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Abstract.

Here we demonstrate that dynamical adjustment allows a straightforward approach to extreme event attribution within a
conditional framework. We illustrate the potential of the approach with two iconic extreme events that occurred in 2010: the
early winter European cold spell and the Russian summer heat wave. We use a dynamical adjustment approach based on
constructed atmospheric circulation analogues to isolate the various contributions to these two extreme events using only
observational and reanalysis datasets. Dynamical adjustment results confirm previous findings regarding the role of
atmospheric circulation in the two extreme events and provide a quantitative estimate of the various dynamic and
thermodynamic contributions to the event amplitude. Furthermore, the approach is also used to identify the drivers of the
recent 1979-2018 trends in summer extreme maximum and minimum temperature changes over western Europe and western
Asia. The results suggest a significant role of the dynamic component in explaining temperature extreme changes in different
regions, including regions around the Black and Caspian Seas as well as central Europe and the coasts of western Europe.
Finally, dynamical adjustment offers a simple and complementary storyline approach to extreme event attribution with the
advantage that no climate model simulations are needed, making it a promising candidate for the fast-track component of

any real-time extreme event attribution system.

1 Introduction

Extreme weather events such as heat waves and cold spells have a profound impact on human health (Guo et al. 2018;
Robine et al. 2008), natural ecosystems (Stillman 2019), social systems and economy (Jahn 2015). Europe has experienced a
high number of extreme temperature episodes since the early 2000s. Recent examples include the summer 2003 heat wave
over western Europe, the summer 2010 heat wave over eastern Europe and Russia, the 2010 cold winter over Europe, the
2012 cold spell over eastern and northern Europe, the summer 2015 heat wave over southern and central Europe and the
summer 2018 heat waves over North-western and Central Europe. Science questions related to the origin, causal and
amplifying factors as well as predictability and prediction of these events have led to an unprecedented number of studies in

the last 20 years, with 2003 being perhaps the starting point of this intense wave of research activity (Stott et al., 2004). This
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emerging field of research is often referred as extreme event attribution, although it often covers a range of questions and

issues that go beyond the standard attribution framework (Hegerl et al., 2011; Lloyd and Shepherd, 2020).

Recent and exhaustive review papers have nicely summarized the multiple modelling and statistical approaches and framings
that have been used in the field of extreme event attribution (Stott et al., 2016; Shepherd 2016; Otto 2017; Naveau et al.,
2020). A first type of approach, (from now on the risk-based approach) is focusing on estimating and comparing the
frequency of occurrence of extreme events under two stationary worlds, the factual one (with the effect of human influence
on climate) and the counterfactual one (with no human influence on climate). A second type of approach (thereafter the
process-based ersteryline approach) puts more emphasis on the identification of the physical drivers of extreme events.
Within this second approach, the main objective is to quantify the influence of the key causal factors of the extreme event
under scrutiny rather than estimating changes in the likelihood of the event due to human influence (see Wehrli et al., 2019
for a perfect example of the process-based approach). Both risk- and process-based approaches can often be combined in
some ways to improve the understanding and robustness of extreme event attribution results (Otto et al., 2012). Note that
the process-based approach can also be viewed as a sub-category of the storyline approach that focuses on the key

drivers and physically plausible unpacking of past events (Shepherd et al., 2018).

Within the process-based approach, the quantification of the driver’s influence often relies upon model sensitivity
experiments to disentangle the impact of each causal factor. Different modelling frameworks can be used (Schér and Kroner,
2017; Wehrli et al., 2019): the first one is based on “all-but-one” experiments where the influence of one specific factor is
removed from the control simulation setup (here control simulation means a simulation including the influence of all
factors). The second one, based on “only-one” experiments, goes in the other direction by accounting for the influence of a

specific causal factor in a control simulation (with all other factor’s influence removed).

A subset of the process-based approach uses the fact that the vast majority of extreme events (in particular at mid-to-high
latitudes) are associated with specific (but not necessarily extreme) atmospheric circulation patterns. Conditioning the
observed temperature or precipitation extreme variations on the appropriate circulation pattern naturally leads to decompose
the extreme event characteristics (such as amplitude and persistence) into dynamic and thermodynamic components. As the
two components have very different signal-to-noise ratios related to the response to anthropogenic forcing, extreme event
attribution results can be notably strengthened by focusing separately on the two aspects (Shepherd, 2016; Vautard et al.,
2016).

The above decomposition can easily be performed based on atmospheric circulation nudging experiments for different mean
climate states corresponding to contrasted values of the thermodynamic drivers (either external forcings or internal
variability factors). For instance, Wehrli et al. (2019) quantify the influence of sea surface temperatures (SSTs) and soil

moisture to five recent heatwaves in both subtropical trepieal and extratropical regions using global atmospheric
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simulations with atmospheric circulation nudged to reanalysis (using grid-point nudging). Based on nudged regional model
experiments, Meredith et al. (2015) have shown that Black Sea SST recent warming has been a key contributor and amplifier
in the magnitude of the Krymsk July 2012 precipitation extreme. Another recent example about heat wave attribution is the
application of a methodology based on spectral nudging of the free atmosphere within a global model and applied to both

factual and counterfactual worlds (van Garderen et al., 2021).

An alternative approach to model-based studies is to apply a dynamical adjustment diagnostic approach to observations
and/or reanalyses. Dynamical adjustment methods have initially been developed to illustrate and quantify the role of
atmospheric internal variability on long-term temperature regional trends (Wallace et al., 2012; Smoliak et al., 2015; Guan et
al., 2015; Deser et al., 2016; Saffioti et al., 2016; Gong et al., 2019; Sippel et al., 2019). They have also been applied in
other contexts such as attribution studies of regional precipitation changes (Guo et al., 2019; Lehner et al., 2018), time of
emergence uncertainties (Lehner et al., 2017), influence of low-frequency oceanic modes on continental climate (O’Reilly et
al., 2017) and land-atmosphere interaction studies (Merrifield et al., 2017). The dynamical adjustment method pioneered in
Deser et al. (2016) is based on the constructed analogue approach and was initially applied using monthly mean sea level

pressure and temperature fields.

Here we investigate the possible added value of the constructed analogue dynamical adjustment approach in identifying and
disentangling the key drivers and related physical processes of extreme events. We first use dynamical adjustment to assess
the contribution of atmospheric circulation and other drivers to two specific and iconic extreme events: the 2009-2010 cold
European winter (Wang et al., 2010; Cattiaux et al., 2011; Osborne 2011) and the 2010 Russian heat wave (Barriopedro et
al., 2011; Dole et al., 2011). The analysis is performed at daily time scales for the two events allowing to yield insights on
both the chronology and time-mean aspects. One key advantage of the dynamical adjustment approach is that it can be used
with observational (and/or reanalyses) data without the need of additional atmospheric (or climate) model simulations. One
limitation is that using dynamical adjustment with only observations does not allow to make statements regarding the
role of any particular external forcing (for instance greenhouse gases or aerosols). Note that this inability to make
single-forcing attribution statements does not come from the dynamical adjustment itself but rather from the fact
that the approach used in this work only relies on observations. Indeed, dynamical adjustment could also be used on
large ensembles of single-forcing simulations such as those presented in Deser et al. (2020) or the ones performed

under the DAMIP framework (Gillett et al., 2016).

Observational uncertainty estimates can be derived by using multiple products and/or perturbed-parameter observational
ensemble. Uncertainty related to the dynamical adjustment method parameters can be estimated by adequate sampling of the

latter. Finally, the approach can be used for any type of event as long as high-quality observational daily datasets of both
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atmospheric circulation and the physical variable of interest are available for a sufficiently long common period (at least 30

years).

The second objective of this study is to revisit the attribution of the links between recent changes in atmospheric circulation
patterns and the increased occurrence of summer hot temperature extremes over several midlatitude regions (Horton et al.,
2015; Jézéquel et al., 2018, 2020). We first apply dynamical adjustment at daily time scale to all summer days of the 1979—
2018 period for both maximum (7X) and minimum temperature (7N). We then identify maximum and minimum temperature
extreme hot days for every summer of the 1979-2018 period and estimate changes in temperature extremes as well as the
role of atmospheric circulation in these changes based on the dynamical adjustment results. We focus on two specific
regions, loosely defined as western Europe (from 35° N to 65° N and 15° W to 25° E) and western Asia (from 35° N to 65°
N and 25° E to 60° E). Based on a trend analysis of atmospheric circulation patterns derived from a self-organizing
map clustering approach, Horton et al. (2015) have attributed a fraction of the increase in the occurrence of summer hot
extreme days for these two regions to an enhanced occurrence frequency and—or persistence (and/or duration) of anticyclonic
circulation patterns during the 1979-2013 period. Here we assess whether a different but complementary approach can be
used to investigate whether atmospheric circulation changes have contributed to changes in maximum and minimum
temperature summer extremes over a slightly extended period (1979-2018). We restrict our analysis to hot (7X maxima) and

cold (TN minima maxima) summer extremes.

The paper is organized as follows. Section 2 describes the observational and reanalyses datasets and the methodological
aspects of the dynamical adjustment approach. Section 3 presents the results for the two illustrative extreme events and a
comparison with other approaches based on published results. Based on the dynamical adjustment approach, section 4 then
investigates the possible contribution of changes in atmospheric circulation patterns to the recent (1979-2018) increase in
summer hot and cold extremes over western Europe and western Asia. Finally, section 5 gives a short summary and possible

directions for future work.

2 Material and Methods
2.1 Observational and reanalyses datasets
2.1.1 Mean sea level pressure data from reanalyses

We mainly use daily mean sea level pressure (SLP) from the from the 2° x 2° Twentieth Century Reanalysis version 3
(20CR_V3, Slivinski et al., 2019) from 1836 to 2015 to characterize atmospheric circulation patterns and their link with
temperature extremes. The data are extended through 2018 with ERA-Interim (ERAI ; Dee et al. 2011) by adding daily
ERAI anomalies to the daily 20CR_V3 climatology (based on the 1979-2015 period which is the common period between
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ERAI and 20CR_V3). We also use daily SLP data from 20CR version2¢c (20CR_V2C, Compo et al., 2011), also extended
through 2018 with ERAI For both 20CR_V3 and 20CR_V2C, we only use daily SLP data from 1900 to 2018 due to the
sparsity of the observational record in the 19th century. Finally, we also make use of the NCAR/NCEP-R1 (Kalnay et al.,
1996) on the shorter period (1948-2018) to further assess the sensitivity of the dynamical adjustment results to the choice of

atmospheric reanalysis for the sea level pressure field.

2.1.2 Temperature datasets

The Berkeley Earth temperature (BERK) daily datasets are experimental products
(http://berkeleyearth.lbl.gov/auto/Global/Gridded/Gridded Daily README.Txt) and are available from 1880-01-01 to

2018-12-31. The BERK datasets are homogenized daily temperature fields built as a refinement upon their monthly
temperature datasets (Muller et al. 2013; Rohde et al. 2013) and using similar techniques. The gridded data are provided on a
regular latitude-longitude grid at 1-degree resolution. We only consider temperature data over the 1900-2018 period to
match the period chosen for mean sea level pressure.

The EOBS daily land surface air temperature gridded datasets are also used over western Europe. The homogeneous EOBS
dataset (version19.0eHOM) is available from 1950-01-01 to 2018-11-30 (Cornes et al. 2018; Squintu et al. 2019). The raw
station data are first homogenized using a quantile matching technique (Squintu et al. 2019). The gridded temperature data is
provided on a regular latitude-longitude grid at 0.25-degree resolution
(https://www.ecad.eu/download/ensembles/downloadversion19.0eHOM.php#datafiles). The data is provided for a
geographical domain from 25° N to 71.5° N and from 25° W to 45° E.

The HadGHCND global product has been created based on daily station observations from the Global Historical

Climatology Network-Daily database (Caesar et al., 2006). This consists of over 27,000 stations with temperature
observations, though the temporal and spatial coverage of the record is very variable. Quality control has been carried out to
indicate potentially spurious values. The temperature data is provided as anomalies relative to the 1961-1990 reference

period. The HadGHCND dataset spans the years 1950 to 2014 and is available on a 2.5° latitude by 3.75° longitude grid.

The BERK and EOBS datasets are used as our reference temperature datasets. HadGHCND as well as the NCEP reanalyses
are also used to complement the observational uncertainty analysis for temperature. Unless explicitly mentioned, all 72X and

TN anomalies are calculated relative to the 1981-2010 reference period.

2.2 Dynamical adjustment based on constructed analogues

The dynamical adjustment used in this study is a straightforward adaptation to daily time scales of the method introduced in
Deser et al. (2016). The main objective of dynamical adjustment is to derive an estimate of the component of any physical
variable variability due solely to atmospheric circulation changes. In agreement with many previous studies, we assume that

robust forced circulation changes over the North Atlantic European domain are not currently detectable due to a small signal-
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to-noise ratio. Consequently, observed circulation changes are considered as being an integral part of climate internal
variability. In the following and for the sake of concision, we refer to any variable changes due to atmospheric circulation as
to the dynamic component (instead of the internal dynamic component). Here, SLP is used to represent atmospheric
circulation changes and we use 7X as our physical variable in the method description. Consequently, dynamical adjustment
leads to the decomposition of any daily 7.X anomaly between a 7X dynamic component and a residual (loosely described as
the “thermodynamic residual” or simply the thermodynamic component). Note that the thermodynamic component may

include both forced and internal contributions.

We now briefly summarize the dynamical adjustment algorithm. We first define twe-different a geographical domain for
£X and SLP with the constraint that the dynamically-adjusted 7.X domain values are only meaningful haste-be in a region
enclosed within the SLP domain and having a smaller longitudinal and latitudinal extent than the SLP one. The
geographical boundaries of the SLP domains are 25°N-90°N, 60°W-100°E and 25°N-90°N, 20°W-80°E for the 2009-
2010 cold European winter and the 2010 Russian heat wave, respectively. For any day d: of the extreme event, we search
for the closest N, daily SLP analogues in all years (but the one of the extreme event occurrence) within a time window of + N
days centered on d; (N being typically ~ 15 days). The SLP analogues are ranked according to the Teweless-Wobus skill
score. The score measures the similarity between the SLP horizontal gradients (i.e geostrophic winds). We then randomly
subsample (without replacement) Ns of the N, SLP analogues and compute their best linear fit (see Appendix of Deser et al.,
2016 for details) to the target SLP field (that of day d:). The dynamically-reconstructed 7X is then defined as the
corresponding linear combination of daily 7X anomalies associated with the Ny SLP analogues. Next, we repeat this random
subsampling procedure N times. Finally, we average the N, optimal sets of reconstructed daily SLP analogues and associated
TX to obtain the dynamic component, defined as the ‘‘best estimate’’ of the circulation-induced component of maximum
temperature anomaly for the day di. This sequence of steps is finally repeated for all days of the extreme event under
consideration. Uncertainty estimates can be derived with a simple bootstrap procedure applied to the set of N, estimates of
the TX dynamic component (O’Reilly et al., 2017). We randomly draw (with replacement) N estimates 1000 times to
produce a distribution that can then be used to derive a 95 % confidence interval. The uncertainty analysis can be applied
for any single day of the extreme event (Fig. 2a and 4a) or to the time-averaged event magnitude (Fig. 1d and 3d). In
the latter case, we randomly draw /V, estimates (with replacement) among the NV, ones for every day of the event, take
the average of the N, estimates and repeat the process 100 times. We end up with 100 estimates of the dynamic
component for each day of the event. We then randomly select one estimate for each day of the event, take the time

average, and repeat the process 1000 times to get the final distribution.

All results shown below are based on the following parameter values: N, = 400, Ns = 200 and N, = 100 (see parameter
sensitivity tests in Appendix A). We have also checked that the selected analogues span the whole period evenly and do

not preferentially arise from a specific multidecadal period such as the data-rich recent one (see Appendix B). As we
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are interested in separating the 7X dynamic component from any forced thermodynamic residual (due for instance to changes
in the external forcing), we need to remove a local estimate of the forced TX component before applying dynamical
adjustment. In a sense, the 7X dynamic component (DYNcr thereafter) represents the effect of atmospheric circulation on the
TX anomaly in the counterfactual world (the world with no human influence on climate). As one of the objectives of this
approach is to rely exclusively on observations (and/or reanalyses), we apply a Loess-based smoother (see section 2.3) to 7X
daily observations to remove the low-frequency trend (for all grid-points) that we hypothesize to be primarily due to external

forcing (Hawkins et al. 2020; Section 2.3).

Our physical interpretation of the 7X dynamic component is that it represents the “mean” contribution of the atmospheric
circulation pattern, including both direct (advection) and indirect (e.g local feedbacks) effects, in the counterfactual world.
Here, the use of “mean” is simply associated with an average over multiple linear combinations of 7X anomalies arising

from a large of number of days having different ocean and/or land surface conditions.

We then interpret the residual component (RESror) as being the sum of three contributions. The first one (REStrp) is the
externally-forced 7X component that has been removed before applying dynamical adjustment. The residual component also
includes any 7X changes due to a local or remote contribution associated with internal variability (RESivr). For example, the
local contribution includes local processes such as those associated with land surface feedbacks linked to soil moisture or
snow cover anomalies. The remote contribution includes any 7X change related to thermal advection changes due to mean
flow advection of anomalous zonal and meridional 7X gradients caused by internal variability (for example due to
anomalous oceanic air masses). The last contribution (RESFrc) is—related-te includes thermal advection changes related to
externally-forced changes in zonal and meridional 7X gradients as well as forced changes in other factors such as
radiative processes and adiabatic heating anomalies (Pfahl and Wernli, 2012; Quinting and Reeder, 2017). The
estimation of RESwr and RESFrc can be obtained by running the dynamical adjustment twice: firstly, with the 72X forced
response removed (as previously described) and secondly with the observed raw TX. The RESrrc contribution can then be
estimated by subtracting the former 7X dynamic component (from the counterfactual world) from the latter one (from the

factual world). Finally, RESivr can be estimated as:

RESinr = RESTor — RESTRD — RESFRC (1)

The final decomposition of any daily 7X anomaly (7:X4) can then be written as:

TX4= DYNcr+ RESint + REStrD + RESFRC 2)
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With the objective to compare with model-based studies (see section 3.2) and assuming that the contribution of forced
changes in radiative processes is not the dominant factor, it is also useful to define an upper bound of the “total”

dynamic contribution DYNror given by:

DYNror = DYNcr + RESFrc 3)

2.3 Estimation of the forced response

We assume that the temperature forced response to external forcing can be simply estimated with a low-frequency trend
estimated over the 1900-2018 period. The latter is estimated with a Loess smoother (Cleveland et al., 1990) as implemented
in the NCSTAT package (https://terray.locean-ipsl.upmec.fr/ncstat/index.html). We choose a smoother length of 45 years and

we apply a light (~ 2 years) additional smoothing of the trend before estimating the residual. Iterations are carried out until
convergence of the trend, which is reached when maximum changes in individual trend fits are less than 1 % of the trend’s
range after the previous iteration. We detrend the daily 7X and TN datasets separately for each month before applying the

dynamical adjustment procedure and estimating the dynamic component.

3 Results for individual extreme events

As our illustrative examples, we choose two seasonally contrasted extreme events that have been widely documented in the
literature: the cold European winter of 2009-2010 and the 2010 Russian summer heatwave. For the Russian heatwave, we
follow previous studies by focusing on the July 15" — August 14" period. For the cold European winter, we choose a twe-
week seventeen-day period between December 28" 2009 and January 13" 2010 that is associated with record-breaking
temperatures in many midlatitude land masses of the Northern Hemisphere (Wang et al., 2010). We restrict our analysis to
the 7X variable. For each illustrative example, we first describe the synoptic circulation and associated 7X anomalies during
the event before showing the dynamical adjustment results averaged over all event days. We then briefly discuss the
chronology of the event and the evolution of the 7X dynamic component. We use 20CR_V3, BERK and EOBS as primary
datasets for our dynamical adjustment analysis and figures in the main text. Specifically, we use EOBS for the 2010 winter
event and BERK for the summer one (note that the EOBS geographical domain does not cover Russia). Results based on the

other TX and SLP datasets are shown in Tables 1 and 2.

3.1 The 2009-2010 European winter cold spell

Winter 2010 is characterized by an extreme negative phase of the North Atlantic Oscillation (NAO) (the classical NAO
index reaches a value of 3 standard deviation below average, see Cattiaux et al., 2010 and Osborn 2011). In the eastern
Atlantic the winter (December—February) mean eddy-driven jet was displaced southward by almost 10 degrees compared

with its climatological position and maintained south by diabatic heating feedbacks (Woollings et al., 2016). Averaged SLP
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anomalies during the extreme event period (December 28" 2009 — January 13" 2010) display a dipole with large positive
anomalies over the north-western Atlantic and negative ones over the central eastern Atlantic, in agreement with a jet stream
axis located over Northern Africa (Fig.l1a). Importantly, the reconstructed SLP pattern is almost identical to the original
observed SLP pattern (Fig.1b). This anomalous SLP pattern strongly projects onto the negative NAO pattern. Negative NAO
phases are known to lead to cold temperature over western and northern Europe (Hurrell 1995). The spatial pattern of the 7X
anomaly during the cold spell displays an elongated cold 7X anomaly over the United Kingdom and northern Europe
contrasting with warm 7X anomalies in Northern Africa and the Middle East (Fig.1a). The magnitude of the mean 7X
anomaly for the cold spell event — regionally averaged over the European domain (see box in Fig. 1c) —is -2.04 °C based on
EOBS. As expected, the dynamic component contribution to the 7X anomaly is negative and has a larger magnitude than the
total (with a mean and 95 % confidence interval of -2.76 °C and [-2.95 °C, -2.57 °C]). In particular, the dynamic
component displays very cold (~ -5 °C) T.X anomalies over northeastern Europe (Fig. 1b). The total residual contribution is
positive (Fig. 1c) and has a smaller amplitude (0.72 °C) than the dynamic component due to the opposite sign of the internal
residual contribution (-0.31 °C, Fig. 1d) and the two forced contributions, the long-term trend (RES7rp: 0.44 °C, Fig. le) and
the thermal-adveetion residual forced component (RESrrc: 0.59 °C, Fig. 1f). The total 7X forced contribution (defined as
the sum of REStrp and RESFrc) has a significant positive contribution (1.03 °C) and shows increased warming in northern
Europe (Fig. le-f).

It is noteworthy that the internal residual contribution displays coherent large-scale patterns with grid-point values that
are outside of the uncertainty range of the dynamic component (Fig. 1d), suggesting that its salient regional features
are related to other factors than dynamical ones. The RESvrpattern exhibits cold 7X anomalies along the coasts of
western Europe, perhaps linked to cold and persistent — present in both December 2009 and January 2010 — North Atlantic
SST anomalies (Buchan et al., 2014). These SST anomalies may have been the surface signature of a reduced northward
ocean heat transport related to a strong decrease of the Atlantic meridional overturning circulation in 2009 (McCarthy et al.,
2012; Sonnewald et al., 2013). We speculate that the amplitude of these ocean-induced cold SST anomalies has been further

enhanced in late winter due to the ocean integration of the recurrent and persistent negative NAO atmospheric forcing.
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Figure 1: EOBS daily maximum temperature (° C, shading) and 20CR_V3 sea level pressure (hPa, black line contours with contour
interval of 1 hPa) anomalies averaged over the European cold spell period (December 28" 2009 — January 13" 2010): (a) total 7X anomaly
and observed SLP anomaly, (b) 7X dynamic component contribution and reconstructed SLP anomaly, (¢) 7X total residual contribution,
(d) 7X internal residual contribution (e) 7X fereed long-term trend residual contribution, (f) 7X thermal-adveetion residual contribution
from forced changes in other factors. Numbers in the upper right corner indicate the weighted average 7X anomaly over the region
delimited by the black dashed box in (c). In (a) and (b), the black thick contour line indicates the zero SLP anomaly and dashed contour
lines indicate negative SLP anomalies. In (d), stippling indicates grid-points where RES;yrvalues are within the uncertainty range of
the dynamical component given by the 95 % confidence interval estimated by the bootstrap method given in section 2.2.

Further inland, the internal residual contribution shows warm 7X anomalies with maximum values in south-eastern and
central Europe (Fig. 1d). We speculate that the Black Sea and Levantine sub-basin warm SST anomalies observed in 2009
and 2010 (in line with the eastern Mediterranean SST warming trend over 1982-2012, Shaltout and Omstedt, 2014) may

have contributed to the internal residual warm 7.X anomalies in south-eastern Europe.

These results confirm that the long-term warming (mostly attributed to human influence) has mitigated the extreme character
of the 2009-2010 early winter cold spell as initially suggested by Cattiaux et al. (2010). In the counterfactual world, the
winter cold spell would have been 1.03 °C (Fig. le-f) colder than the observed one (-3.07 °C instead of -2.04 °C). Keeping
20CR_V3E for SLP, additional results based on BERK and HadGHCND for 7.X lead to quasi-similar amplitudes for the total
anomaly and dynamic component (Table 1). The use of NCEP data for 7X underestimates the amplitude of the two-week
cold spell by 35 %. Using different datasets for SLP (20CR_V2C and NCEP) while keeping EOBS for 7X leads to slightly

larger values of the dynamic component.

We now illustrate how the dynamical adjustment approach can be used to track the daily evolution of the contribution due to
atmospheric circulation changes. The chronology of the early 2010 winter cold spell shows two cold minima, the first one in

mid-December and the second one, more persistent intense, two weeks later (Fig. 2a). The dynamic component is by far the
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main contributor to the 7X anomaly magnitude daily and weekly variability (as suggested by the similarity of the two
timeseries in Fig. 2a). In particular, the two cold minima observed during December 2009 and January 2010 are associated
with an eastward extension of the anticyclonic SLP anomalies centered around Iceland that favors the advection of Arctic air
masses towards northern Europe (Fig. 2b). While observed daily NAO index values

(https://www.cpc.ncep.noaa.gov/products/precip/ CWlink/pna/nao.shtml) are all negative during the period shown in Fig. 2a

(albeit with different amplitudes) illustrating the persistence of the low-frequency large-scale atmospheric flow, the
contribution of the dynamic component to 7.X anomaly exhibit significant daily variability due to the high-frequency part of
the flow. For instance, the circulation-induced and region-averaged TX anomaly on December 31% is positive, which

contrasts with the cold minimum observed a few days later and associated with a marked negative NAO phase (Fig. 2).

(a)

TX anomaly

[ [ [ [ [ [ [ [
Dec11 Dec16 Dec21 Dec26 Dec31 Jan05 Jan10 Jan15 Jan20

Dec 12

) ThEEEEEEEEEENT

98-76-5-43-2-1012234526 71839

Figure 2: (a) time evolution of EOBS daily maximum temperature (° C) anomaly averaged over the European domain (box with red
dashed line in (b)). The covered period is from December 10, 2009, until January 20, 2010. The thick black line represents the total 7.X
anomaly. The thick blue line shows the contribution of the dynamic component and the blue shading indicates the 95 % confidence
interval of the reconstruction based on bootstrapping (see section 2.2). The chosen period for the two-week cold spell is defined by the
white background. (b) Daily maps of SLP anomaly (hPa, black line contours with contour interval of 1 hPa) and of the dynamic
component contribution (°C, shading) to the total 7X anomaly. The black thick contour line indicates the zero SLP anomaly and dashed

11



325

330

335

340

345

contour lines indicate negative SLP anomalies. Numbers in the upper left corner indicate the region-averaged contribution of the dynamic
component to the total 7X anomaly.

Table 1: Total 7X anomaly (°C, in bold) and dynamic component contribution (°C and as a fraction of the total anomaly in percent)

averaged over Europe (36° N-72° N; 10° W-30° E, black box in Fig. 1¢) during the 2009-2010 winter cold spell. The reference period is
1981-2010.
SLP 20CR_V3 20CR_V2C NCEP
T

NCEP -1.32 —-1.96 (148 %) | -1.32 —-2.78 (210 %) | -1.32 —-2.40 (182 %)

HadGHCND -2.20 —-2.83 (129 %) | -2.20—-3.52 (160 %) | -2.20 —-3.04 (138 %)

EOBS -2.04 —-2.76 (135 %) | -2.04 —-3.59 (176 %) | -2.04 —-3.36 (165 %)

BERK -1.95--2.63 (135 %) | -1.95—--3.01 (154 %) | -1.95—-3.04 (156 %)

3.2 The 2010 Russian summer heatwave

Summer 2010 is characterized by persistent quasi-stationary anticyclonic circulation anomalies over western Russia (Dole et
al., 2019; Barriopedro et al., 2010). The persistence of the long-lasting blocking high has been mainly linked to a transition
between ENSO warm and cold phases and the resulting changes in quasi-stationary wave anomaly and transient eddies
(Schneidereit et al., 2012; Drouard and Woollings, 2018). These blocking circulation patterns are often associated with
surface temperature warm anomalies due to enhanced subsidence and adiabatic heating, reduced cloudiness allowing a
greater fraction of solar radiation to reach the surface and advection of warmer air masses from regions located to the south
of the blocks. A late-winter to spring precipitation deficit over western Russia has also likely contributed to the abnormally
warm summer maximum temperature anomalies (with a magnitude on the order of ~ 9—10 °C when regionally-averaged over
the heat wave period, see Wehrli et al., 2019 and Fig. 3 and Table 2) through the concurrent summer drought and associated
land-surface feedbacks related to depleted soil moisture content (Miralles et al., 2014). Based on atmospheric model nudging
experiments, Wehrli et al. (2019) have estimated dynamic (related to atmospheric circulation changes) changes and other
contributions to the Russian heatwave. They suggest that the largest contribution to the Russian heatwave 7.X anomaly can
be attributed to atmospheric circulation (range 54—63 %) with a substantial albeit smaller contribution (27-36 %) from
antecedent soil moisture conditions (the remaining 10 % being due to the contribution of the response to external forcing,

named greenhouse gas forcing in their paper).

Figure 3 shows our estimates of the different contributions based on the dynamical adjustment approach and the BERK
dataset. The event total 7X anomaly for the western Russia region (see box in Fig. 3b) is 9.06 °C and is located southwest of

the blocking high maximum (with a SLP magnitude of 9 hPa, Fig. 3a). As suggested by previous studies (Dole et al., 2011;
12
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Wehrli et al., 2019), we find that the total 7X anomaly is dominated by the total internal contribution (DYNcr [3.99 °C] +
RESnT [3.59 °C]) with the total forced contribution (REStrp [1.03 °C] + RESrFrc [0.45 °C]) being only 16 % of the total 7X
anomaly (Fig. 3). The magnitude of the dynamic component is 3.99°C with an uncertainty range (given by the 95 %
confidence interval) of [3.88 °C, 4.1 °C]. The magnitude of the total dynamic contribution is 4.44 °C (DYNror = DYNcr
[3.99 °C] + RESFrc [0.45 °C]; ~ 49 % of the event total anomaly). The other and smaller contributions are the 7.X fereed
long-term trend residual contribution REStrp (1.03 °C, ~ 11 % of the total) and the internal residual RESwr (3.59 °C, ~ 40 %
of the total). Using HADGHCND or NCEP data for 7X leads to very similar results in term of the percentage of the dynamic
contribution (Table 2). The latter is slightly lower when SLP from the 20CR_V2C and NCEP datasets is used for dynamical
adjustment while keeping BERK for 72X.
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Figure 3: BERK daily maximum temperature (72X, © C, shading) and 20CR_V3 sea level pressure (SLP, hPa, black line contours with
contour interval of 1 hPa) anomalies averaged over the Russian heatwave period (July 15" — August 14, 2010): (a) total 7)X anomaly and
observed SLP anomaly, (b) 7X dynamic component contribution and reconstructed SLP anomaly, (¢) 7X total residual contribution, (d) 7X
internal residual contribution (e) 7X forced residual contribution, (f) 7X thermal advection residual contribution. Numbers in the upper
right corner indicate the weighted average 72X anomaly over the region delimited by the black dashed box in (¢). In (a) and (b), the black
thick contour line indicates the zero SLP anomaly and dashed contour lines indicate negative SLP anomalies. In (d), stippling indicates
grid-points where RES;y7 values are within the uncertainty range of the dynamic component given by the 95 % confidence interval
estimated by the bootstrap method given in section 2.2.

Therefore, we find that the total dynamic component yields the dominant contribution to the Russian heatwave 7.X anomaly,
in agreement with the model study of Wehrli et al. (2019). We also note that our best estimate for the total dynamic
component contribution (49 % of the total 7X anomaly) is slightly lower than their minimum estimate (see discussion
below). As suggested by many previous studies, it is very likely that anomalous soil moisture is an important contributor to
the substantial magnitude of the internal residual contribution (note however that the dynamical adjustment approach cannot
be used directly to infer the soil moisture influence, see also the discussion below). The magnitude of the 7X fereed long-

term trend residual contribution is in reasonable agreement with the model-based estimate (1.2 °C) of Wehrli et al. (2019).
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Differences with results from the latter study regarding the magnitude of the dynamic contribution (and consequently, of the
thermodynamic residual magnitude) can be due to multiple factors. First, using the same baseline (1982-2008) as Wehrli et
al. (2019) doesn’t significantly change the contribution of the dynamic component (46 % instead of 49 %). Second, while
our methodology only relies on observations and reanalysis, their approach relies upon both “all-but-one” and “only-one”
modelling frameworks based on simulated differences between SST-forced historical atmospheric experiments with and
without circulation and/or soil moisture nudging and a control simulation without any nudging. Possible caveats of this
modelling approach include the lack of validity of the assumption that the different factors are additive, the lack of
interaction between the ocean and the atmosphere and the fact that different soil moisture climatology between simulations
with and without soil moisture nudging can lead to a different response to the same soil moisture anomaly (for a detailed
discussion, see Wehrli et al., 2019). Possible sources of uncertainty of the dynamical adjustment results include
observational uncertainty and the presence of “noise” in the internal thermodynamic residual resulting from dynamic
contributions not accounted for by the constructed analogue technique (due to both inadequate sampling as well as
methodological uncertainty). Table 2 shows that the magnitude of the dynamic component for different observational and
reanalysis products is always less than 50 % of the total 7X anomaly. This suggests that differences in magnitude of the
dynamic component discussed above are unlikely to be fully explained by observational uncertainty in the dynamical

adjustment method.

14



390

395

400

405

12

9_
> i
©

6_
E ]
8 i
S 3
>
= 0

-3 —

T T T T T T T T I

Jul01 Juloé Jult1 Jul1é Jul21 Jul26 Jul31 Aug05 Aug10 Aug15 Aug20

98-765-4-3-2-10123458%671839

Figure 4: (a) time evolution of BERK daily maximum temperature (° C) anomaly averaged over the Western Asia domain (box with red
dashed line in (b)). The covered period is from July 1%, 2010, until August 20", 2010. The thick black line represents the total 7X anomaly.
The thick blue line shows the contribution of the dynamic component and the blue shading indicates the 95 % confidence interval of the
reconstruction based on bootstrapping (see section 2.2). The chosen period for the Russian heatwave is defined by the white background.
(b) Daily maps of SLP anomaly (hPa, black line contours with contour interval of 1 hPa) and of the dynamic component contribution (°C,
shading) to the total 7X anomaly. The black thick contour line indicates the zero SLP anomaly and dashed contour lines indicate negative
SLP anomalies. Numbers in the upper left corner indicate the region-averaged contribution of the dynamic component to the total 7.X
anomaly.

The chronology of the Russian heatwave suggests that the contribution of the dynamic component to the total 7X anomaly
varies at daily timescale (Fig. 4a). As expected, the dynamic component seems to play a key role in the initiation and
termination of the heatwave. In particular, the negative contribution from the dynamic component after August 15" is
leading by a couple of days the decline of the extreme heat. During the heatwave, two multi-day periods (July 19-23 and
July 30 — August 1) show persistent and high values of the 7X dynamic component (Fig. 4b). The first one (the less extreme)
is associated with a zonally-extended anticyclonic anomaly from the European Coasts to western Russia. The largest
contributions of the dynamic component appear to be associated with a strong blocking High center situated eastward of the

location of maximum 7X anomaly.
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Table 2: Total 7X anomaly (°C, in bold) and dynamic component contribution (°C and as a fraction of the total anomaly in percent)
averaged over western Russia (50° N-60° N; 35° E-55° E, black box in Fig. 3¢) during the 2010 summer Russian heat wave. The
reference period is 1981-2010.

SLP 20CR_V3 20CR_V2C NCEP
T.

NCEP 10.16 — 3.85 (38 %) | 10.16—3.67 (36 %) | 10.16 —3.05 (30 %)

HadGHCND | 9.16—-3.75 (41 %) | 9.16—3.51 38%) | 9.16—3.31 (36 %)

BERK 9.06—3.99 (44 %) | 9.06—3.07(34%) | 9.06—3.2(35%)

4 Atmospheric circulation contribution to recent changes in summer temperature hot and cold extremes

We now use dynamical adjustment to assess the possible changes in circulation-related temperature anomalies and their
contribution to summer temperature hot extreme changes during the 1979-2018 period. We select two Northern Hemisphere
midlatitude regions, western Asia (7X, TN domain: 35° N—65° N; 25° EW—60° EW, SLP domain: 25° N-80° N; 10° EW—
65° EW) and western Europe (7X, TN domain: 15° E-25° W; 35° N-70° N; SLP domain: 30° E-45° W; 25° N-80° N), and
apply the dynamical adjustment separately to each of them. The focus is on the contribution of the dynamic component to
changes in the summer warmest day (7.X maxima) and warmest night (7N maxima) temperature over these four decades. The
initial step is to run the dynamical adjustment procedure for all summers during the 1979-2018 period and for both 7X and
TN. As with the two illustrative examples, we apply the dynamical adjustment procedure twice, with and without detrending,
before applying dynamical adjustment. For each year and each grid-point, we then select the days with the largest (smallest)
TX and TN anomalies. In the following, we focus on the summer days and nights with the most extreme temperature: the
days with the hottest maximum (7Xx) and minimum (7Nx) temperature. We then estimate changes in 7Xx and 7Nx during
1979-2018 by using the non-parametric Mann-Kendall test and Theil-Sen’s estimator to calculate the trend. Based on
dynamical adjustment results, we also quantify the contribution of both total dynamic (DYNror, see Eq. (3)) and

thermodynamic residual (RES;vr + RESTrp) components to these changes.

4.1 Extreme maximum and minimum temperature trends in summer over western Asia and western Europe

We find warming trends for both 7Xx and TNx over large parts of the western Asia (WA) and western Europe (WE) regions
(Figs. 5a, d and 6a, d). The warming of 7Xx over most of the WA region (often greater than 3 °C 40 yr!) is primarily due to
the thermodynamic component with an additional and substantial contribution from the dynamic component north of the
Black and Caspian Seas (Fig. 5b, c). Both thermodynamic and dynamic components contribute to the lack of statistical

significance and small amplitude of the 7Xx trends found in the northeastern part of the WA region.
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Warming trends in 7Nx are statistically significant only in a small region located south of the Black Sea while the eastern
part of the WA region exhibits significant cooling with contribution from both components (Fig. 5d—f). In addition, the lack
of significant TNx trends over most of the WA region results from opposite effects from the thermodynamic (cooling) and
dynamic (warming) component. This contrasts with the 7Xx case, supporting the existence of different processes governing
the changes in 7Xx and 7Nx. For instance, clear-sky conditions often associated with subsiding motions near the central
region of blocking patterns have opposite radiative effects on 7X and 7/V: on one hand, they enhance daytime solar
heating leading to 7X increase, and on the other hand, they also enhance nighttime longwave cooling leading to a TNV
decrease. Assuming that a substantial fraction of the dynamical component is related to the increased occurrence
(and/or persistence) of blocking patterns during recent decades (Horton et al., 2015), one would expect a reduced
amplitude of TNx changes compared with that of 7Xx changes in regions where these circulation changes have
occurred. However, the eastern part of the WA region shows the opposite sign (cooling) with large amplitude for the
TNx trend compared with that of 7Xx. Whether this is a real signal or not is further discussed below in light of
observational uncertainty. Finally, we have checked that omitting year 2010 has little influence on the raw 7Xx and
TNx trend pattern and statistical significance, suggesting that the long-term signal is robust and not influenced by the

exceptionally warm 2010 summer.

Dynamic
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Figure 5: Summer temperature extremes: 19792018 trend maps for western Asia based on BERK (trend unit is ° C 40 yrs -, shading): (a-
¢) TXx raw trend, 7Xx thermodynamic and dynamic component trends. (d-f) 7Nx raw trend, 7Nx thermodynamic and dynamic component
trends. The trend detection is estimated using the non-parametric Mann-Kendall test and the linear trend slope is computed based on the
Theil-Sen estimator. In (a, d), stippling indicates locations where the raw trend is not significant at the 5 % level.
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Regarding the WE region, the TXx trend map shows maximum warming (often greater than 3 °C 40 yr!) located over the
central part of the domain and along the coasts of western Europe. This contrasts with most of southern Europe and
Scandinavia where 7Xx trends are weaker and not statistically significant (Fig. 6a). Regions with significant 7Xx trends show
different relative contributions from dynamic and thermodynamic components (Fig. 6a, c). Interestingly, the contribution of
the dynamic component to the total trend is substantial over many locations, including northwestern Spain and France,
northeastern Europe (east of the Baltic Sea) and northern Scandinavia (Fig. 6¢). The TNx trend map shows widespread
warming over western Europe and reduced amplitude compared with that of 7Xx, except for Italy and Greece, where the
large trend values are mainly due to the thermodynamic component (Fig. 6d—f). Over the central Europe domain, both
components contribute to the 7Nx warming with the contribution of the dynamic component being slightly dominant
particularly over southern France, eastern Europe and Scandinavia (Fig. 6f).

Thermodynamc

Raw trend

Dynamic
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Figure 6: Summer temperature extremes: 19792018 trend maps for western Europe based on EOBS (trend unit is © C 40 yrs !, shading):
(a-¢) TXx raw trend, TXx thermodynamic and dynamic component trends. (d-f) 7Nx raw trend, 7Nx thermodynamic and dynamic
component trends. The trend detection is estimated using the non-parametric Mann-Kendall test and the linear trend slope is computed
based on the Theil-Sen estimator. In (a, d), stippling indicates locations where the trend is not significant at the 5 % level.

We now address the issue of observational uncertainty of the raw 7Xx and 7Xn trend analysis. We use the HadEX3
dataset (Dunn et al., 2020) to perform exactly the same 7Xx and 7Nx trend analysis as the one above with the BERK
dataset. Figure 7a, b suggests that the main salient features of the trend patterns based on HadEX3 are reasonably
similar to those derived from BERK for 7Xx and 7TNx over the WE region and 7Xx over WA. However, the
substantial 7NVx cooling trend over the eastern part of the WA region seen with BERK (Fig. 5d) does not appear with
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HadEX3 (Fig. 7b). Instead, the HadEX3-based TNx trend pattern exhibits a weak warming decreasing eastward.
Looking further east shows that the cooling region exists in the HadEX3-based analysis but is shifted eastward
compared with the BERK one (Appendix C, Fig. C1). We speculate that the difference in 7Vx trend patterns possibly
475 arises from different sets of station data used in the two analyses, as well as differences in the optimal interpolation

scheme such as different parameters of the distance-based correlation function.

4.2 Causal factors of the extreme temperature changes over the 1979-2018 period

We find that the dynamic component has substantially contributed to the increase in the summer 7.X and TN hottest extreme
over parts of the WA and WE regions. The regions where the dynamic component is an important contributor to the 7X
480 warming trend broadly correspond to the ones suggested in Horton et al. (2015). This is especially noticeable for western
Asia (see their figure 4i) where Horton et al. (2015) attributes a portion of the TX hottest extreme trend to an increase in
blocking pattern occurrence (note that the trend spatial patterns shown in Figs. 5 and 6 and corresponding to the full period
19792018, are qualitatively similar to those for the reduced period 1979-2013 that is used in Horton et al., 2015, not
shown). Increase in the occurrence of anticyclonic patterns mainly located in central Europe was also linked to the observed
485 increase in the 7X hottest extreme in eastern Europe (Fig. 3¢, k of Horton et al. 2015). Our analysis confirms this result and
suggests that the dynamic component has also been an important driver of the 7X hottest extreme warming over many

several coastal areas of western Europe when considering the extended period up to 2018.

3 25 2 15 -1 -5 0 5 1 15 2 25 8

Figure 7: 1979-2018 Summer temperature trend patterns (units: °C 40 yrs-1) for both WE and WA regions based on the HadEX3

490 dataset: a) TXx and b) TNx. Summer (JJA) anomaly differences (units: °C) between warm and cold periods of AMV. The latter
are defined as in O’Reilly et al. (2017): cold periods (1902—-1925 and 1964-1993) and warm periods (1931-1960 and 1996-2012).
The temperature data has been detrended before taking the difference between warm and cold periods.
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We now discuss some of the possible drivers of recent TXx and TNx changes. As the 1979-2018 period covers a
transition between the negative (cold) and positive (warm) phase of the Atlantic Multidecadal Variability (AMV,
Sutton and Dong 2012), the question arises as to whether the AMYV phase shift has any influence on the temperature
extreme trends. To estimate the AMV contribution to the total change in 7Xx and 7Nx, we have performed a simple
composite analysis by calculating the temperature difference between warm and cold AMYV periods (Figure 7c, d).
The AMYV contribution to 7Xx changes is larger in the central part of the domain and varies from ~10 % over France
to ~25 % west and north of the Black Sea. Regarding 7Nx changes, the AMYV contribution is restricted to the region
to the north of the Black Sea. South of the Black and Caspian Seas, the AMV contribution to 7Xx and 7Nx changes is
seen to oppose the observed warming trends. Based on the summer mean temperature results from the observational
study of O’Reilly and al. (2017), we speculate that the AMV shift may have contributed to both dynamic and
thermodynamic 7Xx and 7TNx changes in western Europe and in the western part of western Asia (to about 45°E)
over the 19792018 period.

In addition to the AMYV influence, other factors have likely played a role on extreme temperature changes, in
particular over the eastern part of the WA region where the AMV influence is weak. Interestingly, both HadEX3-
based TXx and 7Nx trend patterns show a tripole pattern with two areas of accelerated warming over the Eastern
European Plain and Central Siberia and a region of cooling over the Western Siberian Plain, which is located
eastward of the eastern boundary of the WA region (Fig. C1). Sato and Nakamura (2019) have suggested that this
tripole pattern (of daily mean temperature in their study) is linked to the increased occurrence in the beginning of the
21% century of an unforced quasi-stationary wave train that has been anchored and amplified due to land-atmosphere
interaction. Since the 1990s, there is evidence of increasing precipitation, winter snow depth and snow cover
extension over the Western Siberian Plain (Guo et al., 2019; Bulygina et al., 2009; Bulygina et al., 2011), leading to
increasing snow melt in spring and soil moisture during summer as well as reduced sensible heat flux and negative
temperature anomalies during summer (Sato and Nakamura 2019). We suggest that similar mechanisms may also be

relevant for changes in maximum and minimum temperature extremes over the Western Siberian Plain.

5 Summary and discussion

The dynamical adjustment approach based on the constructed analogue method and extended at daily time scale has been
used to assess the contribution of circulation-related temperature anomalies to temperature extreme events. Based on daily
maximum temperature, two observed iconic extreme events have been selected to illustrate the potential of the approach: the
early 2009-2010 winter European cold spell and the 2010 Russian heat wave. Dynamical adjustment results confirm the key
role and improve the quantification of the atmospheric circulation contribution (the dynamic component) to the two extreme

events. The 20092010 winter European cold spell associated with an extreme negative NAO phase would have been
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significantly colder without human influence that mitigated the region-averaged amplitude of the cold extreme event by 58
33 %. Regarding the Russian heatwave, the contribution of the total dynamic component associated with persistent
anticyclonic conditions during the 2010 summer is estimated to be close to 50 % of the observed maximum temperature
anomaly.

Furthermore, we have used the dynamical adjustment approach to assess the possible contribution of atmospheric circulation
to changes in summer extremes for two regions, western Asia and Europe, and during the 1979-2018 period. The dynamical
adjustment results suggest that both dynamic and thermodynamic factors have contributed to observed changes in summer
temperature extremes over the 1979-2018 period. We have focused on changes in the summer warmest day and night
temperatures. Although thermodynamic influence has dominated the 7Xx changes in a large fraction of the western Asia
domain, the dynamic influence has been quite substantial north of the Black and Caspian Seas. Furthermore, the dynamic
influence has been key in the 7Nx warming trend depicted south of the Black Sea. Regarding Europe, the influence of
atmospheric circulation has been a major driver of both 7Xx and 7Nx warming trends that are seen in many regions,
including the coasts of western Europe (7Xx), Scandinavia and eastern Europe (both 7Xx and 7Nx). Observational
uncertainty has been assessed with the HadEX3 dataset and summer extreme temperature trend patterns broadly
agree between the two datasets but for 7Nx over the eastern part of WA region. The strong 7Nx cooling observed
with the BERK dataset is reduced and shifted eastward when using the HadEX3 dataset. Finally, we have found that
the AMYV has likely contributed to both dynamic and thermodynamic changes in extreme temperature, in particular

over a broad central Europe region north of the Black Sea.

Dynamical adjustment provides a quick and cheap (computationally) observationally-based storyline approach to assess and
quantify the role of atmospheric circulation as a driver of extreme events. Dynamical adjustment can be performed in both
factual and counterfactual (the world without human influence) worlds, assuming that the counterfactual can be simply
defined by removing a non-parametric trend to the observed climate surface variable under scrutiny (here 7X and 7N). Note
that, in principle, the contribution of forced atmospheric trends can also be estimated by dynamical adjustment (Deser et al.,
2016). Assuming that a forced atmospheric trend can be detected and robustly estimated, dynamical adjustment can be
performed twice, by removing or not the SLP trend from the raw SLP data. Difference between the two results for the
reconstructed surface variable gives an estimate of the contribution of the forced dynamic component. In the standard
conditional approach used here, the hypothesis is that forced dynamieal atmospheric circulation changes are undetectable
and no detrending is performed on the SLP field. In this case, the above dual approach (performing the dynamical adjustment
in both factual and counterfactual worlds for the surface variable, here 7X or 7N) allows to partition the extreme event
temperature anomaly in four contributions: the (internal) dynamic component, the (internal) thermodynamic residual, the
forced long-term trend thermodynamical changes and the contribution due to forced changes in other factors such as the

mean advection of forced changes in temperature gradients or adiabatic heating.
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The above dynamical adjustment decomposition can then be used to present the approach results from two different
perspectives: forced versus internal or dynamic versus thermodynamic. Comparison with other model-based methods, for
instance those using spectral nudging, can then be performed from one or the other perspective. For example, van Garderen
et al. (2021) use the spectral nudging method (with the ECHAMG6 atmospheric model and the NCEP reanalysis) to make
attribution statements regarding the 2010 Russian heatwave (their table 2). They focus on the role of climate change on the
heatwave amplitude in early August (domain-averaged anomaly ~10 °C according to their estimate, relative to a 1985-2015
climatology). Based on their model results, they estimate that the heatwave amplitude can be split in two contributions, ~8
°C due to internal variability and ~2 °C being anthropogenically-forced. Assuming that the early August period can be taken
as the first two weeks of August, the dynamical adjustment approach using SLP from the NCEP reanalysis gives a region-
averaged heatwave anomaly of 9.9 °C with 8 °C and 1.9 °C from the contributions of internal variability and anthropogenic
forcing, respectively (here we use the same climatological period as van Garderen et al. (2021)). Interestingly, despite the
fact that the two approaches rely on very different methodology and data, their results on the relative influence of internal

variability and anthropogenic forcing on the region-averaged heatwave anomaly are remarkably similar.

The dynamical adjustment methodological framework proposed in this study provides a simple and practical approach to
investigate and quantify the role of atmospheric circulation in specific extreme events as well as long-term changes in
extreme indicators. Combined with model-based approaches, dynamical adjustment results can improve the understanding

and interpretation of observed extreme events with minimal effort in term of computing. Application to other climate

parameters (for example precipitation extremes) and regions will be pursued in future work.

Appendix A
Method parameter sensitivity tests

Sensitivity tests have been performed to support the final choice of the dynamical adjustment code parameters. We focus
here on two of the parameters: the number of subsampled analogues, s, and the number of iterations, ;. For N;, the focus is
on the accuracy of the SLP fit for the early 2010 European cold spell. Several multi-day periods, including the January 1-8
period marked by the occurrence of very cold 7X anomalies over Europe (Fig. 2a) are used to assess the quality of the SLP
reconstruction. The dynamical adjustment code is run for a range of Ns values (Ns = 20, 40, 60 ...260, 280, 300) keeping the
other parameter values to those indicated in the main text. The metric is simply the root-mean square error (RMSE) between
the daily original SLP and the reconstructed SLP. The RMSE is estimated separately for each day and the total RMSE is
calculated as the sum in quadrature of the daily RMSE values. Figure Al shows that the error is systematically large for
small N;values (often greater than 2 hPa for less than 50 analogues), strongly decreases after Ns ~ 100 (to less than 1 hPa)
and almost saturates to a few tenths of hPa after N;~200 (with RMSEs less than 0.5 hPa beyond N;~200). The shape of the

RMSE curve is very similar among the different periods. Note that Ny is a key parameter in term of computational cost as it
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defines the matrix size involved in the calculation of the Moore-Penrose pseudo-inverse (see Appendix of Deser et al. 2016

for details). Therefore, the choice of Ns ~200 is a good compromise between accuracy and speed.
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Figure Al: Accuracy (assessed by the RMSE, unit: hPa) of the SLP reconstruction as a function of the number of analogues used in the
dynamical adjustment multilinear regression step. Four multi-day periods (dates in upper-right corner) within the 2010 early winter
European cold spell are considered to perform the sensitivity test. The RMSE is first estimated at each grid-point and then averaged over
the 30°N-75°N; 25°W—40°E geographical box with latitudinal weighting.

The second parameter is the number of iterations, N-. In this case, the focus is on the reconstructed 7X. The sensitivity test is
performed for several multi-day periods throughout the Russian heat wave. The dynamical adjustment code is run for a range
of Nrvalues (N, = 10, 20, 30, ... 150, 160 and with other parameters at their optimized value) and the metric measures the
RMSE between the reconstructed 7°X for the different values in the above N; range and the reconstructed 7.X field with N, =
300, taken here as the “reference” value. Note that this only allows to see the “convergence” of the algorithm relative to the
number of iterations for a given value of the N, and N; parameters (here N,~ 400 and Ns ~ 200). Figure A2 shows that there
is an initial fast RMSE decrease (starting from RMSE values of ~ 1 °C for less than 10 iterations) followed by a slower
convergence of the algorithm with the number of iterations. The change in convergence rate occurs when N, exceeds 50—-60

iterations making the choice of N, ~ 100 a reasonable trade-off.
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Figure A2: Convergence (assessed by the RMSE, unit: °C) of the 7X reconstruction as a function of the number of iterations used in the
dynamical adjustment algorithm. Convergence is assessed against a reference dynamical adjustment run performed with 300 iterations.
Four multi-day periods (dates in upper-right corner) within the 2010 summer Russian heatwave are considered to perform the sensitivity
test. The RMSE is first estimated at each grid-point and then averaged over the 35°N-65°N; 25°E-50°E geographical box with latitudinal
weighting.

Appendix B
Time distribution of selected analogues

The selected study period (1900-2018) used for the SLP analogue search includes active phases of low-frequency
internal variability modes such as the Atlantic multidecadal variability (AMYV). In addition, the 20CR_V3 reanalysis
could possibly exhibit lower variance in the data-poor early period leading to a preferential selection of analogues
from recent decades. Drawing a majority of analogues from a specific period can potentially bias the estimation of the
dynamical component contribution and that of the internal residual. Figure B1 shows the distribution of analogues
with respect to the years for the two extreme events (for the entire selected event, the total number of analogues used
is equal to N, x Ns x Ng4, with N and Ns defined as in section 2.2 and /N, the number of days of the event). It clearly
shows that the selected sample of analogues does not favor any specific period nor exhibit any particular trend and

that specific years with a large number of analogues can be found throughout the entire period.
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Figure B1: time distribution of selected SLP analogues (X-axis, unit in percent of the total number of used analogues) versus their
year of occurrence (Y-axis) for the two extreme events
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Appendix C

Observational uncertainty for the 7Xx and 7Nx trend analysis

a5 o9

Figure C1: 1979-2018 temperature trend patterns (units: °C 40 yrs!) for western and central Asia based on the
HadEX3 dataset: a) 7Xx and b) 7Nx. The black dashed line indicates the eastern boundary of the region map shown
in Fig.5.
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