
The following formatting is used: 

RC comment is listed in blue 

Response is listed in normal black text. In some cases figures are referenced in the response, these can be 
found at the end of the response document. 

Brief description and location (if not listed in comment) of changes in manuscript are listed in black 
italics. 

 

 

RC1:  

- Line 35: What do you mean by “appropriate way”? not clear here. Do you mean the SVD analysis that 
you mention later? 

“Appropriate way” does refer to the SVD analysis.  

No changes made in text 

 

- Eq.3- n is not defined here 

In this case n refers to the number of members in an ensemble. 

n is now defined in text below equation 3. 

 

- Lines 157 and 159: “skewed–> did you mean “shifted? that would be more appropriate here.  

Shifted is the correct term and has been changed in the text. 

Skewed is changed to shifted  

 

- Fig. 4b: I found this figure rather confusing. First, you only show the False Negative of the three 
distributions here, but from the text I was expecting to find also the False Positive. Also, why do you 
show the false positive of the Gaussian and not the false negative so we can compare it with the other 
distributions?  

Since the distributions in blue are true bimodal distributions (refer to Fig. 4a), there would be no false-
positive identification of bimodality for randomly sampled ensembles. The opposite is the case for the 
Gaussian distribution – there is no false-negative identification of bimodality for a distribution that is 
truly unimodal. 



No changes made in text 

 

- Line 232: I’m not sure how you reached the 1.18 and 85% cutoff. Can you better explain this?  

1.18 and 85% refers to the same statistical requirement, where a mode probability ratio of 1.18 is 
equivalent to a minimum that is 85% (1/1.18) as likely as one of the peaks. This value was chosen 
because it appears to be a good compromise between reducing the false-positive identification of 
bimodality (around the inflection point of the dotted line in Fig. 4b) as well as minimizing the missed 
detections of true bimodal distributions (before the large increases in the blue distributions in Fig. 4b, 
note the different axes scales).  

Similar phrasing as above is added to the revised manuscript in order to explain the choice of the 
threshold. 

 

- Line 245: How do you determine the theoretical value of delta for the transition from unimodal to 
bimodal? From what I gather, the condition is |µ2 − µ2| ≤ 2σ, regardless of p, which gives δ=2 even if p 
has now changed from 1 2 to 3 4 . I assume you are not wrong, so I would love to understand what I am 
missing.  

The determination of whether the true underlying distribution was bimodal or unimodal was determined 
numerically based on the number of zeros of the first derivative. Since this was the same method being 
used to determine the critical points of the fit KDE distribution, this seemed a fair choice. The delta value 
representative of the transition from unimodality to bimodality was the value at which the number of 
zeros switched from 1 (one maximum in the distribution) to 3 (two maxima and one minimum). 

No changes made in text 

 

- Line 318 and Fig.3a: The fact that the mode ratio relies on the minimum (in the denominator), which is 
often close to zero, is a disadvantage as it can give high values just because it is low. Why not just take 
the ratio between to the peaks?  

The representation of the mode probability as it is currently defined offers the advantage of understanding 
the potential gain from switching from a Gaussian fit to a non-Gaussian fit, since the probability at the 
minimum will be near that of the mean of the distribution. The mode probability ratio shows the great 
difference in probability that can occur at this minimum versus one of the bimodal distribution’s modes. 
Additionally, the use of the ratio between the peaks will likely give similar results as using a mode 
probability ratio requirement for both peaks (as opposed to either, as is currently used), which was found 
to be associated with a much higher false-negative rate.  

No changes made in text 

 

 

 

 



 

 

General: 

- What happens if there are actually more than two peaks?  

This was briefly explored at the start of this study. However, trimodal distributions were found to occur in 
less than 5% of the forecast lead times which could largely be a result of false-positive detection. 

No changes made in text 

 

-Can we somehow assess how much of the bimodality is originating from bimodality in the PDF of each 
forecast (e.g., perhaps in all the simulations the PDFs exhibit two maxima) as opposed to bimodality in 
the ensemble which results from different "regimes"? This is interesting because the spatial maps of delta 
look very much like regions of high temperature skewness 

This is an interesting point that is currently being examined in a follow up study. It is unsure if this has a 
definite answer right now. However, if the underlying distribution itself were to be bimodal, it is one’s 
intuition to believe that these distributions would then remain bimodal as they approach the climatological 
bimodal PDF. This has been found to not be the case in many forecasts examined (though an exact 
quantification is not known), one example being the forecast from Fig. 1d. You may refer to figure 2 
below and the corresponding discussion surrounding RC2’s major point #3 for more detailed insight into 
this. Additionally, we may refer to (Tamarin-Brodsky et al. 2019) Figure 1c to see that there are regions 
during boreal winter in which the minima in bimodality do not align with the minima in skewness, that is 
not to say they skewness and bimodality are unrelated but rather there is some amount of uniqueness. 
Specific examples of uniqueness include west of South America (a minima in bimodality but large skew) 
east of Greenland (maxima in bimodality but little skew) and west of Australia (minima in bimodality but 
large skew). 

Similar discussion regarding uniqueness between skew and bimodality is added to lines 278-283 in the 
text. 
 

  



 

 

RC2: 

1. The test is built in a very simple framework of synthetic data generated by a mixture of Gaussians. 
Data from the ECMWF are not purely random variables and one may wonder whether this type of 
approach is valid in a more realistic context. I am surprised that the test has not been validated on 
more sophisticated systems like the 3-variable Lorenz model (1963) displaying bimodality for certain 
variables, and also on spatially distributed systems like the Lorenz 95 system (1995). This would 
allow to evaluate the ability of the test to indeed detect bimodality, and to test the sampling issue in 
detecting false-positives. This should be done on these models or other similar types of models. 

As suggested, a timeseries generated by the Lorenz-63 model is created and the criteria currently being 
used (based on mode probability ratio and membership) is tested against multiple underlying distributions 
to compare the false-positive and false-negative rate. With this model we generated a very large ensemble 
(10,000 members) and allowed it to evolve to serve as the ‘true distribution’. Then at discrete timesteps 
we can repeatedly draw 50-member ensembles and apply our criteria to determine the false-
positive/negative occurrences for various distributions. This is a similar process as to what was done for 
the analysis surrounding Figure 4.  Below is a figure representing the Lorenz-63 timeseries used and the 
distributions drawn (first figure below). One bimodal distribution is used (testing false-negatives) as well 
as two unimodal distributions. One of the unimodal distributions is drawn early into the ensemble spread 
(representative of early into a forecast), has a small standard deviation and appears to be nearly Gaussian. 
The false-positive percentage is roughly 3%. The other unimodal distribution is drawn much later into the 
‘forecast’, has a much larger spread and looks less Gaussian. However, the false-positive percentage is 
still only 10%. These results agree well with the current synthetic study. Additionally, we have marked 
where the distribution is bimodal (red ticks) and where the KS statistic deems it the same as the 
climatological distribution (blue ticks), which was determined by integrating for many time steps.  While 
the synthetic data was generated in a simplistic way, even the two models proposed have far fewer 
degrees of freedom than that of the atmosphere. That is to say, it will be difficult to exactly simulate a 
‘true’ distribution of the atmosphere no matter the method used to generate the synthetic data. In any case, 
this figure and discussion surrounding it is added at the end of the current manuscript’s synthetic study in 
order to increase the reader’s confidence in the results. 

Figure inserted after Figure 4 which depicts a Lorenz system. Discussion can be found in lines ~260-275. 
This is used as a means of increasing the reader’s confidence in the synthetic results, however, is also 
used as a simple framework for how bimodality is expected to develop.  
 

  



2. Bimodality is detected in very active zones of the atmosphere such as for instance in panel (d) of 
Figure 1. When I look at this figure, it seems to me that after 5 days there is no skill anymore, and 
after that period there is a random succession of unimodal, bimodal (and multi-modal) situations. At 
first sight I would say that this is a problem of sampling, and one can have on such a large range of 
possible values (from -15 to 5 °C) random clustering of ensemble members. In order to check 
whether it is not an artifact of sampling, one can pool several successive ensembles, for instance the 
ensembles started 12 hours before and after the nominal ensemble (or another grouping of 
ensembles). In that way one can get a set of 153 ensemble members and see if the bimodality detected 
is still present. 

This process was done for the forecast in Figure 1d. We isolated analysis to lead times that correspond to 
days 5-20 days from the forecast in 1d, this is where bimodality seems to be present in the current 
example. Only forecasts whose lead times would correspond to weeks 2&3 were used (days 7-21) as early 
and very late into the forecast we’d expect ensembles to be nearly unimodal due to little or great spread, 
respectively. For this example, this resulted in using the three forecasts initialized prior and one forecast 
initialized after the June 16th forecast. This results in about 250-member ensembles at a given lead time. A 
contour plot for days 5-20 corresponding to the June 16th forecast is attached below (second figure 
below). While we derived the bimodal criteria for a 50-member ensemble, we linearly scaled the 
membership requirement to still demarcate where the large ensemble is deemed bimodal; while this hasn’t 
been critically tested it still offers a useful comparison. Where a non-Gaussian fit has higher skill than 
Gaussian is also demarcated. Both of these (and those points in which there is overlap) align with many of 
the points previously marked in the 50-member ensemble. Additionally, we see two modes still clearly 
present in the contours at many lead times. It appears that the colder mode is actually biased too warm 
relative to the observations. More generally, it should be noted that many of those locations who are 
deemed ‘bimodal’ align with high skill locations (red markers in Figure 1d.). Additionally, observations 
seemingly flip between modes in the figure, with very little time in between. Note, for example, just after 
a lead of 15 days when the observation flips to a much colder temperature just after a second mode 
reemerges in the fit KDE (this is even more strongly supported in the 250-member ensemble).  The 
combination of these two above points would be surprising for a sampling error. While the 250-member 
ensemble was a helpful check for this particular forecast, this process was not conducted for the rest of 
the forecasts that were found to be bimodal. This has led us not to include this additional figure or 
analysis in the revised manuscript.  

No changes made in text. 

 

3. The authors mention in the discussion (lines 325-330) the convergence toward the asymptotic 
distribution, and indicate that the bimodality is more a transient process. This should be checked and 
compared with the asymptotic climatological distribution. We should expect the convergence toward 
the climatology. 

This point was tested using hindcasts for the same forecast location and day-of-year initialization date 
shown in Figure 1d, with one hindcast per year for 20 years. These hindcasts are smaller ensembles with 
10 member each, however, have the same temporal resolution (6 hourly for 46 days) as the forecast. A 
‘climatology’ was built using the observations (refer below to minor point #1 for how these are derived) 
from each of the hindcast lead times. Since we were only concerned with seeing if the end of forecast lead 
times were approaching climatology, we picked weeks 4 and beyond to focus on in the hindcasts (and 
thus then also the observation climatology). We then applied a 2-sided Kolomogorov-Smirnov test to see 
if these distributions were significantly different. Refer to the third figure below. The p-value was found 



to be essentially 0 meaning we reject the null hypothesis that the distributions are identical. This means 
that forecasts are not the same as climatology even at the very large forecast lead times. This does, 
however, mean that the ensemble forecast is not simply a sample of the climatological distribution and the 
bimodality being expressed is particular to the forecast (rather than the climatology itself) even at long 
lead times. As to why the distributions are still significantly from climatology at 4+ weeks: this may be 
explained in part by interannual variability such as ENSO or MJO which could cause forecasts to diverge 
from climatology even at very long lead times. In the revised manuscript we have been more careful in 
declaring that the long lead time distributions are the same as climatology. The use of the phrase 
‘approaching climatology’ may be more accurate.  

In reference to this process the authors are careful to use ‘approaches climatology’. 

 

4. In the discussion section (5), the authors discuss the possible origin of the bimodality, in particular 
related with the interaction with the ocean. Would the authors mean that the bimodality is related to a 
low-frequency variability which has skill at longer lead times? It would certainly be useful to 
investigate in greater details this in a specific region like the one presented in Figure 1d and see how 
is the convergence toward climatology through the use of skill scores, and see what is the difference 
between the events that are truly bimodal and the other ones. And also relate these to some specific 
processes (the presence of sea ice for instance). 

Questions similar to this are being investigated in a follow up manuscript. Bimodality in part appears to 
be related to boundary forcings by the ocean, both in terms of SST gradients and sea ice dynamics. 
However, this analysis is beyond the objectives of this manuscript (identifying where it is present rather 
than fully explaining it).  

No changes made in text 

 

5. In the first part of the manuscript the authors address the problem of scoring and statistical 
postprocessing when the distributions are bimodal. In particular, the ability of scoring rules to detect 
bimodality. But at the end of section 2, the authors indicate the difficulty to detect bimodality based 
on the scoring rules, and they then move to the analysis of bimodality through the development of a 
simple statistical test. This section 2 looks unrelated with the rest of the manuscript and I think that 
this part can be considerable shortened and either placed in an Appendix, or as a few paragraphs in 
the introduction. 

We believe these results give important insights for the forecast scoring community. Rather than moving 
this to an appendix, text has been added in the abstract, introduction and conclusions to incorporate the 
skill scoring section better into the manuscript. 

A single line added at the end of the abstract emphasizing the need for improved skill scores. A more 
activate voice is used in lines 191-195 to emphasize the skill score aspect of this study. 

 

 



Minor points: 

1. In Figure 1, panel a, the authors show the observation in yellow. On what is this observation based 
on? And there is of course an observational error which is not taken into account in these plots and in 
the comments. The authors indicate under-dispersion of the ensemble, but is it really under-dispersed? 
This cannot be said from a single ensemble forecast. 

While we agree that a single ensemble forecast does not prove under dispersion, it was cited in the 
previous paragraph that ensemble forecasts are historically under-dispersed. This specific forecast may 
show an example of that under-dispersion, specifically how the observation lays far outside the forecast 
distribution for a majority of the early lead times. The validating 'observations' in Fig. 1 are drawn from 
the ERA Interim reanalysis (see Dee et al. 2011 QJRMS DOI:10.1002/qj.828). We haven't considered the 
error in the reanalysis explicitly, but it is unlikely to affect the discussion, which has more to do with the 
behavior of the ensemble forecasts.  

Information and reference to Dee et al (2011) is added to the revised manuscript (line 50). 

 

2. Lines 150-155. The authors mention the use of statistical postprocessing. It is not clear at all how it is 
done. This should be explained. 

This has been expanded upon in the revised text. Briefly, this is an optimization for a bias parameter and a 
dispersion parameter which minimizes the fit distribution’s skill score.  

This is now explained explicitly in the text at line 155. A shift to the mean and dispersion is applied for 
optimization. 

 

3. Line 220. Please add that material in a supplementary. Also the material discussed at lines 170-175 if 
section 2.3 is kept somewhere (either in an Appendix or in a supplement). 

We feel that this additional material adds confusion for the reader without adding to the text. Namely, the 
advantages of the membership requirement (line 220) is expressed already in Figure 4. Similarly with the 
material presented in 170-175, the additional material is not unique to what is already presented in the 
table; the authors feel that stating this fact is sufficient.  

No changes made in text 
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