Response to Referee #2 for wcd-2021-34

The referee’s comments are shown in black and italic. Our responses are shown in
dark blue. When we paste text from the manuscript to the response, it is shown in
dark red. For convenience we append to the end of the document a track-change

version of our manuscript where one can quickly spot all changes we made to the
manuscript.

Review for “Future summer warming pattern under climate change is regulated by
lapse-rate changes”

In this paper, the authors argue that lapse rate changes are fundamental to
understanding the pattern of summertime warming projected in a variety of regional and
global climate models. The authors present results from idealized modelling experiments
to support their hypothesis that lapse rate changes are fundamental to understanding
the pattern of surface warming across the globe and that lapse rate changes are a major
factor that generate the pattern of surface warming that manifests across climate
models.

The paper is well written and clear, and | think the investigation into the role of the
atmosphere’s role in generating land surface warming patterns is extremely important.
However, in its current state, | don't think this paper provides an adequate explanation of
the physics behind the creation of the amplification pattern over the Mediterranean; this
makes the global analysis presented later in the paper less insightful. | was left wanting
more evidence from the initial simulations to bolster the author’s argument that the
atmosphere’s adjustment is crucial to understanding the warming pattern of summertime
surface temperature.

We thank the referee for taking the time for a detailed review and the constructive
feedback on our manuscript.

Major Comments

The authors allude (lines 39-40) to the fact that the spatial warming pattern is at least
partially driven by energy partitioning between latent and sensible at the land surface. To
me, this is a null hypothesis, and the authors must use their experiments to quantify the
role of the atmosphere in amplifying the pattern of warming initially generated by the
local differences in energy flux partitioning at the land surface. In my mind the authors
need to show that convective activity or circulation adjustment to the warming pattern
driven by energy flux partitioning near the land surface is amplified by the lapse-rate
adjustment accomplished by the atmosphere for their conclusions to be valid.

To me, the analysis of novel experiment done by the authors (application of a vertically
uniform boundary condition) does not prove that lapse rate changes are the ultimate
cause of the surface warming pattern because there is no evidence presented about the
dynamical adjustment. As a reader, | would like to know how the retribution of energy



that amplifies the warming in the Mediterranean is accomplished in the TDLR simulations
(and not accomplished in the TD simulations). Could it be that an unrealistic (vertically
uniform) boundary condition destabilizes the atmosphere, causing enhanced convection
across all of Europe and a large dynamical adjustment that mixes out some component
of the summertime warming pattern? Or is it that the realistic lapse rate boundary
condition applied to the TDLR simulations induces large scale subsidence over the
Mediterranean and amplifies the local warming? In any case, | was left wanting an
analysis of the atmospheric motions that give rise to the lapse rate changes shown in Figs.
3d and f. The authors approach this analysis in Fig. 4, but the moist enthalpy changes
could also be driven by the surface flux partitioning; without a complementary analysis of
the atmospheric adjustment, | think the argument is much less convincing.

In particular, the presentation of Fig. 3e needs to be changed. To my eye, removing the TD
simulation domain mean (rather than the FCC domain mean) would reveal a pattern
similar (but not exactly the same) as the TDLR experiment, suggesting that energy flux
partitioning at the land surface is fundamentally responsible for the warming gradient
and only accentuated by the atmospheric response.

We think that you raise a very relevant and interesting point. First, regarding Figure 3
we fully agree and did make the suggested adjustment to the figure, which is
detailed also in an answer to a minor comment below. There is indeed an
amplification of the warming also in TD, which we discuss in detail in the text (lines
149-157 in the revised manuscipt). We agree that the near-surface conditions
(especially the moisture availability) do exert an important influence on the summer
warming pattern. Yet from the profiles shown in Figure 3 it is also clear, that the
surface influences the entire troposphere and vice-versa. This is now stated in the
text (staring on line 215):

Overall, during European summer, the entire troposphere is relevant to understand
the surface warming pattern: From TD we can observe that surface moisture
gradients influence the warming up to 10-12 km height (Figure 3i). On the other
hand, the extra upper tropospheric warming introduced in TDLR strongly affects
near-surface warming levels (Figure 3f).

As suggested by the referee, we added an analysis of vertical motions within our
simulation domain. This is shown in the newly added Figure 5. In summary we find
that in our idealized simulations dynamical changes are insignificant, especially
when compared to the fully GCM-driven run. This also agrees with Figure A1. This
allowed us to state with more certainty that the adjustments of tropospheric lapse-
rates are achieved by the warming/moistening of the atmosphere rather than from
altered atmospheric dynamics. We now provide a much more extensive physical
interpretation of the simulation results (lines 167-217), highlighting the importance
of moisture availability for lapse-rate changes to occur. Also we argue using the
thermodynamic equation that stratification changes can lead to warming in the
absence of changes in vertical motions (lines 193-203). The moisture availability is
also shown in the new Figure 4. Pasting the entire additional description of our



experiments in this response would be to long but we add the new summarizing
section from our manuscript below, which hopefully well addresses your concerns:

Bringing together the results from Figs. 3, 4, and 5 we interpret the results as follows:
Warming which we artificially impose in the idealized simulations is vertically re-
distributed throughout the troposphere. The vertical motions required to achieve
the re-distribution of the warming are already present during summer in the CTRL
simulation (Fig. 5). The warming and moistening of the atmosphere in the TD
simulation suffices to induce lapse-rate changes. These lapse-rate changes are more
pronounced in present-day moist regions than in dry regions (Fig. 3i and Fig. 4a)
because the vertical mixing follows the temperature-dependent moist-adiabatic
lapse rate more frequently in moist regions. While in both TD and TDLR the lapse-
rates locally adjust according to the near-surface humidity and in both simulations
lead to an amplification of the Mediterranean warming, the very high warming levels
of more than 6K are reached only in TDLR because here we prescribe a stronger
homogeneous upper-tropospheric warming than in TD. This upper-tropospheric
warming affects the surface warming trough adiabatic descent in the Mediterranean.
We suggest that only the combination of the strong large-scale upper-level warming,
and vertically near-adiabatic re-distribution of the warming evokes the
Mediterranean amplification.

Minor Comments:

Suggestion for lines 30-31: Since the dry adiabatic lapse rate is independent of
temperature changes, the lapse rate changes driven by global warming are driven by the
response of the moist-adiabatic lapse rate that decreases with warming.

We included the nice sentence as suggested, and we think this improves the clarity.
Line 44: In summer, however, also
Corrected

Lines 53-54: Do you really mean this? | think the argument is that lapse-rate changes
accentuate the Mediterranean amplification, rather than cause it outright.

You are right, this was too strongly formulated and might be misleading in the
context of climate change. As stated in the title we mean that lapse-rate changes
“regulate” the warming. We changed the wording to “govern” here.

Line 71: are covering
Thank you, this is corrected.

Fig. 3¢, e: Please remove the experimental mean, rather than the mean from the FCC
experiment. This is a particular problem with panel e as I've noted above.



We acknowledge the point and were usure how to plot it in the first draft as well. As
the referee suggests we now use each simulation’s domain mean to visualize the
anomaly. We also added the absolute warming to the plot which we hope further
improves the clarity.

Line 134-135: The Mediterranean amplification is not absent in the TD experiment, it's
merely reduced and it’s hard to tell because the relevant mean temperature has not been
removed.

This was indeed an incorrect formulation and noted by both referees. As stated
above we changed the figure to accord with the lower mean warming as in TD. We
now state:

In contrast, the Mediterranean amplification is clearly weaker in TD where we
prescribe no large-scale lapse-rate changes (Fig. 3g-i).

Line 137-139: This is part of my major comment above and the place for a deeper
analysis of the circulation differences between the TD and TDLR experiments. How does
this dynamically weakened lapse rate accomplished? | think this is crucial for the
argument.

Thank you for pointing that out, we agree that this is an interesting point to further
investigate. We have added an analysis of the vertical motions in the experiments
(Figure 5) and overall found that the dynamic differences between TD and TDLR are
small. Based on theory and previous literature we argue that the dynamically
weakened lapse-rate is accomplished by vertical mixing of relatively dry air
(especially adiabatic descent), which is now described in much more detail (see lines
166-217 in the revised manuscript).

Line 146-148: I'm not sure | understand this sentence. We expect the upper tropospheric
warming to be larger than surface warming no matter what due to climate change. | think
clarification here would help me understand the argument.

We agree that this was not well explained. We now state more clearly that lapse-
rates within simulation domain change also in TD compared to what we impose at
the lateral boundaries. The section now reads:

This follows from similar dynamic alterations of the imposed warming profiles as in
TDLR, meaning that also in TD the lapse-rates adjust within the simulation domain
compared to the warming profile imposed at the lateral boundaries. Also in TD,
simulated lapse-rate changes are larger in Northern Europe than the Mediterranean
(Fig. 3i). This leads to a stronger surface warming in the Mediterranean in agreement
with TDLR (Fig. 3g,h), but the absolute magnitude of the warming is over 1 K smaller
in TD.



Fig 4: Maybe mask the oceans, the enthalpy changes there are so high it’s a bit distracting
from the argument you're articulating

Good idea! We modified the figure as suggested.

Lines 216-217: This seems at odds with the contention at other points in the paper (Lines
53-54) that lapse-rate changes cause the warming pattern.

This is true, as stated above we changed the earlier statement and therefore left
these lines unchanged.

Lines 250-251: Again, | don’t think the analysis as currently constituted shows that lapse-
rate feedbacks are “decisive”. Some numerical comparisons between the TD and TDLR
warming amplification patterns over Europe could help here.

We think that this conclusion is now backed with more data and more thoroughly shown and
explained in the revised manuscript. Still, we weakened the wording here a bit and say that
lapse-rate changes “regulate” the warming pattern, consistent with the title.
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Abstract. Greenhouse gas-driven global temperature change projections exhibit spatial variations, meaning that certain land
areas will experience substantially enhanced or reduced surface warming. It is vital to understand enhanced regional warming
anomalies as they locally increase heat-related risks to human health and ecosystems. We argue that tropospheric lapse-rate
changes play a key role in shaping the future summer warming pattern around the globe in mid-latitudes and the tropics.
We present multiple lines of evidence supporting this finding based on idealized simulations over Europe, as well as regional
and global climate model ensembles. All simulations consistently show that the vertical distribution of tropospheric summer
warming is different in regions characterized by enhanced or reduced surface warming. Enhanced warming is projected where
lapse-rate changes are small, implying that the surface and the upper troposphere experience similar warming. On the other
hand, strong lapse-rate changes cause a concentration of warming in the upper troposphere and reduced warming near the
surface. The varying magnitude of lapse-rate changes is governed by the temperature dependence of the moist-adiabatic lapse
rate and the available tropospheric humidity. We conclude that tropospheric temperature changes should be considered along

with surface processes when assessing the causes of surface warming patterns.

1 Introduction

Rising greenhouse gas emissions will lead to climate warming on a global scale. However, the warming on regional to local
scales is what directly affects people (Sutton et al., 2015). Therefore, adaptation and mitigation strategies must accord with
regional climate change projections (Hall, 2014). Observations and climate simulations show that local warming deviates
substantially from the global mean (Collins et al., 2013; Izumi et al., 2013; Good et al., 2015; King, 2019). Regionally amplified
warming is especially relevant as it increases the impacts of climate change in affected regions. A prominent example of a
regional warming amplification is the Arctic amplification, which is the strongest in the Northern Hemispheric cold season
(Pithan and Mauritsen, 2014; Stuecker et al., 2018). In the mid-latitudes and tropics, land areas warm more than the ocean, as
seen in observations and climate simulations (Byrne and O’Gorman, 2018; Chadwick et al., 2019). Within continents, several
hot spots exhibit amplified warming compared to the surroundings (Diffenbaugh and Giorgi, 2012). Amplified surface warming
will have far-reaching consequences, for example, increased heatwaves and droughts with resulting heat-related health impacts

Kovats et al., 2014; Son et al., 2019; Buzan and Huber, 2020). Thus, there is a need to
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better understand the causes of such surface warming anomalies, in order to assess whether climate models can reliably simulate
these causes. Many hot-spots of amplified warming are arid or semi-arid areas. Such land surface warming hot-spots are often
assumed to be primarily caused by changes in the partitioning of surface energy fluxes (Huang et al., 2017a, b; Barcikowska
et al., 2020), but it is unclear if this surface perspective is sufficient in explaining the regional warming differences (Byrne and
O’Gorman, 2013a; Berg et al., 2016; Koutroulis, 2019).

The amplified warming over land in comparison to oceans has been related to geographical variations in lapse-rate changes in

the troposphere (Joshi et al., 2008; Fasullo, 2010; Byrne and O’ Gorman, 2013a, 2018). Eapse-rate-changesin-warmer-climates

are-governed-by-the-Since the dry adiabatic lapse rate is independent of temperature changes, the lapse rate changes driven b
lobal warming are driven by the response of the moist-adiabatic lapse rate --which-that decreases with warming. A decrease

of lapse rates with warming is equivalent to a stronger tropospheric than surface warming or an increase in the atmospheric
stability. Yet, the available humidity limits the magnitude of changes in lapse rates. As a result, lapse-rates over oceans, where
moisture is abundant, are closer to the decreasing saturated moist-adiabatic lapse rate than over land. Whenever moisture is
limited over land areas, the influence of the temperature-independent dry-adiabatic lapse rate weakens lapse-rate changes.
In the presence of a horizontally homogeneous upper-tropospheric warming, such differences in lapse-rate changes lead to
stronger warming over land than ocean (Joshi et al., 2008; Fasullo, 2010; Byrne and O’Gorman, 2013a, 2018). We illustrate
the differing tropospheric lapse-rate changes over land and ocean in Fig. 1, which provides a graphical explanation of the
influence of lapse-rate changes on surface warming. Note that this figure does not imply causality. Assuming constant upper
tropospheric warming, variations in near-surface warming cause variations in lapse-rate changes, irrespective of the origins of
these variations.

The influence of lapse-rate changes on the land-ocean warming contrast, displayed in Fig. 1, has been described mostly for
tropical regions for two main reasons. First, the current tropical atmospheric stratification is governed by the moist-adiabatic

lapse rate in all seasons

. Consequently, future changes in the moist-adiabatic lapse rates will be crucial. In summer, however, also the stratification in
mid-latitudes seems to be governed by the moist-adiabatic lapse rate (Korty and Schneider, 2007; Frierson and Davis, 2011;
Zamora et al., 2016). The second reason is that tropical upper tropospheric horizontal temperature gradients are small as a
result of the small Coriolis parameter (Charney, 1963, 1969; Sobel and Bretherton, 2000). Therefore, we expect greenhouse
gas-driven upper tropospheric temperature changes to be horizontally homogeneous. In contrast, the spatial pattern of upper
tropospheric warming to be expected outside the tropics is less clear.

In regards to variations in surface warming over land, lapse-rate changes have recently been suggested to exert a major
influence on the Mediterranean amplification (Kroner et al., 2017; Brogli et al., 2019a, b). The Mediterranean amplification
describes enhanced warming in the summer season over land regions around the Mediterranean basin (Fig. 2a). Yet, we don’t
know if these findings are transferable to other land regions of the world that experience above-average surface warming.

In this article, we build upon the previous results to demonstrate how lapse-rate changes eause-govern the Mediterranean am-
plification. We present novel idealized simulations that demonstrate this causality more clearly than our previous simulations.

Also, we show multi-model evidence for this causality. Additionally, we present evidence that lapse-rate changes are a driver

Xu and Emanuel, 1989; Schneider, 2007; Williams et al., 2009
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Figure 1. Geometrical illustration of how lapse-rate changes are related to surface warming. The blue line (dAT'/dz), shows a large lapse-
rate change, as expected over the ocean, and the orange line (dAT/dz)2 a small lapse-rate change ((dAT/dz)1 > (dAT/dz)2), as expected
over land. We assume, that the warming in the upper troposphere (AT,,) is similar in both cases. From this assumption, it geometrically
follows that the amount of surface warming is large (ATs2) where the lapse-rate change is small, and the surface warming is small (ATs1)

where the lapse-rate change is large.

60 for above-average land warming during the summer season in mid-latitudes and tropics across both the Northern and Southern
Hemispheres. The findings originate from streamlined idealized simulations and the analysis of regional climate model (RCM)

and global climate model (GCM) ensembles.

2 Materials and Methods
2.1 Analysis of CORDEX simulations over Europe

65 We analyze RCM simulations from the European Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX)
ensemble (Jacob et al., 2014, 2020). We use a total of 32 simulations performed with five different RCMs, driven by nine
different GCM simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble (Taylor et al., 2012).
The EURO-CORDEX simulations feature horizontal resolutions of 0.44° or 0.11°. Further details can be found in Table Al.
All the downscaled GCM simulations assume the high-emission scenario RCP8.5 (Moss et al., 2010). We assess the 30-yr

70 seasonal average temperature changes between 2070-2099 and 1971-2000.
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2.2 Idealized simulations over Europe

To establish the causality between lapse-rate changes and the European summer warming, we perform simulations using
the regional climate model COSMO-CLM version 4.8 (CCLM4.8), which is the model of the Consortium for Small-Scale
Modeling, COSMO (Baldauf et al., 2011) in climate mode (Rockel et al., 2008). The CCLM4.8 simulations feature a horizontal
resolution of 0.44° (ca. 50 km), use 40 stretched vertical levels, and are covering the European domain following the EURO-
CORDEX framework (Jacob et al., 2014, 2020). The simulations extend related experiments used in Kroner et al. (2017);
Brogli et al. (2019a, b).

2.2.1 Characteristics of idealized simulations

The following list contains the key characteristics of the simulations performed:

— We perform regular transient regional climate simulations with CCLM4.8, where we downscale the two GCMs MPI-
ESM-LR (Stevens et al., 2013) and HadGEM2-ES (Martin et al., 2011) and analyze the mean. To assess climate change,
we select two time slices which we call CTRL and SCEN. CTRL is the 1971-2000 period and SCEN the 2070-2099
period assuming RCP8.5. FCC=SCEN—CTRL is used to quantify temperature changes, where the abbreviation FCC

stands for full climate change, and will be used in the remainder of the article.

— TD is the mean thermodynamic response of two idealized simulations where a vertically uniform warming profile is
imposed at the lateral boundaries of CTRL. The shape of the vertical warming profile can be seen in Fig. 34 (gray line).

The same profile is imposed on every lateral boundary gridpoint.

— TDLR is the second set of idealized simulations where both the large-scale thermodynamic and lapse-rate change are

imposed at the lateral boundaries of CTRL. The profile imposed on all boundary grid points is shown in Fig. 3df.

The idea behind the idealized experiments is the following: By comparing TD and TDLR we can quantify the influence of
large-scale lapse-rate changes on the simulation result, as this is the only difference between the simulations. Simulated future
changes that go beyond thermodynamic and lapse-rate changes, most prominently circulation and other dynamic changes, can
be asessed by comparing TDLR and FCC. Figure A1 shows a comparison between circulation changes in TDLR and FCC and

confirms that circulation changes are absent in TDLR.
2.2.2 Technical implementation of idealized simulations

The imposed warming profiles in TD and TDLR are derived from the domain-mean warming of FCC and include a repre-
sentation of the annual cycle of the warming (Brogli et al., 2019a, b). In TDLR, the domain-mean warming of FCC on every
tropospheric model level is imposed, and constant warming is imposed above the approximate average height of the tropopause.
In TD, the mean warming of FCC, determined on the model level closest to 850 hPa, is imposed on all model levels. The an-

nual cycle of SST changes is identically prescribed in TD and TDLR as a lower boundary condition and derived from the
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two-dimensional pattern of SST changes in FCC. For both atmospheric and ocean temperatures, the 30-yr daily mean changes
from FCC are converted to the prescribed annual cycle using a spectral filter as described in Bosshard et al. (2011). When
changing the temperature in TD or TDLR experiments, we change the humidity assuming constant relative humidity. Also, the
pressure is adjusted according to the hydrostatic balance (Schir et al., 1996). To quantify TD and TDLR, two different simu-
lations, based on either the climate change signal of MPI-ESM-LR or HadGEM2-ES have been performed and subsequently
averaged for presentation. In the idealized experiments, the greenhouse-gas concentrations have been adapted to match SCEN

(Kroner et al., 2017).
2.3 Analysis of CMIP6 simulations

For global analysis, we include state-of-the-art GCM simulations from the Coupled Model Intercomparison Project Phase 6
(CMIP6) (Eyring et al., 2016), but we also provide a comparison against the CMIP5 (Taylor et al., 2012) ensemble (in Fig.
A2). We use CMIP6 simulations assuming the emission scenario SSP5-8.5 (O’Neill et al., 2016), which is close to RCP8.5. For
the analysis, all CMIP6 simulations have been regridded to a common 1.4° grid. In all simulations, the 30-yr seasonal average
temperature change between 2070-2099 and 1971-2000 is used to quantify climate change. A list of all CMIP6 simulations
used is provided in Table A1l.

Both the CMIP6 and EURO-CORDEX atmospheric data are available on pressure levels. Yet, to analyze lapse rate changes
(K/m) the warming at the same geometrical height is more appropriate. For the quantification of lapse-rate changes we convert

pressure levels to geometrical height.

3 Results & Discussion
3.1 European Summer Climate Change in the EURO-CORDEX ensemble

The Mediterranean amplification is a striking and robust feature in projections of the European summer climate (Fig. 2a) from
the EURO-CORDEX RCM ensemble. Following the high-emission scenario RCP8.5, some Mediterranean areas warm up to
3 K more than the domain average (Fig. 2b) . In contrast to the Mediterranean, Northern European land areas typically exhibit
below domain-mean summer warming (Fig. 2b). In the middle to upper troposphere, spatial variations in summer warming are
negligible, as opposed to the surface (Fig. 2c). Regions characterized by small lapse-rate changes (Fig. 2d) in EURO-CORDEX
coincide with regions of amplified surface warming (Fig. 2a,b). Figure 2 qualitatively indicates that different lapse-rate changes

are connected to surface warming variations in Europe during summer.
3.2 Idealized Simulations for Europe

The causal effect that lapse-rate changes have on the Mediterranean amplification is demonstrated in Fig. 3, showing the three
pairs of simulations FCC, TDLR, and TD (see Section 2.2). The near-surface warming and warming anomaly of the regular
downscaling simulations FCC (Fig. 3a,b), is in good agreement with EURO-CORDEX (Fig. 2a,b). From vertical profiles of
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Figure 2. European summer warming and associated lapse-rate changes in the 0.11°-EURO-CORDEX ensemble for 1971-2000 versus 2070-
2099, assuming the RCP8.5 emission scenario. The summer season is taken as June, July, and August (JJA). (a) Mean summer 2-m warming
of 15 EURO-CORDEX simulations shown as absolute values. (b) The same 2-m warming shown in (a) but expressed as warming anomaly
or deviation from the domain mean. Red colors denote above domain-mean warming and blue colors below domain-mean warming. The
number in the upper left of the map shows the domain mean warming in K. Stippling shows regions where all simulations agree on the sign
of the warming anomaly. Overall, (b) highlights the pattern of the warming shown in (a). (c) Same as in (b) but on 500 hPa. (d) Lapse-rate

changes expressed as warming difference between 500 hPa and 850 hPa in K / km for the simulation ensemble shown in (a), (b), and (c).
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Figure 3. Idealized simulations demonstrating the importance of tropospheric lapse-rate changes for European surface summer (JJA) warm-

ing anomalies. (a) Mean summer 2-m warming anomaly viatton-fron mean-givenin for FCC, which is the mean of two
RCM simulations dynamically downscaling two different GCMs assuming RCP8.5. We assess the warming between 2070-2099 and 1971-

2000.(b) Same as (a) but showing 2-m warming anomaly (deviation from the domain-mean given in the upper left) (c) Mean vertical profiles

of the summer temperature changes for the simulations shown in (a,b) for Mediterranean (orange line) land grid points (MED; between 30°
and 44° N) and Northern European (blue line) land grid points (NOR; between 55° N and 70° N). (e-dd-f) Same as in (a-ba-c), but for
TDLR, which is the mean of two idealized simulations, where the mean vertical warming profile as shown by the gray line in (df) is imposed
on all lateral boundary grid points of the RCM simulations for 1971-2000. (e-fgm) Same as (e-dd-f) but for TD that differs from TDLR by the
imposed warming profile shown by the gray line in (fi). i
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the summer temperature change for FCC (Fig. 3bc) we note that the warming is maximal at altitudes close to the tropopause.
Also, in the upper troposphere, the warming is similar for Northern Europe and the Mediterranean. Yet, the lapse-rate changes
are different over the Mediterranean and Northern Europe. In connection with a weak lapse-rate change, the surface warming
in the Mediterranean is similar to the upper-tropospheric maximum and thus relatively high (Fig. 3bc). Over Northern Europe,
the lapse-rate change is stronger and the surface warming smaller than over the Mediterranean. In general, the vertical warming
profiles generated by the model (Fig. 3bc) are very similar to the idealized picture shown in Fig. 1.

The Mediterranean amplification is well reproduced by TDLR (Fig. 3ed-f), the idealized simulations that are forced with a
large-scale tropospheric lapse-rate change. In contrast, the Mediterranean amplification is absent-clearly weaker in TD where

we prescribe no large-scale lapse-rate changes (Fig. 3e)—g-i). Quantitatively, the warming contrast between the Mediterranean

and Northern Europe is around 1 K weaker in TD than TDLR. The absolute warming in the Mediterranean is ~5.6 K in TDLR
~4.5 K in TD, while it is ~5.9 K in FCC.,

oM A WALC RIS 222 2.5 10 B

To understand the reason for the difference between the two idealized simulations, we compare the respective vertical
warming profiles (Fig. 3¢5ff,i). By design, the shape of the initial warming profile imposed at the lateral boundaries (shown by
the gray lines in Fig. 3¢;ff,i) differs between the two simulations. In TDLR (Fig. 3d), the lapse-rate change in the Mediterranean
dynamically weakened compared to the imposed profile and the surface warming increased as a consequence (Fig. 3€f, orange
vs. gray line). In Northern Europe, we see the opposite, meaning that the lapse-rate change simulated in the domain interior is
stronger than what was prescribed, and the surface warming has decreased in response (Fig. 3€f, blue vs. gray line). In other
words, for the Mediterranean, some of the warming imposed at the lateral boundaries has been dynamically re-distributed from
the upper troposphere to the lower troposphere, and vice-versa for Northern Europe.

In the TD experiments, where we impose vertically uniform warming at the lateral boundaries, the surface warming in both
the Mediterranean and Northern Europe is lower than what was imposed at the lateral boundaries (Fig. 3fi) (Lenderink et al.,
2019). This follows from similar dynamic alterations of the imposed warming profiles as in TDLR, meaning that also in TD the
lapse rates adjust within the simulation domain compared to the warming profile imposed at the lateral boundaries. Also in TD,
simulated lapse-rate changes are larger in Northern Europe than the Mediterranean (Fig. 3f)—Yet;the-i). This leads to a stronger

surface warming in the Mediterranean in agreement with TDLR (Fig. 3g.h), but the absolute magnitude of the warming is over
1 K smaller in TD. An equally strong regional maximum in Mediterranean surface warming, as in TDLR or FCC, doesn’t

AR AN AR AN A
appear in the absence of an-a strong upper tropospheric warming maximum prescribed at the model boundary, even though
we impose a comparatively high surface warming of ~5.3 K (Fig. 3fi) and the land-surface feedbacks in the model are fully
interactive.
Summarizing Fig. 3, we find that two decisive changes in the climate system are needed to simulate the Mediterranean am-
plification. First, a strong and horizontally uniform large-scale upper tropospheric warming must be present. In our simulation

>7 K) at altitudes above 8 km which is imposed in TDLR but not TD. Second, the lapse-

rate changes are dynamically altered during the simulation depending on the teeation-European region and directly connected

to the extent of summer surface warming.
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Figure 4. Mean summer relative humidity in the historical CTRL simulation and changes in the idealized simulations. (a) Climatological

relative humidity in CTRL for the average summer in the 1971-2000 period. (b) Change in relative humidity in the idealized TD simulation

representing RCP8.5 and the 2070-2099 period. (c) Same as (b) but for TDLR. (d) Same as (b) but for the FCC, which is the GCM-driven
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Since the Mediterranean is dryer in summer than Northern Europe (Brogh-et-al;2049a)(Fig. 4), the dynamic alteration of
the lapse-rate change profile supports the idea that moisture availability controls the strength of the lapse-rate changes in mid-
latitudes during summer (Joshi et al., 2008; Fasullo, 2010; Byrne and O’Gorman, 2013a, b, 2018; Brogli et al., 2019a). The
simulated local adjustment of lapse-rates across the troposphere suggests that the European summer atmosphere is vertically
mixed by local convection and subsidence. Lapse-rate changes are thus connected to the decrease of the moist-adiabatic lapse
rate at warmer temperatures and radiative-convective equilibrium (Held and Soden, 2000). Small lapse-rate changes may
occur where moist-adiabatic vertical mixing is inhibited by dry conditions and temperature-independent dry-adiabatic mixing
plays a larger role. This is likely the case in the Mediterranean summer season, where the relative humidity is around 40
% (Fig. 4a). Moist adiabatic vertical motions are infrequent (due to low moisture availability) and thus vertical warmin,
gradients are small (there would be no vertical warming gradient if vertical mixing of warming throughout the troposphere was
entirely dry adiabatic). In Northern Europe, the summer season relative humidity is around 80 % (Fig. 4a), and is projected

to increase further (Fi

. 4b-d). Thus, vertical mixin

to follow a moist adiabat, which acts to

change the lapse rates. The resulting substantial vertical warming gradients then lower the surface warming relative to the
Mediterranean, according to the simulations shown in Fig. 3. Note that both regional climatological differences in relative

humidity as visible in Fig, 4a, as well as relative humidity changes in response to warmin ig. 4b-d) can contribute to the

differences in lapse-rate changes projected by simulations. Yet, in both TD and TDLR we observe quite moderate changes in
relative humidity compared to FCC (Fi

. 4b-c vs. d). Therefore, it is likely that in our idealized simulations, the climatological

2

spatial differences in moisture availability are crucial to induce changes in lapse rates. Despite the presented evidence, from
our simulations alone, we are unable to diagnose that humidity differences are the ultimate cause of the different lapse-rate
changes simulated within the model domain. Yet, this connection has been shown theoretically and in idealized simulations in
earlier studies (Joshi et al., 2008; Byrne and O’ Gorman, 2013a, 2018; Buzan and Huber, 2020).

e

Lapse-rate changes affect the vertical stratification and thereby vertical motions in the atmosphere, which is further explored
in Fig. 5. From the previous findings in Fig. 3f,i we observed that the tropospheric warming imposed at the lateral boundaries
is vertically re-distributed within the simulation domain. A remaining question is if there are important dynamic adjustments
in the idealized simulations that control the vertical exchange (e.
in the historical CTRL simulation along with the changes in TD, TDLR, and FCC for the simulations based on HadGEM2-ES.

In the historical climatological summer mean our simulations show subsidence in the southern part of the domain and no mean
vertical wind in the northern part of the domain (Fig. Sa), which suggests that in the north upward and downward winds cancel

. increased subsidence). Figure 5 shows the vertical wind (w

on climatological timescales as is characteristic for the extratropics. Neither TD nor TDLR show substantial changes in vertical
wind (Fi htly weakens in FCC (Figure 5d). Thus, in TD and TDLR surface warmin
contrasts develop without substantial dynamic changes (Figs. 5 and Al). Physically we can interpret the extra warming in the
southern part of the domain using the thermodynamic equation. When written using potential temperature ¢, this is

DO _ 00,20, 90,9 g (1)

. 5b-¢). In contrast, the subsidence sli
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Figure 5. Meridional cross-section of mean summer vertical wind (positive values mean upward motion) in the historical CTRL simulation

and changes in the idealized simulations.

a) Vertical velocity in CTRL for the average summer in the 1971-2000 period. (b) Change in
vertical in the idealized TD simulation, representing RCP8.5 and the 2070-2099 period. (¢) Same as (b) but for TDLR. (d) Same as (b) but

for the FCC, which is the GCM-driven transient regional climate simulation. This figure shows only data from the simulations based on the

GCM HadGEM2-ES since the necessary three-dimensional model output was only stored for these simulations.
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where (u,v.w) denotes the three-dimensional wind vector, and  the diabatic heating rate. Equation 1 is applied to the slowly
evolving mean flow, and ¢ will thus include eddy contributions. Consider now the effect of the term w(96/0z). For the sake
of the argument, we assume it is the dominating term, i.e. 90/ 9t ~ —w(90/9z). In the simulations TD and TDLR w remains
almost constant (Figure 5b-c). However, the increased stratification 90/9z implies that the contribution of w(90/9z) to the
local warming increases as well, In essence, the same subsidence with in an enhanced stratification implies an increased
warming. The argument illustrates that the extra warming in the southern part of the domain results essentially from adiabatic
descent. Since we only change 90/9z at the lateral boundaries in the TDLR simulation this argument is especially relevant in
TDLR.

Bringing together the results from Figs. 3, 4, and 5, we interpret the results as follows: Warming which we artificially
impose in the idealized simulations is vertically re-distributed throughout the troposphere. The vertical motions required to

achieve the re-distribution of the warming are already present during summer in the CTRL simulation (Fig. 5). The warmin

and moistening of the atmosphere in the TD simulation suffices to induce lapse-rate changes. These lapse-rate changes are
. 3i and Fi

more pronounced in present-day moist regions than in dry regions (Fi . 4a) because the vertical mixing follows the

temperature-dependent moist-adiabatic lapse rate more frequently in moist regions. While in both TD and TDLR the lapse-rates
locally adjust according to the near-surface humidity and in both simulations lead to an amplification of the Mediterranean
warming, the very high warming levels of more than 6K are reached only in TDLR because here we prescribe a stronger
homogeneous upper-tropospheric warming than in TD. This upper-tropospheric warming affects the surface warming trough
adiabatic descent in the Mediterrancan. We suggest that only the combination of the strong large-scale upper-level warming,
and vertically near-adiabatic re-distribution of the warming, evokes the Mediterranean amplification.

OQuverall, during European summer, the entire troposphere is relevant to understand the surface warming pattern: From TD,
we can observe that surface moisture gradients influence the warming up to 10-12 km height (Figure 31). On the other hand,
the extra upper tropospheric warming introduced in TDLR strongly affects near-surface warming levels (Figure 3f).

As discussed, the homogeneous and strong upper tropospheric warming is a key process in understanding Southern European
summer warming. Yet, it may be surprising that the middle to upper tropospheric temperature change in summer over Europe

is spatially almost uniform. While this seems clear in the simulations we analyzed, the physical reasons behind it remain more
speculative and can be an avenue for future research. Generally, a strong upper tropospheric summer warming can be expected,
since most of the globe is covered by oceans where one would expect strong lapse-rate changes due to the abundance of
moisture. The uniformity of the warming could be related to the weak equator-to-pole temperature gradient in summer, which

also results in weak baroclinicity, implying that warming gradients will also be small. Also, the long 30-yr periods that we

averaged to obtain the results might act to smooth warming-gradientsupper atmospheric warming gradients generally.

3.3 Changes in moist enthalpy in EURO-CORDEX
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Figure 6. Decomposition of the anomaly of surface moist enthalpy (H) changes in the 0.11° EURO-CORDEX ensemble for the summer

season over land. (a) Overall anomaly (deviation from the domain mean) of the change in moist enthalpy, normalized by the specific heat

of air (¢,,) to yield the unit Kelvin. Thus, the surface moist enthalpy change has been computed as AH = AT + L, Aq/c,. The anomalies

of the two components of H are shown separately. (b) shows the anomaly of AT, while (c) shows the anomaly of L,Ag/c,. Gray shadin

shows ocean areas which are masked to improve the clarity.

Previously, we argued that the differential importance of moist- and dry-adiabatic vertical mixing controls the magnitude of

summer lapse-rate changes and regulates the surface warming. A similar argument can be made when analyzing the change
in moist enthalpy (Berg et al., 2016; Byrne and O’Gorman, 2018; Matthews, 2018). The moist enthalpy is given by H =
¢, T+ L, q, where c,, is the specific heat of air, T' is temperature, L, the latent heat of vaporization, and ¢ the specific humidity.
In a warming climate, the change in moist enthalpy quantifies the combined effect of changes in internal energy given by
temperature changes (c, AT') and the change in latent energy, which could be released by condensation if air was lifted to the
top of the atmosphere (L, Aq).

Figure 6 shows the spatial anomalies of the overall change in moist enthalpy (AH) and the two components ¢, AT and
L,Aq seperately. The data is from the EURO-CORDEX ensemble and the summer season (JJA). Note that over land, the
simulations project a spatially relatively homogeneous change in H (Fig. 6a). This means that total amount energy used for
raising temperatures or humidity is similar troughout the European continent. Yet, the change in internal energy or temperature

shows a regional maximum the Mediterranean (Fig. 6b) while the change in latent energy is smaller in the Mediterranean than
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elsewhere in the domain (Fig. 6¢). The change in latent energy describes the potential for latent energy release by convection,
which is also the root of lapse-rate changes. Thus, the change in moist enthalpy supports the notion that the additional available
energy connected to climate change in the Mediterranean rather translates to an increase in surface temperature (c, AT’ than
to an increase in convective latent heat release (L, Aq) and vice-versa for Northern Europe. The below-average increase in Ag
(Fig. 6¢) is a clear sign for limited moisture availability in the Mediterranean, because from the climatological temperatures
alone, one would expect a above-average increase of Agq in the relatively warm Mediterranean (the warmer air could poten-

tially carry more water vapour). This below-average increase in g also implies a decrease in near-surface relative humidit

which means that the limited present-day Mediterranean water availability (Cramer et al., 2018), will intensify. Thus, both the

resent-day dryness (Fig. 4) and a low increase in atmospheric moisture limit the increase in latent energy in the Mediterranean.

3.4 Statistical analysis of EURO-CORDEX simulations

The results shown in Figs. 2, 3 and 6 suggest that lapse-rate changes are crucial for determining European summer surface
warming anomalies in the multi-model mean in EURO-CORDEX and our RCM simulations. By statistically analyzing lapse-
rate changes in 32 single members of the EURO-CORDEX ensemble, we here confirm the robustness of these findings and
the transferability to different RCMs. We consider the full ensemble (Table A1) and a subset of 14 simulations performed with
the RCM RCA4 (Strandberg et al., 2014) that use identical parameterization schemes and only differ in the large-scale forcing
from different GCMs (Table Al).

We show linear regressions in Fig. 7. Previously, we identified two core triggers for the Mediterranean amplification. First,
the local lapse-rate changes over Northern Europe must be larger than over the Mediterranean. Second, a strong homogeneous
upper tropospheric warming must be present. The linear regressions support this idea (Fig. 7), showing that, first, the larger the
difference in lapse-rate changes between Northern Europe and the Mediterranean, the larger the Mediterranean amplification
(Fig. 7a-b). Second, the larger the domain-mean lapse-rate change (i.e. more upper tropospheric warming compared to the
surface), the larger the Mediterranean amplification (Fig. 7c-d). All the positive correlations found in Fig. 7 are statistically
significant (p < 0.0006) and feature R? values ranging from 0.46 to 0.93. Thus, Fig. 7 supports the notion that in a variety of
climate projections, mean lapse-rate changes and spatial differences in lapse-rate changes regulate the magnitude of summer
surface warming.

However, a remaining open question from Fig. 7 is what intrinsic differences between the simulations cause the different
lapse-rate changes in the EURO-CORDEX ensemble members, especially in the ensemble using the same RCM. A limited
body of research suggests that such intermodel differences might be related to regional SST warming differences in GCMs
(Po-Chedley et al., 2018; Tuel, 2019). Different lapse-rate changes between models have also been suggested to be connected
to climate sensitivity (Ceppi and Gregory, 2017), which makes this question even more relevant.

The fact that lapse-rate changes are relevant in the context of European summer climate change raises the question of whether
they are equally influential in other regions of the planet. To this end, we further explore surface warming anomalies and the

connected lapse-rate changes in global climate simulations.
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Figure 7. Linear regression linking the enhanced Mediterranean summer 2-m warming to lapse-rate changes in the EURO-CORDEX ensem-
ble. (a,b) Regression linking the Mediterranean amplification and differences in lapse-rate changes between Northern Europe (NOR) and the
Mediterranean (MED) over land. (c,d) Regression linking the Mediterranean amplification to the European-scale domain-mean lapse-rate
change. (a,c) A subset of the EURO-CORDEX ensemble using one single regional climate model, namely SMHI-RCAA4. (b,d) All EURO-
CORDEX simulations that were used in this study (Table A1). Each dot represents a simulation with a horizontal resolution of 0.11° or
0.44°. The figure is based on summer-mean (JJA) changes between 1971-2000 and 2070-2099, assuming RCP8.5. We normalized both the
Mediterranean amplification and lapse-rate changes with the domain-mean warming, yielding dimensionless values (K/K). The lapse-rate
changes have been computed as the difference between the 500 hPa warming and the 850 hPa warming. We evaluate the Mediterranean be-
tween 30° and 44° N and Northern Europe between 55° N and 70° N. The boxes in the upper left corner of the panels show the statistics of

the linear regression fit, while the shadings show the 95% confidence interval of the linear regression estimated by 1000-fold bootstrapping.
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3.5 Analysis on Global Scale

Figure 8 shows end-of-century summer lapse-rate changes for all land regions of the world within the mid-latitudes and tropics
(-66° S < latitude < 66° N) from the CMIP6 global simulation ensemble. Additionally, we verified the ability of CMIP6 models
to reproduce the lapse-rate changes over Northern Europe and the Mediterranean simulated by RCMs (Fig. 9). Generally,
the CMIP6 models considered also exhibit the Mediterranean amplification (Figs. 9 and 8e) and show pronounced regional
differences in lapse-rate changes.

The global analysis confirms that weak lapse-rate changes are connected to enhanced land-surface warming across the
Northern and Southern Hemispheres in the summer season. During the Northern Hemispheric summer, the warming on an
altitude of ~8 km is similar in all regions (Fig. 8b). Regions characterized by above-average summer warming (Fig. 8a)
robustly show comparably small lapse-rate changes (Fig. 8b). Lapse-rate changes in areas with below-average warming (Fig.
8a) are large (Fig. 8b). Above-average summer warming in the Northern Hemisphere is projected in Central North America,
the Mediterranean, Northern Africa, the Middle East, and large parts of Central Asia (Fig. 8a,e). In contrast, CMIP6 models
show below-average summer land warming and large lapse-rate changes in the Tropics, Northern Europe, and in high-latitude
North America (Fig. 8a,e,f), consistent with the analyses over Europe.

In the Southern Hemisphere, the summer lapse rate changes, and the resulting surface warming anomalies are in line with
previous findings (Fig. 8c-d). Lapse-rate changes are stronger in regions exhibiting below-average warming in comparison
to regions with above-average warming, which is robust in all simulations considered (Fig. 8d). Thus, lapse-rate changes are
closely related to the pattern of summer temperature change, also in the Southern Hemisphere. One remarkable difference is
that the average altitude at which the warming starts to be spatially homogeneous occurs at ~4 km in the Southern Hemisphere,
which is lower than in the Northern Hemisphere, where it is located at ~8 km (Fig. 8b,d). Also, surface warming anomalies are
less pronounced (Fig. 8e). We assume that this is because the fraction of oceans is much larger in the Southern Hemisphere,
which reduces the altitude up to which land surface inhomogeneities can influence temperature changes. In the Southern
Hemisphere, the regions connected to above-average land warming are continental areas in South America, South Africa,
and Australia. Below-average warming is found along the coast of the previously mentioned regions and New Zealand (Fig.
8c,e). Disparities in lapse-rate changes between continental and coastal areas (Fig. 8f) are a further indication that the moisture
availability influences the strength of lapse-rate changes as regions along the coast tend to be more humid than continental
regions.

The findings presented for the CMIP6 ensemble in Fig. 8 are in agreement with the results obtained using the CMIP5
ensemble (Fig. A2), although the magnitude of surface warming anomalies has increased from CMIP5 (RCP8.5) to CMIP6
(SSP5-8.5). In summary, the qualitative analysis shown in Fig. 8 suggests that the findings for the European region (Figs. 2-7)

are likely transferable to other regions on the globe, and future more specific regional research is desirable.
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Figure 8. Summer lapse-rate changes as projected by CMIP6 simulations. The changes are evaluated between 1971-2000 and 2070-2099,
assuming the SSP5-8.5 scenario for JJA north of the Equator and December, January, and February (DJF) south of the Equator. (a) Map
showing areas where the ensemble mean Northern Hemispheric summer near-surface warming is above (orange) and below (blue) average
over land in the mid-latitudes and tropics (0° - 66° N). (b) Mean vertical profiles of summer warming in regions where the surface-warming
is above and below average (orange and blue profiles, respectively). The thin dashed lines show individual ensemble members, and the bold
line shows the ensemble mean. The vertical warming profiles are normalized by every simulation’s mean summer warming over land grid
points on 925 hPa. (c) Same as (a) for the Southern Hemisphere (0° - 66° S). (d) Same as (b) for the areas shown in (c). (¢) Map of mean
land 2-m warming anomalies in the Northern and Southern Hemispheres during the respective summer season. Areas masked in the analysis
are shown in gray. Red colors show above-average warming and blue below-average warming. (f) Map of lapse-rate changes evaluated as

warming difference between 500 hPa and 850 hPa (K/km). Masked areas (sometimes due to high topography) are shown in gray.
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Figure 9. The Mediterranean amplification in CMIP6 simulations. (a) Ensemble mean summer near-surface warming anomaly with respect
to the ensemble mean of Northern Hemispheric land grid points (0°-70° N). (b) Mean vertical warming profiles over the Mediterranean
(MED; orange) and Northern Europe (NOR; blue) in summer. The thin dashed lines show individual ensemble members and the bold line
shows the ensemble mean. The MED is evaluated between 30° N, 44° N, 10° W and 40° E, while NOR is evaluated between 55° N, 70°
N, 0° E and 40° E and only land grid points are used. The warming has been normalized by the mean warming on 925 hPa over NOR and
MED.

4 Conclusions

We find that variations in the vertical warming with climate change, given by atmospheric lapse-rate changes, are decisive
for the understanding of enhanced or reduced regional greenhouse-gas-driven surface warming during summer. We provide
additional evidence for this finding in Europe, where we demonstrate that both a strong large-scale upper tropospheric warming
and regionally modified lapse-rate changes are key reasons for the Mediterranean amplification. The results are consistent
across CORDEX and CMIP climate model ensembles. Additionally, we showed that lapse-rate changes are closely connected
to summer surface warming anomalies on a global scale over land areas. The connection between lapse-rate changes, which are
governed by the well-understood temperature dependence of the moist-adiabatic lapse rate, and summer warming anomalies,
increases our confidence that climate models can accurately project such anomalies.

Our results suggest that lapse-rate changes have more extensive consequences than previously thought. First, lapse-rate
changes have-a-decisive-influence-on-regulate the summer-season warming pattern in mid-latitudes and the tropics. Second,
lapse-rate changes influence surface warming patterns within land regions in addition to the land-ocean warming contrast.
Tropospheric temperature and lapse-rate changes should thus be considered when assessing the causes for surface warming
anomalies, in addition to surface processes. Since evidence from multiple studies points to a connection between surface

moisture and lapse-rate changes (Joshi et al., 2008; Byrne and O’Gorman, 2013a, b, 2018; Brogli et al., 2019a, this study),

18



330

335

340

345

it might be possible to use surface moisture as an observational constraint for future summer warming. Our study is solely
based on climate-change simulations. Therefore, an open task is to diagnose historical differences in lapse-rate changes from
observations. It is, however, hard to estimate what level of warming is necessary for lapse-rate changes to be detected in
observations, as this requires multiple long records of homogeneous upper-tropospheric measurements, which are sparse and

prone to biases (Santer et al., 2005; Stickler et al., 2010; Thorne et al., 2011; Flannaghan et al., 2014; Santer et al., 2017).
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