
1 
 

A dynamical adjustment perspective on extreme event attribution 
Laurent Terray1 
1CECI, Université de Toulouse, CERFACS/CNRS, Toulouse, France 

Correspondence to: Laurent Terray (terray@cerfacs.fr) 

Abstract.  5 

 

Here we demonstrate that dynamical adjustment allows a straightforward approach to extreme event attribution within a 

conditional framework. We illustrate the potential of the approach with two iconic extreme events that occurred in 2010: the 

early winter European cold spell and the Russian summer heat wave. We use a dynamical adjustment approach based on 

constructed atmospheric circulation analogues to isolate the various contributions to these two extreme events using only 10 

observational and reanalysis datasets.  Dynamical adjustment results confirm previous findings regarding the role of 

atmospheric circulation in the two extreme events and provide a quantitative estimate of the various dynamic and 

thermodynamic contributions to the event amplitude. Furthermore, the approach is also used to identify the drivers of the 

recent 1979–2018 trends in summer extreme maximum and minimum temperature changes over western Europe and western 

Asia. The results suggest a significant role of the dynamic component in explaining temperature extreme changes in different 15 

regions, including regions around the Black and Caspian Seas as well as central Europe and the coasts of western Europe. 

Finally, dynamical adjustment offers a simple and complementary storyline approach to extreme event attribution with the 

advantage that no climate model simulations are needed, making it a promising candidate for the fast-track component of 

any real-time extreme event attribution system. 

1 Introduction 20 

Extreme weather events such as heat waves and cold spells have a profound impact on human health (Guo et al. 2018; 

Robine et al. 2008), natural ecosystems (Stillman 2019), social systems and economy (Jahn 2015). Europe has experienced a 

high number of extreme temperature episodes since the early 2000s. Recent examples include the summer 2003 heat wave 

over western Europe, the summer 2010 heat wave over eastern Europe and Russia, the 2010 cold winter over Europe, the 

2012 cold spell over eastern and northern Europe, the summer 2015 heat wave over southern and central Europe and the 25 

summer 2018 heat waves over North-western and Central Europe. Science questions related to the origin, causal and 

amplifying factors as well as predictability and prediction of these events have led to an unprecedented number of studies in 

the last 20 years, with 2003 being perhaps the starting point of this intense wave of research activity (Stott et al., 2004). This 
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emerging field of research is often referred as extreme event attribution, although it often covers a range of questions and 

issues that go beyond the standard attribution framework (Hegerl et al., 2011; Lloyd and Shepherd, 2020). 30 

 

Recent and exhaustive review papers have nicely summarized the multiple modelling and statistical approaches and framings 

that have been used in the field of extreme event attribution (Stott et al., 2016; Shepherd 2016; Otto 2017; Naveau et al., 

2020). A first type of approach, (from now on the risk-based approach) is focusing on estimating and comparing the 

frequency of occurrence of extreme events under two stationary worlds, the factual one (with the effect of human influence 35 

on climate) and the counterfactual one (with no human influence on climate). A second type of approach (thereafter the 

process-based approach) puts more emphasis on the identification of the physical drivers of extreme events.  Within this 

second approach, the main objective is to quantify the influence of the key causal factors of the extreme event under scrutiny 

rather than estimating changes in the likelihood of the event due to human influence (see Wehrli et al., 2019 for a perfect 

example of the process-based approach). Both risk- and process-based approaches can often be combined in some ways to 40 

improve the understanding and robustness of extreme event attribution results (Otto et al., 2012). Note that the process-based 

approach can also be viewed as a sub-category of the storyline approach that focuses on the key drivers and physically 

plausible unpacking of past events (Shepherd et al., 2018). 

 

Within the process-based approach, the quantification of the driver’s influence often relies upon model sensitivity 45 

experiments to disentangle the impact of each causal factor. Different modelling frameworks can be used (Schär and Kröner, 

2017; Wehrli et al., 2019): the first one is based on “all-but-one” experiments where the influence of one specific factor is 

removed from the control simulation setup (here control simulation means a simulation including the influence of all 

factors). The second one, based on “only-one” experiments, goes in the other direction by accounting for the influence of a 

specific causal factor in a control simulation (with all other factor’s influence removed).   50 

 

A subset of the process-based approach uses the fact that the vast majority of extreme events (in particular at mid-to-high 

latitudes) are associated with specific (but not necessarily extreme) atmospheric circulation patterns. Conditioning the 

observed temperature or precipitation extreme variations on the appropriate circulation pattern naturally leads to decompose 

the extreme event characteristics (such as amplitude and persistence) into dynamic and thermodynamic components. As the 55 

two components have very different signal-to-noise ratios related to the response to anthropogenic forcing, extreme event 

attribution results can be notably strengthened by focusing separately on the two aspects (Shepherd, 2016; Vautard et al., 

2016).  

The above decomposition can easily be performed based on atmospheric circulation nudging experiments for different mean 

climate states corresponding to contrasted values of the thermodynamic drivers (either external forcings or internal 60 

variability factors). For instance, Wehrli et al. (2019) quantify the influence of sea surface temperatures (SSTs) and soil 

moisture to five recent heatwaves in both subtropical and extratropical regions using global atmospheric simulations with 
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atmospheric circulation nudged to reanalysis (using grid-point nudging). Based on nudged regional model experiments, 

Meredith et al. (2015) have shown that Black Sea SST recent warming has been a key contributor and amplifier in the 

magnitude of the Krymsk July 2012 precipitation extreme. Another recent example about heat wave attribution is the 65 

application of a methodology based on spectral nudging of the free atmosphere within a global model and applied to both 

factual and counterfactual worlds (van Garderen et al., 2021). 

 

An alternative approach to model-based studies is to apply a dynamical adjustment diagnostic approach to observations 

and/or reanalyses. Dynamical adjustment methods have initially been developed to illustrate and quantify the role of 70 

atmospheric internal variability on long-term temperature regional trends (Wallace et al., 2012; Smoliak et al., 2015; Guan et 

al., 2015; Deser et al., 2016; Saffioti et al., 2016; Gong et al., 2019; Sippel et al., 2019).  They have also been applied in 

other contexts such as attribution studies of regional precipitation changes (Guo et al., 2019; Lehner et al., 2018), time of 

emergence uncertainties (Lehner et al., 2017), influence of low-frequency oceanic modes on continental climate (O’Reilly et 

al., 2017) and land-atmosphere interaction studies (Merrifield et al., 2017). The dynamical adjustment method pioneered in 75 

Deser et al. (2016) is based on the constructed analogue approach and was initially applied using monthly mean sea level 

pressure and temperature fields.    

 

Here we investigate the possible added value of the constructed analogue dynamical adjustment approach in identifying and 

disentangling the key drivers and related physical processes of extreme events. We first use dynamical adjustment to assess 80 

the contribution of atmospheric circulation and other drivers to two specific and iconic extreme events: the 2009–2010 cold 

European winter (Wang et al., 2010; Cattiaux et al., 2011; Osborne 2011) and the 2010 Russian heat wave (Barriopedro et 

al., 2011; Dole et al., 2011).  The analysis is performed at daily time scales for the two events allowing to yield insights on 

both the chronology and time-mean aspects. One key advantage of the dynamical adjustment approach is that it can be used 

with observational (and/or reanalyses) data without the need of additional atmospheric (or climate) model simulations. One 85 

limitation is that using dynamical adjustment with only observations does not allow to make statements regarding the role of 

any particular external forcing (for instance greenhouse gases or aerosols). Note that this inability to make single-forcing 

attribution statements does not come from the dynamical adjustment itself but rather from the fact that the approach used in 

this work only relies on observations. Indeed, dynamical adjustment could also be used on large ensembles of single-forcing 

simulations such as those presented in Deser et al. (2020) or the ones performed under the DAMIP framework (Gillett et al., 90 

2016). 

 

Observational uncertainty estimates can be derived by using multiple products and/or perturbed-parameter observational 

ensemble. Uncertainty related to the dynamical adjustment method parameters can be estimated by adequate sampling of the 

latter.  Finally, the approach can be used for any type of event as long as high-quality observational daily datasets of both 95 
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atmospheric circulation and the physical variable of interest are available for a sufficiently long common period (at least 30 

years). 

 

The second objective of this study is to revisit the attribution of the links between recent changes in atmospheric circulation 

patterns and the increased occurrence of summer hot temperature extremes over several midlatitude regions (Horton et al., 100 

2015; Jézéquel et al., 2018, 2020). We first apply dynamical adjustment at daily time scale to all summer days of the 1979–

2018 period for both maximum (TX) and minimum temperature (TN). We then identify maximum and minimum temperature 

extreme hot days for every summer of the 1979–2018 period and estimate changes in temperature extremes as well as the 

role of atmospheric circulation in these changes based on the dynamical adjustment results. We focus on two specific 

regions, loosely defined as western Europe (from 35° N to 65° N and 15° W to 25° E) and western Asia (from 35° N to 65° 105 

N and 25° E to 60° E). Based on a trend analysis of atmospheric circulation patterns derived from a self-organizing map 

clustering approach, Horton et al. (2015) have attributed a fraction of the increase in the occurrence of summer hot extreme 

days for these two regions to an enhanced occurrence frequency and–or persistence (and/or duration) of anticyclonic 

circulation patterns during the 1979–2013 period. Here we assess whether a different but complementary approach can be 

used to investigate whether atmospheric circulation changes have contributed to changes in maximum and minimum 110 

temperature summer extremes over a slightly extended period (1979–2018). We restrict our analysis to hot (TX maxima) and 

cold (TN maxima) summer extremes. 

 

The paper is organized as follows. Section 2 describes the observational and reanalyses datasets and the methodological 

aspects of the dynamical adjustment approach. Section 3 presents the results for the two illustrative extreme events and a 115 

comparison with other approaches based on published results. Based on the dynamical adjustment approach, section 4 then 

investigates the possible contribution of changes in atmospheric circulation patterns to the recent (1979–2018) increase in 

summer hot and cold extremes over western Europe and western Asia. Finally, section 5 gives a short summary and possible 

directions for future work. 

2 Material and Methods 120 

2.1 Observational and reanalyses datasets  

2.1.1 Mean sea level pressure data from reanalyses 

We mainly use daily mean sea level pressure (SLP) from the from the 2° × 2° Twentieth Century Reanalysis version 3 

(20CR_V3, Slivinski et al., 2019) from 1836 to 2015 to characterize atmospheric circulation patterns and their link with 

temperature extremes. The data are extended through 2018 with ERA-Interim (ERAI ; Dee et al. 2011) by adding daily 125 

ERAI anomalies to the daily 20CR_V3 climatology (based on the 1979–2015 period which is the common period between 
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ERAI and 20CR_V3). We also use daily SLP data from 20CR version2c (20CR_V2C, Compo et al., 2011), also extended 

through 2018 with ERAI. For both 20CR_V3 and 20CR_V2C, we only use daily SLP data from 1900 to 2018 due to the 

sparsity of the observational record in the 19th century. Finally, we also make use of the NCAR/NCEP-R1 (Kalnay et al., 

1996) on the shorter period (1948–2018) to further assess the sensitivity of the dynamical adjustment results to the choice of 130 

atmospheric reanalysis for the sea level pressure field. 

2.1.2 Temperature datasets  

The Berkeley Earth temperature (BERK) daily datasets are experimental products 

(http://berkeleyearth.lbl.gov/auto/Global/Gridded/Gridded_Daily_README.Txt) and are available from 1880-01-01 to 

2018-12-31. The BERK datasets are homogenized daily temperature fields built as a refinement upon their monthly 135 

temperature datasets (Muller et al. 2013; Rohde et al. 2013) and using similar techniques. The gridded data are provided on a 

regular latitude-longitude grid at 1-degree resolution. We only consider temperature data over the 1900–2018 period to 

match the period chosen for mean sea level pressure. 

The EOBS daily land surface air temperature gridded datasets are also used over western Europe. The homogeneous EOBS 

dataset (version19.0eHOM) is available from 1950-01-01 to 2018-11-30 (Cornes et al. 2018; Squintu et al. 2019). The raw 140 

station data are first homogenized using a quantile matching technique (Squintu et al. 2019). The gridded temperature data is 

provided on a regular latitude-longitude grid at 0.25-degree resolution 

(https://www.ecad.eu/download/ensembles/downloadversion19.0eHOM.php#datafiles). The data is provided for a 

geographical domain from 25° N to 71.5° N and from 25° W to 45° E.  

The HadGHCND global product has been created based on daily station observations from the Global Historical 145 

Climatology Network-Daily database (Caesar et al., 2006). This consists of over 27,000 stations with temperature 

observations, though the temporal and spatial coverage of the record is very variable. Quality control has been carried out to 

indicate potentially spurious values. The temperature data is provided as anomalies relative to the 1961–1990 reference 

period. The HadGHCND dataset spans the years 1950 to 2014 and is available on a 2.5° latitude by 3.75° longitude grid. 

 150 

The BERK and EOBS datasets are used as our reference temperature datasets.  HadGHCND as well as the NCEP reanalyses 

are also used to complement the observational uncertainty analysis for temperature. Unless explicitly mentioned, all TX and 

TN anomalies are calculated relative to the 1981–2010 reference period. 

2.2 Dynamical adjustment based on constructed analogues 

The dynamical adjustment used in this study is a straightforward adaptation to daily time scales of the method introduced in 155 

Deser et al. (2016). The main objective of dynamical adjustment is to derive an estimate of the component of any physical 

variable variability due solely to atmospheric circulation changes. In agreement with many previous studies, we assume that 

robust forced circulation changes over the North Atlantic European domain are not currently detectable due to a small signal-
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to-noise ratio. Consequently, observed circulation changes are considered as being an integral part of climate internal 

variability. In the following and for the sake of concision, we refer to any variable changes due to atmospheric circulation as 160 

to the dynamic component (instead of the internal dynamic component). Here, SLP is used to represent atmospheric 

circulation changes and we use TX as our physical variable in the method description. Consequently, dynamical adjustment 

leads to the decomposition of any daily TX anomaly between a TX dynamic component and a residual (loosely described as 

the “thermodynamic residual” or simply the thermodynamic component). Note that the thermodynamic component may 

include both forced and internal contributions. 165 

 

We now briefly summarize the dynamical adjustment algorithm. We first define a geographical domain for SLP with the 

constraint that dynamically-adjusted TX values are only meaningful in a region enclosed within the SLP domain and having a 

smaller longitudinal and latitudinal extent than the SLP one. The geographical boundaries of the SLP domains are 25°N–

90°N, 60°W–100°E and 25°N–90°N, 20°W–80°E for the 2009–2010 cold European winter and the 2010 Russian heat wave, 170 

respectively. For any day di of the extreme event, we search for the closest Na daily SLP analogues in all years (but the one 

of the extreme event occurrence) within a time window of ± N days centered on di (N being typically ~ 15 days). The SLP 

analogues are ranked according to the Teweless-Wobus skill score. The score measures the similarity between the SLP 

horizontal gradients (i.e geostrophic winds). We then randomly subsample (without replacement) Ns of the Na SLP analogues 

and compute their best linear fit (see Appendix of Deser et al., 2016 for details) to the target SLP field (that of day di). The 175 

dynamically-reconstructed TX is then defined as the corresponding linear combination of daily TX anomalies associated with 

the Ns SLP analogues. Next, we repeat this random subsampling procedure Nr times. Finally, we average the Nr optimal sets 

of reconstructed daily SLP analogues and associated TX to obtain the dynamic component, defined as the ‘‘best estimate’’ of 

the circulation-induced component of maximum temperature anomaly for the day di. This sequence of steps is finally 

repeated for all days of the extreme event under consideration. Uncertainty estimates can be derived with a simple bootstrap 180 

procedure applied to the set of Nr estimates of the TX dynamic component (O’Reilly et al., 2017). We randomly draw (with 

replacement) Nr estimates 1000 times to produce a distribution that can then be used to derive a 95 % confidence interval. 

The uncertainty analysis can be applied for any single day of the extreme event (Figs. 2a and 4a) or to the time-averaged 

event magnitude (Figs. 1d and 3d). In the latter case, we randomly draw Nr estimates (with replacement) among the Nr ones 

for every day of the event, take the average of the Nr estimates and repeat the process 100 times. We end up with 100 185 

estimates of the dynamic component for each day of the event. We then randomly select one estimate for each day of the 

event, take the time average, and repeat the process 1000 times to get the final distribution. 

 

All results shown below are based on the following parameter values: Na = 400, Ns = 200 and Nr = 100 (see parameter 

sensitivity tests in Appendix A). We have also checked that the selected analogues span the whole period evenly and do not 190 

preferentially arise from a specific multidecadal period such as the data-rich recent one (see Appendix B). As we are 

interested in separating the TX dynamic component from any forced thermodynamic residual (due for instance to changes in 
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the external forcing), we need to remove a local estimate of the forced TX component before applying dynamical adjustment. 

In a sense, the TX dynamic component (DYNCF thereafter) represents the effect of atmospheric circulation on the TX anomaly 

in the counterfactual world (the world with no human influence on climate). As one of the objectives of this approach is to 195 

rely exclusively on observations (and/or reanalyses), we apply a Loess-based smoother (see section 2.3) to TX daily 

observations to remove the low-frequency trend (for all grid-points) that we hypothesize to be primarily due to external 

forcing (Hawkins et al. 2020; Section 2.3). 

 

Our physical interpretation of the TX dynamic component is that it represents the “mean” contribution of the atmospheric 200 

circulation pattern, including both direct (advection) and indirect (e.g local feedbacks) effects, in the counterfactual world. 

Here, the use of “mean” is simply associated with an average over multiple linear combinations of TX anomalies arising 

from a large of number of days having different ocean and/or land surface conditions. 

  

We then interpret the residual component (RESTOT) as being the sum of three contributions. The first one (RESTRD) is the 205 

externally-forced TX component that has been removed before applying dynamical adjustment. The residual component also 

includes any TX changes due to a local or remote contribution associated with internal variability (RESINT). For example, the 

local contribution includes local processes such as those associated with land surface feedbacks linked to soil moisture or 

snow cover anomalies. The remote contribution includes any TX change related to thermal advection changes due to mean 

flow advection of anomalous zonal and meridional TX gradients caused by internal variability (for example due to 210 

anomalous oceanic air masses). The last contribution (RESFRC) includes thermal horizontal advection changes related to 

externally-forced changes in zonal and meridional TX gradients as well as forced changes in other factors such as radiative 

processes and vertical advection anomalies (Pfahl and Wernli, 2012; Quinting and Reeder, 2017).  The estimation of RESINT 

and RESFRC can be obtained by running the dynamical adjustment twice: firstly, with the TX forced response removed (as 

previously described) and secondly with the observed raw TX.  The RESFRC contribution can then be estimated by subtracting 215 

the former TX dynamic component (from the counterfactual world) from the latter one (from the factual world). Finally, 

RESINT can be estimated as: 

 

    RESINT = RESTOT – RESTRD – RESFRC    (1) 

 220 

The final decomposition of any daily TX anomaly (TXA) can then be written as: 

     

    TXA = DYNCF + RESINT + RESTRD + RESFRC   (2) 
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With the objective to compare with model-based studies (see section 3.2) and assuming that the contribution of forced 225 

changes in radiative processes is not the dominant factor, it is also useful to define an upper bound of the “total” dynamic 

contribution DYNTOT given by: 

 

    DYNTOT = DYNCF + RESFRC    (3) 

2.3 Estimation of the forced response 230 

We assume that the temperature forced response to external forcing can be simply estimated with a low-frequency trend 

estimated over the 1900–2018 period. The latter is estimated with a Loess smoother (Cleveland et al., 1990) as implemented 

in the NCSTAT package (https://terray.locean-ipsl.upmc.fr/ncstat/index.html). We choose a smoother length of 45 years and 

we apply a light (~ 2 years) additional smoothing of the trend before estimating the residual. Iterations are carried out until 

convergence of the trend, which is reached when maximum changes in individual trend fits are less than 1 % of the trend’s 235 

range after the previous iteration. We detrend the daily TX and TN datasets separately for each month before applying the 

dynamical adjustment procedure and estimating the dynamic component. 

3 Results for individual extreme events 

As our illustrative examples, we choose two seasonally contrasted extreme events that have been widely documented in the 

literature: the cold European winter of 2009–2010 and the 2010 Russian summer heatwave. For the Russian heatwave, we 240 

follow previous studies by focusing on the July 15th – August 14th period. For the cold European winter, we choose a 

seventeen-day period between December 28th 2009 and January 13th 2010 that is associated with record-breaking 

temperatures in many midlatitude land masses of the Northern Hemisphere (Wang et al., 2010). We restrict our analysis to 

the TX variable. For each illustrative example, we first describe the synoptic circulation and associated TX anomalies during 

the event before showing the dynamical adjustment results averaged over all event days.  We then briefly discuss the 245 

chronology of the event and the evolution of the TX dynamic component. We use 20CR_V3, BERK and EOBS as primary 

datasets for our dynamical adjustment analysis and figures in the main text. Specifically, we use EOBS for the 2010 winter 

event and BERK for the summer one (note that the EOBS geographical domain does not cover Russia). Results based on the 

other TX and SLP datasets are shown in Tables 1 and 2.  

3.1 The 2009-2010 European winter cold spell 250 

Winter 2010 is characterized by an extreme negative phase of the North Atlantic Oscillation (NAO) (the classical NAO 

index reaches a value of 3 standard deviation below average, see Cattiaux et al., 2010 and Osborn 2011). In the eastern 

Atlantic the winter (December–February) mean eddy-driven jet was displaced southward by almost 10 degrees compared 

with its climatological position and maintained south by diabatic heating feedbacks (Woollings et al., 2016). Averaged SLP 
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anomalies during the extreme event period (December 28th 2009 – January 13th 2010) display a dipole with large positive 255 

anomalies over the north-western Atlantic and negative ones over the central eastern Atlantic, in agreement with a jet stream 

axis located over Northern Africa (Fig. 1a). Importantly, the reconstructed SLP pattern is almost identical to the original 

observed SLP pattern (Fig. 1b). This anomalous SLP pattern strongly projects onto the negative NAO pattern. Negative NAO 

phases are known to lead to cold temperature over western and northern Europe (Hurrell 1995). The spatial pattern of the TX 

anomaly during the cold spell displays an elongated cold TX anomaly over the United Kingdom and northern Europe 260 

contrasting with warm TX anomalies in Northern Africa and the Middle East (Fig. 1a). The magnitude of the mean TX 

anomaly for the cold spell event – regionally averaged over the European domain (see box in Fig. 1c) – is -2.04 °C based on 

EOBS.  As expected, the dynamic component contribution to the TX anomaly is negative and has a larger magnitude than the 

total (with a mean and 95 % confidence interval of -2.76 °C and [-2.95 °C, -2.57 °C]). In particular, the dynamic component 

displays very cold (~ -5 °C) TX anomalies over northeastern Europe (Fig. 1b). The total residual contribution is positive (Fig. 265 

1c) and has a smaller amplitude (0.72 °C) than the dynamic component due to the opposite sign of the internal residual 

contribution (-0.31 °C, Fig. 1d) and the two forced contributions, the long-term trend (RESTRD: 0.44 °C, Fig. 1e) and the 

residual forced component (RESFRC: 0.59 °C, Fig. 1f). The total TX forced contribution (defined as the sum of RESTRD and 

RESFRC) has a significant positive contribution (1.03 °C) and shows increased warming in northern Europe (Fig. 1e-f).  

It is noteworthy that the internal residual contribution displays coherent large-scale patterns with grid-point values that are 270 

outside of the uncertainty range of the dynamic component (Fig. 1d), suggesting that its salient regional features are related 

to other factors than dynamical ones.  The RESINT pattern exhibits cold TX anomalies along the coasts of western Europe, 

perhaps linked to cold and persistent – present in both December 2009 and January 2010 – North Atlantic SST anomalies 

(Buchan et al., 2014). These SST anomalies may have been the surface signature of a reduced northward ocean heat 

transport related to a strong decrease of the Atlantic meridional overturning circulation in 2009 (McCarthy et al., 2012; 275 

Sonnewald et al., 2013). We speculate that the amplitude of these ocean-induced cold SST anomalies has been further 

enhanced in late winter due to the ocean integration of the recurrent and persistent negative NAO atmospheric forcing.  
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Figure 1: EOBS daily maximum temperature (° C, shading) and 20CR_V3 sea level pressure (hPa, black line contours with contour 280 
interval of 1 hPa) anomalies averaged over the European cold spell period (December 28th 2009 – January 13th 2010): (a) total TX anomaly 
and observed SLP anomaly, (b) TX dynamic component contribution and reconstructed SLP anomaly, (c) TX total residual contribution, 
(d) TX internal residual contribution (e) TX long-term trend residual contribution, (f) TX residual contribution from forced changes in other 
factors. Numbers in the upper right corner indicate the weighted average TX anomaly over the region delimited by the black dashed box in 
(c). In (a) and (b), the black thick contour line indicates the zero SLP anomaly and dashed contour lines indicate negative SLP anomalies. 285 
In (d), stippling indicates grid-points where RESINT values are within the uncertainty range of the dynamical component given by the 95 % 
confidence interval estimated by the bootstrap method given in section 2.2. 

Further inland, the internal residual contribution shows warm TX anomalies with maximum values in south-eastern and 

central Europe (Fig. 1d). We speculate that the Black Sea and Levantine sub-basin warm SST anomalies observed in 2009 

and 2010 (in line with the eastern Mediterranean SST warming trend over 1982–2012, Shaltout and Omstedt, 2014) may 290 

have contributed to the internal residual warm TX anomalies in south-eastern Europe. 

 

These results confirm that the long-term warming (mostly attributed to human influence) has mitigated the extreme character 

of the 2009-2010 early winter cold spell as initially suggested by Cattiaux et al. (2010). In the counterfactual world, the 

winter cold spell would have been 1.03 °C (Fig. 1e-f) colder than the observed one (-3.07 °C instead of -2.04 °C). Keeping 295 

20CR_V3 for SLP, additional results based on BERK and HadGHCND for TX lead to quasi-similar amplitudes for the total 

anomaly and dynamic component (Table 1). The use of NCEP data for TX underestimates the amplitude of the two-week 

cold spell by 35 %. Using different datasets for SLP (20CR_V2C and NCEP) while keeping EOBS for TX leads to slightly 

larger values of the dynamic component.  

 300 

We now illustrate how the dynamical adjustment approach can be used to track the daily evolution of the contribution due to 

atmospheric circulation changes. The chronology of the early 2010 winter cold spell shows two cold minima, the first one in 

mid-December and the second one, more persistent, two weeks later (Fig. 2a). The dynamic component is by far the main 
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contributor to the TX anomaly magnitude daily and weekly variability (as suggested by the similarity of the two timeseries in 

Fig. 2a). In particular, the two cold minima observed during December 2009 and January 2010 are associated with an 305 

eastward extension of the anticyclonic SLP anomalies centered around Iceland that favors the advection of Arctic air masses 

towards northern Europe (Fig. 2b). While observed daily NAO index values 

(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml) are all negative during the period shown in Fig. 2a 

(albeit with different amplitudes) illustrating the persistence of the low-frequency large-scale atmospheric flow, the 

contribution of the dynamic component to TX anomaly exhibit significant daily variability due to the high-frequency part of 310 

the flow. For instance, the circulation-induced and region-averaged TX anomaly on December 31st is positive, which 

contrasts with the cold minimum observed a few days later and associated with a marked negative NAO phase (Fig. 2). 

 
Figure 2: (a) time evolution of EOBS daily maximum temperature (° C) anomaly averaged over the European domain (box with red 
dashed line in (b)). The covered period is from December 10, 2009, until January 20, 2010. The thick black line represents the total TX 315 
anomaly. The thick blue line shows the contribution of the dynamic component and the blue shading indicates the 95 % confidence 
interval of the reconstruction based on bootstrapping (see section 2.2). The chosen period for the two-week cold spell is defined by the 
white background. (b) Daily maps of SLP anomaly (hPa, black line contours with contour interval of 1 hPa) and of the dynamic 
component contribution (°C, shading) to the total TX anomaly. The black thick contour line indicates the zero SLP anomaly and dashed 
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contour lines indicate negative SLP anomalies. Numbers in the upper left corner indicate the region-averaged contribution of the dynamic 320 
component to the total TX anomaly. 

Table 1: Total TX anomaly (°C, in bold) and dynamic component contribution (°C and as a fraction of the total anomaly in percent) 
averaged over Europe (36° N–72° N; 10° W–30° E, black box in Fig. 1c) during the 2009–2010 winter cold spell. The reference period is 
1981–2010. 

SLP 

TX 

20CR_V3 20CR_V2C NCEP 

NCEP -1.32 – -1.96 (148 %) -1.32 – -2.78 (210 %) -1.32 – -2.40 (182 %) 

HadGHCND -2.20 – -2.83 (129 %) -2.20 – -3.52 (160 %) -2.20 – -3.04 (138 %) 

EOBS -2.04 – -2.76 (135 %) -2.04 – -3.59 (176 %) -2.04 – -3.36 (165 %) 

BERK  -1.95 – -2.63 (135 %) -1.95 – -3.01 (154 %) -1.95 – -3.04 (156 %) 

 325 

3.2 The 2010 Russian summer heatwave 

Summer 2010 is characterized by persistent quasi-stationary anticyclonic circulation anomalies over western Russia (Dole et 

al., 2019; Barriopedro et al., 2010). The persistence of the long-lasting blocking high has been linked to a transition between 

ENSO warm and cold phases and the resulting changes in quasi-stationary wave anomaly and transient eddies (Schneidereit 

et al., 2012; Drouard and Woollings, 2018). These blocking circulation patterns are often associated with surface temperature 330 

warm anomalies due to enhanced subsidence and adiabatic compression, reduced cloudiness allowing a greater fraction of 

solar radiation to reach the surface and horizontal advection of warmer air masses from regions located to the south of the 

blocks. A late-winter to spring precipitation deficit over western Russia has also likely contributed to the abnormally warm 

summer maximum temperature anomalies (with a magnitude on the order of ~ 9–10 °C when regionally-averaged over the 

heat wave period, see Wehrli et al., 2019 and Fig. 3 and Table 2) through the concurrent summer drought and associated 335 

land-surface feedbacks related to depleted soil moisture content (Miralles et al., 2014). Based on atmospheric model nudging 

experiments, Wehrli et al. (2019) have estimated dynamic (related to atmospheric circulation changes) changes and other 

contributions to the Russian heatwave. They suggest that the largest contribution to the Russian heatwave TX anomaly can 

be attributed to atmospheric circulation (range 54–63 %) with a substantial albeit smaller contribution (27–36 %) from 

antecedent soil moisture conditions (the remaining 10 % being due to the contribution of the response to external forcing, 340 

named greenhouse gas forcing in their paper).  

 

Figure 3 shows our estimates of the different contributions based on the dynamical adjustment approach and the BERK 

dataset. The event total TX anomaly for the western Russia region (see box in Fig. 3b) is 9.06 °C and is located southwest of 

the blocking high maximum (with a SLP magnitude of 9 hPa, Fig. 3a). As suggested by previous studies (Dole et al., 2011; 345 
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Wehrli et al., 2019), we find that the total TX anomaly is dominated by the total internal contribution (DYNCF [3.99 °C] + 

RESINT [3.59 °C]) with the total forced contribution (RESTRD [1.03 °C] + RESFRC [0.45 °C]) being only 16 % of the total TX 

anomaly (Fig. 3). The magnitude of the dynamic component is 3.99°C with an uncertainty range (given by the 95 % 

confidence interval) of [3.88 °C, 4.1 °C]. The magnitude of the total dynamic contribution is 4.44 °C (DYNTOT = DYNCF 

[3.99 °C] + RESFRC [0.45 °C]; ~ 49 % of the event total anomaly). The other and smaller contributions are the TX long-term 350 

trend residual contribution RESTRD (1.03 °C, ~ 11 % of the total) and the internal residual RESINT (3.59 °C, ~ 40 % of the 

total). Using HADGHCND or NCEP data for TX leads to very similar results in term of the percentage of the dynamic 

contribution (Table 2). The latter is slightly lower when SLP from the 20CR_V2C and NCEP datasets is used for dynamical 

adjustment while keeping BERK for TX. 

 355 
Figure 3: BERK daily maximum temperature (TX, ° C, shading) and 20CR_V3 sea level pressure (SLP, hPa, black line contours with 
contour interval of 1 hPa) anomalies averaged over the Russian heatwave period (July 15th – August 14th, 2010): (a) total TX anomaly and 
observed SLP anomaly, (b) TX dynamic component contribution and reconstructed SLP anomaly, (c) TX total residual contribution, (d) TX 
internal residual contribution (e) TX forced residual contribution, (f) TX thermal advection residual contribution. Numbers in the upper 
right corner indicate the weighted average TX anomaly over the region delimited by the black dashed box in (c). In (a) and (b), the black 360 
thick contour line indicates the zero SLP anomaly and dashed contour lines indicate negative SLP anomalies. In (d), stippling indicates 
grid-points where RESINT values are within the uncertainty range of the dynamic component given by the 95% confidence interval 
estimated by the bootstrap method given in section 2.2. 

Therefore, we find that the total dynamic component yields the dominant contribution to the Russian heatwave TX anomaly, 

in agreement with the model study of Wehrli et al. (2019). We also note that our best estimate for the total dynamic 365 

component contribution (49 % of the total TX anomaly) is slightly lower than their minimum estimate (see discussion 

below). As suggested by many previous studies, it is very likely that anomalous soil moisture is an important contributor to 

the substantial magnitude of the internal residual contribution (note however that the dynamical adjustment approach cannot 

be used directly to infer the soil moisture influence, see also the discussion below). The magnitude of the TX long-term trend 

residual contribution is in reasonable agreement with the model-based estimate (1.2 °C) of Wehrli et al. (2019). 370 
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Differences with results from the latter study regarding the magnitude of the dynamic contribution (and consequently, of the 

thermodynamic residual magnitude) can be due to multiple factors. First, using the same baseline (1982–2008) as Wehrli et 

al. (2019) doesn’t significantly change the contribution of the dynamic component (46 % instead of 49 %). Second, while 

our methodology only relies on observations and reanalysis, their approach relies upon both “all-but-one” and “only-one” 

modelling frameworks based on simulated differences between SST-forced historical atmospheric experiments with and 375 

without circulation and/or soil moisture nudging and a control simulation without any nudging. Possible caveats of this 

modelling approach include the lack of validity of the assumption that the different factors are additive, the lack of 

interaction between the ocean and the atmosphere and the fact that different soil moisture climatology between simulations 

with and without soil moisture nudging can lead to a different response to the same soil moisture anomaly (for a detailed 

discussion, see Wehrli et al., 2019). Possible sources of uncertainty of the dynamical adjustment results include 380 

observational uncertainty and the presence of “noise” in the internal thermodynamic residual resulting from dynamic 

contributions not accounted for by the constructed analogue technique (due to both inadequate sampling as well as 

methodological uncertainty). Table 2 shows that the magnitude of the dynamic component for different observational and 

reanalysis products is always less than 50 % of the total TX anomaly. This suggests that differences in magnitude of the 

dynamic component discussed above are unlikely to be fully explained by observational uncertainty in the dynamical 385 

adjustment method.  
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Figure 4: (a) time evolution of BERK daily maximum temperature (° C) anomaly averaged over the Western Asia domain (box with red 
dashed line in (b)). The covered period is from July 1st, 2010, until August 20th, 2010. The thick black line represents the total TX anomaly. 
The thick blue line shows the contribution of the dynamic component and the blue shading indicates the 95 % confidence interval of the 390 
reconstruction based on bootstrapping (see section 2.2). The chosen period for the Russian heatwave is defined by the white background. 
(b) Daily maps of SLP anomaly (hPa, black line contours with contour interval of 1 hPa) and of the dynamic component contribution (°C, 
shading) to the total TX anomaly. The black thick contour line indicates the zero SLP anomaly and dashed contour lines indicate negative 
SLP anomalies. Numbers in the upper left corner indicate the region-averaged contribution of the dynamic component to the total TX 
anomaly. 395 

The chronology of the Russian heatwave suggests that the contribution of the dynamic component to the total TX anomaly 

varies at daily timescale (Fig. 4a). As expected, the dynamic component seems to play a key role in the initiation and 

termination of the heatwave. In particular, the negative contribution from the dynamic component after August 15th is 

leading by a couple of days the decline of the extreme heat. During the heatwave, two multi-day periods (July 19–23 and 

July 30 – August 1) show persistent and high values of the TX dynamic component (Fig. 4b). The first one (the less extreme) 400 

is associated with a zonally-extended anticyclonic anomaly from the European Coasts to western Russia.  The largest 

contributions of the dynamic component appear to be associated with a strong blocking High center situated eastward of the 

location of maximum TX anomaly. 
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Table 2: Total TX anomaly (°C, in bold) and dynamic component contribution (°C and as a fraction of the total anomaly in percent) 405 
averaged over western Russia (50° N–60° N; 35° E–55° E, black box in Fig. 3c) during the 2010 summer Russian heat wave. The 
reference period is 1981–2010. 

SLP 

TX 

20CR_V3 20CR_V2C NCEP 

NCEP 10.16 – 3.85 (38 %) 10.16 – 3.67 (36 %) 10.16 – 3.05 (30 %) 

HadGHCND 9.16 – 3.75 (41 %) 9.16 – 3.51 (38 %) 9.16 – 3.31 (36 %) 

BERK 9.06 – 3.99 (44 %) 9.06 – 3.07 (34 %) 9.06 – 3.2 (35 %) 

4 Atmospheric circulation contribution to recent changes in summer temperature hot and cold extremes 

We now use dynamical adjustment to assess the possible changes in circulation-related temperature anomalies and their 

contribution to summer temperature hot extreme changes during the 1979–2018 period. We select two Northern Hemisphere 410 

midlatitude regions, western Asia (TX, TN domain: 35° N–65° N; 25° E–60° E; SLP domain: 25° N–80° N; 10° E–65° E) 

and western Europe (TX, TN domain:  15° E–25° W; 35° N–70° N; SLP domain: 30° E–45° W; 25° N–80° N), and apply the 

dynamical adjustment separately to each of them.  The focus is on the contribution of the dynamic component to changes in 

the summer warmest day (TX maxima) and warmest night (TN maxima) temperature over these four decades. The initial step 

is to run the dynamical adjustment procedure for all summers during the 1979–2018 period and for both TX and TN. As with 415 

the two illustrative examples, we apply the dynamical adjustment procedure twice, with and without detrending, before 

applying dynamical adjustment. For each year and each grid-point, we then select the days with the largest TX and TN 

anomalies. In the following, we focus on the summer days and nights with the most extreme temperature: the days with the 

hottest maximum (TXx) and minimum (TNx) temperature. We then estimate changes in TXx and TNx during 1979–2018 by 

using the non-parametric Mann-Kendall test and Theil-Sen’s estimator to calculate the trend. Based on dynamical adjustment 420 

results, we also quantify the contribution of both total dynamic (DYNTOT, see Eq. (3)) and thermodynamic residual (RESINT + 

RESTRD) components to these changes. 

4.1 Extreme maximum and minimum temperature trends in summer over western Asia and western Europe 

We find warming trends for both TXx and TNx over large parts of the western Asia (WA) and western Europe (WE) regions 

(Figs. 5a, d and 6a, d). The warming of TXx over most of the WA region (often greater than 3 °C 40 yr-1) is primarily due to 425 

the thermodynamic component with an additional and substantial contribution from the dynamic component north of the 

Black and Caspian Seas (Fig. 5b–c). Both thermodynamic and dynamic components contribute to the lack of statistical 

significance and small amplitude of the TXx trends found in the northeastern part of the WA region.  
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Warming trends in TNx are statistically significant only in a small region located south of the Black Sea while the eastern 

part of the WA region exhibits significant cooling with contribution from both components (Fig. 5d–f). In addition, the lack 430 

of significant TNx trends over most of the WA region results from opposite effects from the thermodynamic (cooling) and 

dynamic (warming) component. This contrasts with the TXx case, supporting the existence of different processes governing 

the changes in TXx and TNx. For instance, clear-sky conditions often associated with subsiding motions near the central 

region of blocking patterns have opposite radiative effects on TX and TN: on one hand, they enhance daytime solar heating 

leading to TX increase, and on the other hand, they also enhance nighttime longwave cooling leading to a TN decrease. 435 

Assuming that a substantial fraction of the dynamical component is related to the increased occurrence (and/or persistence) 

of blocking patterns during recent decades (Horton et al., 2015), one would expect a reduced amplitude of TNx changes 

compared with that of TXx changes in regions where these circulation changes have occurred. However, the eastern part of 

the WA region shows the opposite sign (cooling) with large amplitude for the TNx trend compared with that of TXx. Whether 

this is a real signal or not is further discussed below in light of observational uncertainty. Finally, we have checked that 440 

omitting year 2010 has little influence on the raw TXx and TNx trend pattern and statistical significance, suggesting that the 

long-term signal is robust and not influenced by the exceptionally warm 2010 summer. 

 

 
Figure 5: Summer temperature extremes: 1979–2018 trend maps for western Asia based on BERK (trend unit is ° C 40 yrs -1, shading): (a-445 
c) TXx raw trend, TXx thermodynamic and dynamic component trends. (d-f) TNx raw trend, TNx thermodynamic and dynamic component 
trends. The trend detection is estimated using the non-parametric Mann-Kendall test and the linear trend slope is computed based on the 
Theil-Sen estimator. In (a, d), stippling indicates locations where the raw trend is not significant at the 5 % level. 
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The dynamic contribution to the WA summer TXx trend magnitude can also be quantified with regard to year-to-year 

variability of the dynamic component that is quite similar (in both spatial pattern and amplitude) to the dynamic component 450 

daily variability during the Russian heatwave period. In WA regions with the largest trend magnitude (north of the Black and 

Caspian Seas), the 40-yr TXx changes are comparable with the summer TXx interannual standard deviation in term of 

localization and magnitude (not shown). 

Regarding the WE region, the TXx trend map shows maximum warming (often greater than 3 °C 40 yr-1) located over the 

central part of the domain and along the coasts of western Europe. This contrasts with most of southern Europe and 455 

Scandinavia where TXx trends are weaker and not statistically significant (Fig. 6a). Regions with significant TXx trends show 

different relative contributions from dynamic and thermodynamic components (Fig. 6a–c). Interestingly, the contribution of 

the dynamic component to the total trend is substantial over many locations, including northwestern Spain and France, 

northeastern Europe (east of the Baltic Sea) and northern Scandinavia (Fig. 6c). The TNx trend map shows widespread 

warming over western Europe and reduced amplitude compared with that of TXx, except for Italy and Greece, where the 460 

large trend values are mainly due to the thermodynamic component (Fig. 6d–f). Over the central Europe domain, both 

components contribute to the TNx warming with the contribution of the dynamic component being slightly dominant 

particularly over southern France, eastern Europe and Scandinavia (Fig. 6f). 

  

 465 
Figure 6: Summer temperature extremes: 1979–2018 trend maps for western Europe based on EOBS (trend unit is ° C 40 yrs -1, shading): 
(a-c) TXx raw trend, TXx thermodynamic and dynamic component trends. (d-f) TNx raw trend, TNx thermodynamic and dynamic 
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component trends. The trend detection is estimated using the non-parametric Mann-Kendall test and the linear trend slope is computed 
based on the Theil-Sen estimator. In (a, d), stippling indicates locations where the trend is not significant at the 5 % level. 

We now address the issue of observational uncertainty of the raw TXx and TXn trend analysis. We use the HadEX3 dataset 470 

(Dunn et al., 2020) to perform exactly the same TXx and TNx trend analysis as the one above with the BERK dataset.  Figure 

7a–b suggests that the main salient features of the trend patterns based on HadEX3 are reasonably similar to those derived 

from BERK for TXx and TNx over the WE region and TXx over WA. However, the substantial TNx cooling trend over the 

eastern part of the WA region seen with BERK (Fig. 5d) does not appear with HadEX3 (Fig. 7b). Instead, the HadEX3-based 

TNx trend pattern exhibits a weak warming decreasing eastward. Looking further east shows that the cooling region exists in 475 

the HadEX3-based analysis but is shifted eastward compared with the BERK one (Appendix C, Fig. C1). We speculate that 

the difference in TNx trend patterns possibly arises from different sets of station data used in the two analyses, as well as 

differences in the optimal interpolation scheme such as different parameters of the distance-based correlation function.  

4.2 Causal factors of the extreme temperature changes over the 1979–2018 period 

We find that the dynamic component has substantially contributed to the increase in the summer TX and TN hottest extreme 480 

over parts of the WA and WE regions. The regions where the dynamic component is an important contributor to the TX 

warming trend broadly correspond to the ones suggested in Horton et al. (2015). This is especially noticeable for western 

Asia (see their figure 4i) where Horton et al. (2015) attributes a portion of the TX hottest extreme trend to an increase in 

blocking pattern occurrence (note that the trend spatial patterns shown in Figs. 5 and 6 and corresponding to the full period 

1979–2018, are qualitatively similar to those for the reduced period 1979–2013 that is used in Horton et al., 2015, not 485 

shown). Increase in the occurrence of anticyclonic patterns mainly located in central Europe was also linked to the observed 

increase in the TX hottest extreme in eastern Europe (Fig. 3c, k of Horton et al. 2015). Our analysis confirms this result and 

suggests that the dynamic component has also been an important driver of the TX hottest extreme warming over several 

coastal areas of western Europe when considering the extended period up to 2018. 
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 490 
 Figure 7: 1979–2018 Summer temperature trend patterns (units: °C 40 yrs-1) for both WE and WA regions based on the HadEX3 dataset: 
a) TXx and b) TNx. Summer (JJA) anomaly differences (units: °C) between warm and cold periods of AMV. The latter are defined as in 
O’Reilly et al. (2017): cold periods (1902–1925 and 1964–1993) and warm periods (1931–1960 and 1996–2012).  The temperature data 
has been detrended before taking the difference between warm and cold periods. In (a, b), stippling indicates locations where the trend is 
not significant at the 5 % level. 495 

We now discuss some of the possible drivers of recent TXx and TNx changes. As the 1979–2018 period covers a transition 

between the negative (cold) and positive (warm) phase of the Atlantic Multidecadal Variability (AMV, Sutton and Dong 

2012), the question arises as to whether the AMV phase shift has any influence on the temperature extreme trends. To 

estimate the AMV contribution to the total change in TXx and TNx, we have performed a simple composite analysis by 

calculating the temperature difference between warm and cold AMV periods (Fig. 7c–d). The AMV contribution to TXx 500 

changes is larger in the central part of the domain and varies from ~10 % over France to ~25 % west and north of the Black 

Sea. Regarding TNx changes, the AMV contribution is restricted to the region to the north of the Black Sea. South of the 

Black and Caspian Seas, the AMV contribution to TXx and TNx changes is seen to oppose the observed warming trends. 

Based on the summer mean temperature results from the observational study of O’Reilly and al. (2017), we speculate that 

the AMV shift may have contributed to both dynamic and thermodynamic TXx and TNx changes in western Europe and in 505 

the western part of western Asia (to about 45° E) over the 1979–2018 period. 

 

In addition to the AMV influence, other factors have likely played a role on extreme temperature changes, in particular over 

the eastern part of the WA region where the AMV influence is weak. Interestingly, both HadEX3-based TXx and TNx trend 

patterns show a tripole pattern with two areas of accelerated warming over the Eastern European Plain and Central Siberia 510 

and a region of cooling over the Western Siberian Plain, which is located eastward of the eastern boundary of the WA region 

(Appendix C, Fig. C1).  Sato and Nakamura (2019) have suggested that this tripole pattern (of daily mean temperature in 
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their study) is linked to the increased occurrence in the beginning of the 21st century of an unforced quasi-stationary wave 

train that has been anchored and amplified due to land-atmosphere interaction. Since the 1990s, there is evidence of 

increasing precipitation, winter snow depth and snow cover extension over the Western Siberian Plain (Guo et al., 2019; 515 

Bulygina et al., 2009; Bulygina et al., 2011), leading to increasing snow melt in spring and soil moisture during summer as 

well as reduced sensible heat flux and negative temperature anomalies during summer (Sato and Nakamura 2019). We 

suggest that similar mechanisms may also be relevant for changes in maximum and minimum temperature extremes over the 

Western Siberian Plain. 

5 Summary and discussion 520 

The dynamical adjustment approach based on the constructed analogue method and extended at daily time scale has been 

used to assess the contribution of circulation-related temperature anomalies to temperature extreme events. Based on daily 

maximum temperature, two observed iconic extreme events have been selected to illustrate the potential of the approach: the 

early 2009–2010 winter European cold spell and the 2010 Russian heat wave. Dynamical adjustment results confirm the key 

role and improve the quantification of the atmospheric circulation contribution (the dynamic component) to the two extreme 525 

events. The 2009–2010 winter European cold spell associated with an extreme negative NAO phase would have been 

significantly colder without human influence that mitigated the region-averaged amplitude of the cold extreme event by 33 

%. Regarding the Russian heatwave, the contribution of the total dynamic component associated with persistent anticyclonic 

conditions during the 2010 summer is estimated to be close to 50 % of the observed maximum temperature anomaly.  

Furthermore, we have used the dynamical adjustment approach to assess the possible contribution of atmospheric circulation 530 

to changes in summer extremes for two regions, western Asia and Europe, and during the 1979–2018 period. The dynamical 

adjustment results suggest that both dynamic and thermodynamic factors have contributed to observed changes in summer 

temperature extremes over the 1979–2018 period. We have focused on changes in the summer warmest day and night 

temperatures. Although thermodynamic influence has dominated the TXx changes in a large fraction of the western Asia 

domain, the dynamic influence has been quite substantial north of the Black and Caspian Seas. Furthermore, the dynamic 535 

influence has been key in the TNx warming trend depicted south of the Black Sea. Regarding Europe, the influence of 

atmospheric circulation has been a major driver of both TXx and TNx warming trends that are seen in many regions, 

including the coasts of western Europe (TXx), Scandinavia and eastern Europe (both TXx and TNx). Observational 

uncertainty has been assessed with the HadEX3 dataset and summer extreme temperature trend patterns broadly agree 

between the two datasets but for TNx over the eastern part of WA region. The strong TNx cooling observed with the BERK 540 

dataset is reduced and shifted eastward when using the HadEX3 dataset. Finally, we have found that the AMV has likely 

contributed to both dynamic and thermodynamic changes in extreme temperature, in particular over a broad central Europe 

region north of the Black Sea. 
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Dynamical adjustment provides a quick and cheap (computationally) observationally-based storyline approach to assess and 545 

quantify the role of atmospheric circulation as a driver of extreme events. Dynamical adjustment can be performed in both 

factual and counterfactual (the world without human influence) worlds, assuming that the counterfactual can be simply 

defined by removing a non-parametric trend to the observed climate surface variable under scrutiny (here TX and TN). Note 

that, in principle, the contribution of forced atmospheric trends can also be estimated by dynamical adjustment (Deser et al., 

2016). Assuming that a forced atmospheric trend can be detected and robustly estimated, dynamical adjustment can be 550 

performed twice, by removing or not the SLP trend from the raw SLP data. Difference between the two results for the 

reconstructed surface variable gives an estimate of the contribution of the forced dynamic component. In the standard 

conditional approach used here, the hypothesis is that forced atmospheric circulation changes are undetectable and no 

detrending is performed on the SLP field. In this case, the above dual approach (performing the dynamical adjustment in 

both factual and counterfactual worlds for the surface variable, here TX or TN) allows to partition the extreme event 555 

temperature anomaly in four contributions: the (internal) dynamic component, the (internal) thermodynamic residual, the 

forced long-term trend thermodynamical changes and the contribution due to forced changes in other factors such as the 

mean horizontal advection of forced changes in temperature gradients or vertical advection.  

 

The above dynamical adjustment decomposition can then be used to present the approach results from two different 560 

perspectives: forced versus internal or dynamic versus thermodynamic. Comparison with other model-based methods, for 

instance those using spectral nudging, can then be performed from one or the other perspective. For example, van Garderen 

et al. (2021) use the spectral nudging method (with the ECHAM6 atmospheric model and the NCEP reanalysis) to make 

attribution statements regarding the 2010 Russian heatwave (their table 2). They focus on the role of climate change on the 

heatwave amplitude in early August (domain-averaged anomaly ~10 °C according to their estimate, relative to a 1985–2015 565 

climatology). Based on their model results, they estimate that the heatwave amplitude can be split in two contributions, ~8 

°C due to internal variability and ~2 °C being anthropogenically-forced. Assuming that the early August period can be taken 

as the first two weeks of August, the dynamical adjustment approach using SLP from the NCEP reanalysis gives a region-

averaged heatwave anomaly of 9.9 °C with 8 °C and 1.9 °C from the contributions of internal variability and anthropogenic 

forcing, respectively (here we use the same climatological period as van Garderen et al. (2021)). Interestingly, despite the 570 

fact that the two approaches rely on very different methodology and data, their results on the relative influence of internal 

variability and anthropogenic forcing on the region-averaged heatwave anomaly are remarkably similar.  

 

The dynamical adjustment methodological framework proposed in this study provides a simple and practical approach to 

investigate and quantify the role of atmospheric circulation in specific extreme events as well as long-term changes in 575 

extreme indicators.  Combined with model-based approaches, dynamical adjustment results can improve the understanding  

and interpretation of observed extreme events with minimal effort in term of computing. Application to other climate 

parameters (for example precipitation extremes) and regions will be pursued in future work. 
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Appendix A 

Method parameter sensitivity tests 580 

Sensitivity tests have been performed to support the final choice of the dynamical adjustment code parameters. We focus 

here on two of the parameters: the number of subsampled analogues, Ns, and the number of iterations, Nr. For Ns, the focus is 

on the accuracy of the SLP fit for the early 2010 European cold spell. Several multi-day periods, including the January 1–8 

period marked by the occurrence of very cold TX anomalies over Europe (Fig. 2a) are used to assess the quality of the SLP 

reconstruction. The dynamical adjustment code is run for a range of Ns values (Ns = 20, 40, 60 …260, 280, 300) keeping the 585 

other parameter values to those indicated in the main text. The metric is simply the root-mean square error (RMSE) between 

the daily original SLP and the reconstructed SLP. The RMSE is estimated separately for each day and the total RMSE is 

calculated as the sum in quadrature of the daily RMSE values. Figure A1 shows that the error is systematically large for 

small Ns values (often greater than 2 hPa for less than 50 analogues), strongly decreases after Ns ~ 100 (to less than 1 hPa) 

and almost saturates to a few tenths of hPa after Ns ~200 (with RMSEs less than 0.5 hPa beyond Ns ~200). The shape of the 590 

RMSE curve is very similar among the different periods. Note that Ns is a key parameter in term of computational cost as it 

defines the matrix size involved in the calculation of the Moore-Penrose pseudo-inverse (see Appendix of Deser et al. 2016 

for details). Therefore, the choice of Ns ~200 is a good compromise between accuracy and speed. 

 

 595 
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Figure A1: Accuracy (assessed by the RMSE, unit: hPa) of the SLP reconstruction as a function of the number of analogues used in the 
dynamical adjustment multilinear regression step. Four multi-day periods (dates in upper-right corner) within the 2010 early winter 
European cold spell are considered to perform the sensitivity test. The RMSE is first estimated at each grid-point and then averaged over 
the 30°N–75°N; 25°W–40°E geographical box with latitudinal weighting. 

The second parameter is the number of iterations, Nr. In this case, the focus is on the reconstructed TX. The sensitivity test is 600 

performed for several multi-day periods throughout the Russian heat wave. The dynamical adjustment code is run for a range 

of Nr values (Nr = 10, 20, 30, … 150, 160 and with other parameters at their optimized value) and the metric measures the 

RMSE between the reconstructed TX for the different values in the above Nr range and the reconstructed TX field with Nr = 

300, taken here as the “reference” value. Note that this only allows to see the “convergence” of the algorithm relative to the 

number of iterations for a given value of the Na and Ns parameters (here Na ~ 400 and Ns ~ 200). Figure A2 shows that there 605 

is an initial fast RMSE decrease (starting from RMSE values of ~ 1 °C for less than 10 iterations) followed by a slower 

convergence of the algorithm with the number of iterations. The change in convergence rate occurs when Nr exceeds 50–60 

iterations making the choice of Nr ~ 100 a reasonable trade-off. 

 
Figure A2: Convergence (assessed by the RMSE, unit: °C) of the TX reconstruction as a function of the number of iterations used in the 610 
dynamical adjustment algorithm. Convergence is assessed against a reference dynamical adjustment run performed with 300 iterations. 
Four multi-day periods (dates in upper-right corner) within the 2010 summer Russian heatwave are considered to perform the sensitivity 
test. The RMSE is first estimated at each grid-point and then averaged over the 35°N–65°N; 25°E–50°E geographical box with latitudinal 
weighting. 
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Appendix B 615 

Time distribution of selected analogues 

The selected study period (1900–2018) used for the SLP analogue search includes active phases of low-frequency internal 

variability modes such as the Atlantic multidecadal variability (AMV). In addition, the 20CR_V3 reanalysis could possibly 

exhibit lower variance in the data-poor early period leading to a preferential selection of analogues from recent decades. 

Drawing a majority of analogues from a specific period can potentially bias the estimation of the dynamical component 620 

contribution and that of the internal residual. Figure B1 shows the distribution of analogues with respect to the years for the 

two extreme events (for the entire selected event, the total number of analogues used is equal to Nr x Ns x Nd, with Nr and Ns 

defined as in section 2.2 and Nd the number of days of the event). It clearly shows that the selected sample of analogues does 

not favor any specific period nor exhibit any particular trend and that specific years with a large number of analogues can be 

found throughout the entire period. 625 
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Figure B1: time distribution of selected SLP analogues (X-axis, unit in percent of the total number of used analogues) versus their year of 
occurrence (Y-axis) for the two extreme events 
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Appendix C 

Observational uncertainty for the TXx and TNx trend analysis 630 

 
Figure C1: 1979–2018 temperature trend patterns (units: °C 40 yrs-1) for western and central Asia based on the HadEX3 

dataset: a) TXx and b) TNx. The black dashed line indicates the eastern boundary of the region map shown in Fig. 5. 

 

 635 

Code and data availability: 

The dynamical adjustment code used in this study is available on https://github.com/terrayl/Dynamico. Observed and 

reanalysis data used for this study can be found on the data provider websites. They can also be provided by the author upon 

request.  
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