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Abstract. The effect of parameterized deep convection on warm conveyor belt (WCB) activity and jet stream is investigated by
performing simulations of an explosively-developing large-scale cyclone that occurred during the North Atlantic Waveguide
and Downstream Impact Experiment (NAWDEX) field campaign using the Météo-France global atmospheric model ARPEGE.
Three simulations differing only from their deep convection representation are analysed. The first one was performed with
the Bougeault (1985) scheme (B85), the second one with the Prognostic Condensates Microphysics and Transport (PCMT)
scheme of Piriou et al. (2007), and the third one without any parameterized deep convection. In the latter simulation, the
release of convective instability at the resolved scales of the model generates localized cells marked by strong heating with
few degrees extent in longitude and latitude along the fronts. In runs with active parameterized deep convection (B85, PCMT),
the heating rate is more homogeneously distributed along fronts as the instability release happens at sub-grid scales. This
difference leads to more rapid and abrupt ascents in the WCB without parameterized deep convection, and more moderate
but more sustained ascents with parameterized deep convection. While the number of WCB trajectories does not differ much
between the three simulations, the averaged heating rates over the WCB trajectories exhibits distinct behavior. After one day
of simulations, the upper-level heating rate is in average larger with B85 scheme leading to stronger potential vorticity (PV)
destruction. The difference comes from the resolved sensible and latent heating and not the parameterized one. A comparison
with (re)analyses and a large variety of airborne observations from the NAWDEX field campaign (Doppler radar, Doppler lidar,
dropsondes) made during the coordinated flights of two aircraft in the WCB outflow region shows that B85 performs better in
the representation of the double jet structure at 1-day lead time than the other two simulations. That can be attributed to the
more active WCB at upper levels. However this effect is too strong and that simulation becomes less realistic than the other
ones at forecast ranges beyond 1.5 days. The simulation with PCMT scheme has an intermediate behavior between the one
with B85 scheme and without parameterized deep convection but its impact on the jet stream is closer to the latter one. Finally,
additional numerical experiments show that main differences in the impact on the jet between PCMT and B85 largely come

from the chosen closure, the former being based on CAPE and the latter on moisture convergence.
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1 Introduction

Despite significant and continuous improvements of numerical weather forecasts during the last decades (Simmons and
Hollingsworth, 2002; Bauer et al., 2015), mid-latitude weather forecast errors still occur at synoptic and planetary scales.
For instance, at short-range (days 1-3) weather forecasts still struggle to accurately predict the intensity, timing and location
of extratropical storms (Korfe and Colle, 2018) and in particular their wind gusts footprints (Hewson et al., 2014). At medium
range (days 4-8), forecast busts may occur in the prediction of large-scale atmospheric circulation patterns like blockings
(Rodwell et al., 2013; Grams et al., 2018; Maddison et al., 2020). Forecast errors are usually characterized by an upscale and
downstream error growth (Zhang et al., 2007; Selz and Craig, 2015), which start at convective and mesoscale (Rodwell et al.,
2013). They, then, often propagate downstream and amplify along upper-tropospheric Rossby wave trains (Gray et al., 2014;
Lillo and Parsons, 2017) where nonlinear effects are strong (Baumgart et al., 2018). They finally form large-scale forecast error
patterns further downstream, typically at the end of storm tracks like over western Europe (Grams et al., 2018; Maddison et al.,
2020).

These forecast errors originate from two main sources of uncertainties: uncertainties in determining the initial state of
the atmosphere and uncertainties due to the imperfections of Numerical Weather Prediction (NWP) models (Tribbia and
Baumhefner, 1988). But it is somewhat difficult to determine the origins of forecast busts among these two sources as they
intertwine and can compensate or reinforce each other (Rodwell et al., 2013). Among the model deficiencies, the representation
of subgrid-scale physical processes (e.g., cloud microphysics, convection, radiation, turbulence) by different parametrization
schemes is a key question and such schemes are constantly upgraded.

The question of the impact of diabatic processes on the predictability of the atmospheric flow was central to the international
NAWDEX (North Atlantic Waveguide Downstream and impact EXperiment) project and its field campaign that occurred
in September-October 2016 (Schéfler et al., 2018). In particular, one main hypothesis of the project is that the potentially
misrepresented diabatic processes embedded in the so-called warm conveyor belts (WCBs) play a key role in triggering forecast
errors along the North Atlantic upper-tropospheric waveguide. They may significantly deteriorate the forecast of high-impact
weather events more downstream. WCBs correspond to air masses flowing within the boundary layer in the warm sector of
extratropical cyclones and ascending to the tropopause level east of the cyclone center (Browning, 1990; Wernli and Davies,
1997). These coherent air masses make the connections between the different layers of the troposphere as they gain moisture
in the boundary layer, undergo heat release by condensation when they ascend and have an impact on the upper-tropospheric
circulation. When they reach the tropopause level, negative Potential Vorticity (PV) is generated in the WCB outflow region
that reinforces the ridge downstream of the cyclone, but also the upper-tropospheric PV gradient and hence the jet stream
(Pomroy and Thorpe, 2000; Grams et al., 2011; Schemm et al., 2013; Chagnon et al., 2013; Gray et al., 2014). Uncertainties
in the heat release within WCBs due to misrepresented cloud microphysics or convection could trigger forecast errors at the
tropopause level that may then propagate downstream along the waveguide (Martinez-Alvarado et al., 2016; Grams et al., 2018;
Maddison et al., 2020). The objective of the present study is to investigate the effect of parameterized deep convection in a

global NWP model on the WCB activity and the jet stream.
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Embedded convective activity within WCBs has been initially identified using airborne and satellite-derived data within an
extratropical cyclone during the Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA) field experiment
(Neiman et al., 1993). Various ground-based, spaceborne and airborne remote sensing measurements confirm the regular pres-
ence of convective activity in the warm sector of extratropical cyclones and WCBs in particular (Crespo and Posselt, 2016;
Flaounas et al., 2016, 2018; Oertel et al., 2019; Blanchard et al., 2020; Jeyaratnam et al., 2020). This was detected in vari-
ous regions of the Northern Hemisphere; over the United States (Jeyaratnam et al., 2020), the North Atlantic ocean (Crespo
and Posselt, 2016; Oertel et al., 2019, 2020, 2021; Blanchard et al., 2020, 2021) and in the Mediterranean sector (Flaounas
et al., 2016, 2018). Recent numerical studies relying on convection-permitting model simulations of various extratropical cy-
clones also highlighted the presence of embedded convection within WCBs (Rasp et al., 2016; Oertel et al., 2019, 2020, 2021;
Blanchard et al., 2020, 2021). The emerging picture is that WCBs are composed of various ascending air streams in which
convective ascents may intermittently happen within the main slantwise ascending airflow. Such an intermittent convective
activity may have non negligible effects on the upper-level jet stream. Oertel et al. (2020) and Blanchard et al. (2021) showed
that the WCB-embedded convective cells form dipolar PV anomalies with the negative pole being closer to the jet which tend
to reinforce the PV gradient and hence the jet.

Because WCB-embedded convection plays an important role in the large-scale circulation, it is worth investigating the
effect of parameterized deep convection on WCBs in models that do not have enough resolution to explicitly resolve that
phenomenon. The contribution of parameterized convection in the total heating and precipitation rates within extratropical
cyclones varies a lot by changing schemes as shown by Martinez-Alvarado et al. (2014b) and Booth et al. (2018). Differences
in total precipitation rates between models usually vary much less than differences in the contribution of parameterized con-
vection to the total. Done et al. (2006) showed that the upper-level large-scale circulation is sensitive to the relative amount of
parameterized vs explicit convection but their focus was on the effect of mesoscale convective systems and not WCBs of deep
cyclones. More relevant to the present study, the impact of convection parametrization on WCB dynamics and its effect on
the upper-level flow has been studied by Martinez-Alvarado and Plant (2014) in a case-study of a North Atlantic extratropical
cyclone. The authors show that parameterized convection "regulates the action of large-scale heating" by releasing convective
instability at sub-grid scales which would have otherwise been released at larger and resolved scales. Because of this regulation,
WCB trajectories more gradually ascend when parameterized convection is more active than when it is reduced. Furthermore,
in presence of reduced parameterized convection, the more abrupt ascents lead to more important impact on upper level circu-
lation even though differences with active parameterized convection are small at 24-hour lead time (Martinez-Alvarado et al.,

2014a). In the same vein, the present study aims at addressing the following questions
— How different are WCBs between simulations with active parameterized deep convection and those without ?
— What is the impact of parameterized deep convection on the jet stream at short range (less than 2 days) ?

— How different are WCBs and their impact on the jet stream between simulations performed with distinct deep convection

schemes ?
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Our approach is based on the case study of an extratropical cyclone that occurred during NAWDEX called the Stalactite
cyclone (29 September - 3 October 2016) and corresponding to Intensive Observing Period (IOP) 6. It was an explosively
deepening cyclone at a rate of roughly 24 hPa in 24 hours (Flack et al., 2021) that formed off the east coast of Newfoundland
and travelled over the North Atlantic toward Iceland and Greenland. This large-scale cyclone participated in the formation of
a block over Scandinavia (Schéfler et al., 2018). The Stalactite cyclone was already the subject of several studies. Maddison
et al. (2019, 2020) showed that the low predictability of the block onset at medium range was associated to uncertainties in the
timing, location and intensity of that cyclone. Blanchard et al. (2020) and Blanchard et al. (2021) studied the WCB-embedded
convection by performing convection-permitting model simulations while Mazoyer et al. (2021) analyzed the impact of cloud
microphysics on the WCB activity of the Stalactite cyclone with similar convection-permitting simulations. Flack et al. (2021)
analyzed the whole life cycle of the cyclone in simulations of two climate models. Maddison et al. (2020) showed that medium-
range forecast skills of the cyclone are sensitive to the choice of the deep convection schemes but none of these studies
systematically investigated the role of parameterized deep convection on the WCB of the cyclone at short range. In addition to
its dynamical interest, the Stalactite cyclone is worth studying because numerical simulations can be compared and validated
against airborne observations: two flights of the French Falcon 20 from the Service des Avions Francais Instrumentés pour la
Recherche en Environnement (SAFIRE) and one flight from the Deutsches Zentrum fiir Luft- und Raumfahrt (DLR) Dassault
Falcon were conducted on 2 October 2016.

The paper is structured as follows. Section 2 is dedicated to the method where the global atmospheric model ARPEGE
(Action de Recherche Petite Echelle Grande Echelle) and the three numerical simulations are presented. Two simulations are
run with two distinct deep convection schemes used and developed within ARPEGE. The first one is used in the deterministic
operational forecasts of the NWP version of the model and was developed by Bougeault (1985) while the second, called
the Prognostic Condensates Microphysics and Transport scheme and developed by Piriou et al. (2007), was implemented in
the CMIP6 version of the ARPEGE climate model (Roehrig et al., 2020). A third simulation is performed in which the deep
convection scheme is turned off. The Lagrangian trajectory algorithm, PV diagnostics, together with the reanalysis and airborne
observations datasets are also summarized in section 2. In section 3, the impact of deep convection schemes on heating rates
and WCB trajectories is analyzed while section 4 is focused on their effect on the upper-level circulation and the jet stream.

Finally, section 5 provides concluding remarks.

2 Data and method
2.1 Model and simulations set-up

The Météo-France global forecast model ARPEGE (Courtier et al., 1991) is used at a T798 resolution with full physics and
90 vertical levels. The stretched horizontal grid (mapping factor of 2.4) corresponds to about 10 km horizontal resolution
over France, 15 km near Iceland and 60 km on the opposite side of the globe relative to France. The temporal resolution is 7.5
minutes. Simulations analysed in the present study are based on the 2016 operational version of the ensemble prediction system

(EPS) of ARPEGE called the Prévision d’Ensemble ARPEGE (PEARP; Descamps et al., 2015). It is documented in Ponzano
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et al. (2020) (see their table 1) and was already used to study the predictability of a heavy precipitation event that occurred over
France during NAWDEX (Binder et al., 2021). It includes ten members that have the same initial state that is the ARPEGE
operational analysis made with a 4D-Var data assimilation scheme. They only differ in the representation of at least one of the
following physical package: deep convection, turbulence, shallow convection and surface oceanic fluxes. Two largely distinct
deep convection schemes are used, one is the scheme developed by Bougeault (1985), hereafter called B85, the other one
is the Prognostic Condensates Microphysics and Transport scheme of Piriou et al. (2007), hereafter called PCMT. For some
members, modified versions of B85 are activated. Two turbulent schemes are used: the Turbulent Kinetic Energy Scheme of
Cuxart et al. (2000) and the turbulence scheme of Louis (1979). Four shallow convection schemes are considered: the mass flux
scheme of Kain and Fritsch (1993) and Bechtold et al. (2001), PCMT, the eddy diffusivity and Kain—Fritsch scheme, and the
Pergaud et al. (2009)’s scheme. Surface oceanic fluxes are represented by Belamari (2005)’s scheme or by an alternate version
in which the evaporative fluxes are enhanced. The paper is focused on two particular members of this EPS, corresponding to
the REF member and 7th member respectively of table 1 of Ponzano et al. (2020). They only differ in the representation of
deep convection, one using the B85 scheme and the other the PCMT scheme. The two simulations share the same physical
parameterizations for turbulence (Turbulent Kinetic Energy Scheme; Cuxart et al., 2000), shallow convection (Kain and Fritsch,
1993; Bechtold et al., 2001), large-scale microphysics (Lopez, 2002) and oceanic flux (Exchange Coefficients from Unified
Multi-campaigns Estimates; Belamari, 2005). Finally, a third simulation is performed without any active deep convection
scheme (hereafter called NoConv) but with the same other physical packages as the other two simulations and will serve as a
reference to assess the impact of B85 and PCMT schemes.

The three simulations are hereafter systematically compared. The starting date is 12 UTC 1 October 2016 when the surface
cyclone is already in its mature stage and located in the middle of the North Atlantic (see the position of the minimum sea level

pressure at 1 day lead time in Fig. 1).
2.1.1 The Bougeault (1985) deep convection scheme

This mass-flux scheme is triggered when the resolved plus subgrid-scale moisture convergence is positive in the low levels
and the atmospheric profile is unstable. So the scheme is closed with moisture convergence. Following Kuo (1965) the total
moisture convergence is either detrained in the convective environment or precipitated. This scheme was further developed
by Ducrocq and Bougeault (1995) for downdrafts. It is part of the global operational NWP (Numerical Weather Prediction)

system at Météo France and is currently used to perform ARPEGE deterministic operational simulations.
2.1.2 The Prognostic Condensates Microphysics and Transport scheme (Piriou et al., 2007)

This convection scheme separates microphysics and transport in grid-scale equations to overcome stationary cloud budget
assumptions, as proposed by Piriou et al. (2007). Liquid and ice cloud condensates, as well as rain and snow have prognostic
mixing ratios, to deal with the same level of sophistication inside convective updraft as in the resolved-scale microphysics
(Lopez, 2002; Bouteloup et al., 2011), therefore including autoconversion, aggregation, collection, riming, melting, etc. The

closure of all experiments run with PCMT in the present study is based on CAPE (Convective Available Potential Energy). As
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previously said, this scheme is used in PEARP but also is part of the CNRM Earth System Model for CMIP6 (Roehrig et al.,
2020).

2.2 Model output and diagnostics

The output datasets of the simulations are provided on a regular longitude-latitude grid of 0.5°, a pressure grid spacing of 50

hPa in the vertical and a frequency of 15 minutes.
2.2.1 WCB trajectories

The Lagrangian trajectory code is designed to work with latitude x longitude Xx pressure files of zonal wind u, meridional
wind v, vertical velocity w and other variables such as temperature and diabatic tendencies. The algorithm is based on a
prediction-correction method of the advection at the midpoint of the trajectory. Let DT be the time interval between two
model outputs. To account for curvature effects, the trajectory model has higher resolution than the model outputs and its time
step dt is such as n x dt = DT. At t =i x DT + j x dt (where j =1,...,n) and for each point (z(¢),y(t),p(t)) (p denotes
pressure, = and y are horizontal coordinates) belonging to a trajectory we look for the previous position (x(t — dt),y(t —
dt),p(t —dt)), the advection being made with u, v and w in the middle of the trajectory portion at ¢ — dt/2 which is not known
a priori. We first apply a time interpolation to compute the 3D wind field at time ¢ using the two closest model outputs for
(u,v,w) at time i X DT and (i 4+ 1) x DT and referred to as U(x,y,p,t). We then apply an iterative method starting with the
wind at the point of the trajectory at time ¢ (i.e U(z(t),y(¢),p(t))) to build up a first estimation of the previous position of
the trajectory (z1(t — dt),y1(t — dt),p1(t — dt)) and extract the wind along this first estimated trajectory at t — dt/2 (called
Uy (z(t—dt/2),y(t —dt/2),p(t — dt/2)) by horizontal, vertical and time interpolation. Horizontal interpolation is bilinear
(4 neighbouring points are used). A second estimated trajectory is calculated using U; leading to a second estimation of
the previous position (x5 (t — dt),y2(t — dt),p2(t — dt)). The process can be repeated several times but practical tests show it
converges after about 2 iterations. If a trajectory goes beyond 975 hPa, its position is shifted to 975 hPa. Note that such an
algorithm allows the computation of both backward and forward trajectories. In what follows, DT and dt are equal to 15 and
7.5 minutes respectively (n = 2).

Forward trajectories are initialized at 12 UTC 1 October in the warm sector of the extratropical cyclone and computed during
48 hours. To select WCB trajectories, a criterion of ascent exceeding 300 hPa within 1 day during the period between 12 UTC
1 October and 12 UTC 3 October is applied. This is a less strict criterion than the more usual criterion of 600 hPa ascent within

2 days (Madonna et al., 2014; Binder et al., 2016) but allows a broad view of the different ascents in the WCB.
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2.2.2 Heating and PV tendencies

The Ertel potential vorticity ¢ and its Lagrangian derivative can be expressed as (Ertel, 1942):

1
g = —Ca-Vb, (D
P
Dg 1 .
= = ;(Ca~V9+V><F-V9)7 @)

where D/ Dt = 0/0t +ud/dx +vd/Jy +wd/Ip is the Lagrangian derivative, 6 the potential temperature, p is density, (, the
three-dimensional absolute vorticity vector, V the three-dimensional gradient and F' the three-dimensional frictional acceler-
ation. The diabatic heating is denoted as 6=Do /Dt. These two equations can be rewritten under the hydrostatic balance in

pressure coordinates as:
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where F,, and Fy are the zonal and meridional components of the frictional acceleration. Even though the friction-induced
PV tendency is not negligible and generally generates a positive PV anomaly in lower troposphere (Stoelinga, 1996), it is
not shown in the present study which is focused on the upper-level PV modification. PV modification along WCB has been
generally attributed to the term involving the vertical gradient of the diabatic heating (Wernli and Davies, 1997; Joos and
Wernli, 2012), that is the first term on the right-hand-side of Eq.(4). The second and third terms involving the horizontal
gradient of the heating has been generally considered as a second-order effect. Very recently the horizontal gradient has been
shown to be very important in high-resolution convection-resolving simulations (Oertel et al., 2020).

The first method to compute the diabatic heating 6 consists of approximating the time and space derivatives of potential
temperature using centred finite-difference schemes applied to the potential temperature over the 0.5°x 0.5° horizontal grid,
50-hPa vertical grid and with a frequency of 15 minutes. An alternative to compute the total heating is to sum all the temper-
ature tendencies due to each physical process (resolved and parameterized sensible and latent heating, radiation, turbulence)
that are made available as model outputs on a non regular grid. Spatial interpolations were necessary to get them on the same
regular 0.5° x 0.5° grid of the model outputs. The total heating obtained with this second method was found to be less accurate
to represent the change in potential temperature undergone by the Lagrangian trajectories. Hence the first method based on
centred finite-differences schemes is used to make all the main figures of the paper. The second method is only used in some
supplementary figures to show the robustness of the results as well as to attribute the total heating to some specific physical
processes, which cannot be provided by the first method. It is not surprising that the first method accurately approximates the
potential temperature variations along trajectories because the computations of both the trajectories and the finite differences
are made on the same grid and, in that sense, are self consistent. The second method less well approximates the potential
temperature variations along trajectories because the post-process treatment to get the individual diabatic temperature tenden-

cies and the underlying interpolations were not the same as for the other variables (wind, temperature). Finally, to get the
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PV tendencies due to the heating (first three terms on the rhs of Eq. (4)), centred finite-difference schemes are applied to the

heating.
2.3 Reanalysis and observations
2.3.1 Reanalysis and operational analysis

Operational analyses from ARPEGE and the Integrated Forecasting System (IFS) of the European Centre for Medium-Range
Weather Forecasts (ECMWF) are used on the same regular latitude-longitude grid with 0.5°resolution and the same pressure
levels with 50-hPa spacing as the model simulations outputs. ERAS reanalysis datasets (Hersbach et al., 2020) are also used

with the same 0.5°grid spacing, that is keeping one grid point every two grid points from the 0.25°original grid of the reanalysis.
2.3.2 Airborne observations and comparison to model outputs

Two coordinated flights of the SAFIRE and DLR Falcon aircrafts were conducted from 09 UTC to 12 UTC 2 October between
Iceland and Greenland to sample the WCB outflow region of the Stalactite Cyclone. The two aircraft followed each other with
a 10-minutes interval between 0900 UTC and 1015 UTC. The 95 GHz Doppler cloud radar RASTA (Radar Airborne System;
Delanoe et al., 2013) on board the SAFIRE Falcon measured both reflectivity and Doppler velocity along three antennas
(nadir, backward and transverse) that allow for reconstructing the three wind components. The temporal resolution between
two consecutive nadir measurements being 750 ms and the typical Falcon 20 speed 200 m s~ !, the horizontal resolution is near
300 m. Additional wind measurements were made during the flight of the SAFIRE Falcon by launching nine dropsondes and by
in-situ sensors at the aircraft level. The 2-pm scanning coherent/heterodyne detection Doppler Wind Lidar (DWL; Weissmann
et al., 2005; Witschas et al., 2017) on board the DLR Falcon measured vertical profiles of line-of-sight wind speed, horizontal
wind vectors, and detected aerosol/cloud layers.

Since the model output grid is 0.5° x0.5°, which corresponds to 28 kmx 55 km spacing in longitude and latitude respectively,
the radar RASTA and DWL wind measurements are averaged over intervals of 180 s to get the same horizontal resolution as

the model outputs (the Falcon travels a distance of 36 km in 180 s).

3 Impact of convection representation on heating rates and warm conveyor belt trajectories
3.1 General overview

Differences in SLP between the three integrations are rather small (Fig. 1). The tracks of the minimum SLP are rather similar
and differences in the minimum SLP do not go beyond 2 hPa at 1-day lead time (962.9 hPa in B85, 962.0 hPa in PCMT and
961.2 hPa in NoConv) or at 2-day lead time (959.5 hPa in B85, 959.8 hPa in PCMT and 958 hPa). This subsection is more
particularly dedicated to presenting differences in the main characteristics of the WCB between the three runs. The number of
trajectories satisfying the WCB criterion of the present study (ascent rate of at least 300 hPa in 24 hours) does not differ much

between the three runs: 9876, 10086, and 11421 for B85, PCMT and NoConv simulations respectively. The WCB trajectories
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Figure 1. WCB trajectories from 12 UTC 1 October to 12 UTC 3 October coloured according to pressure (in hPa) for (a) B85, (b) PCMT
and (c¢) NoConv simulations. The sea level pressure at 12 UTC 2 October is shown in grey contours (int: 5 hPa). Only WCB trajectories with
an ascent criterion of at least 600 hPa in 48 hours are shown for clarity purposes. In each panel, the black thick line represents the track of
the minimum sea level pressure of the corresponding run between 12 UTC 1 October to 12 UTC 3 October. The circle, cross and triangle

correspond to the position of the minimum sea level pressure at 12 UTC 1 October, 12 UTC 2 October and 12 UTC 3 October respectively.

share many common features between the runs. A majority of trajectories exhibit a well-marked cyclonic curvature during
their ascents to the east of the surface cyclone and then change their curvature in the upper troposphere over Greenland to
become more zonally oriented and slightly anticyclonically curved toward Scandinavia (Fig. 1). These trajectories in the upper
troposphere span a larger latitudinal band in NoConv than PCMT and B85 (compare the banded areas formed by the blue
segments of the trajectories). The largest difference between the three runs concerns another set of trajectories that has a more
zonal orientation from the mid-Atlantic to Western Europe near 45°N. There are very few such trajectories in B85 run, while
they are more abundant in PCMT and very numerous in NoConv run.

Figure 2 presents averaged quantities along the WCB trajectories of the three runs. The mean pressure is about 894 hPa at 12
UTC 1 October for the 3 runs and reaches 415 hPa for B85, 427 hPa for PCMT and 435 hPa for NoConv at 12 UTC 3 October.
Some differences also appear in the 90th percentile with the WCB trajectories of the B85 run having systematically lower
pressure levels than the other two runs (Fig. 2a). There are not so many differences between the mean potential temperatures
of the three runs. The only notable difference is the slightly higher mean temperature in the B85 run than in the other two
runs from 12 UTC 2 October to 12 UTC 3 October (Fig. 2b). This difference between B85 and PCMT is significant at 99%
level following a Welch test while differences with NoConv are not significant. The time evolution of the PV along WCB
trajectories is characterized by an increase followed by a decrease (Fig. 2c) which is a classical picture of WCB as they
undergo PV production at low levels below the heating layer and PV destruction at upper levels above the heating (e.g. Wernli
and Davies, 1997; Schemm et al., 2013). Differences in PV between the three runs are more important than differences in
pressure or potential temperature. Trajectories of B85 and PCMT runs undergo more important increase and decrease of PV
than those of NoConv run in average. While the two runs with activated parameterized convection exhibit similar increase in
PV during the first 24 hours, they differ in the subsequent decrease in PV. B85 trajectories exhibit a more rapid decrease in PV

between 18 UTC 2 October and 00 UTC 3 October while PCMT trajectories show smoother decrease in PV.
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To get a better insight on the heating and PV evolution along trajectories, Fig. 3 shows the time evolution of the mean vertical
profile of the heating and PV tendency due to the vertical gradient of the heating along WCB trajectories. While the magnitudes
of the heating and PV tendency are rather similar between the three runs, some significant differences also appear. The NoConv
case exhibits the strongest heating values at early stage (18 UTC 1 October) but the lowest ones at later stage (18 UTC 2 October
to 06 UTC 3 October) compared to the other two cases, suggesting a more rapid destabilization of the atmosphere in NoConv.
In terms of PV, the expected picture of PV gain and loss below and above the main heating layer respectively is visible for the
three cases. We observe that the PV gain region presents two peaks between 12 UTC 1 October and 12 UTC 2 October, one in
the boundary layer and another near 700-800 hPa. But more importantly, the negative PV tendency above the heating layer is
stronger for B85 than PCMT and NoConv during the whole period and in particular between 18 UTC 2 October and 00 UTC
3 October when WCB trajectories reach these upper levels. Such a difference is also seen by computing the total PV tendency
due to the heating, i.e by summing the first three terms on the rhs of Eq. (4) (not shown) and is in agreement with the more
rapid decrease in PV seen in Fig. 2¢ for B85. This difference is mainly due to the fact that the heating reaches higher values in
the upper troposphere between 2 and 3 October in B85 and thus has stronger vertical gradients (e.g., see the more important
tightening of black contours between 00 UTC 2 October and 00 UTC 3 October in Fig. 3a than Figs. 3b,c).

Let us now document differences in the instantaneous ascending motion of the trajectories between the three runs. The
proportion of trajectories ascending by more than 100 hPa, 50 hPa and 25 hPa in 2 hours between 7" — 1h and 7'+ 1h are
indicated as function of time 7" in Fig. 2d. NoConv has the largest number of trajectories ascending most rapidly (i.e 100 hPa
within 2 hours and 50 hPa within 2 hours), B85 is the run having the lowest number while PCMT is in between whatever the
time. In the category of more modest ascents (25 hPa in 2 hours), B85 has more such trajectories in proportion than the other
two runs from 00 UTC to 18 UTC 2 October. Beyond 18 UTC 2 October, the proportions of moderately ascending trajectories
are more close to each other between the three runs. These differences in the ascending motion properties are synthetised in
Fig. 4. The NoConv trajectories undergo the most rapid vertical motion with a maximum vertical displacement of about 104
hPa in 2 hours when averaged over all trajectories. In comparison, the averaged maximum ascending rate is 94 hPa and 86 hPa
for PCMT and B85 runs respectively (see the zero lag). However, the three curves cross each other near the 4-hours lag. After
that lag the order reverses and B85 shows the highest ascending rate. Therefore, even though B85 has less strong ascending
rate maxima, it is the run for which trajectories exhibit more sustained ascents. To conclude, parameterized deep convection
tends to induce more sustained and longer-lasting ascending motion than when explicit deep convection occurs at grid scales
of the model. The two schemes lead to the same qualitative effect but B85 is the one whose behavior distinguishes the most

from explicit deep convection and presents more sustained ascents.
3.2 Differences in the rapid ascending trajectories during the first twelve hours of the simulations

To better visualize the effect of parameterized deep convection on heating rates in physical space, horizontal maps and vertical
cross sections are shown at 21 UTC 1 October in Fig. 5. This time has been chosen because it corresponds to large differences
in the proportion of the most rapidly ascending trajectories (i.e those exceeding 100 hPa ascent within 2 hours) between the

three runs (Fig. 2d). Only the positions of WCB trajectories belonging to this category are shown in Fig. 5. The cold and bent-
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Figure 2. Time evolution along WCB trajectories of (a) mean pressure (solid lines, units: hPa) and 10th and 90th percentiles of pressure
(dashed lines), (b) mean potential temperature (solid lines; units: K), (c) mean PV (units: PVU). Panel (d) indicates the percentage of WCB
trajectories in each run satisfying a given ascending criterion at a given time: 100 hPa in 2 hours (light solid lines), 50 hPa in 2 hours
(dashed lines) and 25 hPa in 2 hours (bold solid lines). The red, blue and green curves correspond to B85, PCMT and NoConv simulations

respectively.

back warm fronts bring strong similarities between the three runs. Additionally, heating rates are strong for all runs ahead of
the cold front and in the vicinity of the bent-back warm front (upper left side of Figs. 5a,c,e). Not surprisingly all the positions
of the most rapidly ascending trajectories at that time are located within these regions of strong heating rate. However, the
largest differences between the three runs appear in the heating rates ahead of the cold front (26°W-22°W; 42°N-52°N) and
not near the bent-back warm front (34°W-30°W; 52°N-56°N). Ahead of the cold front, NoConv is characterized by 4 regions
of strong heating rates with a few degrees extent in latitude and longitude and whose peak values are beyond 3 K h~!. In the
same area, PCMT shows similar peak values but the heating rates are more homogeneously distributed along the WCB than
NoConv. In contrast, the peak values for B85 are much weaker (no more than 2.4 K h—!) and the large values of heating rate
are even more homogeneously distributed than in PCMT.

Vertical cross sections of the heating rates averaged between 42°N and 48°N, that is ahead of the cold front, are shown in

Figs. 5b,d.f. In that region, the heating rate is much stronger in NoConv and PCMT than in B85 over the whole tropospheric
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Figure 3. Time evolution of the mean vertical profiles along all WCB trajectories of the heating rate (int: 0.20 K h™') and PV tendency part
due to the vertical derivative of the heating (int: 0.01 PVU h™!) for (a) B85, (b) PCMT and (c) NoConv simulations. The mean pressure of

the WCB trajectories is shown in solid lines and the 25th and 75th percentiles in dashed lines.

310 column. In NoConv, strong heating rates appear in the upper troposphere at pressure levels lower than 350 hPa that do not
exist for the two runs with parameterized convection. This yields to slightly lower isentropic levels in the upper troposphere
for NoConv compared to the other two runs. However, it is worth mentioning there also exist regions where NoConv tends to
get much smaller heating values ahead of the cold front than the other two runs (see for instance the area centred at 22°W,
50°N). These results show similar findings as those of Martinez-Alvarado and Plant (2014) who compared two runs with full

315 and reduced parameterized convection.
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Figure 4. Time lag composite of the pressure difference in 2 hours over WCB trajectories for B85 (red), PCMT (blue) and NoConv (green)
simulations. The zero lag corresponds to the time of maximum pressure difference. Only WCB trajectories having their maximum pressure
difference reached before 12 UTC 2 October are considered to get the same number of trajectories at all time lags. Thick segments correspond

to time lags for which each composite is significantly different from the other two composites at 99.9% following a Welch test.

3.3 Differences in the moderate ascending trajectories after 24-hours simulations

Following Fig. 2d another particular interesting period is between 12 UTC and 18 UTC 2 October during which the proportion
of trajectories with moderate ascents (25 hPa in 2 hours) becomes much larger for B85 than the other two runs. Heating rates
and trajectories having moderate ascents at 12 UTC 2 October are shown in Fig. 6. Compared to 15 hours earlier (Fig. 5), the
peak values of the vertically-averaged heating rates are weaker and significant differences between the runs appear along the
bent-back warm front. However, the qualitative picture is roughly the same. NoConv heating rate is more bumpy along the front
and marked by more pronounced regions of high and low heating rates than the other two runs. B85 is the run with smoother
heating rate (Figs. 6a,c.e). There are two particular regions of inactivity in NoConv; one located along the front at 26°W, 62N
and another one further north between 63°N and 65°N and from 32°W to 24°W. PCMT exhibits slightly stronger heating rates
and more trajectories with moderate ascents than NoConv in those regions. But B85 gets even much stronger heating rate and
many more trajectories. The difference in the number of trajectories seen in Fig. 2d mainly comes from these two regions.
Vertical cross sections of heating rates averaged between 63°N and 65°N show that the second region of marked WCB
inactivity in NoConv occurs at upper levels between 350 and 550 hPa in the longitudinal sector 34°W- 24°W. We do see
many more WCB trajectories with moderate ascents in B85 than in NoConv in association with the heating rate peak values
of the former being more than twice that of the latter (Figs. 6b,f). As already seen in many figures, PCMT has an intermediate
behavior between B85 and NoConv (Fig. 6d). A decomposition of the heating rate into various physical processes shows that
differences in the heating rates in that sector come from the resolved heating (sensible plus latent) and not the parameterized

heating which is mainly negligible at upper levels at that time (see Figures S1 and S2). Parameterized convection and turbulence
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have similar amplitudes as the resolved heating in the lower troposphere but are negligible compared to the resolved heating
at upper levels. The radiative term is found to be much smaller than the other terms in that sector at that time over the whole
troposphere. Therefore it is not a direct effect of parameterized heating that is observed here but rather an indirect effect in
which parameterized deep convection interacts with the resolved flow so that it leads to more intense WCB activity north of
the front in the upper troposphere in B85 than in the other two runs.

Figure 7 provides a connection between the WCB activity, heating rates and PV patterns north of the front where large
differences between the three runs have been identified. At lower pressure than 450 hPa, two main regions of WCB activity
appears; one near 42°W-40°W in the vicinity of a well-marked localized negative PV region seen in all three runs (Figs. 7a,c.e)
and another one along the band 34°W-24°W discussed previously. Areas of negative PV are visible slightly above and west
of the latter region of WCB activity. These areas are small and centred at 32°W for PCMT and NoConv whereas it is much
larger and extends from 36°W to 32 °W in B85. More WCB trajectories in B85 than in the other two runs would be a good
explanation for the more extended negative PV area in B85. However, we observe that this negative PV area is not exactly co-
located with the positions of the WCB trajectories which are a bit below and more to the east relative to the negative PV area
(Fig. 7a). In other words, the PV loss undergone by WCB trajectories is not co-located with the negative PV area. To explain
this shift of the negative PV area relative to the PV destruction region, it is important to consider spatial redistribution of PV
by advection terms and in particular the indirect diabatic effects of advection by the divergent wind which tends to displace
the PV destruction outward of the WCB outflow region (Archambault et al., 2013; Steinfeld and Pfahl, 2019). Ageostrophic
winds that can be considered as a proxy for the divergent winds are shown in Figures 7b,d,f. West of the main WCB outflow
region, i.e west of 30°W in the 300-400 hPa layer, winds are westward and upward. Moving to the west they become more and
more horizontal and align more with the isentropic slopes (compare the orientation of the vectors with the slope of the 315 K
isentropic surface in Fig. 7a). The PV advection by the ageostrophic wind is generally negative because the stratospheric high
PV values are west of the tropospheric low PV values. This leads to a westward expansion of the ridge anomaly, consistent
with other studies (Steinfeld and Pfahl, 2019). Still looking at the same region, the ageostrophic winds are stronger in B85 than
in PCMT or NoConv as expected from its more intense WCB activity there. While the advection terms are similar between the
three runs between 44°W and 40°W, they significantly differ between 38°W and 36°W where negative PV advection is clearly
stronger for B85. Therefore, stronger WCB activity in connection with higher heating rate in mid and upper troposphere leads
to stronger PV loss in the WCB outflow region in B85 compared to the other two runs, which is then advected upward and
westward by the stronger divergent winds to form a more important zone of negative PV for the former run.

The findings of this section can be summarized as follows. With parameterized deep convection, heating rates are more
homogeneously distributed along the cold and warm fronts while without parameterized deep convection, heating rates are
marked by strong spatial variations along the fronts. This leads to more rapid instantaneous ascents for the latter and more
moderate but more sustained ascents for the former. Martinez-Alvarado and Plant (2014) also emphasized the smooth and
regulating effect of parameterized deep convection within WCB which is due to the fact that parameterized convection releases
convective instability at subgrid scales while explicit convection at resolved scales. Among the two schemes, B85 is the one

having the greatest difference with NoConv while PCMT has a more intermediate behavior. The three runs significantly differ
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in terms of the impact of WCB activity on PV. B85 scheme generally leads to higher heating rates at upper levels and more PV

destruction in the upper troposphere during the second half of the simulations.

4 Impact of deep convection representation on jet stream

The impact on the jet stream is investigated in the present section and forecast skills of the three runs are assessed by comparing

to the re-analyses and airborne observations.
4.1 Comparison to (re)-analyses

PV horizontal maps at 300 hPa are shown for the three runs in Fig. 8 and compared with ECMWEF-IFS and ARPEGE analyses
and ERAS reanalysis. The separation between stratospheric and tropospheric air is well marked in all panels by an abrupt
jump in PV from near-zero and negative values to large positive values close to 8-10 PVU. This boundary is associated with
a tropopause fold as shown in Figs. 7a,c,e. Despite this well-defined limit located more or less at the same place for the
six datasets (3 simulations, 2 analyses and 1 reanalysis), the region of ridge building is not characterized by homogeneously
distributed weak and negative PV values. For instance, at 64°N, going from 45°W to 25°W (i.e roughly along the main legs of
the two Falcon flights), B85 exhibits large positive PV associated with stratospheric air, a sudden decrease to slightly negative
values, then another area of positive PV values and finally negative values (Figs. 7a and 8d). The area of positive PV within the
ridge forms a band of PV with values varying between 0.5 and 1.5 PV largely covering the Greenland eastern coast (Fig. 8d)
but whose vertical extent is rather limited between 300 and 350 hPa at 39°W (Fig. 7a). A similar narrow band of positive PV
exists in the other datasets but with different values of PV and different locations. In ECMWF-IFS analysis and ERAS, the
positive PV values are smaller but have the same location as in B85 (Figs.8a,c). In ARPEGE analysis, the band is rather similar
in intensity and location to B85 but this is not surprising since ARPEGE analysis is made using a deterministic forecast whose
deep convection scheme is B85. In contrast, in NoConv the band is eastward shifted by few degrees in longitude compared
to B85 (Figs. 7e and 8f). In PCMT, the band is less well defined and the pattern resembles a mix between those of B85 and
NoConv patterns.

Because there are two jumps in PV at 300 hPa, a double jet structure is well visible in Fig. 9 for all datasets with the main jet
being the one more to the northwest separating the tropospheric air from the stratospheric air. While the secondary jet lies just
above the Greenland eastern coastline for ECMWF-IFS, ARPEGE analyses, ERAS and B85 (Figs. 9a-d), it is located further
east in PCMT and NoConv (Figs. 9e-f). This is consistent with the PV gradient deduced from Fig. 8. In the immediate vicinity
of the eastern coast of Greenland north of 64°N, PV values are higher to the west and lower to the east in ECMWEF-IFS,
ARPEGE analyses, ERA5 and B85 which explains the co-location of the secondary jet for these datasets. Anomalies with
respect to ECMWF-IFS analysis are shown in black contours in Figs. 9d-f. B85 run produces a slightly too strong jet with
positive anomalies of 4 m s~! amplitude (Fig. 9d), consistent with the higher PV values along the narrow ribbon of 0.5-1.5
PVU values shown in Fig. 8d compared to ECMWEF (Fig. 8b). The other two runs are marked by an eastward shift of the jet

and negative anomalies of the order of 8 m s~! amplitude over the Greenland eastern coastline (Figs. 9e-f), consistent with
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the eastward shift of the ribbon of 0.5-1.5 PVU values compared to the other datasets. At that time, B85 performs better than
PCMT or NoConv in capturing the distance between the two jets and this is attributed to the more active WCB in that region
in B85 that reinforces the PV gradient further west and pushes the secondary jet closer to the main one. Another interesting
feature is the stronger wind magnitude of the main jet in PCMT and NoConv compared to B85. This is due to more negative
PV values just east of the tropopause fold (Figs. 8d-f) and more active WCB in that area for the former runs than the latter
(see 42°W in Figs. 7a,c,e). Here also, B85 is slightly closer to ECMWEF-IFS than the other two runs. In other words, the
WCB outflow region is separated into two branches one reinforcing the main jet and the other one the secondary jet. The runs
distinguish from each other in the relative importance of the two branches.

Six hours later, at 18 UTC 2 October, the double jet structure is much less pronounced in ECMWEF-IFS, ARPEGE analyses
and ERAS as well as in PCMT and NoConv but is still there in B85 (Fig. 10). Furthermore, the anomalies with respect to
ECMWE-IFS are larger north of 64°N in B85 than PCMT or NoConv. In that case, B85 does not perform better than the other
two runs and is even less skillful. Further south, the jet stream is too weak in NoConv compared to the other datasets (see lower

right side of the panels in Figs.10d-f) but this sector is not the focus of the present study as no flights were conducted there.
4.2 Comparison to aiborne observations

The flights of the two aircrafts occurring in the region of the double jet structure (Fig. 9), it is worth comparing the three
forecasts to airborne observations to determine which one performs better in representing the jet stream structure and intensity.
The two aircrafts followed each other with 10-minutes lag and observed the same meteorological features during more than half
of the flights duration. Besides, since the Doppler radar on board the SAFIRE Falcon and the Doppler lidar on board the DLR
falcon are not sensitive to the same particles of the atmosphere, they provide complementary datasets as seen in Figs. 11a,b.
The data has been interpolated at the model grid in the present study (Sect. 2.3.2) while higher-resolution profiles of the same
datasets are shown in Fig. 9 of Schifler et al. (2018).

In Fig. 11a, a good correspondence generally appears between the three kinds of measurements, Doppler radar, airborne
in-situ and the nine dropsondes. The intensities of the lower- and upper-level jets detected close to the Greenland coastline are
similar in the dropsondes and radar data. The three datasets also agree on the intensities of the upper-level wind magnitude;
two main regions of high values are distinguishable, one between 9.5 h and 9.7 h and the other between 9.8 h and 10 h. Some
local discrepancies also occur for instance between the dropsonde data and radar data at 10.1 h or between the dropsonde data
and in-situ aircraft measurements at 10.5 h. The presence of a double jet structure is confirmed by the lidar measurements of
the DLR Falcon (Fig. 11b) with the two jets being quite close to each other.

Figs. 11c-e show the wind magnitude of the three forecasts. The double jet structure is present in all three runs as already
shown in Fig. 9 but once again we do see that the distance between the two jets is significantly larger for PCMT and NoConv
than B85. B85 is the forecast with the closest patterns to the observations even though the distance between the two jets is still
slightly too large in that run (e.g., compare Figs. 11b and c).

To better visualize differences between forecasts and observations, forecast errors with respect to the observations made

during the SAFIRE Falcon flight are shown in Fig. 12. While the three forecasts share the same errors at low levels with a too
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strong low-level jet in the vicinity of Greenland (see near 9.8 h and 10.6 h), errors in the upper troposphere have not the same
magnitude among the three forecasts. Between 200 and 400 hPa, PCMT and NoConv forecast errors exhibit tripolar anomalies
(positive-negative-positive) between 9.2 h and 9.9 h and between 10.7 h and 11.1 h whose magnitude is about 12 m s~!. The
negative forecast errors shown at 9.4 h and 10.9 h are consistent with the negative anomalies shown in Figs. 9e,f in which
the reference is ECMWF-IFS analysis. In contrast, B85 errors fluctuate between 6 and 9 m s~! only. The root-mean-square
error computed in the upper troposphere (pressure lower than 500 hPa) for the difference between each run and the radar
observations is 4.36 m s~! for B85, 5.00 m s ! for PCMT, and 4.81 m s~ for NoConv. Doing the same computation but using
in-situ airborne measurements, we get 4.27 m s~ for B85, 5.43 m s~ for PCMT, and 5.65 m s—! for NoConv corresponding
to an improvement of 10 to 30 % in the representation of the wind speed in that region in B85 compared to the other two
runs. To conclude, comparison with airborne observations confirms that B85 performs better than the other two forecasts in the

location of the jets at 24-hour lead time.

5 Conclusions

The effect of parameterized deep convection on WCB activity and jet stream has been investigated by performing simulations
of an explosively-developing large-scale cyclone, that occurred from the 29th of September to the 3rd of October 2016 during
NAWDEX and called the Stalactite cyclone, using the Météo-France global atmospheric model ARPEGE. Three simulations
differing only from their deep convection representation are analysed. For two of them, parameterized deep convection was
activated with distinct schemes (B85 corresponding to Bougeault (1985) scheme and PCMT corresponding to Piriou et al.
(2007) scheme) while for the third one, parameterized convection was turned off. The main findings can be summarized as

follows and correspond to answers to the three main questions raised in the introduction:

— How different are WCBs between simulations with active parameterized deep convection and those without ? When
parameterized deep convection scheme is turned off, convective instability is released at the resolved scales such that
few localized cells of few degrees extent in longitude and latitude appear along the cold and warm fronts of the cyclone.
These localized cells are characterized by strong heating and fast ascending motion. In contrast, when parameterized
deep convection is active, heating rate is more homogeneously distributed along the fronts, its large values are more
spread out while having less strong maxima than when deep convection is explicit at the model grid scales. This results
in different behaviors in WCB ascents: without parameterized deep convection, ascents are rapid and abrupt while with
parameterized deep convection, ascents are more moderate but more sustained. These results confirm the regulating

effect of parameterized deep convection emphasized by Martinez-Alvarado and Plant (2014).

— What is the impact of parameterized deep convection on the jet stream at short range (less than 2 days) ? Explicit
convection yields strong localized heating over the whole troposphere that may potentially have a more important impact
on the upper-level circulation locally than parameterized deep convection. However, the heating rate averaged over

all WCB trajectories was found not to be stronger for explicit deep convection than parameterized deep convection.
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Moreover, between 1-day and 2-day lead times, one of the scheme (B85) shows more important averaged heating in
the upper troposphere and more important vertical gradients of heating that lead to more PV destruction. This stronger
heating can be attributed to the resolved heating and not the parameterized heating which is mainly localized at lower
levels. These results should be contrasted with Done et al. (2006) who found that explicit convection yielded more PV
destruction than parameterized convection in their case study. The present results also show that differences in WCB
activity between explicit and parameterized deep convection may lead to large differences in the jet stream position and
intensity at 1-day lead time. This is to be contrasted with Martinez-Alvarado and Plant (2014). who found rather modest
impacts at the same short range. The impact on the upper-tropospheric circulation may depend on case studies. Here the

extratropical cyclone is deeper that the one studied by Martinez-Alvarado and Plant (2014).

— How different are WCBs and their impact on the jet stream between simulations performed with distinct deep convection
schemes ? The effects of the two deep convection schemes on WCB and their impact on the jet stream significantly
differ from each other. B85 is the scheme inducing the most drastic differences compared to the run with explicit deep
convection while PCMT has a more intermediate behavior. In terms of the impact on the jet stream, PCMT is closer to
the run with explicit deep convection than to B85. Comparison with operational analyses and airborne observations of
different types helped us to unambiguously determine the most skillful forecasts. At 1-day lead time, B85 performed
better than the other two runs to represent the double jet structure. The shorter distance between the main and secondary
jets in B85 than in other two forecasts was found to be more realistic by comparing to airborne observations and (re)-
analysis datasets. This was attributed to a more active branch of the WCB in a region of the upper troposphere that
pushed the secondary jet closer to the main one. However, at longer forecast range, this more active branch of the WCB

was too strong and led to less realistic behavior in B85 than the other two runs.

An analysis of the jet stream representation by the other members of the ARPEGE EPS show that members 1, 2,4, 5 and 9
behave similarly to member O, which is the B85 run discussed in the present study (Figure S3). All these members share the
same deep convection scheme, that is B85, while differing in the representation of other processes such as turbulence, shallow
convection or oceanic flux. In contrast, members 3, 6, 7 and 8 resemble each other and are marked by a larger distance between
the two jets than for the other set of members. The deep convection scheme of members 6, 7 and 8 is PCMT while that of
member 3 is the B85 scheme in which the humidity convergence closure has been replaced by the CAPE closure. Since PCMT
is also based on the CAPE closure, it indicates that the main difference in the jet representation between PCMT and B85 largely
comes from the closure.

The humidity flux convergence used by the B85 closure has two components, one coming from the resolved scale horizontal
fluxes and the other from turbulent fluxes. The resolved-scale fluxes are expected to be strong in presence of synoptic-scale
forcing, like in the inflow regions of the warm conveyor belts. So, it is not surprising to get more triggered convection in such
cases with strong synoptic-scale forcing, when the closure is based on moisture convergence rather than when it is based on

CAPE (PCMT convection scheme). In pure convective situations, when there is no significant synoptic-scale forcing, as for
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instance during summertime convection over land, CAPE is expected to get higher values and in that case convection is less
sensitive to humidity convergence (Yano et al., 2013).

Further investigations would be needed to better estimate the role of the convective closure type (such as CAPE closures
versus moisture convergence closures) on the difference in cyclogenesis, WCB and jet stream dynamics. One way would be
to analyze the mirror experiment, that is PCMT closed with moisture convergence. The other way would be to run the B85
scheme by arbitrarily multiplying the intensity of the humidity convergence by a given factor in the closure, to investigate the
sensitivity of WCB to convective intensity in the different regions of the WCB. These sensitivity experiments would necessitate
a full analysis and could be an interesting aspect to investigate in future studies.

The sensitivity to initial conditions have been analyzed to check the robustness of the results. Starting the simulations 12
hours earlier leads to similar findings: a too large distance between the two jets and a weaker secondary jet for PCMT compared
to B85 (not shown). For hindcasts starting at even earlier dates (e.g., 30 September), members share similar forecast errors in
the representation of the jet stream and it is more difficult to state which one performs better but we still observe a more intense
secondary jet in B85.

Similar numerical simulations of the subsequent cyclone that followed the Stalactite cyclone two days after have been also
analysed (IOP7; Schifler et al., 2018). In that case, generation of negative PV at the tropopause level was found to be more
pronounced in B85 than PCMT leading to a stronger jet in the former than in the latter. The intermediate case based on B85
scheme but activated with CAPE closure resembles simulations based on PCMT scheme (not shown). These results corroborate
the case study of the Stalactite cyclone and support the idea that WCB in B85 is in average more active in the upper troposphere
in connection with the humidity convergence closure.

While the focus of the present study was on the impact of parameterized deep convection in the WCB outflow region and
horizontal structure of the jet stream, a companion paper will follow up to provide a more detailed analysis on the effect of
parameterized deep convection in the ascending branch of the WCB and the vertical structure of the jet stream (Wimmer et al.,
2021, in preparation). It will rely on observations made during the second flight of SAFIRE Falcon on 2 October which was

not shown here.
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a. B85S, vertically—averaged heating (K/h) b. B85, 42N—48N averaged heating (K/h)
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Figure 5. (Left panels) vertically-averaged heating rate between 300 and 800 hPa (shadings; units: K h™!), potential temperature at 850
hPa (int: 2 K) and WCB trajectories satisfying 100 hPa ascent in 2 hours at 21 UTC 1 October for (a) B85, (c) PCMT and (e) NoConv
simulations. (Right panels) latitudinally-averaged (42°N-48°N; see blue lines in panels a, ¢ and e) heating rate (shadings; units: K h™1),
potential temperature (contours; int: 5 K) and WCB trajectories satisfying 100 hPa ascent within 2 hours and located in the same latitudinal

band at 21 UTC 1 October for (b) B85, (d) PCMT and (f) NoConv simulations.
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a. B85, vertically—averaged heating (K/h) b. B85, 63N—65N averaged heating (K/h)
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Figure 6. (Left panels) vertically-averaged heating rate between 300 and 800 hPa (shadings; units: K h™!), potential temperature at 850
hPa (int: 2 K) and WCB trajectories satisfying 25 hPa ascent in 2 hours at 12 UTC 2 October for (a) B85, (c) PCMT and (e) NoConv
simulations. (Right panels) Latitudinally-averaged (63°N-65°N; see blue lines in panels a, ¢ and e) heating rate (shadings; units: K h™"),
potential temperature (contours; int: 5 K) and WCB trajectories satisfying 25 hPa ascent in 2 hours and located in the same latitudinal band

at 12 UTC 2 October for (b) B85, (d) PCMT and (f) NoConv simulations.
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b. B85, PV adv by ageostrophic wind (PVU/h)
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Figure 7. (Left panels) Latitudinally-averaged (63°N-65°N) PV (shadings; units: PVU), heating rate (black contours; int: 0.4 K h™'),

potential temperature (light blue contours for 310, 315, 320 and 325 K) and WCB trajectories satisfying 25 hPa ascent in 2 hours (black

crosses) and the other WCB trajectories (purple crosses) and located in the same latitudinal band at 12 UTC 2 October for (a) B85, (c)

PCMT and (e) NoConv simulations. (Right panels) Latitudinally-averaged (63°N-65°N) PV advection by the zonal and vertical components

of the ageostrophic wind (shadings; units: PVU h™'), and the associated ageostrophic wind vectors (black arrows). The light blue contours

represent potential temperature as in left panels. The ageostrophic wind vectors are represented by multiplying respectively the zonal and

vertical components by the distances occupied by 1 meter in longitude and 1 Pa in pressure on the diagram.
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Figure 8. Potential vorticity (units: PVU) at 300 hPa at 12 UTC 2 October for (a) ECMWEF-IFS operational analysis, (b) ARPEGE operational
analysis, (c) ERAS reanalysis, (d) B85 run, (¢) PCMT run and (f) NoConv run. The black and grey lines correspond to the SAFIRE and DLR
Falcon flights that occurred between 09 UTC and 12 UTC 2 October in an anticlockwise direction.
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a. ECMWF b. Arpege analysis
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Figure 9. Wind speed (shadings; units: m s™*) at 300 hPa at 12 UTC 2 October for (a) ECMWEF-IFS operational analysis, (b) ARPEGE
operational analysis, (¢) ERAS reanalysis, (d) B85 run, (¢) PCMT run and (f) NoConv run. In (d)-(f), the black contours represent the wind
speed anomalies (int: 4 m s~ 1) of the three runs with respect to the ECMWF-IFS operational analysis. The black and grey lines correspond

to the SAFIRE and DLR Falcon flights that occurred between 09 UTC and 12 UTC 2 October in an anticlockwise direction.



b. Arpege analysis
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Figure 10. As in Figure 9 but at 18 UTC 2 October.
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Figure 11. Wind speed (units : m s~1) as function of time: (a) derived from the SAFIRE Falcon Doppler radar RASTA, airborne in-situ
measurements (upper coloured line) and dropsondes (coloured circles) along the whole flight track, (b) derived from the DLR Falcon 2-um
Doppler wind lidar along part of the flight common to the SAFIRE flight, and from (c) B85, (d) PCMT and (e) NoConv runs along the
SAFIRE flight track. In (a), (b) the measured wind speeds have been interpolated on the model grid. Note that all the panels can be compared
to each other and the position and span of panel (b) are precisely chosen to have co-location in space with the other panels. The difference
in time is there because the DLR Falcon was ahead of the SAFIRE Falcon with roughly a 20-minute lag. In (c)-(e), the wind speed data is
derived from 15-minute output centered on the time of interest which3@that of the SAFIRE Falcon flight. See section 2.3.2 for further details

on the interpolations procedure.
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Figure 12. Difference (experiment - observations) in wind speed (units: m s~*) for (a) B85, (b) PCMT and (c) NoConv simulations. The
wind observations are composed of dropsondes, airborne in-situ measurements and Doppler radar measurements along the SAFIRE Falcon

track.
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