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Abstract. Tropical cyclones (TCs) in the Bay of Bengal can be extremely destructive when they make landfall 

in India and Bangladesh. Accurate prediction of their track and intensity is essential for disaster management. 

This study evaluates simulations of Bay of Bengal TCs using a regional convection-permitting atmosphere-

ocean coupled model. The Met Office Unified Model atmosphere-only configuration (4.4 km horizontal grid 

spacing) is compared with a configuration coupled to a three-dimensional dynamical ocean model (2.2 km 20 

horizontal grid spacing). Simulations of six TCs from 2016–2019 show that both configurations produce 

accurate TC tracks for lead times of up to 6 days before landfall. Both configurations underestimate high wind 

speeds and high rain rates, and overestimate low wind speeds and low rain rates. The ocean-coupled 

configuration improves landfall timing predictions and reduces wind speed biases relative to observations 

outside the eyewall but underestimates maximum wind speeds in the eyewall for the most intense TCs. The 25 

coupled configuration produces weaker TCs than the atmosphere-only configuration, consistent with lower sea 

surface temperatures in the coupled model and an overestimated cooling response in TC wakes. Both model 

configurations accurately predict rain rate asymmetry, suggesting a good representation of TC dynamics. Much 

of the rain rate asymmetry variation in the simulations is related to wind shear variations, with a preference for 

higher rain rates in the down-shear left quadrant. 30 
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1 Introduction 

 

Tropical cyclones (TCs) are one of the most destructive weather phenomena. Accurate prediction of their track 

and intensity is essential for disaster management. The Bay of Bengal region of the northern Indian Ocean has a 35 

mean annual frequency of five TCs, in addition to less intense monsoon depressions (Rao et al., 2001). Their 

associated hazards, such as strong winds, heavy rainfall and storm surges, inflict substantial losses on India and 

Bangladesh’s large coastal populations (Ali, 1999; Balaguru et al., 2014; Bandyopadhyay et al., 2018; Dasgupta 

et al., 2014; Mishra, 2014). During the past two centuries, 42% of global TC-related deaths were in Bangladesh 

and 27% in India. Cyclone Bhola in the Bay of Bengal in 1970 was the deadliest in history, with an estimated 40 

300,000 deaths (Shultz et al., 2005). Reducing TC impacts requires accurate predictions of the storm track, 

intensity and size, several days before landfall. 

 

Forecasts have improved at a rate of about one day per decade, such that modern 5-day TC track forecasts in 

global numerical weather prediction (NWP) models are as accurate as 1-day simulations were 40 years ago 45 

(Alley et al., 2019). Heming (2016) found that the global Met Office Unified Model (MetUM) had 3-day track 

errors comparable to 1-day errors in 1996. However, significant errors remain: TC position errors in the 

northern Indian Ocean are ~ 300 km at a lead time of 5 days in the global MetUM (Yamaguchi et al., 2017). 

Predictions of storm strength have improved much more slowly than track simulations (DeMaria et al., 2013). 

Efforts to increase TC prediction skill include improving observations to provide accurate initial and boundary 50 

conditions, resolving the complex physical processes driving TCs, ensemble forecasting (e.g. Titley et al., 

2020), and increasing model resolution (e.g. Gentry and Lackmann, 2009). Most operational global NWP 

models have a horizontal grid length of about 10 km for the high-resolution deterministic runs and 15–25 km for 

ensemble systems, insufficient to resolve small scale processes influencing storm development (Hodges & 

Klingaman, 2019; Short & Petch, 2017). A more accurate representation of intense TCs would require 55 

horizontal resolution of a few km (Chen et al., 2007; Fierro et al., 2009; Gopalakrishnan et al., 2012), which 

allows explicitly represented, rather than parameterised, convection (Chan, 2005).  

 

Air–sea interactions can influence cyclone tracks (Mandal et al., 2007) and moderate intensity (Emanuel, 1999). 

High TC surface wind stresses increase heat and moisture transfer to the atmosphere and cause vertical mixing 60 

of the upper ocean and upwelling by Ekman pumping (Mogensen et al., 2017; Shay et al., 2000). The ocean 

surface cools, reducing surface fluxes. Therefore, SST cooling in TC wakes reduces potential intensity, which is 

a theoretical limit on cyclone strength based on modelling the storm as a thermal heat engine (Bender et al., 

1993; Bender & Ginis, 2000; Dutta et al., 2020; Schade & Emanuel, 1999). The impact of air–sea interactions is 

greater for high energy-transfer (i.e. intense or slow-moving) TCs, which cause more mixing-induced cooling 65 

(Neetu et al., 2019; Pothapakula et al., 2017; Vincent et al., 2012). 

 

Air–sea coupled simulation is an established tool for modelling over longer timescales, such as seasonal 

forecasting and climate prediction, but it is also a rapidly developing tool for shorter timescales and more 

localised spatial scales (e.g. Lewis et al., 2019). Most previous studies show that air–sea coupling reduces TC 70 

intensity (Feng et al., 2019; Mogensen et al., 2017; Neetu et al., 2019; Takaya et al., 2010; Zarzycki, 2016; 
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Vellinga et al., 2020). Regional-scale coupled predictions are already operational for some TC cases in the 

Atlantic and North Pacific (Biswas et al., 2018; Jin et al., 2013; Saito et al., 2006), although the models used in 

these studies do not explicitly resolve convection. Fewer studies assess air–sea coupled models in the Bay of 

Bengal; the majority use mesoscale models with parameterised convection (Agrawal et al., 2020; Baisya et al., 75 

2020; Greeshma et al., 2019; Yesubabu et al., 2020). They show a high sensitivity of TCs to air–sea interactions 

(Prakash & Pant, 2017), ocean mixed layer depth (Yesubabu et al., 2020) and ocean eddies (Anandh et al., 

2020). Ocean coupling in mesoscale models generally improves TC track and intensity predictions (Greeshma et 

al., 2019; Srinivas et al., 2016; Yesubabu et al., 2020). Atmosphere-only (uncoupled) NWP models generally 

assume constant SST over the forecast, derived from ocean analysis systems, which has been the operational 80 

practice for TC prediction over the Bay of Bengal (Mohanty et al., 2015; Osuri et al., 2017; Routray et al., 2017; 

Srinivas et al., 2013; Nadimpalli et al., 2020). Updating SST during simulations with SST observations has been 

shown to improve track and intensity predictions (Mohanty et al., 2019; Rai et al., 2019). In an operational 

setting, it is possible to use the forecast SST from a regional ocean model as an updating lower boundary 

condition (Mahmood et al., 2021), but this is not common operational practice. 85 

 

The present study investigates the representation of Bay of Bengal TCs using the recently developed IND1 

regional coupled prediction system (Castillo et al., in prep.) with horizontal grid spacings of 4.4 km 

(atmosphere) and 2.2 km (ocean), allowing explicit representation of atmospheric convection and ocean eddies. 

We simulate six TCs using both an air–sea coupled configuration and an atmosphere-only configuration with a 90 

daily updating observation-based SST analysis as a surface boundary condition. Multiple initialisation times are 

used to create time-lagged ensembles. The oceanic response to TCs in the coupled model is assessed by 

comparing simulations with SST observations from fixed buoys and free-drifting floats. Evaluation of the 

simulations focuses on storm track and intensity, assessed using near-surface wind speeds and minimum mean 

sea level pressure (MSLP). The intensity and structure of near-surface winds and rainfall are used to evaluate 95 

atmospheric hazards. Ocean dynamics and oceanic hazards such as storm surges will be addressed in another 

study. Simulation diagnostics are compared to a range of observational and reanalysis datasets to evaluate model 

performance. Possible reasons for differences in TC predictions between the two model configurations, and 

relative to observations, are discussed. 

 100 

2 Data and methodology 

 

2.1 Model configurations 

 

TC simulations were run using two research configurations of the IND1 regional scale modelling framework. 105 

The first configuration is uncoupled (atmosphere-only simulations, hereafter referred to as ATM), comprising a 

4.4 km horizontal resolution implementation of the Met Office Unified Model (MetUM) atmosphere model, 

using the RAL1-T science configuration (Bush et al., 2020) with 80 vertical levels and a maximum altitude of 

38.5 km (e.g. Brown et al., 2012). The land surface is represented by the Joint UK Land Environment 

Simulation (JULES) land surface model (Best et al., 2011; Clark et al., 2011). The MetUM atmosphere is forced 110 

with observed SST and sea ice analysis from the Operational Sea-surface Temperature and sea Ice Analysis 
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(OSTIA; Donlon et al., 2012). Most operational forecasts are run with fixed SST (e.g. Routray et al., 2017). 

However, the simulations in this study are significantly longer than would be run operationally, and so a fixed 

SST assumption is not valid. Therefore, SST is re-initialised each day in ATM. To provide a fair benchmark 

against which to compare coupled simulations, the SST is updated daily with the OSTIA product representative 115 

of the previous day’s SST, as OSTIA data for each day is available for operational use the morning of the 

following day.  

 

The second configuration (ocean coupled simulations, hereafter referred to as CPL) consists of an identical 

version of the MetUM and JULES components at 4.4 km resolution, coupled to the Nucleus for European 120 

Modelling of the Oceans (NEMO) dynamical ocean model (Madec Gurvan et al., 2019), through the OASIS3-

MCT coupling libraries (Ocean Atmosphere Sea Ice Soil, version 2.0; Valcke et al., 2015). The NEMO model 

has a 2.2 km horizontal resolution and 75 vertical levels. Surface fluxes are exchanged as hourly mean values 

every hour throughout the forecast. The regional ocean component in CPL is free-running and is initialised from 

a free-running ocean-only spin up run; there is no local data assimilation within the model domain in either the 125 

forecast or the spin-up run.  

 

In both configurations, atmospheric lateral boundary conditions are obtained from the global MetUM, which 

itself is re-initialised every day from the MetUM global analysis. Therefore, the simulations in this study are not 

forecasts, and this process could not be applied operationally. This setup is expected to result in lower TC track 130 

errors than if a free-running forecast was used to provide atmospheric lateral boundary conditions, as forecast 

motion errors are primarily driven by errors in the large-scale environmental wind field (Galarneau and Davis, 

2012). The model runs are configured in this way to support the evaluation of model TC intensity and structure 

compared to observations, without the complication of track locations and timings that are far removed from 

reality. Details of the model components and boundary conditions are given in Table 1. For further information 135 

on the IND1 modelling framework, see Castillo et al. (in prep).  

 

Table 1. Model configurations and components. 

Configuration Atmosphere/land only (ATM) Coupled (CPL) 

Description Regional atmosphere/land 

configuration comprising MetUM 

atmosphere model (version 11.1) 

and JULES land surface model 

(version 5.2). 

Atmosphere/land-ocean coupled 

configuration comprising MetUM 

atmosphere model (version 11.1) and JULES 

land surface model (version 5.2) coupled to 

NEMO ocean model (version 4.0.1) using 

OASIS3-MCT coupling library. 

Resolution of model 

components 

UM/JULES: 4.4 km horizontal 

resolution, 80 vertical levels 

UM/JULES: 4.4 km horizontal resolution, 

80 vertical levels 

NEMO: 2.2 km horizontal resolution, 75 

vertical levels 
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Atmosphere/land 

initial analysis and 

boundary conditions 

The global MetUM configuration 

(Walters et al., 2019) which is re-

initialised daily from the MetUM 

global analysis. 

The global MetUM configuration (Walters 

et al., 2019) which is re-initialised daily 

from the MetUM global analysis. 

Ocean initial 

analysis and 

boundary conditions 

Global OSTIA SST (Donlon et al., 

2012). Updated daily at 00:00 

during simulations. 

Ocean initial state from free-running ocean-

only IND1 configuration (named IND1o-e in 

Castillo et al., in prep); the free-running 

ocean run is initialised from rest conditions 

on 1st January 2016, with initial conditions 

and daily updated horizontal boundary 

conditions obtained from CMEMS global 

analysis. 

Model time step UM/JULES: 120 seconds 

 

UM/JULES: 120 seconds 

NEMO: 90 seconds 

Coupling frequency: hourly 

Diagnostic output 

times 

Hourly (2D fields), 3-hourly (3D 

fields). 

Hourly (2D fields), 3-hourly (3D fields). 

 

2.2 TC case studies 140 

 

Six TCs in the Bay of Bengal from 2016–2019, with various track and intensity characteristics (Figure 1), were 

selected for analysis. Four storms (Titli, Vardah, Gaja and Phethai) occurred in the post-monsoon TC season 

(late September to December), while two (Fani and Roanu) occurred during the pre-monsoon season (April–

June). Maximum intensities range from a Category 5 TC (Fani) to less intense tropical storms (Roanu and 145 

Phethai); see Table 2 for details. Simulations were performed with ATM and CPL for simulation periods of 

between 4 and 13 days to cover the relevant period of TC evolution in each case. For each storm, deterministic 

simulations were initialised at 00:00 UTC on five consecutive days during storm evolution (four for TC Titli) to 

create time-lagged forecast ensembles, with each ensemble member having different initial conditions due to the 

initialisation time difference (Table 2). The end time is the same for all lagged ensemble members for each case 150 

study. TC track errors and errors in minimum MSLP and maximum wind speed were analysed for all 

simulations; a summary of errors for all simulations is given in Supplementary Table S1. However, most of the 

analysis in this study focuses on process evaluation. For this purpose, there is limited value in including data 

where simulated TC tracks are so far from observed tracks that comparison with observations is not relevant. 

Therefore, only results where tracks were within ~ 500 km of observed tracks throughout the simulation and 155 

made landfall within +/- 1 day of observed landfall were included when making quantitative comparisons to 

observations for the purpose of process evaluation. Simulations with large track errors or poor landfall timing, 

which are excluded from this process evaluation, are marked with an asterisk in Table 2. If a simulation from 

either ATM or CPL meets these exclusion criteria, the simulation initialised on the same date from the other 

configuration was also excluded. Inaccurate simulations are excluded from the analysis presented in Figures 6–160 

11. 
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Figure 1. Map showing model domain (red box), model orography, and observed storm tracks and intensity 

from the IBTrACS archive. Saffir-Simpson Hurricane Wind Scale categories are based on USA IBTrACS data. 165 

Orange circles indicate RAMA buoys used for SST validation. 

 

Table 2. Storm case study properties. * are simulations with poor landfall timing and/or large track errors, 

which are included in analysis of track and intensity errors but excluded from process evaluation (Figures 6-11). 

Saffir-Simpson Wind Scale categories are based on USA IBTrACS data. 170 

Name 
 

Duration 

in 

IBTrACS 

Simulations 

initialised 

(dd/mm/yyyy); 

all at 00:00. 

Simulation 

end 

(dd/mm/yyyy); 

all at 00:00 

Length of 

runs 

(days) 

Landfall 

(state or 

district, 

country) 

Origin in 

Bay of 

Bengal 

Saffir-

Simpson 

Category 

Fani 27th April 

– 3rd May 

2019 

26/04/2019  

27/04/2019  

28/04/2019  

29/04/2019  

30/04/2019  

05/05/2019 5-9 Odisha, India South 5 

Titli 8th – 12th 

October 

2018 

06/10/2018  

07/10/2018  

08/10/2018  

09/10/2018  

16/10/2018 7-10 Andhra 

Pradesh, 

India 

Central 3 
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Vardah 6th – 19th 

December 

2016 

05/12/2016*  

06/12/2016*  

07/12/2016  

08/12/2016  

09/12/2016  

15/12/2016 6-10 Tamil Nadu, 

India 

Southeast 2 

Gaja 10th – 19th 

November 

2018 

10/11/2018* 

11/11/2018  

12/11/2018*  

13/11/2018*  

14/11/2018  

23/11/2018 9-13 Tamil Nadu, 

India 

East 1 

Roanu 17th – 22nd 

May 2016 

14/05/2016*  

15/05/2016*  

16/05/2016*  

17/05/2016*  

18/05/2016  

24/05/2016 6-10 Chittagong, 

Bangladesh 

West Tropical 

storm 

Phethai 13th – 18th 

December 

2018 

12/12/2018  

13/12/2018  

14/12/2018  

15/12/2018  

16/12/2018  

20/12/2018 4-8 Andhra 

Pradesh, 

India 

South Tropical 

storm 

 

2.3 Observations and reanalysis data 

 

TC simulations were evaluated against a range of freely available observational and atmospheric reanalysis 

datasets (Table 3).  TC track and intensity predictions were validated against the International Best Track 175 

Archive for Climate Stewardship (IBTrACS; Knapp et al., 2010), which is a merged archive of TC tracks and 

intensities as observed by the World Meteorological Organization (WMO) Regional Specialized Meteorological 

Centres (RSMCs) and other TC agencies. Agencies apply different observational algorithms, leading to 

discrepancies in track and intensity. For the TCs in this study, data from two agencies are available: RSMC New 

Delhi, part of the India Meteorological Department, and the USA’s National Oceanic and Atmospheric 180 

Administration. Track positions from the two agencies generally agree well, so we compare the simulations to 

the average of the two. We compare forecast storm intensity to both available intensity estimates. 

 

In addition to IBTrACS maximum wind speed, wind speed observations were obtained from the global SYNOP 

archive of surface synoptic land and ship-based observations. Precipitation analyses were taken from the multi-185 

satellite GPM-IMERG gridded product (Huffman et al., 2020).  

 

In-situ observed SSTs were obtained as time series from three RAMA (Research Moored Array for African-

Asian-Australian Monsoon Analysis and Prediction; McPhaden et al., 2009) moored buoys in the Bay of 

Bengal. Buoy locations are shown in Figure 1. SST measurements were also obtained from Argo floats (Argo, 190 
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2020). Argo data consist of vertical profiles from free-drifting floats. Temperature is almost constant in the 

upper 10 m of each profile used here (not shown), and therefore we assumed that the uppermost measurement of 

each profile represented the foundation SST (Donlon et al., 2012) if it was within 10 m of the sea surface.  

 

ERA5 reanalysis, the fifth generation of ECMWF atmospheric global climate reanalyses (Hersbach et al., 2020), 195 

was used in addition to in-situ observations. Since 2007, ERA5 SSTs are derived from OSTIA. ERA5 wind 

speeds on pressure levels were used to compute vertical wind shear along TC tracks.  

 

Table 3. Summary of observational and reanalysis datasets used in this study, with a description of the variables 

obtained. 200 

Observational 

product 

Description Variables Resolution 

(temporal; 

spatial) 

Source 

IBTrACS NOAA’s 

International Best 

Track Archive for 

Climate 

Stewardship 

TC position, 

maximum sustained 

wind speed (10 min 

average at 10 m 

elevation), minimum 

sea level pressure 

3-hourly; n/a NOAA (Knapp et 

al., 2018) 

ERA5 Atmospheric 

reanalysis 

200 hPa and 850 hPa 

winds, sea surface 

temperature 

(foundation SST) 

Hourly; 0.25° x 

0.25°, 37 

pressure levels 

ECMWF; 

Copernicus 

Climate Data Store 

(Hersbach et al., 

2018a, 2018b) 

RAMA Moored buoys 

(locations in Figure 

1) 

Sea surface 

temperature (at ~1 m 

depth) 

10 minute or 

hourly (highest 

available 

resolution, varies 

by buoy and 

date); n/a 

NOAA/PMEL 

(McPhaden et al., 

2009). 

Argo Free-drifting 

profiling floats 

Sea surface 

temperature (variable 

depth, within upper 10 

m) 

Floats surface 

every 10 days; 

n/a 

Global Data 

Assembly Centre 

(Argo GDAC; 

Argo, 2020) 

SYNOP Sea based station 

reports (ships, rigs, 

platforms and 

moored buoys); 

land based station 

reports 

Sustained wind speed 

(10 min average at 10 

m elevation) 

Hourly or 3-

hourly; n/a 

Met Office MetDB 

archive (Met 

Office, 2008a, 

2008b) 
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IMERG Multi-satellite 

precipitation 

product (microwave 

and IR) from GPM 

constellation; 

version V06B  

Hourly-accumulated 

precipitation rate 

within a half-hour 

window 

(precipitationCal) 

Half-hourly; 0.1° 

x 0.1° 

NASA (Huffman et 

al., 2014) 

 

2.4 TC tracking and analysis 

 

TCs were identified and tracked hourly in the regional simulations using an objective feature-tracking 

methodology based on Nguyen et al. (2014). The method searches for minimum MSLP within 2.5° of the 205 

cyclone centre at the last output time and calculates the new TC centre based on a pressure centroid centred on 

this minimum and with a radius which is 80% of the radius of maximum winds at 10 m (J. Ashcroft, personal 

communication, 2020). If the newly calculated centre is more than 2.5° from the previous centre, the track stops, 

ensuring the storm is not tracked when the centre is unclear due to the storm breaking up. To verify this 

approach, TC Fani was also tracked using the objective tracking algorithm TRACK (Hodges, 1995), which 210 

tracks the maximum vertical average of vorticity between 850 and 600 hPa. The two methods produced similar 

results (not shown). 

 

The majority of our analysis uses simulation data relative to the diagnosed cyclone track, where a track could be 

identified in model output. For simulations where the cyclone had formed at the start of the run, data prior to 215 

T+12 h was discarded to remove sensitivity to model spin-up.  

 

To compare CPL and ATM track errors and perform statistical significance testing, matching times in IBTrACS 

and the simulations were found such that the number of data points and times used from each simulation 

ensemble member was the same in ATM and CPL. This allowed paired t-tests to be performed on the absolute 220 

errors and p-values obtained for the null hypothesis (no difference), the ATM less than hypothesis (significantly 

lower error in ATM than in CPL) and the CPL less than hypothesis (significantly lower error in CPL than in 

ATM). This analysis used as much of the tracks as possible. Mean absolute errors and RMSE over this time are 

quoted below and summarised in Supplementary Table S1, although Figures 2–4 in this manuscript show data 

for the whole track of each simulation. 225 

 

TC intensity (maximum wind speed and minimum MSLP), at 3-hourly intervals, was verified against IBTrACS. 

Maximum wind speed in IBTrACS is a spatial maximum of the 10-minute sustained wind speed. The model 10 

m wind field is not directly comparable to observed measurements of maximum sustained wind, but this is a 

standard comparison in model evaluation which, when applied consistently, indicates long-term trends in model 230 

accuracy (Heming, 2017). Model performance for simulating TC hazards was assessed by comparing simulated 

wind speed and rainfall to SYNOP and IMERG observations, respectively. Finally, the representation of TC 

dynamics was examined by comparing TC structure to ERA5/IMERG, using vertical wind shear (200–850 hPa), 

inner (< 250 km) and outer (250–500 km) rain rates and the asymmetry of inner rain rates as diagnostics. 
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 235 

3 Results 

3.1 Tropical cyclone track errors 

 

Track errors are low, even at long lead times, and are similar in the two model configurations (Figures 2 and 3), 

with larger track differences between different initialisation dates for a given storm than between model 240 

configurations. Track errors are higher for those storms moving east to west, although this is dominated by the 

large errors in the early initialisations of Vardah. Most simulations have track errors < 400 km, with a maximum 

of ~ 1100 km (calculated relative to IBTrACS storm location at the same validity time). Tracks in CPL 

generally fall to the left (west for northward-moving TCs; south for westward-moving TCs) of tracks in ATM. 

This relative shift is expected as CPL produces SST cold wakes, which tend to be more pronounced to the right 245 

of the TC track, as, in the Northern Hemisphere, this is often the location of maximum wind speeds, and hence 

wind-driven mixing, due to the alignment of TC translation and primary circulation. Cooler SSTs to the right of 

the TC track drive the TC towards the relatively warmer SSTs to its left. The leftward displacement of TC tracks 

in CPL agrees with other studies of coupled models (Khain & Ginis, 1991; Wu et al., 2005), although some 

authors have also found rightward displacement (Bender et al., 1993) or both leftward and rightward 250 

displacement (Feng et al., 2019). 

 

For the intense TCs Fani and Titli, track prediction errors are independent of the initialisation date, such that 

later initialisations do not provide better simulations than earlier initialisations. For Vardah, errors reduce in 

each subsequent simulation. Simulations initialised on the earliest date of 05/12/2016 have maximum position 255 

errors of 1021 km (ATM) and 1097 km (CPL), while those initialised on the latest date of 09/12/2016 have 

significantly reduced maximum errors of 132 km (ATM) and 141 km (CPL). Although the cross-track position 

errors for the earlier Vardah runs are small (Figure 2e), the absolute vector track errors are significant (Figure 

3e–f) due to large along-track errors in the simulations. Therefore, the simulated tracks follow the observed 

track well, but the timing is inaccurate. The TCs in the earlier Vardah simulations move faster and make landfall 260 

sooner than in the observations. For Gaja, Roanu and Phethai, there is less of a link between the start date and 

position errors, but in all three cases, the simulation with the latest start date in each ensemble gives the most 

accurate TC position while the storm is over the ocean (Figure 3g–l). Apart from Fani and Titli, track errors are 

significantly lower in ATM than CPL as indicated by a paired t-test. For Fani the track errors are significantly 

better in CPL. 265 

 

Both ATM and CPL produce accurate landfall times for the most intense cyclones, Fani and Titli, as well as 

Phethai (Figure 3a–d, k, l), but landfall timings for Vardah, Gaja and Roanu are less accurate. Landfall timing 

errors for all simulations and initialisation times range from 0–138 hours (absolute values) with a mean and 

RMSE of 25 and 43 hours respectively (ATM) or 23 and 41 hours (CPL), with no significant difference between 270 

ATM and CPL based on paired t-tests. Errors in landfall timing for Roanu are large (Figure 3i–j); however, due 

to the storm track following the east coast of India closely (Figure 2d), this is often due to small errors in cross-

track position rather than large errors in TC translation speed. If Roanu is excluded, the range of landfall timing 

errors is 0–63 hours with a mean and RMSE of 13 and 20 hours, respectively (ATM) or 12 and 19 hours (CPL). 
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Simulations initialised closer to the landfall time generally give more accurate landfall times; the mean and 275 

RMSE for simulations initialised within four days of landfall are 7.1 and 8.6 hours (ATM) or 5.7 and 8.1 hours 

(CPL). Landfall position errors range from 9 km to 2062 km, with a mean and RMSE of 362 and 700 km, 

respectively, and no statistically significant difference between ATM and CPL based on paired t-tests. 

Excluding cyclone Roanu, landfall position errors range from 15 to 409 km (mean and RMSE of 130 and 157 

km). A summary of simulation error statistics for all simulations, with significance of differences between ATM 280 

and CPL determined using paired t-tests, is given in Supplementary Table S1. 
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Figure 2. Simulated tracks for ATM (solid lines) and CPL (dashed lines), compared to IBTrACS (black line). 

Line colours indicate initialisation date (dd/mm).  

https://doi.org/10.5194/wcd-2021-46
Preprint. Discussion started: 26 July 2021
c© Author(s) 2021. CC BY 4.0 License.



   
 

 14 

 285 

  
Figure 3. Simulation TC track error for ATM (left column) and CPL (right column) as distance relative to 

IBTrACS. Colours indicate initialisation date (dd/mm). Triangles indicate time of landfall; circles indicate re-

emergence over the ocean. Dot-dash vertical line indicates time of landfall in IBTrACS; for Vardah and Gaja, 

the dotted line indicates time of re-emergence over the Arabian Sea in IBTrACS. 290 
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3.2  Tropical cyclone intensity 

 

TC intensity was assessed using near-surface wind speeds, a critical hazard associated with landfalling TCs, and 

MSLP. In general, CPL predicts less intense storms (lower maximum wind speed and higher minimum MSLP) 

than ATM, which is expected as CPL simulates air–sea feedbacks which can lower SST and moderate intensity; 295 

the impact of coupling on SST is examined in Section 3.3. 

 

Figure 4 shows the time series of maximum near-surface wind speeds in the eyewall from ATM, CPL and 

IBTrACS. For Fani, the most intense TC considered, both ATM and CPL underestimate peak maximum wind 

speed by up to ~ 35 m s-1 (Figure 4a–b) for the IBTrACS USA data and by up to ~15 m s-1 for IBTrACS New 300 

Delhi data. For cyclone Titli, peak wind speeds in ATM are lower than IBTrACS USA data but a good match to 

New Delhi data. Peak wind speeds in CPL are lower than those from either observing agency. The absolute 

wind errors over the whole Titli track compared to USA data are statistically significantly lower in ATM than 

CPL. For Vardah and Gaja, simulated and observed maximum winds agree well, but there are significant 

differences in the timing of peak intensities between the observations and simulations (Figure 4e–h). For these 305 

westward-moving storms the absolute error in maximum wind speeds over the whole track was statistically 

significantly lower in CPL than ATM for both agencies. 

 

For Roanu, early initialisations make landfall too early to compare meaningfully with IBTrACS. For the last 

initialisation (18/05), both ATM and CPL accurately simulate maximum wind speed, with maximum wind 310 

speed error at the time of landfall < 10 m s-1 (Figure 4i–j). The intensity of Phethai is overestimated in both 

model configurations (Figure 4k–l) but is lower in CPL than ATM. However, absolute errors were not 

statistically significantly different between CPL and ATM (Supplementary Table S1). 

 

Minimum MSLP time series are given in Supplementary Material (Figure S1). The errors in minimum MSLP 315 

biases are consistent with the errors in the maximum wind shown in Figure 4. CPL predicts lower intensity 

storms (higher minimum MSLP) than ATM. For the northward-moving storms, the absolute errors in minimum 

MSLP compared to USA data are significantly lower in ATM than CPL, but compared to New Delhi data are 

significantly lower in CPL than ATM. However, for the westward-moving storms the errors in minimum MSLP 

compared to both agencies are significantly lower in CPL than ATM. 320 
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Figure 4. Maximum hourly instantaneous 10 m wind speed time series for ATM (left column) and CPL (right 

column), and maximum 10-minute sustained 10 m winds from IBTrACS. Colours indicate initialisation date 

(dd/mm). Triangles indicate time of landfall; circles indicate re-emergence over the ocean. Dash-dot vertical line 

indicates time of landfall in IBTrACS; for Vardah and Gaja, the dotted line indicates time of re-emergence over 325 

the Arabian Sea in IBTrACS. 

 

Analysis of the wind-MSLP bias in ATM and CPL indicates that both models can accurately capture wind speed 

at higher MSLP but underestimate wind speed at lower MSLP (Figure 5). CPL storms do not reach the 

maximum intensity in IBTrACS (Figure 5) due to underestimating peak intensity for the strongest storms, as 330 
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shown in Figure 4 for wind speed. However, the wind-MSLP bias in CPL is overall lower than in ATM (Figure 

5). 

 
Figure 5. Minimum MSLP versus maximum 10 m wind speed at each diagnostic output time for ATM and 

CPL, compared to observations (IBTrACS; black dots indicate New Delhi data, triangles indicate USA data). 335 

All simulations are included. 

 

Figure 4 shows lower peak intensity for intense cyclones and higher peak intensity for less intense cyclones in 

the simulations compared to IBTrACS. When the wind speed errors in the eyewall are binned by observed wind 

speed (Figure 6a-b), it is clear that this is symptomatic of a general tendency in the models to overestimate 340 

lower wind speeds and underestimate higher wind speeds. Both ATM and CPL underestimate the maximum 

wind speed for observations > ~ 35 m s-1. As maximum wind speeds from IBTrACS are uncertain, indicated by 

the variation between USA and New Delhi measurements (Figure 4), wind speeds away from the TC centre 

were also compared to land- and ship-based SYNOP wind speed records, where observations within 500 km of 

the observed TC centre and within 30 minutes of the model output time were included in the comparison. The 345 

locations of the SYNOP observations used for each storm and time series from selected individual stations are 

shown in Supplementary Figures S2–S7. Figure 6c–d show similar errors to those seen in the eyewall when 

comparing the model to IBTrACS (Figure 6a–b). Both models overestimate lower wind speeds relative to 

SYNOP and underestimate wind speeds for observations > ~ 10 m s-1. Consistent with the wind errors, the 

simulations have higher minimum MSLP than IBTrACS for observations < ~ 970 hPa and lower MSLP at 350 
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greater MSLP values (Figure 6e–f). Overall, the errors are similar in ATM and CPL, except for a slightly larger 

spread in error for ATM.  

 

To assess the relationship between wind speed errors, forecast lead time and landfall, errors in simulated wind 

speed relative to SYNOP were averaged in 2D bins with dimensions of 24 h (forecast lead time) by 24 h (time 355 

relative to storm landfall). Errors generally increase with both forecast lead time and temporal proximity to 

landfall (Figure 7). Note that all bins have a positive mean error due to numerous SYNOP observations at low 

wind speeds (< 10 m s-1), which the models tend to overestimate. Wind speed biases relative to SYNOP are 

generally lower in CPL than ATM. 
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 360 
Figure 6. Wind speed and minimum MSLP error for ATM and CPL, relative to IBTrACS and SYNOP 

measurements. Lines are mean bias values for bins of 5 m s-1 (wind speed) or 10 hPa (MSLP). The black line 

shows the mean error for all case studies. Simulations with inaccurate tracks (marked with an asterisk in Table 

2) are excluded. 
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 365 
Figure 7. Mean bias of simulated wind speed compared to available land and ship SYNOP data for all lagged 

ensemble members and all storm case studies. Data are binned by forecast lead time, and time relative to 

landfall (24 hr x 24 hr bins). We use SYNOP observations within 500 km of the TC centre at each timestep. 

Observations are compared to wind speed at the same location (a single model grid cell) at the closest forecast 

time; all observations are within 30 minutes of the forecast output time. Bins containing < 50 measurements 370 

have been removed. Simulations with inaccurate tracks (marked with an asterisk in Table 2) are excluded.  

 

3.3  Simulated SSTs and association with intensity biases 

 

The passage of TCs across the Bay of Bengal leads to ocean cooling (Figure 8). Compared to observations from 375 

three fixed RAMA buoys (see Figure 1 for locations), CPL predicts the timing of SST minima well but typically 

produces a cold bias (Figure 8), with minimum SSTs too cold by up to ~ 1°C. TC Fani is an exception, with 

SST cooling underestimated at the 8°N buoy and overestimated at the 15°N buoy. The SST discrepancies are 

partly due to storm position errors, as the simulated cold wake is centred along the simulated track, and there is 

a sharp gradient in SST moving away from the track. Tracks for Fani in simulations are further from the 8°N 380 

RAMA buoy, compared to observed tracks, when the storm is at 8°N but closer to the 15°N buoy when the 

storm is at 15°N. The SST diurnal cycle phase and amplitude are reasonably well represented in CPL for most 

storms, but for Vardah and Gaja the amplitude is overestimated.  

 

In comparison, ATM has a lag in the timing of SST cooling, which is associated with the use of the OSTIA 385 

product that would have been available for initialisation on a given day had these simulations been run in near 

real-time, which is the OSTIA product that represents the previous day’s SST (see Section 2.1). ERA5, 

however, uses OSTIA SST applied to the relevant day (Hirahara et al., 2016). Therefore, the differences 

between ERA5 SST and ATM SST are due to the time difference in the OSTIA data used and the coarser 

resolution of ERA5. The magnitude of the SST cooling is generally underestimated in the ATM simulations 390 

relative to RAMA observations. Therefore, SST in ATM is generally too high. Using a daily analysis product as 

a surface boundary condition for fast-moving phenomena such as TCs will always induce a mismatch between 

observed and forcing SSTs. As TC-induced cooling can be ~ 2°C, ATM SST errors can also be as high as 2°C 

(Figure 8). 

 395 

ATM and CPL use different ocean initial analysis and boundary conditions (OSTIA SST in ATM and a free-

running ocean-only IND1 configuration in CPL; see Table 1), and ATM uses daily-updated SST observations. 

Therefore, we cannot determine whether SSTs in CPL are cooler than in ATM due to air-sea coupling or 
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experiment design. However, by analysing data from free-drifting Argo floats, which give good spatial coverage 

of the model domain, we can investigate TC-induced cooling by examining SST biases in the TC wakes. Figure 400 

9 shows SST in ATM and CPL relative to the Argo float observations, with floats in the wake of a cyclone 

(defined as < 250 km from the observed storm track after the storm has passed) plotted using filled symbols. For 

locations of Argo floats, see Supplementary Figures S8-S9. ATM SSTs show a warm bias in the wake (for all 

storms except Gaja), which is expected because the daily updated SSTs from OSTIA are time-lagged, and in 

general, satellite SST products such as OSTIA are unable to represent TC cold wakes on the time scale required 405 

due to a lack of observations in the vicinity of TCs or insufficient inclusion of real-time observations (e.g. Liu et 

al., 2018). In the rest of the domain, away from wake regions, despite the lag between the validity of the OSTIA 

observations and the forecast time, ATM SSTs are generally accurate (mean biases range from -0.25°C to 

0.02°C). CPL SSTs are too low throughout the domain and in the wake of the storm after its passage. For Titli, 

Vardah, Gaja and Phethai, the mean bias in the wake is greater than the mean bias outside the wake. For Fani, 410 

the mean SST bias in the wake is equal to that in the wider model domain, although the maximum SST biases 

occur in the TC wake. For Roanu, the mean SST bias in the wake is less than in the wider domain. SST bias is 

insensitive to forecast lead time (not shown) which is expected as the regional ocean initial condition in CPL is 

taken from subsequent days of the same long run. Compared to the wider model domain, the larger SST biases 

in TC wakes in CPL suggest an overestimation of TC-induced SST cooling in addition to cold SST biases 415 

throughout the domain. This bias is consistent with errors in ocean initialisation (too-cold upper-ocean 

temperatures) and a negative bias in net surface heat input into the ocean (Valdivieso et al., 2021). For most 

cyclones in this study, CPL underestimates peak intensity; it is expected that if the cold bias in SST were 

reduced, wind and MSLP could be better reproduced. 

 420 
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Figure 8. Hourly SST timeseries from three RAMA buoys in the Bay of Bengal (data from only one buoy 

available for TC Titli), compared to SST time series at the same location (nearest grid point of the models) for 

ATM, CPL and ERA5. The vertical line indicates the time at which the storm is nearest to the buoy in the 425 

observed track (IBTrACS). Time series are given for the duration of each time-lagged ensemble member, 

excluding the first 12 hours; simulations with different initialisation times are plotted with different line styles. 

For exact simulation initialisation dates, see Table 2. Simulations with inaccurate tracks (marked with an 

asterisk in Table 2) are excluded. Buoy locations are shown in Figure 1 and stated at the top of this figure.  
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 430 
Figure 9. SST relative to Argo floats for the ATM and CPL simulations. Filled symbols indicate points within 

250 km of the observed storm track after storm passage (the cyclone wake; subscript w in legend). Mean bias is 

summarised in parentheses. Simulations with inaccurate tracks (marked with an asterisk in Table 2) are 

excluded. 
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4 Cyclone structure 435 

 

TC inner and outer rainfall, and inner rainfall asymmetry, are evaluated against satellite-derived rainfall 

retrievals (Figures 10–11). The radii for inner rainfall (250 km) and outer rainfall (250–500 km) are based on 

the radii used in Hence & Houze (2012), who found a distinction in the convective nature of rainfall inside and 

outside a radius of ~ 200 km. They found inner rainfall to be convective and stratiform, but outer rainfall was 440 

much more sparse and largely convective. The inner radius used here is larger than that used in many inner 

rainfall asymmetry studies (more typically ≤ 100 km) because this study looks at both pre- and post-landfall, 

and after landfall, the maximum rain rate radius is often > 100 km. Rainfall is averaged over the two hours 

centred on each 3-hourly tracking output time. 

 445 

Figure 10. 2-hourly inner (within 250 km of the TC centre, top) and outer (250–500 km from the TC centre, 

bottom) rain rate bias in simulations against IMERG rain rate.  Black lines show the mean of all simulations for 

ATM (solid) and CPL (dashed). Simulations with inaccurate tracks (marked with an asterisk in Table 2) are 

excluded. 450 

 

Inner rain rates are much higher than outer rain rates in both simulations and observations (Figure 10, note 

different axis scales).  Lower rain rates tend to be overestimated, and higher rain rates underestimated, in both 

CPL and ATM. The more intense storms in terms of maximum wind speeds tend to have higher simulated inner 

rain rates (up to ~ 9 mm/hr for Fani) than the least intense storms (up to ~ 4 mm/hr for Phethai), but this is not 455 
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the case in observations (up to ~ 10 mm/hr for Fani and ~ 9 mm/hr for Phethai). On average, rain rates are 

slightly lower in CPL than ATM (black dashed lines compared to black solid lines), possibly also due to the 

lower storm intensity (maximum wind speeds) in CPL. It was found that inner rain rates in IMERG tend to drop 

off once landfall has been made, so simulated inner rain rates are often lower than IMERG over the ocean but 

higher than IMERG over land. Rainfall biases over land may be related to high orography (near the Himalaya 460 

for Fani, Titli and Roanu and smaller areas of high orography in Tamil Nadu for Vardah and Gaja). The 

absolute error in inner rain rate over the whole time of the tracks (excluding simulations with inaccurate tracks, 

marked with an asterisk in Table 2) is significantly lower in CPL (1.6 mm/hr) than ATM (1.8 mm/hr) and this is 

largely due to the lower errors over land when rain rates are lower (see Supplementary Table S2). 

 465 

TCs may display non-axisymmetric behaviour due to storm motion, environmental vertical wind shear, dry-air 

intrusions, interaction with mid-level and upper-level synoptic systems, and non-uniform surface characteristics 

resulting in asymmetric heating (Alvey III et al., 2015; Chan & Liang, 2003; Chen et al., 2006; Corbosiero & 

Molinari, 2003; DeHart et al., 2014; Frank & Ritchie, 1999; Shu et al., 2018; Thakur et al., 2018; Wang & Wu, 

2004; Xu et al., 2014). These processes cause asymmetric distributions of rainfall and near-surface winds, both 470 

critical hazards to forecast. Asymmetric structures also impact TC intensity, with more symmetric structures 

tending to maintain intensity and asymmetric structures weakening (Wang & Wu, 2004). Our study concentrates 

on the asymmetry of rainfall due to the hazards associated with heavy rainfall. In this study, normalised north 

minus south and east minus west rain rate asymmetry were calculated for the inner rain rate (within 250 km of 

centre) for all TC cases.   475 

 

Although high-frequency variability in rain rate asymmetry is not well captured, the simulations accurately 

predict daily changes over TC lifetimes (not shown).  Inner rain rate asymmetry in the simulations generally 

matches that in observations, with Pearson correlation coefficients between 0.62 and 0.72 (see Supplementary 

Figure S10). The mean absolute errors for the N-S asymmetry are significantly lower in ATM (0.58) than CPL 480 

(0.60) due to differences over land. The E-W asymmetry has similar mean absolute errors but they are not 

significantly different in ATM and CPL. Errors can be due to timing errors in the simulations, such that one 

would not expect the environmental conditions to be the same. Studies show that vertical wind shear is a 

dominant control on rainfall asymmetry when shear is > 5 ms-1 and that rainfall tends to occur in the down-shear 

left quadrant (e.g. Alvey III et al., 2015; Chen et al., 2006; DeHart et al., 2014; Xu et al., 2014). Figure 11 485 

shows the inner rain rate asymmetry vs the (200 hPa – 850 hPa) vertical wind shear calculated as a mean over 

the annulus 500–750 km from the storm centre. There is more rain north of the TC centre with larger northward 

wind shear in observations and simulations, and likewise more rain east of the TC centre with larger eastward 

shear, suggesting a preference for rain down-shear.  

 490 

In the cases of TCs Fani and Roanu (spring, pre-monsoon), the vertical wind shear over the ocean is westwards 

to south-westwards (rear-left of storm motion) but becomes roughly north-eastwards (aligned with storm 

motion) where the storm makes landfall. In the other TC cases (winter, post-monsoon), the vertical wind shear is 

northwards to north-westwards (quite well aligned with storm motion) and rarely goes southwards. Therefore, 

the spring TCs (Fani and Roanu) occupy a different plot region than winter cyclones, and correlation 495 
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coefficients have been calculated separately. The high positive Pearson correlation coefficients show that inner 

rain rate asymmetry is primarily controlled by vertical wind shear in simulations and observations, with spring 

having a higher N-S correlation than winter because of the greater spread of meridional shear values. When 

simulated rain rate asymmetry did not match observed asymmetry well, this was often due to the different 

vertical wind shear at that time. 500 

 

Figure 11. Inner rain rate asymmetry vs vertical wind shear for north minus south (top) and east minus west 

(bottom) and for observations (left), ATM (middle) and CPL (right). The Pearson correlation coefficients are 

given at the top of each panel for the storms in spring (Fani and Roanu) and in winter (all others). Simulations 505 

with inaccurate tracks (marked with an asterisk in Table 2) are excluded. 

 

For pre-monsoon cyclones (Fani and Roanu), the shear over the ocean shifts from south-westwards (rear-left of 

the track) to north-eastwards (more aligned with the track) in observations and simulations around landfall. The 

shift occurs at landfall for Fani (still left of the track) and a day before landfall for Roanu (slightly right of the 510 

track). Both simulations and IMERG show a preference for rain to the rear-left of the centre before the shift and 

front-left afterwards (Figure 12a-c and 12m-o). The cross-track asymmetry after the shift in shear is more 

variable for Roanu. In CPL simulations of TC Fani, the rain shifts to the east (up-shear) immediately before 

landfall, although the shear in CPL is more to the south, suggesting shear is not the primary control on rainfall at 

this time. Fani is the only TC case where ATM and CPL show distinct differences in all initialisations.  515 

 

For the post-monsoon cyclones during the day before landfall, shear is generally well aligned with or slightly to 

the right of the track, resulting in more rainfall to the front and often to the left in both simulations and 

observations. After landfall, the shear shifts more to the right. For the north-eastward moving storms (Titli and 

Phethai), the shear becomes stronger, resulting in more rain to the front and right in observations and 520 

simulations, although cross-track rain asymmetry is more variable in simulations than in observations (Figure 

12d–f and 12p–r). For the westward-moving cyclones (Vardah and Gaja), the shear remains to the right of the 
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track but weakens in observations and simulations, resulting in variable rainfall asymmetry (Figure 12g–i and 

12j–l).  

 525 

When the shear is well aligned with the storm motion, the rain preference is clearly to the front, but slight 

differences in the shear direction, in the cyclonic wind speeds and the storm’s life stage, can determine whether 

rain preference is to the right or left. When shear is not well aligned with the storm motion, the simulations more 

accurately match the observed cross-track asymmetry. In conclusion, ATM and CPL represent cyclone structure 

reasonably well, and there is little difference between model configurations. 530 
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Figure 12. Accumulated rainfall from 24 hours before landfall to 24 hours after landfall in the single best-track 

simulation from each lagged ensemble (centre: ATM, right: CPL), within 5° of the storm centre, re-gridded to 

IMERG resolution (0.1° × 0.1°); and IMERG observations (left). Diamonds mark every 12 hours; stars indicate 

landfall time. Black lines and symbols on the IMERG plots are best track observations (IBTrACS). 535 
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5 Discussion and conclusions 

 

This study evaluates the performance of atmosphere-only (ATM) and atmosphere-ocean coupled (CPL) 

configurations of the regional convective-scale IND1 model for simulating TCs over the Bay of Bengal. In each 

configuration, we evaluate 29 simulations of six TCs during the 2016–2019 cyclone seasons. 540 

 

Of all the IND1 model simulations in this study, which are initialised up to 6 days before landfall, landfall 

position errors range from 15 to 409 km (mean of 130 km), if we exclude storm Roanu, for which landfall 

position errors are primarily due to the track of the storm closely following the coastline. Track errors over the 

whole TC lifetime are smaller for TCs moving from south to north than for east to west propagating systems. 545 

Both models are more skilful when initialised at higher-intensity stages of the TC lifecycle, in agreement with 

previous studies (e.g. Routray et al., 2017). Cyclone tracks are better in ATM than CPL for all but the strongest 

two TCs and better in CPL than ATM for the strongest TC. However, differences are small, which is expected 

as forecast motion errors are primarily driven by errors in the environmental wind field (Galarneau & Davis, 

2012), which is constrained by identical lateral boundary conditions in both sets of simulations. Location and 550 

timing of landfall are more accurate for more intense storms and those moving from south to north. Excluding 

TC Roanu, the mean absolute landfall timing error is 13 hours (ATM) or 12 hours (CPL). For TC Roanu the 

errors are 83 hours (ATM) or 78 hours (CPL). For similar lead times, landfall position errors are comparable to 

reported errors for Vardah and Roanu forecasted using atmosphere-only configurations of WRF and the 

Hurricane Weather Research and Forecasting (HWRF) model (Nadimpalli et al., 2020). Position errors also 555 

compare favourably to global model simulations of TC Fani (Singh et al., 2021). 

 

Both ATM and CPL underestimate the intensity of stronger TCs and overestimate the intensity of weaker TCs. 

Nadimpalli et al. (2020) have highlighted a similar bias in the WRF model for Bay of Bengal cyclones. In 

general, CPL predicts less intense storms than ATM, consistent with the lower SSTs and overestimation of SST 560 

cooling in cyclone wakes in CPL. Compared to IBTrACS and SYNOP observations, both models generally 

underestimate high wind speeds and overestimate low wind speeds. The CPL configuration gives improved 

pressure-wind relationships than ATM (Figure 5). However, in both configurations, there is a bias in the 

maximum wind speed–minimum MSLP relationship shown here (too strong MSLP/too weak wind speeds), 

which is also a known feature of the global atmosphere-only MetUM with parameterised convection (Heming, 565 

2018). 

 

For Fani, the most intense cyclone, both ATM and CPL underestimate peak intensity measured by maximum 

wind speed by up to ~ 35 m s-1 compared to IBTrACS USA data. TC Fani reaches Category 5 on the Saffir–

Simpson hurricane wind scale in the observations, but a maximum of Category 3 in the models: the model fails 570 

to replicate a period of rapid intensification from 29th to 30th April 2019. In the observations, maximum wind 

speed is 59 m s-1 (Category 4) at the point of observed landfall, but in the simulations maximum wind speed is 

37–45 m s-1 (Category 1-2) at the point of simulated landfall. The magnitude of the wind speed biases in the 

simulations could have significant implications for hazard predictions and subsequent warnings in any future 

operational implementation. It is important to note the discrepancy between maximum wind speeds in the 575 
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IBTrACS New Delhi and USA datasets. Wind speeds are generally higher in the USA data. If the New Delhi 

data are used, there are only small errors in maximum wind speeds at landfall for the six storms (mean error < 1 

m s-1 when comparing forecast wind speed at forecast landfall time with observed wind speed at observed 

landfall time, i.e., ignoring timing errors), highlighting the uncertainty in what is ‘truth’. Mean absolute errors 

outside the eyewall, calculated relative to SYNOP observations for the simulations with low track errors (i.e., 580 

excluding those marked with an asterisk in Table 2), are 3.6 m s-1 (ATM) and 3.2 m s-1 (CPL), with standard 

deviations of 3.0 and 2.8 m s-1, respectively. 

 

Theory, models and reanalysis suggest that TC potential intensity increases with SST at a rate of approximately 

7.6 m s-1 °C-1 (Ramsay & Sobel, 2011; Vecchi & Soden, 2007), and the predictability of TC intensity is sensitive 585 

to SST (Keshavamurthy & Kieu, 2021). TC potential intensity is linked to both regional mean SST and local 

SST changes, such as those associated with cold wakes caused by atmosphere-ocean feedback (Vecchi and 

Soden, 2007; Ramsay and Sobel, 2011; Lin et al., 2013). Cold wakes act to reduce available heat and moisture 

transfer from the ocean to the atmosphere under the TC centre, moderating TC intensity (Lin et al., 2013). It is 

consistent that the storms in CPL are weaker because CPL explicitly simulates cold ocean wakes, which in 590 

ATM are poorly timed and weaker than observed wakes. SSTs are also cold-biased throughout the model 

domain in CPL; however, the biases are relatively low (< 1°C) given that the ocean component is free running 

and only forced with assimilative global model boundaries. 

 

In CPL, SST cold biases are stronger in cyclone wakes than the mean cold bias in the wider region. SST cooling 595 

could be overestimated if the modelled TCs were too intense or too slow. However, this does not appear to be 

the case here, as SST cooling is overestimated even for TCs with accurate landfall times and where intensity is 

underestimated in the simulations (e.g., TC Titli). Therefore, CPL overestimates the cooling response for a 

given TC intensity. SST cooling caused by wind-driven mixing is strongly modulated by pre-storm oceanic 

conditions, including mixed layer depth (Dutta et al., 2020; Vincent et al., 2012; Yesubabu et al., 2020). 600 

Analysis of a month-long period in summer 2016 has shown that coupled IND1 simulations produce a shallower 

mean ocean mixed layer depth (depth < ~15 m) across the Bay of Bengal in IND1 compared to FOAM 

(Forecast Ocean Assimilation Model) analyses and the three RAMA moorings in the Bay of Bengal. This bias is 

primarily due to errors in ocean initialisation (too-cold upper-ocean temperatures) and, to a lesser degree, a 

negative bias in net surface heat input into the ocean (Valdivieso et al., 2021). Enhanced wind-driven mixing, 605 

and the resulting entrainment of too-cold water from the thermocline associated with the TC, would lead to 

cold-biased SSTs in the coupled IND1 model. Sensitivity experiments where SST is artificially increased in 

CPL to correct the SST bias would indicate the extent to which TC intensity biases could be corrected by 

improving the ocean initial conditions. Coupling the atmosphere and ocean models to a wave model would also 

influence ocean vertical mixing, although this effect is expected to be small for the Bay of Bengal region. 610 

 

In the post-monsoon TC season (late September to December), the Bay of Bengal’s hydrography is not 

conducive to SST cooling (e.g. Chaudhuri et al., 2019). It is characterised by a shallow surface layer of 

freshwater from river runoff and monsoon rainfall, which caps a deep warm layer. This warm water at depth, 

together with salinity stratification, which reduces the depth of vertical mixing, can mean there is a near-absence 615 
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of SST cooling in the wake of even the strongest TCs post-monsoon (Chaudhuri et al., 2019; Neetu et al., 2012; 

Sengupta et al., 2008; Subrahmanyam et al., 2005). General circulation models have difficulty simulating the 

Bay of Bengal’s salinity stratification (Chowdary et al., 2016). Freshwater inputs to the Bay of Bengal are not 

represented in the IND1 model, meaning there are salinity biases in the TC runs in this study; this is a crucial 

future area for model development. In contrast, in the pre-monsoon period, the warmest water is at the surface, 620 

and mixing cools SST (Krishna et al., 1993; Kumar et al., 2019), meaning TC-induced cooling is three times 

larger in the pre-monsoon season (Neetu et al., 2012). These differences in pre- and post-monsoon ocean 

conditions could explain why CPL overestimates cooling in the storm wake for the four post-monsoon storms in 

this study (Titli, Vardah, Gaja and Phethai) but has smaller negative biases in the wake compared to the wider 

region for the two pre-monsoon storms (Fani and Roanu). The SST cooling simulated in the CPL simulations 625 

after the passage of tropical storm Roanu (up to ~ 2°C) is a good match to data from a custom-made Lagrangian 

float and Argo floats from Kumar et al. (2019), which show that almost the entire Bay of Bengal north of 12°N 

cooled by 1–2 °C during the passage of the storm, with ~ 50% of this cooling attributed to wind-driven mixing. 

 

While SST cooling in the wake of the post-monsoon storms is too strong in CPL, it is not sufficiently strong in 630 

ATM, indicated by larger warm biases in the cyclone wakes than the rest of the domain. This could be partly 

due to the lag between the time of observations contributing to OSTIA data and the validity time at which it is 

applied in the simulations. A time lag of one day is significant given the short timescales of SST change 

associated with TC intensification and cold wakes (hours to days; Price, 1981). The warm-biased TC wakes in 

ATM could indicate that the cooling feature in OSTIA occurs after the end of the simulations. Also, 635 

comparisons of OSTIA observations to moored buoys have shown that cyclone cold wakes can be poorly 

captured in OSTIA (Liu et al., 2018) due to the difficulty in obtaining accurate satellite SST measurements 

through thick clouds such as those associated with cyclones (Sunder et al., 2020). 

 

TC simulations are sensitive to initial SST conditions, as well as coupling (Feng et al., 2019). This means that 640 

the negative intensity biases in CPL could be due to cold-biased initial SSTs, in addition to an overestimation of 

cooling in cyclone wakes. In fact, coupling alone cannot explain the intensity biases in this study, as we find no 

relationship between SST biases in the storm wake and intensity biases (not shown). However, it is challenging 

to observe storm wake bias directly under the eyewall, where cooling would most impact intensity. To 

determine the relative impacts of coupling and initial SST on cyclone intensity requires SST sensitivity 645 

experiments where ATM and CPL are run with the same ocean initial conditions, and ATM SSTs are updated 

with the output of standalone ocean runs so that SSTs in the ATM and CPL runs are equivalent apart from air–

sea feedbacks. 

 

High rain rates are underestimated in both configurations relative to IMERG, while low rain rates are 650 

overestimated. Compared to IMERG observations, both models produce good predictions for the magnitude of 

rainfall associated with landfalling TCs. Inner rain rate is slightly underestimated over the ocean but 

overestimated after landfall. It is important to note here that differences between IMERG and other satellite 

datasets have been found to vary with the surface type (land or ocean; Liu, 2016). Moreover, comparisons to 

rain gauges have shown that IMERG is less accurate at higher altitudes (Xu et al., 2017), so caution should be 655 

https://doi.org/10.5194/wcd-2021-46
Preprint. Discussion started: 26 July 2021
c© Author(s) 2021. CC BY 4.0 License.



   
 

 32 

exercised when interpreting biases relative to IMERG after landfall when the storms all move over higher-

altitude regions. In general, CPL has lower rain rates than ATM and lower accumulated rainfall for 48 hours 

around landfall. Rain rates are much higher for more intense storms in the simulations, but not in IMERG, 

which is consistent with studies showing that maximum rainfall in IMERG is not related to TC intensity in 

IBTrACS for TCs in the Bay of Bengal (Thakur et al., 2018) and China (Yu et al., 2017). In addition to 660 

intensity, rainfall bias in the simulations may be associated with large-scale SST biases, which affect moisture 

availability and vertical instability; therefore, the lower rain rates in CPL could be due to the cold-biased SSTs 

in the CPL configuration, which originate from the ocean initialisation. This relationship could be investigated 

using the same SST sensitivity experiments described above, where SST in the ATM model is artificially 

increased or decreased. Both models produce reasonable predictions of the location of rainfall associated with 665 

landfalling TCs. Maximum rain rates are generally observed to the left of the cyclone track before landfall, 

typical for Bay of Bengal TCs (Ankur et al., 2020) and monsoon depressions (Hunt et al., 2016); this is well 

captured in the models. The simulations predict more spiral rainbands than IMERG. 

 

Both ATM and CPL produce accurate predictions for rain rate asymmetry, with little difference between 670 

models, suggesting a good representation of TC dynamics in the model configurations. Much of the variation in 

rain rate asymmetry, in both the simulations and observations, can be explained by variations in wind shear with 

higher rain rates in the down-shear left quadrant (Alvey III et al., 2015; Chen et al., 2006; DeHart et al., 2014; 

Xu et al., 2014; Yu et al., 2017). Wind shear cannot explain all the rainfall asymmetry variation in the 

simulations or all the discrepancies between the simulations and IMERG. 675 

 

In operational forecasts, simulations of TC track, landfall time, landfall location and intensity are essential in 

planning mitigation efforts. In this study, the IND1 regional model is driven at the boundaries by the global 

MetUM, which is re-initialised every day from the MetUM global analysis, a procedure that cannot be applied 

operationally. Using a truly free-running atmospheric forecast to provide lateral boundary conditions is likely to 680 

degrade forecast performance relative to that shown in this study, and would be of value in future assessments 

of the IND1 system.. In addition, most operational atmosphere-only TC simulations use persisted SST 

throughout the model run (e.g. Routray et al., 2017) in contrast to the daily updating SST data used in this study. 

Previous studies suggest that the biases in ATM might deteriorate if SST were instead persisted throughout 

model runs: Rai et al. (2019) conducted simulations of TC Phailin (October 2013, Bay of Bengal) with persisted 685 

and daily updating SST. Using the daily updating SST improved storm track and intensity estimates by 37% and 

41%, respectively. Mohanty et al. (2019) determined that the impact of updating simulations with realistic SSTs 

during TC lifetimes improved landfall position and timing predictions by 20% and 33%, respectively. With a 

lack of data assimilation in the oceanic component, the CPL configuration performs well relative to ATM, given 

the observed SST used in ATM. 690 

 

This study has found that the convection-permitting regional IND1 model, in both an atmosphere-only and a 

coupled configuration, can accurately simulate the track, intensity, and structure of tropical cyclones in the Bay 

of Bengal. The model generally underestimates high wind speeds and high rain rates and overestimates low 

wind speeds and low rain rates. The track errors are generally slightly lower in ATM, but minimum MSLP 695 
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absolute errors are generally slightly lower in CPL, and for several storms, CPL has slightly lower maximum 

wind absolute errors. The similarity between ATM and CPL indicates that many of the deficiencies in the 

simulations originate in the atmospheric model. Future areas for model improvement include reducing the 

intensity biases (or applying bias-correction methods) and improving the representation of rapid intensification 

for the most intense cyclones. Development of the CPL configuration should include an adjustment of ocean 700 

initial and boundary conditions, as SST throughout the model domain is too cold. Future refinements could also 

be made to the regional ocean dynamics and vertical structure, including coupling the present configuration to a 

wave model, as CPL overestimates cooling in TC wakes. Any candidate operational implementation would 

require further evaluation to determine the impact of lateral atmospheric boundary conditions obtained from 

free-running forecasts, ideally from a global coupled model, and for the ATM configuration, the impact of 705 

persisting SST throughout model runs. Coupled systems provide a physically sound approach to introducing 

air–sea interactions, which are important for track and intensity predictions, to tropical cyclone forecasts. 

However, there are outstanding challenges related to ocean dynamics in both the coupled system development 

and model initialisation. 

 710 
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