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Abstract.  5 

 

Here we demonstrate that dynamical adjustment allows a straightforward approach to extreme event attribution within a 

conditional framework. We illustrate the potential of the approach with two iconic extreme events that occurred in 2010: the 

early winter European cold spell and the Russian summer heat wave. We use a dynamical adjustment approach based on 

constructed atmospheric circulation analogues to isolate the various contributions to these two extreme events using only 10 

observational and reanalysis datasets.  Dynamical adjustment results confirm previous findings regarding the role of 

atmospheric circulation in the two extreme events and provide a quantitative estimate of the various dynamic and 

thermodynamic contributions to the event amplitude. Furthermore, the approach is also used to identify the drivers of the 

recent 1979–2018 trends in summer extreme maximum and minimum temperature changes over western Europe and western 

Asia. The results suggest a significant role of the dynamic component in explaining temperature extreme changes in different 15 

regions, including regions around the Black and Caspian Seas as well as central Europe and the coasts of western Europe. 

Finally, dynamical adjustment offers a simple and complementary storyline approach to extreme event attribution with the 

advantage that no climate model simulations are needed, making it a promising candidate for the fast-track component of 

any real-time extreme event attribution system. 

1 Introduction 20 

Extreme weather events such as heat waves and cold spells have a profound impact on human health (Guo et al. 2018; 

Robine et al. 2008), natural ecosystems (Stillman 2019), social systems and economy (Jahn 2015). Europe has experienced a 

high number of extreme temperature episodes since the early 2000s. Recent examples include the summer 2003 heat wave 

over western Europe, the summer 2010 heat wave over eastern Europe and Russia, the 2010 cold winter over Europe, the 

2012 cold spell over eastern and northern Europe, the summer 2015 heat wave over southern and central Europe and the 25 

summer 2018 heat waves over North-western and Central Europe. Science questions related to the origin, causal and 

amplifying factors as well as predictability and prediction of these events have led to an unprecedented number of studies in 

the last 20 years, with 2003 being perhaps the starting point of this intense wave of research activity (Stott et al., 2004). This 
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emerging field of research is often referred as extreme event attribution, although it often covers a range of questions and 

issues that go beyond the standard attribution framework (Hegerl et al., 2011; Lloyd and Shepherd, 2020). 30 

 

Recent and exhaustive review papers have nicely summarized the multiple modelling and statistical approaches and framings 

that have been used in the field of extreme event attribution (Stott et al., 2016; Shepherd 2016; Otto 2017; Naveau et al., 

2020). A first type of approach, (from now on the risk-based approach) is focusing on estimating and comparing the 

frequency of occurrence of extreme events under two stationary worlds, the factual one (with the effect of human influence 35 

on climate) and the counterfactual one (with no human influence on climate). A second type of approach (thereafter the 

process-based or storyline approach) puts more emphasis on the identification of the physical drivers of extreme events.  

Within this second approach, the main objective is to quantify the influence of the key causal factors of the extreme event 

under scrutiny rather than estimating changes in the likelihood of the event due to human influence (see Wehrli et al., 2019 

for a perfect example of the process-based approach). Both risk- and process-based approaches can often be combined in 40 

some ways to improve the understanding and robustness of extreme event attribution results (Otto et al., 2012). 

 

Within the process-based approach, the quantification of the driver’s influence often relies upon model sensitivity 

experiments to disentangle the impact of each causal factor. Different modelling frameworks can be used (Schär and Kröner, 

2017; Wehrli et al., 2019): the first one is based on “all-but-one” experiments where the influence of one specific factor is 45 

removed from the control simulation setup (here control simulation means a simulation including the influence of all 

factors). The second one, based on “only-one” experiments, goes in the other direction by accounting for the influence of a 

specific causal factor in a control simulation (with all other factor’s influence removed).   

 

A subset of the process-based approach uses the fact that the vast majority of extreme events (in particular at mid-to-high 50 

latitudes) are associated with specific (but not necessarily extreme) atmospheric circulation patterns. Conditioning the 

observed temperature or precipitation extreme variations on the appropriate circulation pattern naturally leads to decompose 

the extreme event characteristics (such as amplitude and persistence) into dynamic and thermodynamic components. As the 

two components have very different signal-to-noise ratios related to the response to anthropogenic forcing, extreme event 

attribution results can be notably strengthened by focusing separately on the two aspects (Shepherd, 2016; Vautard et al., 55 

2016).  

The above decomposition can easily be performed based on atmospheric circulation nudging experiments for different mean 

climate states corresponding to contrasted values of the thermodynamic drivers (either external forcings or internal 

variability factors). For instance, Wehrli et al. (2019) quantify the influence of sea surface temperatures (SSTs) and soil 

moisture to five recent heatwaves in both tropical and extratropical regions using global atmospheric simulations with 60 

atmospheric circulation nudged to reanalysis (using grid-point nudging). Based on nudged regional model experiments, 

Meredith et al. (2015) have shown that Black Sea SST recent warming has been a key contributor and amplifier in the 
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magnitude of the Krymsk July 2012 precipitation extreme. Another recent example about heat wave attribution is the 

application of a methodology based on spectral nudging of the free atmosphere within a global model and applied to both 

factual and counterfactual worlds (van Garderen et al., 2021). 65 

 

 

An alternative approach to model-based studies is to apply a dynamical adjustment diagnostic approach to observations 

and/or reanalyses. Dynamical adjustment methods have initially been developed to illustrate and quantify the role of 

atmospheric internal variability on long-term temperature regional trends (Wallace et al., 2012; Smoliak et al., 2015; Guan et 70 

al., 2015; Deser et al., 2016; Saffioti et al., 2016; Gong et al., 2019; Sippel et al., 2019).  They have also been applied in 

other contexts such as attribution studies of regional precipitation changes (Guo et al., 2019; Lehner et al., 2018), time of 

emergence uncertainties (Lehner et al., 2017), influence of low-frequency oceanic modes on continental climate (O’Reilly et 

al., 2017) and land-atmosphere interaction studies (Merrifield et al., 2017). The dynamical adjustment method pioneered in 

Deser et al. (2016) is based on the constructed analogue approach and was initially applied using monthly mean sea level 75 

pressure and temperature fields.    

 

Here we investigate the possible added value of the constructed analogue dynamical adjustment approach in identifying and 

disentangling the key drivers and related physical processes of extreme events. We first use dynamical adjustment to assess 

the contribution of atmospheric circulation and other drivers to two specific and iconic extreme events: the 2009–2010 cold 80 

European winter (Wang et al., 2010; Cattiaux et al., 2011; Osborne 2011) and the 2010 Russian heat wave (Barriopedro et 

al., 2011; Dole et al., 2011).  The analysis is performed at daily time scales for the two events allowing to yield insights on 

both the chronology and time-mean aspects. One key advantage of the dynamical adjustment approach is that it can be used 

with observational (and/or reanalyses) data without the need of additional atmospheric (or climate) model simulations. 

Observational uncertainty estimates can be derived by using multiple products and/or perturbed-parameter observational 85 

ensemble. Uncertainty related to the dynamical adjustment method parameters can be estimated by adequate sampling of the 

latter.  Finally, the approach can be used for any type of event as long as high-quality observational daily datasets of both 

atmospheric circulation and the physical variable of interest are available for a sufficiently long common period (at least 30 

years). 

 90 

The second objective of this study is to revisit the attribution of the links between recent changes in atmospheric circulation 

patterns and the increased occurrence of summer hot temperature extremes over several midlatitude regions (Horton et al., 

2015; Jézéquel et al., 2018, 2020). We first apply dynamical adjustment at daily time scale to all summer days of the 1979–

2018 period for both maximum (TX) and minimum temperature (TN). We then identify maximum and minimum temperature 

extreme hot days for every summer of the 1979–2018 period and estimate changes in temperature extremes as well as the 95 

role of atmospheric circulation in these changes based on the dynamical adjustment results. We focus on two specific 
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regions, loosely defined as western Europe (from 35° N to 65° N and 15° W to 25° E) and western Asia (from 35° N to 65° 

N and 25° E to 60° E). Horton et al. (2015) have attributed a fraction of the increase in the occurrence of summer hot 

extreme days for these two regions to an enhanced occurrence frequency and–or persistence (and/or duration) of anticyclonic 

circulation patterns during the 1979–2013 period. Here we assess whether a different but complementary approach can be 100 

used to investigate whether atmospheric circulation changes have contributed to changes in maximum and minimum 

temperature summer extremes over a slightly extended period (1979–2018). We restrict our analysis to hot (TX maxima) and 

cold (TN minima) summer extremes. 

 

The paper is organized as follows. Section 2 describes the observational and reanalyses datasets and the methodological 105 

aspects of the dynamical adjustment approach. Section 3 presents the results for the two illustrative extreme events and a 

comparison with other approaches based on published results. Based on the dynamical adjustment approach, section 4 then 

investigates the possible contribution of changes in atmospheric circulation patterns to the recent (1979–2018) increase in 

summer hot and cold extremes over western Europe and western Asia. Finally, section 5 gives a short summary and possible 

directions for future work. 110 

2 Material and Methods 

2.1 Observational and reanalyses datasets  

2.1.1 Mean sea level pressure data from reanalyses 

We mainly use daily mean sea level pressure (SLP) from the from the 2° × 2° Twentieth Century Reanalysis version 3 

(20CRV3, Slivinski et al., 2019) from 1836 to 2015 to characterize atmospheric circulation patterns and their link with 115 

temperature extremes. The data are extended through 2018 with ERA-Interim (ERAI ; Dee et al. 2011) by adding daily 

ERAI anomalies to the daily 20CRV3 climatology (based on the 1979–2015 period which is the common period between 

ERAI and 20CRV3). We also use daily SLP data from 20CR version2c (Compo et al., 2011), also extended through 2018 

with ERAI. For both 20CRV3 and 20CR_V2C, we only use daily SLP data from 1900 to 2018 due to the sparsity of the 

observational record in the 19th century. Finally, we also make use of the NCAR/NCEP-R1 (Kalnay et al., 1996) on the 120 

shorter period (1948–2018) to further assess the sensitivity of the dynamical adjustment results to the choice of atmospheric 

reanalysis for the sea level pressure field. 

2.1.2 Temperature datasets  

The Berkeley Earth temperature (BERK) daily datasets are experimental products 

(http://berkeleyearth.lbl.gov/auto/Global/Gridded/Gridded_Daily_README.Txt) and are available from 1880-01-01 to 125 

2018-12-31. The BERK datasets are homogenized daily temperature fields built as a refinement upon their monthly 
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temperature datasets (Muller et al. 2013; Rohde et al. 2013) and using similar techniques. The gridded data are provided on a 

regular latitude-longitude grid at 1-degree resolution. We only consider temperature data over the 1900–2018 period to 

match the period chosen for mean sea level pressure. 

The EOBS daily land surface air temperature gridded datasets are also used over western Europe. The homogeneous EOBS 130 

dataset (version19.0eHOM) is available from 1950-01-01 to 2018-11-30 (Cornes et al. 2018; Squintu et al. 2019). The raw 

station data are first homogenized using a quantile matching technique (Squintu et al. 2019). The gridded temperature data is 

provided on a regular latitude-longitude grid at 0.25-degree resolution 

(https://www.ecad.eu/download/ensembles/downloadversion19.0eHOM.php#datafiles). The data is provided for a 

geographical domain from 25° N to 71.5° N and from 25° W to 45° E.  135 

The HadGHCND global product has been created based on daily station observations from the Global Historical 

Climatology Network-Daily database (Caesar et al., 2006). This consists of over 27,000 stations with temperature 

observations, though the temporal and spatial coverage of the record is very variable. Quality control has been carried out to 

indicate potentially spurious values. The temperature data is provided as anomalies relative to the 1961–1990 reference 

period. The HadGHCND dataset spans the years 1950 to 2014 and is available on a 2.5° latitude by 3.75° longitude grid. 140 

 

The BERK and EOBS datasets are used as our reference temperature datasets.  HadGHCND as well as the NCEP reanalyses 

are also used to complement the observational uncertainty analysis for temperature. Unless explicitly mentioned, all TX and 

TN anomalies are calculated relative to the 1981–2010 reference period. 

2.2 Dynamical adjustment based on constructed analogues 145 

The dynamical adjustment used in this study is a straightforward adaptation to daily time scales of the method introduced in 

Deser et al. (2016). The main objective of dynamical adjustment is to derive an estimate of the component of any physical 

variable variability due solely to atmospheric circulation changes. In agreement with many previous studies, we assume that 

robust forced circulation changes over the North Atlantic European domain are not currently detectable due to a small signal-

to-noise ratio. Consequently, observed circulation changes are considered as being an integral part of climate internal 150 

variability. In the following and for the sake of concision, we refer to any variable changes due to atmospheric circulation as 

to the dynamic component (instead of the internal dynamic component). Here, SLP is used to represent atmospheric 

circulation changes and we use TX as our physical variable in the method description. Consequently, dynamical adjustment 

leads to the decomposition of any daily TX anomaly between a TX dynamic component and a residual (loosely described as 

the “thermodynamic residual” or simply the thermodynamic component). Note that the thermodynamic component may 155 

include both forced and internal contributions. 

 

We now briefly summarize the dynamical adjustment algorithm. We first define two different geographical domains for TX 

and SLP with the constraint that the TX domain has to be enclosed within the SLP one. For any day di of the extreme event, 
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we search for the closest Na daily SLP analogues in all years (but the one of the extreme event occurrence) within a time 160 

window of ± N days centered on di (N being typically ~ 15 days). The SLP analogues are ranked according to the Teweless-

Wobus skill score. The score measures the similarity between the SLP horizontal gradients (i.e geostrophic winds). We then 

randomly subsample (without replacement) Ns of the Na SLP analogues and compute their best linear fit (see Appendix of 

Deser et al., 2016 for details) to the target SLP field (that of day di). The dynamically-reconstructed TX is then defined as the 

corresponding linear combination of daily TX anomalies associated with the Ns SLP analogues. Next, we repeat this random 165 

subsampling procedure Nr times. Finally, we average the Nr optimal sets of reconstructed daily SLP analogues and associated 

TX to obtain the dynamic component, defined as the ‘‘best estimate’’ of the circulation-induced component of maximum 

temperature anomaly for the day di. This sequence of steps is finally repeated for all days of the extreme event under 

consideration. Uncertainty estimates can be derived with a simple bootstrap procedure applied to the set of Nr estimates of 

the TX dynamic component. We randomly draw (with replacement) Nr estimates 1000 times to produce a distribution that 170 

can then be used to derive a 95 % confidence interval. 

 

All results shown below are based on the following parameter values: Na = 400, Ns = 200 and Nr = 100 (see parameter 

sensitivity tests in Appendix A). As we are interested in separating the TX dynamic component from any forced 

thermodynamic residual (due for instance to changes in the external forcing), we need to remove a local estimate of the 175 

forced TX component before applying dynamical adjustment. In a sense, the TX dynamic component (DYNCF thereafter) 

represents the effect of atmospheric circulation on the TX anomaly in the counterfactual world (the world with no human 

influence on climate). As one of the objectives of this approach is to rely exclusively on observations (and/or reanalyses), we 

apply a Loess-based smoother (see section 2.3) to TX daily observations to remove the low-frequency trend (for all grid-

points) that we hypothesize to be primarily due to external forcing (Hawkins et al. 2020; Section 2.3). 180 

 

Our physical interpretation of the TX dynamic component is that it represents the “mean” contribution of the atmospheric 

circulation pattern, including both direct (advection) and indirect (e.g local feedbacks) effects, in the counterfactual world. 

Here, the use of “mean” is simply associated with an average over multiple linear combinations of TX anomalies arising 

from a large of number of days having different ocean and/or land surface conditions. 185 

  

We then interpret the residual component (RESTOT) as being the sum of three contributions. The first one (RESFRC) is the 

externally-forced TX component that has been removed before applying dynamical adjustment. The residual component also 

includes any TX changes due to a local or remote contribution associated with internal variability (RESINT). For example, the 

local contribution includes local processes such as those associated with land surface feedbacks linked to soil moisture or 190 

snow cover anomalies. The remote contribution includes any TX change related to thermal advection changes due to mean 

flow advection of anomalous zonal and meridional TX gradients caused by internal variability (for example due to 

anomalous oceanic air masses). The last contribution (RESADV) is related to thermal advection changes related to externally-
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forced changes in zonal and meridional TX gradients.  The estimation of RESINT and RESADV can be obtained by running the 

dynamical adjustment twice: firstly, with the TX forced response removed (as previously described) and secondly with the 195 

observed raw TX.  The RESADV contribution can then be estimated by subtracting the former TX dynamic component (from 

the counterfactual world) from the latter one (from the factual world). Finally, RESINT can be estimated as: 

 

    RESINT = RESTOT - RESFRC - RESADV    (1) 

 200 

The final decomposition of any daily TX anomaly (TXA) can then be written as: 

     

    TXA = DYNCF + RESINT + RESFRC + RESADV   (2) 

 

With the objective to compare with model-based studies (see section 3.2), it is also useful to define a “total” dynamic 205 

contribution DYNTOT given by: 

 

    DYNTOT = DYNCF + RESADV    (3) 

2.3 Estimation of the forced response 

We assume that the temperature forced response to external forcing can be simply estimated with a low-frequency trend 210 

estimated over the 1900–2018 period. The latter is estimated with a Loess smoother (Cleveland et al., 1990) as implemented 

in the NCSTAT package (https://terray.locean-ipsl.upmc.fr/ncstat/index.html). We choose a smoother length of 45 years and 

we apply a light (~ 2 years) additional smoothing of the trend before estimating the residual. Iterations are carried out until 

convergence of the trend, which is reached when maximum changes in individual trend fits are less than 1 % of the trend’s 

range after the previous iteration. We detrend the daily TX and TN datasets separately for each month before applying the 215 

dynamical adjustment procedure and estimating the dynamic component. 

3 Results for individual extreme events 

As our illustrative examples, we choose two seasonally contrasted extreme events that have been widely documented in the 

literature: the cold European winter of 2009–2010 and the 2010 Russian summer heatwave. For the Russian heatwave, we 

follow previous studies by focusing on the July 15th – August 14th period. For the cold European winter, we choose a two-220 

week period between December 28th 2009 and January 13th 2010 that is associated with record-breaking temperatures in 

many midlatitude land masses of the Northern Hemisphere (Wang et al., 2010). We restrict our analysis to the TX variable. 

For each illustrative example, we first describe the synoptic circulation and associated TX anomalies during the event before 

showing the dynamical adjustment results averaged over all event days.  We then briefly discuss the chronology of the event 

https://doi.org/10.5194/wcd-2021-40
Preprint. Discussion started: 29 June 2021
c© Author(s) 2021. CC BY 4.0 License.



8 
 

and the evolution of the TX dynamic component. We use 20CRV3, BERK and EOBS as primary datasets for our dynamical 225 

adjustment analysis and figures in the main text. Specifically, we use EOBS for the 2010 winter event and BERK for the 

summer one (note that the EOBS geographical domain does not cover Russia). Results based on the other TX and SLP 

datasets are shown in Tables 1 and 2.  

3.1 The 2009-2010 European winter cold spell 

Winter 2010 is characterized by an extreme negative phase of the North Atlantic Oscillation (NAO) (the classical NAO 230 

index reaches a value of 3 standard deviation below average, see Cattiaux et al., 2010 and Osborn 2011). In the eastern 

Atlantic the winter (December–February) mean eddy-driven jet was displaced southward by almost 10 degrees compared 

with its climatological position and maintained south by diabatic heating feedbacks (Woollings et al., 2016). Averaged SLP 

anomalies during the extreme event period (December 28th 2009 – January 13th 2010) display a dipole with large positive 

anomalies over the north-western Atlantic and negative ones over the central eastern Atlantic, in agreement with a jet stream 235 

axis located over Northern Africa (Fig.1a). Importantly, the reconstructed SLP pattern is almost identical to the original 

observed SLP pattern (Fig.1c). This anomalous SLP pattern strongly projects onto the negative NAO pattern. Negative NAO 

phases are known to lead to cold temperature over western and northern Europe (Hurrell 1995). The spatial pattern of the TX 

anomaly during the cold spell displays an elongated cold TX anomaly over the United Kingdom and northern Europe 

contrasting with warm TX anomalies in Northern Africa and the Middle East (Fig.1a). The magnitude of the mean TX 240 

anomaly for the cold spell event – regionally averaged over the European domain (see box in Fig. 1c) – is -2.04 °C based on 

EOBS.  As expected, the dynamic component contribution to the TX anomaly is negative and has a larger magnitude than the 

total (-2.76 °C). In particular, the dynamic component displays very cold (~ -5 °C) TX anomalies over northeastern Europe 

(Fig. 1b). The total residual contribution is positive (Fig. 1c) and has a smaller amplitude (0.72 °C) than the dynamic 

component due to the opposite sign of the internal residual contribution (-0.31 °C, Fig. 1d) and the two forced contributions, 245 

the long-term trend (RESFRC: 0.44 °C, Fig. 1e) and the thermal advection component (RESADV: 0.59 °C, Fig. 1f). The total TX 

forced contribution (defined as the sum of RESFRC and RESADV) has a significant positive contribution (1.03 °C) and shows 

increased warming in northern Europe (Fig. 1e-f).  

It is noteworthy that the internal residual contribution exhibits cold TX anomalies along the coasts of western Europe, 

perhaps linked to cold and persistent – present in both December 2009 and January 2010 – North Atlantic SST anomalies 250 

(Buchan et al., 2014). These SST anomalies may have been the surface signature of a reduced northward ocean heat 

transport related to a strong decrease of the Atlantic meridional overturning circulation in 2009 (McCarthy et al., 2012; 

Sonnewald et al., 2013). We speculate that amplitude of these ocean-induced cold SST anomalies has been further enhanced 

in late winter due to the ocean integration of the recurrent and persistent negative NAO atmospheric forcing.  

 255 
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Figure 1: EOBS daily maximum temperature (° C, shading) and 20CR_V3 sea level pressure (hPa, black line contours with contour 
interval of 1 hPa) anomalies averaged over the European cold spell period (December 28th 2009 – January 13th 2010): (a) total TX anomaly 
and observed SLP anomaly, (b) TX dynamic component contribution and reconstructed SLP anomaly, (c) TX total residual contribution, 
(d) TX internal residual contribution (e) TX forced residual contribution, (f) TX thermal advection residual contribution. Numbers in the 260 
upper right corner indicate the weighted average TX anomaly over the region delimited by the black dashed box in (c). In (a) and (b), the 
black thick contour line indicates the zero SLP anomaly and dashed contour lines indicate negative SLP anomalies. 

Further inland, the internal residual contribution shows warm TX anomalies with maximum values in south-eastern and 

central Europe (Fig. 1d). We speculate that the Black Sea and Levantine sub-basin warm SST anomalies observed in 2009 

and 2010 (in line with the eastern Mediterranean SST warming trend over 1982–2012, Shaltout and Omstedt, 2014) may 265 

have contributed to the internal residual warm TX anomalies in south-eastern Europe. 

 

These results confirm that the long-term warming (mostly attributed to human influence) has mitigated the extreme character 

of the 2009-2020 early winter cold spell as initially suggested by Cattiaux et al. (2010). In the counterfactual world, the 

winter cold spell would have been 1.03 °C (Fig. 1e-f) colder than the observed one (-3.06 °C instead of -2.03 °C). Keeping 270 

20CR_V3C for SLP, additional results based on BERK and HadGHCND for TX lead to quasi-similar amplitudes for the total 

anomaly and dynamic component (Table 1). The use of NCEP data for TX underestimates the amplitude of the two-week 

cold spell by 35 %. Using different datasets for SLP (20CR_V2C and NCEP) while keeping EOBS for TX leads to slightly 

larger values of the dynamic component.  

 275 

We now illustrate how the dynamical adjustment approach can be used to track the daily evolution of the contribution due to 

atmospheric circulation changes. The chronology of the early 2010 winter cold spell shows two cold minima, the first one in 

mid-December and the second one, more intense, two weeks later (Fig. 2a). The dynamic component is by far the main 

contributor to the TX anomaly magnitude daily and weekly variability (as suggested by the similarity of the two timeseries in 
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Fig. 2a). In particular, the two cold minima observed during December 2009 and January 2010 are associated with an 280 

eastward extension of the anticyclonic SLP anomalies centered around Iceland that favors the advection of Arctic air masses 

towards northern Europe (Fig. 2b). While observed daily NAO index values 

(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml) are all negative during the period shown in Fig. 2a 

(albeit with different amplitudes) illustrating the persistence of the low-frequency large-scale atmospheric flow, the 

contribution of the dynamic component to TX anomaly exhibit significant daily variability due to the high-frequency part of 285 

the flow. For instance, the circulation-induced and region-averaged TX anomaly on December 31st is positive, which 

contrasts with the cold minimum observed a few days later and associated with a marked negative NAO phase (Fig. 2). 

 
Figure 2: (a) time evolution of EOBS daily maximum temperature (° C) anomaly averaged over the European domain (box with red 
dashed line in (b)). The covered period is from December 10, 2009, until January 20, 2010. The thick black line represents the total TX 290 
anomaly. The thick blue line shows the contribution of the dynamic component and the blue shading indicates the 95 % confidence 
interval of the reconstruction based on bootstrapping (see section 2.2). The chosen period for the two-week cold spell is defined by the 
white background. (b) Daily maps of SLP anomaly (hPa, black line contours with contour interval of 1 hPa) and of the dynamic 
component contribution (°C, shading) to the total TX anomaly. The black thick contour line indicates the zero SLP anomaly and dashed 
contour lines indicate negative SLP anomalies. Numbers in the upper left corner indicate the region-averaged contribution of the dynamic 295 
component to the total TX anomaly. 
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Table 1: Total TX anomaly (°C, in bold) and dynamic component contribution (°C and as a fraction of the total anomaly in percent) 
averaged over Europe (36° N–72° N; 10° W–30° E) during the 2009–2010 winter cold spell. The reference period is 1981–2010. 

SLP 

TX 

20CR_V3 20CR_V2C NCEP 

NCEP -1.32 – -1.96 (148 %) -1.32 – -2.78 (210 %) -1.32 – -2.40 (182 %) 

HadGHCND -2.20 – -2.83 (129 %) -2.20 – -3.52 (160 %) -2.20 – -3.04 (138 %) 

EOBS -2.04 – -2.76 (135 %) -2.04 – -3.59 (176 %) -2.04 – -3.36 (165 %) 

BERK  -1.95 – -2.63 (135 %) -1.95 – -3.01 (154 %) -1.95 – -3.04 (156 %) 

 300 

3.2 The 2010 Russian summer heatwave 

Summer 2010 is characterized by persistent quasi-stationary anticyclonic circulation anomalies over western Russia (Dole et 

al., 2019; Barriopedro et al., 2010). The persistence of the long-lasting blocking high has been mainly linked to a transition 

between ENSO warm and cold phases and the resulting changes in quasi-stationary wave anomaly and transient eddies 

(Schneidereit et al., 2012). These blocking circulation patterns are often associated with surface temperature warm anomalies 305 

due to enhanced subsidence, reduced cloudiness allowing a greater fraction of solar radiation to reach the surface and 

advection of warmer air masses from regions located to the south of the blocks. A late-winter to spring precipitation deficit 

over western Russia has also likely contributed to the abnormally warm summer maximum temperature anomalies (with a 

magnitude on the order of ~ 9–10 °C when regionally-averaged over the heat wave period, see Wehrli et al., 2019 and Fig. 3 

and Table 2) through the concurrent summer drought and associated land-surface feedbacks related to depleted soil moisture 310 

content (Miralles et al., 2014). Based on atmospheric model nudging experiments, Wehrli et al. (2019) have estimated 

dynamic (related to atmospheric circulation changes) changes and other contributions to the Russian heatwave. They suggest 

that the largest contribution to the Russian heatwave TX anomaly can be attributed to atmospheric circulation (range 54–63 

%) with a substantial albeit smaller contribution (27–36 %) from antecedent soil moisture conditions (the remaining 10 % 

being due to the contribution of the response to external forcing, named greenhouse gas forcing in their paper).  315 

 

Figure 3 shows our estimates of the different contributions based on the dynamical adjustment approach and the BERK 

dataset. The event total TX anomaly for the western Russia region (see box in Fig. 3b) is 9.06 °C and is located southwest of 

the blocking high maximum (with a SLP magnitude of 9 hPa, Fig. 3a). As suggested by previous studies (Dole et al., 2011; 

Wehrli et al., 2019), we find that the total TX anomaly is dominated by the total internal contribution (DYNCF [3.99 °C] + 320 

RESINT [3.59 °C]) with the total forced contribution (RESFRC [1.03 °C] + RESADV [0.45 °C]) being only 16 % of the total TX 
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anomaly (Fig. 3). The magnitude of the total dynamic contribution is 4.44 °C (DYNTOT = DYNCF [3.99 °C] + RESADV [0.45 

°C]; ~ 49 % of the event total anomaly). The other and smaller contributions are the TX forced residual contribution RESFRC 

(1.03 °C, ~ 11 % of the total) and the internal residual RESINT (3.59 °C, ~ 40 % of the total). Using HADGHCND or NCEP 

data for TX leads to very similar results in term of the percentage of the dynamic contribution (Table 2). The latter is slightly 325 

lower when SLP from the 20CR_V2C and NCEP datasets is used for dynamical adjustment while keeping BERK for TX. 

 
Figure 3: BERK daily maximum temperature (TX, ° C, shading) and 20CR_V3 sea level pressure (SLP, hPa, black line contours with 
contour interval of 1 hPa) anomalies averaged over the Russian heatwave period (July 15th – August 14th, 2010): (a) total TX anomaly and 
observed SLP anomaly, (b) TX dynamic component contribution and reconstructed SLP anomaly, (c) TX total residual contribution, (d) TX 330 
internal residual contribution (e) TX forced residual contribution, (f) TX thermal advection residual contribution. Numbers in the upper 
right corner indicate the weighted average TX anomaly over the region delimited by the black dashed box in (c). In (a) and (b), the black 
thick contour line indicates the zero SLP anomaly and dashed contour lines indicate negative SLP anomalies. 

Therefore, we find that the total dynamic component yields the dominant contribution to the Russian heatwave TX anomaly, 

in agreement with the model study of Wehrli et al. (2019). We also note that our best estimate for the total dynamic 335 

component contribution (49 % of the total TX anomaly is slightly lower than their minimum estimate (see discussion below). 

As suggested by many previous studies, it is very likely that anomalous soil moisture is an important contributor to the 

substantial magnitude of the internal residual contribution (note however that the dynamical adjustment approach cannot be 

used directly to infer the soil moisture influence, see also the discussion below). The magnitude of the TX forced residual 

contribution is in reasonable agreement with the model-based estimate (1.2 °C) of Wehrli et al. (2019). 340 

Differences with results from the latter study regarding the magnitude of the dynamic contribution (and consequently, of the 

thermodynamic residual magnitude) can be due to multiple factors. First, using the same baseline (1982–2008) as Wehrli et 

al. (2019) doesn’t significantly change the contribution of the dynamic component (46 % instead of 49 %). Second, while 

our methodology only relies on observations and reanalysis, their approach relies upon both “all-but-one” and “only-one” 

modelling frameworks based on simulated differences between SST-forced historical atmospheric experiments with and 345 

without circulation and/or soil moisture nudging and a control simulation without any nudging. Possible caveats of this 

modelling approach include the lack of validity of the assumption that the different factors are additive, the lack of 
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interaction between the ocean and the atmosphere and the fact that different soil moisture climatology between simulations 

with and without soil moisture nudging can lead to a different response to the same soil moisture anomaly (for a detailed 

discussion, see Wehrli et al., 2019). Possible sources of uncertainty of the dynamical adjustment results include 350 

observational uncertainty and the presence of “noise” in the internal thermodynamic residual resulting from dynamic 

contributions not accounted for by the constructed analogue technique (due to both inadequate sampling as well as 

methodological uncertainty). Table 2 shows that the magnitude of the dynamic component for different observational and 

reanalysis products is always less than 50 % of the total TX anomaly. This suggests that differences in magnitude of the 

dynamic component discussed above are unlikely to be fully explained by observational uncertainty in the dynamical 355 

adjustment method. 

 
Figure 4: (a) time evolution of BERK daily maximum temperature (° C) anomaly averaged over the Western Asia domain (box with red 
dashed line in (b)). The covered period is from July 1st, 2010, until August 20th, 2010. The thick black line represents the total TX anomaly. 
The thick blue line shows the contribution of the dynamic component and the blue shading indicates the 95 % confidence interval of the 360 
reconstruction based on bootstrapping (see section 2.2). The chosen period for the Russian heatwave is defined by the white background. 
(b) Daily maps of SLP anomaly (hPa, black line contours with contour interval of 1 hPa) and of the dynamic component contribution (°C, 
shading) to the total TX anomaly. The black thick contour line indicates the zero SLP anomaly and dashed contour lines indicate negative 
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SLP anomalies. Numbers in the upper left corner indicate the region-averaged contribution of the dynamic component to the total TX 
anomaly. 365 

The chronology of the Russian heatwave suggests that the contribution of the dynamic component to the total TX anomaly 

varies at daily timescale (Fig. 4a). As expected, the dynamic component seems to play a key role in the initiation and 

termination of the heatwave. In particular, the negative contribution from the dynamic component after August 15th is 

leading by a couple of days the decline of the extreme heat. During the heatwave, two multi-day periods (July 19–23 and 

July 30 – August 1) show persistent and high values of the TX dynamic component (Fig. 4b). The first one (the less extreme) 370 

is associated with a zonally-extended anticyclonic anomaly from the European Coasts to western Russia.  The largest 

contributions of the dynamic component appear to be associated with a strong blocking High center situated eastward of the 

location of maximum TX anomaly. 

 
Table 2: Total TX anomaly (°C, in bold) and dynamic component contribution (°C and as a fraction of the total anomaly in percent) 375 
averaged over western Russia (50° N–60° N; 35° E–55° E) during the 2010 summer Russian heat wave. The reference period is 1981–
2010. 

SLP 

TX 

20CR_V3 20CR_V2C NCEP 

NCEP 10.16 – 3.85 (38 %) 10.16 – 3.67 (36 %) 10.16 – 3.05 (30 %) 

HadGHCND 9.16 – 3.75 (41 %) 9.16 – 3.51 (38 %) 9.16 – 3.31 (36 %) 

BERK 9.06 – 3.99 (44 %) 9.06 – 3.07 (34 %) 9.06 – 3.2 (35 %) 

4 Atmospheric circulation contribution to recent changes in summer temperature hot and cold extremes 

We now use dynamical adjustment to assess the possible changes in circulation-related temperature anomalies and their 

contribution to summer temperature hot extreme changes during the 1979–2018 period. We select two Northern Hemisphere 380 

midlatitude regions, western Asia (TX, TN domain: 35° N–65° N; 25° W–60° W; SLP domain: 25° N–80° N; 10° W–65° W) 

and western Europe (TX, TN domain:  15° E–25° W; 35° N–70° N; SLP domain: 30° E–45° W; 25° N–80° N), and apply the 

dynamical adjustment separately to each of them.  The focus is on the contribution of the dynamic component to changes in 

the summer warmest day (TX maxima) and warmest night (TN maxima) temperature over these four decades. The initial step 

is to run the dynamical adjustment procedure for all summers during the 1979–2018 period and for both TX and TN. As with 385 

the two illustrative examples, we apply the dynamical adjustment procedure twice, with and without detrending, before 

applying dynamical adjustment. For each year and each grid-point, we then select the days with the largest (smallest) TX 

(TN) anomalies. In the following, we focus on the summer days and nights with the most extreme temperature: the days with 

the hottest maximum (TXx) and minimum (TNx) temperature. We then estimate changes in TXx and TNx during 1979–2018 

by using the non-parametric Mann-Kendall test and Theil-Sen’s estimator to calculate the trend. Based on dynamical 390 
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adjustment results, we also quantify the contribution of both total dynamic (DYNTOT, see Eq. (3)) and thermodynamic 

residual (RESINT + RESFRC) components to these changes. 

 

We find warming trends for both TXx and TNx over large parts of the western Asia (WA) and western Europe (WE) regions 

(Figs. 5a, d and 6a, d). The warming of TXx over most of the WA region (often greater than 3 °C 40 yr-1) is primarily due to 395 

the thermodynamic component with an additional and substantial contribution from the dynamic component north of the 

Black and Caspian Seas (Fig. 5b, c). Both thermodynamic and dynamic components contribute to the lack of statistical 

significance and small amplitude of the TXx trends found in the northeastern part of the WA region.  

Warming trends in TNx are statistically significant only in a small region located south of the Black Sea while the eastern 

part of the WA region exhibits significant cooling with contribution from both components (Fig. 5d–f). In addition, the lack 400 

of significant TNx trends over most of the WA region results from opposite effects from the thermodynamic (cooling) and 

dynamic (warming) component. This contrasts with the TXx case, supporting the existence of different processes governing 

the changes in TXx and TNx. 

 

 405 
Figure 5: Summer temperature extremes: 1979–2018 trend maps for western Asia based on BERK (trend unit is ° C 40 yrs -1, shading): (a-
c) TXx raw trend, TXx thermodynamic and dynamic component trends. (d-f) TNx raw trend, TNx thermodynamic and dynamic component 
trends. The trend detection is estimated using the non-parametric Mann-Kendall test and the linear trend slope is computed based on the 
Theil-Sen estimator. In (a, d), stippling indicates locations where the raw trend is not significant at the 5 % level. 

 410 
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Regarding the WE region, the TXx trend map shows maximum warming (often greater than 3 °C 40 yr-1) located over the 

central part of the domain and along the coasts of western Europe. This contrasts with most of southern Europe and 

Scandinavia where TXx trends are weaker and not statistically significant (Fig. 6a). Regions with significant TXx trends show 

different relative contributions from dynamic and thermodynamic components (Fig. 6a, c). Interestingly, the contribution of 

the dynamic component to the total trend is substantial over many locations, including northwestern Spain and France, 415 

northeastern Europe (east of the Baltic Sea) and northern Scandinavia (Fig. 6c). The TNx trend map shows widespread 

warming over western Europe and reduced amplitude compared with that of TXx, except for Italy and Greece, where the 

large trend values are mainly due to the thermodynamic component (Fig. 6d–f). Over the central Europe domain, both 

components contribute to the TNx warming with the contribution of the dynamic component being slightly dominant 

particularly over southern France, eastern Europe and Scandinavia (Fig. 6f).  420 

  
Figure 6: Summer temperature extremes: 1979–2018 trend maps for western Europe based on EOBS (trend unit is ° C 40 yrs -1, shading): 
(a-c) TXx raw trend, TXx thermodynamic and dynamic component trends. (d-f) TNx raw trend, TNx thermodynamic and dynamic 
component trends. The trend detection is estimated using the non-parametric Mann-Kendall test and the linear trend slope is computed 
based on the Theil-Sen estimator. In (a, d), stippling indicates locations where the trend is not significant at the 5 % level. 425 

We find that the dynamic component has substantially contributed to the increase in the summer TX and TN hottest extreme 

over parts of the WA and WE regions. The regions where the dynamic component is an important contributor to the TX 

warming trend broadly correspond to the ones suggested in Horton et al. (2015). This is especially noticeable for western 

Asia (see their figure 4i) where Horton et al. (2015) attributes a portion of the TX hottest extreme trend to an increase in 

blocking pattern occurrence (note that the trend spatial patterns shown in Figs. 5 and 6 and corresponding to the full period 430 

1979–2018, are qualitatively similar to those for the reduced period 1979–2013 that is used in Horton et al., 2015, not 
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shown). Increase in the occurrence of anticyclonic patterns mainly located in central Europe was also linked to the observed 

increase in the TX hottest extreme in eastern Europe (Fig. 3c, k of Horton et al. 2015). Our analysis confirms this result and 

suggests that the dynamic component has also been an important driver of the TX hottest extreme warming over many 

coastal areas of western Europe when considering the extended period up to 2018. 435 

5 Summary and discussion 

The dynamical adjustment approach based on the constructed analogue method and extended at daily time scale has been 

used to assess the contribution of circulation-related temperature anomalies to temperature extreme events. Based on daily 

maximum temperature, two observed iconic extreme events have been selected to illustrate the potential of the approach: the 

early 2009–2010 winter European cold spell and the 2010 Russian heat wave. Dynamical adjustment results confirm the key 440 

role and improve the quantification of the atmospheric circulation contribution (the dynamic component) to the two extreme 

events. The 2009–2010 winter European cold spell associated with an extreme negative NAO phase would have been 

significantly colder without human influence that mitigated the region-averaged amplitude of the cold extreme event by 50 

%. Regarding the Russian heatwave, the contribution of the total dynamic component associated with persistent anticyclonic 

conditions during the 2010 summer is estimated to be close to 50 % of the observed maximum temperature anomaly.  445 

Furthermore, we have used the dynamical adjustment approach to assess the possible contribution of atmospheric circulation 

to changes in summer extremes for two regions, western Asia and Europe, and during the 1979–2018 period. The dynamical 

adjustment results suggest that both dynamic and thermodynamic factors have contributed to observed changes in summer 

temperature extremes over the 1979–2018 period. We have focused on changes in the summer warmest day and night 

temperatures. Although thermodynamic influence has dominated the TXx changes in a large fraction of the western Asia 450 

domain, the dynamic influence has been quite substantial north of the Black and Caspian Seas. Furthermore, the dynamic 

influence has been key in the TNx warming trend depicted south of the Black Sea. Regarding Europe, the influence of 

atmospheric circulation has been a major driver of both TXx and TNx warming trends that are seen in many regions, 

including the coasts of western Europe (TXx), Scandinavia and eastern Europe (both TXx and TNx). 

 455 

Dynamical adjustment provides a quick and cheap (computationally) observationally-based storyline approach to assess and 

quantify the role of atmospheric circulation as a driver of extreme events. Dynamical adjustment can be performed in both 

factual and counterfactual (the world without human influence) worlds, assuming that the counterfactual can be simply 

defined by removing a non-parametric trend to the observed climate surface variable under scrutiny (here TX and TN). Note 

that, in principle, the contribution of forced atmospheric trends can also be estimated by dynamical adjustment (Deser et al., 460 

2016). Assuming that a forced atmospheric trend can be detected and robustly estimated, dynamical adjustment can be 

performed twice, by removing or not the SLP trend from the raw SLP data. Difference between the two results for the 

reconstructed surface variable gives an estimate of the contribution of the forced dynamic component. In the standard 
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conditional approach used here, the hypothesis is that forced dynamical changes are undetectable and no detrending is 

performed on the SLP field. In this case, the above dual approach (performing the dynamical adjustment on both factual and 465 

counterfactual worlds for the surface variable, here TX or TN) allows to partition the extreme event temperature anomaly in 

four contributions: the (internal) dynamic component, the (internal) thermodynamic residual, the forced thermodynamical 

changes and the contribution due to the mean advection of forced changes in temperature gradients.  

 

The above dynamical adjustment decomposition can then be used to present the approach results from two different 470 

perspectives: forced versus internal or dynamic versus thermodynamic. Comparison with other model-based methods, for 

instance those using spectral nudging, can then be performed from one or the other perspective. For example, van Garderen 

et al. (2021) use the spectral nudging method (with the ECHAM6 atmospheric model and the NCEP reanalysis) to make 

attribution statements regarding the 2010 Russian heatwave (their table 2). They focus on the role of climate change on the 

heatwave amplitude in early August (domain-averaged anomaly ~10 °C according to their estimate, relative to a 1985–2015 475 

climatology). Based on their model results, they estimate that the heatwave amplitude can be split in two contributions, ~8 

°C due to internal variability and ~2 °C being anthropogenically-forced. Assuming that the early August period can be taken 

as the first two weeks of August, the dynamical adjustment approach using SLP from the NCEP reanalysis gives a region-

averaged heatwave anomaly of 9.9 °C with 8 °C and 1.9 °C from the contributions of internal variability and anthropogenic 

forcing, respectively (here we use the same climatological period as van Garderen et al. (2021)). Interestingly, despite the 480 

fact that the two approaches rely on very different methodology and data, their results on the relative influence of internal 

variability and anthropogenic forcing on the region-averaged heatwave anomaly are remarkably similar.  

 

The dynamical adjustment methodological framework proposed in this study provides a simple and practical approach to 

investigate and quantify the role of atmospheric circulation in specific extreme events as well as long-term changes in 485 

extreme indicators.  Combined with model-based approaches, dynamical adjustment results can improve the understanding  

and interpretation of observed extreme events with minimal effort in term of computing. Application to other climate 

parameters (for example precipitation extremes) and regions will be pursued in future work. 

Appendix A 

Method parameter sensitivity tests 490 

Sensitivity tests have been performed to support the final choice of the dynamical adjustment code parameters. We focus 

here on two of the parameters: the number of subsampled analogues, Ns, and the number of iterations, Nr. For Ns, the focus is 

on the accuracy of the SLP fit for the early 2010 European cold spell. Several multi-day periods, including the January 1–8 

period marked by the occurrence of very cold TX anomalies over Europe (Fig. 2a) are used to assess the quality of the SLP 
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reconstruction. The dynamical adjustment code is run for a range of Ns values (Ns = 20, 40, 60 …260, 280, 300) keeping the 495 

other parameter values to those indicated in the main text. The metric is simply the root-mean square error (RMSE) between 

the daily original SLP and the reconstructed SLP. The RMSE is estimated separately for each day and the total RMSE is 

calculated as the sum in quadrature of the daily RMSE values. Figure A1 shows that the error is systematically large for 

small Ns values (often greater than 2 hPa for less than 50 analogues), strongly decreases after Ns ~ 100 (to less than 1 hPa) 

and almost saturates to a few tenths of hPa after Ns ~200 (with RMSEs less than 0.5 hPa beyond Ns ~200). The shape of the 500 

RMSE curve is very similar among the different periods. Note that Ns is a key parameter in term of computational cost as it 

defines the matrix size involved in the calculation of the Moore-Penrose pseudo-inverse (see Appendix of Deser et al. 2016 

for details). Therefore, the choice of Ns ~200 is a good compromise between accuracy and speed. 

 

 505 
Figure A1: Accuracy (assessed by the RMSE, unit: hPa) of the SLP reconstruction as a function of the number of analogues used in the 
dynamical adjustment multilinear regression step. Four multi-day periods (dates in upper-right corner) within the 2010 early winter 
European cold spell are considered to perform the sensitivity test. The RMSE is first estimated at each grid-point and then averaged over 
the 30°N–75°N; 25°W–40°E geographical box with latitudinal weighting. 

The second parameter is the number of iterations, Nr. In this case, the focus is on the reconstructed TX. The sensitivity test is 510 

performed for several multi-day periods throughout the Russian heat wave. The dynamical adjustment code is run for a range 

of Nr values (Nr = 10, 20, 30, … 150, 160 and with other parameters at their optimized value) and the metric measures the 

RMSE between the reconstructed TX for the different values in the above Nr range and the reconstructed TX field with Nr = 

300, taken here as the “reference” value. Note that this only allows to see the “convergence” of the algorithm relative to the 
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number of iterations for a given value of the Na and Ns parameters (here Na ~ 400 and Ns ~ 200). Figure A2 shows that there 515 

is an initial fast RMSE decrease (starting from RMSE values of ~ 1 °C for less than 10 iterations) followed by a slower 

convergence of the algorithm with the number of iterations. The change in convergence rate occurs when Nr exceeds 50–60 

iterations making the choice of Nr ~ 100 a reasonable trade-off. 

 
Figure A2: Convergence (assessed by the RMSE, unit: °C) of the TX reconstruction as a function of the number of iterations used in the 520 
dynamical adjustment algorithm. Convergence is assessed against a reference dynamical adjustment run performed with 300 iterations. 
Four multi-day periods (dates in upper-right corner) within the 2010 summer Russian heatwave are considered to perform the sensitivity 
test. The RMSE is first estimated at each grid-point and then averaged over the 35°N–65°N; 25°E–50°E geographical box with latitudinal 
weighting. 

 525 

 

Code and data availability: 

The dynamical adjustment code used in this study is available on https://github.com/terrayl/Dynamico. Observed and 

reanalysis data used for this study can be found on the data provider websites. They can also be provided by the author upon 

request.  530 
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