime and compare the mean

skill evolution along the forecast time for each of these clusters (fig. 5). We define the initial weather regime of each forecast

as the regime with the greatest number of occurrence during the 4 initial days.

Here the significance level is obtained by means of a bootstrapping method. More precisely, for a cluster of size # , a240

probability density function of mean ACC is built out of 1000 draws with replacement of # forecasts within this cluster. The

forecast is then considered significant if the first percentile of the distribution is positive.

For both systems, the mean ACC of the forecasts initialized in NAO+ conditions becomes higher than those initialized with

other regimes by day 6 and more markedly from day 15 onwards, albeit not significantly (not shown). The difference vanishes

past day 25 for CNRM but not for ECMWF. Finally, the ACC remains significantly positive until the end of the forecast period245

in both systems although a positive ACC does not necessarily imply that the forecasts are useful, as discussed in section 3.1.

It is also interesting to notice that NAO- conditions do not lead to particularly skillful forecasts at week 3 for CNRM, as could

have been expected from table 2, and that models agree upon AR being the worst initial weather regime in terms of temperature

subseasonal predictability over Europe, since the mean ACC of forecasts initialized thereby are no longer significant past day

18 or 19.250
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Figure 5. Mean ACC evolution with forecast time over Europe by initial weather regime for (a) CNRM and (b) ECMWF. Solid lines indicate

values significantly positive at the 99 % confidence level. The number of forecasts for each initial regime is reported in parentheses.

The next question arising from the previous results is the evolution in time of the regime frequency among these forecasts

initiated under NAO+ or NAO- conditions. The stacked bar plots on figure 6 illustrate this evolution. Note that the residual

non-NAO+ (resp. non-NAO-) regimes showing in the 4 initial days simply result from our clustering method based on the

predominant regime counted within the 4 initial days of all ensemble members, thereby leaving some room for the occurrence

of other weather regimes. We find that despite a rapid decrease of the NAO+ regime proportion with forecast time, it remains255

slightly larger than the climatological one at week 3. A similar but more pronounced result is found for NAO-. This suggests that

the NAO regimes are persistent in the forecasts although this cannot be ascertained at this stage since no statistical significance

test has been performed here, and furthermore, all the ensemble members are pooled together, which conceals the transitions

between weather regimes.

Before exploring further the causes of the above results, we need to address in more detail the question of regime persistence.260

So far, every forecast or observed day has been assigned with one of the 4 weather regimes, regardless of the day-to-day

variability of the regime sequence. Such variability occurs when the spatial distribution of high and low pressure systems of

a given day does not match well any of the canonical weather regimes, or corresponds to a transition between two of them.

To overcome this issue, we have defined a fifth category (called ’NONE’) assigned to days outside any sequence of 3 or more

days belonging to the same weather regime. Excluding the forecasts initialized with the predominant ’NONE’ category results265

in 4 smaller clusters of forecasts. Nonetheless the mean ACC evolution is not dramatically changed, and the ACC dependence

on the initial conditions lead to the same hierarchy of weather regimes as can be seen in Appendix B. Similar conclusions
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Figure 6. Weekly evolution of regime frequency among forecasts initialized in NAO+ (a) or NAO- (c) conditions for CNRM. (b) and (d)

same as (a) and (c) for ECMWF. The leftmost bar corresponds to the 4 initial days. The rightmost bar corresponds to the climatological

frequency for week 3.

can be drawn regarding the weekly evolution of regime frequency after taking the ’NONE’ category into account. Given the

limited impact of the screening based on regime persistence, the following sections rely on the original daily weather regime

assignment, i.e. without the ’NONE’ category.270
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3.3 Evidence of a lagged teleconnection

3.3.1 Composite analysis

The previous section has pinpointed a slight distort in the weather regimes distribution at week 3 for forecasts initialized in

NAO conditions. For a broader comprehension, we thus compute the spatial composites of week 3 anomalies for this subset of

forecasts for sea-level pressure (fig. 7a and b) and 2-meter temperature (fig. 7e and f). Given that 87 (93) forecasts out of 320275

are concerned for CNRM (ECMWF) and that each of them comprises 10 (11) members, the composite maps result from the

average of ==870 (==1027) single realizations. The ECMWF and CNRM composites show some similarities over the Atlantic

sector with a distinct low pressure anomaly over the Arctic and high pressure anomaly centers near the Azores archipelago. The

temperature patterns are even closer to each other with a large scale warm anomaly stretching from Central Europe to Eastern

Siberia and a cold anomaly over Canada, more pronounced near the Labrador Sea. The main difference between ECMWF280

and CNRM concerns the sea-level pressure anomaly over Europe, which barely reflects onto the temperature anomaly. If we

consider the positive pressure anomaly over the North Pacific, it may remind of the Arctic Oscillation (AO) loading pattern

(e.g. fig.1 in Thompson and Wallace, 1998), although this anomaly is not significant for CNRM, and more importantly not

consistent with observations (see below).

The patterns found could be specific to the forecast systems, i.e. GCMs constrained by imposed initial conditions and285

external forcing affected by a strong anthropogenic imprint. To verify this hypothesis, we derive a set of single-member pseudo-

forecasts from the CNRM-CM6-1-HR 300-year-long piControl simulation. For each simulated year, we extract sixteen 32-day

time series starting every seven days from Nov. 13th to February 26th, so as to mimic successive S2S forecast start dates.

Among the 4784 resulting pseudo-forecasts, those having a majority of initial days assigned as NAO+ are sampled to compute

sea-level pressure and 2-meter temperature anomaly composites (fig. 7c and g). In this case, it concerns ==957 realizations.290

We proceed likewise for the 1950-2017 ERA5 reanalysis (fig. 7d and h), in order to compare the realism of this behaviour with

respect to observation. This long ERA5 period is a trade-off between a sufficient sample size, requiring more than 20 years to

be comparable with reforecast composites, and a stable structure of weather regimes given the decadal variations of the NAO

(e.g. Jung et al., 2003; Woollings et al., 2015). However, despite long term shifts in the centre of actions occurring during the

1950-2017 period, the main features of NAO regimes, characterized by the Eurasia/Canada temperature dipole and a North295

Atlantic meridional pressure gradient, are preserved.

The piControl composite shows broadly consistent patterns over the mid-Atlantic notwithstanding differences in terms of

relative amplitude and extent of pressure anomalies. For temperature, the warm anomaly over Southeastern US is somewhat

stronger than in the forecast systems. The amplitude of the ERA5 composite patterns is generally larger, which is at least partly

explained by the reduced size of the composite sample (==203). This observational composite shows a larger extent of the300

Atlantic high pressure belt also covering Southern Europe and central Asia, and conversely no high pressure anomaly over

North Pacific, which diverges from the hemispheric positive AO loading pattern evoked earlier. In terms of temperature, the
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main difference is the greater extent of the warm anomaly over North America and the cold pattern near Bering strait, with

respect to the forecast and piControl composites.

A similar composite analysis has been carried out with (pseudo-)forecasts initiated in NAO- (fig. 8). Here the pressure305

and temperature composites show even more similarities between forecasts and observation, in particular over the North-

Atlantic-Europe region. Similar to NAO+, surface pressure patterns show more differences than temperature, in particular

over East Siberia, West Pacific and North America. In the piControl composite, again, the patterns found are less intense but

very consistent for temperatures, less so for surface pressure. One explanation for this reduced consistency could be that in

the piControl time series, boundary conditions such as the ocean, sea-ice and stratosphere also influencing the atmospheric310

flow, have no reason to be coherent with observation, unlike the forecast composites initialized with reanalyzed atmospheric

boundary conditions.

To summarize, this composite study reveals some significant agreement between forecast systems, unforced GCM and

reanalysis as to prevailing atmospheric flow and near surface temperature anomalies during the third week following NAO

conditions. This agreement is much better for negative than positive NAO, for temperature than pressure patterns, and for the315

North-Atlantic (pressure), Labrador, Europe and Siberia (temperature) regions. The lesser agreement found for NAO+ could

relate to our clustering methodology, as discussed in the conclusion.

3.3.2 Observational NAO index

At this point, our study has only considered a weather regime assignment based on a root mean square distance criterion but this

method may conceal a wide array of a atmospheric situations. Here we make use of the NAO index that quantifies the amplitude320

of the oscillation, and allows to identify periods of intense NAO+ or NAO- conditions. The composite analysis suggests that

NAO initial conditions lead to NAO-like atmospheric flow. To verify this, we evaluate the extent to which the NAO index

decorrelates with time in the observation. More precisely, figure 9 depicts the correlation of the averaged day-1-to-day-4 NAO

index with a sliding window of 7-day running mean NAO index. The grey line and envelope consider the 608 aforementioned

time series (that is, 16 per winter of the 1979-2017 period) whereas the red counterparts only consider the 10 % characterized325

by the highest absolute value of the initial NAO index. Such screening selects the time series with an initial atmospheric flow

characterized by intense NAO+ and NAO- conditions. Despite different datasets and methodology, the NAO decorrelation

compares well to other studies when keeping the whole sample (Keeley et al., 2009) with a characteristic decorrelation time

of 8 to 10 days. However, the decorrelation is much slower when considering only the subsample with intense NAO initial

conditions. Keeley et al. (2009) also identified a similar "shoulder" or "rebound" in the NAO decorrelation function between330

10 and 30 days and find it largely related to interannual variability, as opposed to intraseasonal. The decorrelation timescale

and behavior are consistent when evaluated over a wide range of different NAO indices (fig. 3b in Domeisen et al., 2018). The

overlap between confidence intervals indicates that the difference found is not significant beyond 10 days when the NAO index

is derived from ERA5 sea-level pressure. However it remains largely significant for the NOAA NAO index based on 500 hPa

geopotential height, in particular three weeks after initialization where the correlation peaks up. For that matter, the sensitivity335
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Figure 7. Composite anomaly of Week 3 sea-level pressure (in Pa) following NAO+ initial conditions in (a) CNRM forecasts (==870) (b)

ECMWF forecast (==1027) (c) CNRM piControl pseudo-forecasts (==957) and (d) ERA5 reanalysis (==203). (e) to (h) like (a) to (d) for

2-meter temperature (in K) initial conditions. Anomalies statistically significant at the 95% level are stippled.

of NAO persistence to the NAO index definition is consistent with previous findings (Domeisen et al., 2018). Regardless of

of the NAO index calculation method, our results provide observational evidence of a long-lasting persistence of NAO-like

atmospheric flow in winter.

Finally, still with this observational subsample of ERA5 time series characterized by intense "NAO-like" initial conditions,

we regress the week 3 pointwise 2-meter temperature onto the initial NAO index (fig. 10). Whether derived from ERA5 or340

NOAA, the patterns show similarities, with a stretch of positive correlation extending from South East US to Siberia with

maximum values near the Baltic Sea, and two negative correlation lobes over Greenland / Labrador sea, and from the tropical

North-Atlantic to North Africa and the Middle-East.

Given that the spatial extent of these correlation patterns encompasses large parts of the northern hemisphere, we will now

evaluate if NAO initial conditions of winter subseasonal forecasts could translate into enhanced prediction skill beyond Europe,345

and how this relates to the regression patterns described above.
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Figure 8. Same as fig. 7 for NAO- initial conditions.

3.4 Consequences on forecast skill outside Europe

In the previous section, we have identified a statistical link between wintertime temperature anomalies over a number of regions

of the northern hemisphere extratropics and the 3-week antecedent NAO index. We now return to the forecast skill evaluation,

but this time, we proceed to a subsampling of the reforecasts based on two conditions: the initial weather regime and its350

intensity. More precisely, we select all the reforecasts initiated in NAO+ and NAO- and evaluate their initial NAO index from

the NOAA dataset. We then retain only the "initial NAO+" ("initial NAO-") reforecasts for which the initial NAO index belongs

to the upper (lower) quartile of the distribution. The choice of this percentile results from a trade-off between the strength of the

initial NAO signal and a sufficient sample size. Figure 11 shows the week 3 2-meter temperature correlation after subsampling

and the correlation difference with respect to the full sample of reforecasts (see fig.1c and g). The correlation patterns are355

patchier than in figure 1, because the sample size is considerably reduced, that is, 40 reforecasts instead of 320 for each

system. Nonetheless, the correlation difference highlights a significantly increased skill over North-West Europe, and Central

Siberia, as well as the Labrador seas and the South-East Mediterranean and Middle-East to a lesser extent. These regions match

remarkably well with the regression patterns highlighted in observations (fig. 10) and they are relatively consistent between
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Figure 9. Correlation and 95 % confidence interval (solid line and envelope) of initial NAO index with weekly running mean NAO index

derived from (a) ERA5 and (b) NOAA. Grey (red) shades consider the full sample (subsample with intense NAO initial conditions) of time

series within the 1979-2017 wintertime period, as described in the text. The 1/e decorrelation threshold is marked with the dashed horizontal

line.

CNRM and ECMWF systems. Note that these regression patterns do not necessarily imply a causal relationship and may360

originate from a number of remote drivers (which are not investigated here). Indeed, no improvement of skill is detected over

South East US and off the US Atlantic coast.

Even if there is no one-to-one relationship between local increase or decrease of the prediction skill and the aforementioned

regression patterns, our study reveals consistent evidence that the forecast systems are capable of capturing the lagged NAO

relationship to a certain extent. This provides additional sub-seasonal predictability at the continent scale, conditioned by the365

initial atmospheric flow.

In an attempt to better understand if the increased skill following intense NAO conditions was due to extended regime persis-

tence or rather enhanced regime occurrence, we have performed additional analyses, reported and discussed in the supplement

to this study. Although these analyses only marginally elucidate the question, they suggest that forecasts initiated in strong

NAO- conditions tend do have more persistent NAO- patterns in both CNRM and ECMWF. There is no such evidence for the370

NAO+ case. It could be that strong NAO+ initial conditions are followed by an increased recurrence of the NAO+ regime along

the forecast time, but this feature is only found - arguably not very distinctly - in ECMWF.
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Figure 10. Correlation of ERA5 week 3 2-meter temperature with initial NAO index derived from (a) ERA5 or (b) NOAA. Only values

significantly different from zero at the 99% confidence level are displayed.

4 Conclusions

The main objective of this study is to determine if the atmospheric circulation pattern in place at the time of initialization can

impact the subseasonal predictive skill of forecasts delivered by state-of-the-art forecast systems. This study focuses on winter375

northern hemisphere extratropics near-surface temperature reforecasts issued by the new CNRM subseasonal forecast system

as well as the ECMWF extended-range forecast system.

A first general skill assessment shows that the CNRM system proves less skillful than the ECMWF counterpart when

considering the first 4 weeks after initialization but the spatial patterns compare relatively well. The ensemble spread of the

CNRM forecasts is too weak over much of the Northern Hemisphere across all the prediction horizons, which likely penalizes380

this system in terms of probabilistic skill.
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Figure 11. Correlation between week 3 2-meter temperature and the corresponding observation for the NAO initialized CNRM (a) and

ECMWF (b) reforecasts. (c) and (d) depict the correlation difference (a) minus Figure 1(c) for CNRM and (b) minus Figure 1(g) for ECMWF.

Stippling indicates significant values at the 95% confidence level.

When considering the performances of individual successive forecasts over Europe, the level of skill at week 3 tends to

vary concurrently for both systems, thereby suggesting that they benefit from a common and intermittent source of subseasonal

predictability. Since the European climate is known to be influenced by the North Atlantic Oscillation (NAO), a weather regime

approach has provided evidence that forecasts initialized during positive NAO phases are slightly more skillful over Europe385

than those issued during the other 3 North-Atlantic weather regimes.

A composite analysis has shown that temperature and sea-level pressure anomalies typical of the positive (negative) NAO

regimes tend to characterize the third week following the occurrence of such regime. This feature is well captured and compara-

ble to a certain extent in forecasts, pre-industrial climate simulations and observations, particularly for temperature anomalies.
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The robustness of this time-lagged weather regime impact is further confirmed by the strong and persisting autocorrelation of390

the upper and lower tail of the NAO index distribution.

Ultimately, we show that the subseasonal predictive skill over Europe is more pre-conditioned by intense NAO events, either

positive or negative, than by the prevailing regime at initialization. We also find that this flow-dependent skill concerns mostly

Northern Europe, but also central Siberia and regions surrounding the Labrador sea.

In a next study, it would be worth studying the atmospheric mechanisms involved in this NAO lagged teleconnection, and395

the extent to which they are properly captured by forecast systems. Such an approach could bring insight about the reasons why

the NAO initiated forecasts do not show improved skill over most of Eastern North America, as could have been expected (Luo

et al., 2020). At least for the coastal area, recent findings from Roberts et al. (2021) indicate that the skill could be improved by

reducing the North-Atlantic sea surface temperature biases resulting from inadequate representation of mesoscale ocean eddies

in coupled models. Factors influencing the persistence of NAO+ and NAO- phases should also be investigated to go a step400

further into the concept of flow-dependent "windows of opportunity" for subseasonal prediction. In particular the influence of

sudden stratospheric warming events on the occurrence and persistence of the NAO- regime has been evidenced (Domeisen,

2019). Hence, subseasonal forecasts issued after the onset of such events and characterized by a strong initial NAO phase could

be even more trustworthy, although this hypothesis would require a large reforecast dataset to be verified.

Another prospect for future works would be to evaluate the sensitivity of the results to the methodology. First, our strategy405

to identify wintertime weather regimes, although widely referenced in literature, may not be optimal (Falkena et al., 2020;

Dorrington and Strommen, 2020). It could be that our clustering of the North Atlantic circulation into 4 weather regimes leads

to NAO+ not being a mode of variability specific enough: it can be seen as a mere generic mode that potentially mixes a variety

of distinct weather regimes. The robustness of our results would be worth assessing when considering a larger or smaller set of

weather regimes. Then, the reforecasts clustering strategy could also be questioned. In particular, a distance threshold between410

sea-level pressure patterns in reforecasts and the weather regime centroids could be applied in order to subsample only those

reforecasts initiated in conditions very close the canonical modes of atmospheric variability.

Finally, including more forecast systems for a multi-model approach would bring considerable interest but also a great deal

of additional complexity, given the many differences in the design of the S2S forecast systems.
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Appendix A: Comparison of the CNRM and ECMWF ensemble spread415

Figure A1 shows the weekly evolution with leadtime of the intra-ensemble standard deviation of the 2-meter temperature for

the CNRM and the ECMWF subseasonal reforecasts. Since the CNRM ensemble size holds 10 members vs. 11 members for

ECMWF, only 10 members of the latter have been used to guarantee a fair comparison of the two systems. The week-by-week

differences (bottom row maps) help visualize that the ECMWF ensemble is more dispersive (red shades) than the CNRM

counterpart over the vast majority of the Northern hemisphere whatever the prediction horizon. Only the North Pole and to420

a certain extent South Asia at longer lead times show more spread for CNRM. This lack of spread for CNRM is particularly

pronounced over high latitude continents but considering the slow evolution of sea-surface temperature, the lack of spread over

oceans is also meaningful and should not be overlooked.
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Figure A1. Ensemble standard deviation of 2-meter temperature for week 1 to week 4 (a to d) CNRM and (e to h) ECMWF and week 1 to

week 4 standard deviation differences ’ECMWF minus CNRM’ (i to l). Differences not significant at the 95 % confidence level have been

set to zero.
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Appendix B: Approach based on persisting regimes

We here provide the results obtained after taking into account the persistence of the weather regimes, resulting in a new category425

"None" (see section 3.2 for details). As can be seen in comparing figure B1 with 5 and figure B2 with 6, the results found are

very similar with or without this new category.

Figure B1. Like fig. 5 but with a fifth category ’None’ including days outside any persistent sequence of a canonical weather regime
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Figure B2. Like fig. 6 but with a fifth category ’None’ including days outside any persistent sequence of a canonical weather regime
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