
Linking air stagnation in Europe with the large-scale atmospheric
circulation
Jacob W. Maddison1, Marta Abalos1, David Barriopedro2, Ricardo García-Herrera1,2, Jose
M. Garrido-Perez1, and Carlos Ordóñez1

1Department of Earth Physics and Astrophysics, Universidad Complutense de Madrid, Madrid, Spain
2Instituto de Geociencias (IGEO), CSIC-UCM, Madrid, Spain

Correspondence: Jacob Maddison (JACOBMAD@ucm.es)

Abstract. The build-up of pollutants to harmful levels can occur when meteorological conditions favour their production or

accumulation near the surface. Previous studies have shown that such conditions are often associated with air stagnation.

Understanding the development of stagnant conditions is therefore crucial for studying poor air quality. The link between

European air stagnation and the large-scale circulation is investigated in this article across all seasons and the 1979–2018

period. Dynamical based indices identifying atmospheric blocking, Rossby wave breaking, subtropical ridges, and the North5

Atlantic eddy-driven and subtropical jets are used to describe the large-scale circulation as predictors in a statistical model

of air stagnation variability. It is found that the large-scale circulation can explain approximately 60% of the variance in

monthly air stagnation in five distinct regions within Europe. The variance explained by the model does not vary strongly

across regions and seasons. However, the dynamical indices most related to air stagnation do depend on region and season.

The blocking and Rossby wave breaking predictors tend to be the most important for describing air stagnation variability in10

northern regions whereas ridges and the subtropical jet are more important to the south. The demonstrated correspondence

between air stagnation and the large-scale circulation can be used to assess the representation of stagnation in climate models,

which is key for understanding how air quality and its associated health risks may change in the future.

1 Introduction

Poor air quality poses one of the largest environmental threats to public health. Long term exposure to air pollutants such as15

particulate matter (PM) and ozone can cause severe cardiovascular and respiratory diseases and is responsible for between two

and four hundred thousand premature deaths every year in Europe (World Health Organization, 2011; Giannadaki et al., 2016;

European Environment Agency, 2020). Risks depend strongly on the weather, increasing when meteorological conditions

favour the production or accumulation of the pollutants in the lowest part of the atmosphere (Ordóñez et al., 2005; Jacob and

Winner, 2009; Weaver et al., 2009; Barmpadimos et al., 2011; Dawson et al., 2014). It is therefore key to characterize such20

favourable conditions, often referred to as air stagnation. Furthermore, climate change is expected to increase the occurrence

of air stagnation (Mickley et al., 2004; Leung and Gustafson Jr, 2005; Horton et al., 2012, 2014; Caserini et al., 2017; Gao

et al., 2020; Lee et al., 2020), which can result in increased pollutant levels (Weaver et al., 2009; Jacob and Winner, 2009)
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and emphasises the need to fully understand air stagnation occurrence and its variability. Most studies have mainly focused

on local conditions when describing air stagnation, without considering synoptic-scale structures and large-scale features of25

the atmospheric circulation. In this article, we use the large-scale atmospheric circulation to describe the variability of air

stagnation within distinct regions of Europe.

Air stagnation refers to a period when a stable air mass becomes settled over a region and remains quasi-stationary for an

extended amount of time. Weak winds in the lower to mid-troposphere and an absence of precipitation during air stagnation

prohibit the ventilation and washout of particles so pollutants can accumulate near the surface. Regions in the tropics generally30

experience highest air stagnation frequencies (Horton et al., 2012, 2014), though several regions in the midlatitudes, such as

North America, China and the Mediterranean, have stagnation frequencies over 40% (e.g., Horton et al., 2012, 2014; Huang

et al., 2017; Garrido-Perez et al., 2018). Air stagnation has been shown to increase concentrations of ozone and PM in Europe

(Garrido-Perez et al., 2018), cities in Asia (Wang et al., 2016; Zhang et al., 2016; Liao et al., 2018; Kanawade et al., 2020), and

in North America (Valente et al., 1998; Schnell and Prather, 2017; Sun et al., 2017). Air stagnation events have been identified35

in reanalysis or model data sets using multiple criteria based on local weather conditions. Commonly used air stagnation indices

(ASIs) include terms based on the wind speed at 10 m (Wang and Angell, 1999; Horton et al., 2012; Wang et al., 2016, 2018),

wind speed in the boundary layer (Huang et al., 2018), boundary layer height (Wang et al., 2016, 2018) and precipitation (Wang

and Angell, 1999; Horton et al., 2012; Wang et al., 2016, 2018; Huang et al., 2018). However, similar local weather conditions

can occur under very different rearrangements of the large-scale flow. Therefore, there is a need to bridge the gap between local40

air stagnation and large-scale atmospheric circulation.

The large-scale flow is inherently related to air stagnation occurrence in Europe and thus also to air quality. Their relation can

be summarised by considering the dynamics of midlatitude weather. The North Atlantic jet streams and Rossby waves are the

main drivers of midlatitude weather, and are associated with high-impact weather systems such as atmospheric blocking and

extratropical cyclones, which exert a strong control over surface conditions (Hoskins et al., 1985). Blocking events typically45

occur when a large-scale ridge in an upper-level Rossby wave develops (e.g. Woollings et al., 2018). They are an obvious

candidate for driving air stagnation events as they are characterised by a synoptic-scale, quasi-stationary anticyclone (Rex,

1950), and thus provide the weak winds and absence of precipitation that define air stagnation. Blocks have been shown to

increase pollutant levels in Europe (Hamburger et al., 2011; Garrido-Perez et al., 2017; Ordoñez et al., 2017; Webber et al.,

2017; Vautard et al., 2018), the United States (Comrie and Yarnal, 1992), and in Asia (Yun and Yoo, 2019). The position of the50

North Atlantic jet stream (Ordóñez et al., 2019), the presence of subtropical ridges (Garrido-Perez et al., 2017; Ordoñez et al.,

2017), and the passage of midlatitude cyclones (Leibensperger et al., 2008; Tai et al., 2010, 2012; Leung et al., 2018) can also

influence air stagnation development. A comprehensive study linking European air stagnation occurring throughout the year

with such dynamical features is presented here for the first time.

Air stagnation in different regions in Europe exhibits distinct spatial characteristics. Regions in the south of Europe expe-55

rience frequent stagnation whilst the frequency and temporal variability of stagnation is generally lower in northern regions

(Horton et al., 2012, 2014; Garrido-Perez et al., 2018). A comparison of three popular ASIs for Europe was recently performed

by Garrido-Perez et al. (2021). Whilst describing the conditions necessary for air stagnation is intuitively straight forward,
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objectively identifying stagnant conditions from observational or model data can be more complicated as it usually relies on

indices based on predetermined, arbitrary thresholds of meteorological variables that characterise stagnation (e.g. Wang and60

Angell, 1999; Horton et al., 2012, 2014; Wang et al., 2016, 2018; Huang et al., 2017). Garrido-Perez et al. (2021) showed that

despite the frequency of stagnation being similar across the indices, differences in the indices’ seasonal cycle and effect on

pollutant build up are evident and means results obtained using a single ASI should be taken with caution because they might

be sensitive to the ASI used.

With this in mind, the aims of this study are (i) to complete a comprehensive identification and comparison of the large-scale65

drivers of air stagnation within Europe, (ii) to quantify the amount of monthly variability in air stagnation that can be explained

by the large-scale circulation, and (iii) to assess the sensitivity of the results to the air stagnation index.

The article is presented as follows. Section 2 contains a description of the data, the various circulation indices used through-

out the article and the statistical model used. The large-scale circulation patterns identified during air stagnation are discussed

in section 3. In section 4, the statistical model is analysed, its results explained in detail for a specific case and then used to70

compare three different air stagnation indices. The article is concluded in Section 5.

2 Data and methods

Several indices are used in this study to identify both air stagnation and relevant dynamical features. A brief description of each

index is included but the reader is referred to the referenced papers for further information. All data used in this study is from

the European Centre for Medium Range Weather Forecasts’ ERA5 reanalysis (Hersbach et al., 2020). Data is interpolated onto75

a one degree grid for the analysis and covers the period 1979–2018, and the North Atlantic and European region (100◦W –

80◦E, 20–85◦ N).

2.1 Air stagnation indices

The ASI introduced in Horton et al. (2012) is used for most of the analyses presented in this study. A grid point is defined as

stagnant if: (i) the daily mean wind speed at 10 m is less than 3.2 m/s, (ii) the daily mean wind speed at 500 hPa is less than 13.080

m/s, and (iii) total daily precipitation is less than 1 mm (a dry day). Values at 0000, 0600, 1200 and 1800 UTC are averaged

to calculate the daily mean wind speeds and hourly precipitation totals are summed to calculate the daily precipitation. We

compare our findings with two other ASIs to ensure the robustness of their results.

The ASI by Wang et al. (2016, 2018) defines stagnation when precipitation is below 1 mm and the boundary layer height

is below a certain threshold. The threshold is a function of season and wind speed at 10 m (see Wang et al. (2018) for further85

details). Huang et al. (2018) use an ASI that again requires daily precipitation less than 1 mm. For stagnation, it is also required

that the vertical integral of the horizontal wind speed within the boundary layer is less than 6000 m2/s, and that there is no

potential thunderstorm activity on that day. Thunderstorm activity is ruled out by excluding days with CAPE > 100 J/kg and

CIN >− 50 J/kg. These values have been modified for European stagnation following Taszarek et al. (2018) and Garrido-Perez

et al. (2021).90
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2.2 Dynamical indices

To link the large-scale circulation to air stagnation we use several daily dynamical indices that describe key features of the

extratropical flow. Blocking, Rossby wave breaking (RWB), subtropical ridges, and the latitude and speed of the eddy-driven

and subtropical North Atlantic jets are identified using indices based on various meteorological variables. These features of

the large-scale circulation do not represent the full spectrum of synoptic systems that characterize the midlatitude atmospheric95

circulation, but are chosen because of their known association with air stagnation (section 1).

Atmospheric blocking is identified using the index of Scherrer et al. (2006). A block is identified using instantaneous merid-

ional gradients in geopotential height at 500 hPa (Z500) (at 1200 UTC). The method looks for the overturning of the geopo-

tential height contours in the midlatitudes (between 35 and 75◦N) characteristic of a block and defines a grid point as blocked

when the gradient from the south is positive and the gradient to the north is strongly negative (less than -10 m/degree). A100

persistence criteria of 3 days is used to identify block events.

RWB is calculated following the definition of Masato et al. (2012). Using the daily average potential temperature field on

the dynamical tropopause (potential vorticity surface at 2 PVU, θ2PV U ), RWB is identified when the meridional gradient

of potential temperature is reversed. Although RWB often occurs in association with blocking, these events are typically

persistent. By not imposing persistence criteria, we also account for transient RWB events, including those associated with105

cyclone development (e.g. Gómara et al., 2014). In addition, RWB captures persistent flow reversals dominated by cyclonic

wave breaking that may be missed by the blocking index, which is known to be biased towards anticyclonic blocks and can

miss some omega type blocks (Barriopedro et al., 2010).

Subtropical ridges are classified following a slightly modified method of that developed by Sousa et al. (2018). Ridges

are defined as positive Z500 anomalies in the subtropical midlatitudes (south of 50◦N in all seasons except summer when110

55◦N is used) that do not extend futher poleward. The local 60th percentile of the daily Z500 series (smoothed with a 31-day

running mean) is employed to identify positive anomalies. A ridge is then identified when more than half of the subtropical

midlatitude grid points but less than half of the northern midlatitude grid points are above their 60th percentile in three separate

longitudinal sectors (Atlantic, ATL, 30◦W–0◦, European, EUR, 0◦–30◦E, and Russian, RUS, 30◦E–60◦E). These criteria are

chosen to avoid double counting blocks (i.e. to ensure blocks are not detected as subtropical ridges). The less strict thresholds115

for identifying ridges were chosen to increase the frequency of ridges, therefore providing a more balanced frequency of events

(as compared with blocking and RWB), which in turn is expected to yield more robust linkages in the statistical model.

The eddy-driven jet speed and latitude are calculated using the index introduced in Woollings et al. (2010). The daily mean

zonal wind is averaged vertically (every 75 hPa between 925 and 700 hPa) and zonally (between 0 and 60◦W). A 10-day

smoothing is then applied to remove the influence of individual synoptic systems. The magnitude and latitude of the maximum120

wind speed of the resulting meridional profile are selected as the eddy-driven jet speed and latitude, respectively.

The subtropical jet speed and latitude are described using the zonal wind at 250 and 200 hPa. Following the method used

to describe the eddy-driven jet, the daily mean zonal wind is averaged vertically (between 250 and 200 hPa) and zonally

(between 20◦E and 60◦W) and then low-pass filtered. The magnitude and latitude of the maximum wind speed of the resulting
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meridional profile are selected as the subtropical jet speed and latitude, respectively. The eddy-driven and subtropical jet can125

at times be indistinguishable, particularly in summer, but in many cases they are expected to be separated (as inferred from the

climatological means: see also Molnos et al. (e.g. 2017)). Furthermore, the eddy-driven jet speed and upper-level wind speed

will likely more strongly influence the lower- and upper-level wind criteria of the ASI, respectively.

Together, these dynamical indices provide a comprehensive picture of the large-scale circulation over Europe. We construct

a multiple linear regression (MLR) model with these indices as predictors of the variability in air stagnation. Blocks, RWB and130

ridges are referred to as regional predictors as they are identified within each region, whilst the eddy-driven and subtropical

jet are called large-scale (or Europe-wide) as they are defined in areas covering more than one of the regions. Using all of

the predictors ensures we include major factors that are favourable for air stagnation but means that they aren’t necessarily

independent. For example, the blocking and Rossby wave breaking indices or the eddy-driven and subtropical jet indices may

at certain times identify the same large-scale feature. Their collinearity and relative importance for stagnation will be taken135

into account by the MLR model, as described in the next section.

2.3 Stepwise multiple linear regression

MLR models are used to study the linear relationship between a chosen response variable and a set of predictor variables.

Here we use the monthly series of air stagnation and the set of dynamical indices as the response and predictor variables,

respectively. The MLR model thus takes the form140

ASI = β0 +β1I1 +β2I2 + ...+βkIk, (1)

where ASI is the air stagnation time series, each I represents a dynamical index, β0 is the model intercept and the remaining

β terms are the regression coefficients. The regression coefficients are estimated using a least-squares approach (Montgomery

et al., 2012). This regression analysis is applied to model the monthly variability of stagnation for separate regions and seasons,

as described in Section 4.145

A stepwise approach has been used to select the dynamical indices that account for the largest variance of air stagnation from

the total set of predictors. Stepwise approaches have been used to model the variability of pollutants in Europe (Barmpadimos

et al., 2011, 2012; Otero et al., 2016; Garrido-Perez et al., 2021). The goal of the stepwise approach is to inform which of

the predictors can be excluded from the MLR model without losing a significant amount of the variance explained by the

model. The method consists of five steps. (i) A linear model for air stagnation is constructed for each of the dynamical indices150

separately and the index providing the most skill (highest R2) is selected. (ii) The remaining indices are added one at a time

to construct MLR models with an additional predictor. The added index that yields the most skilful model is selected. (iii) The

choice from step (i) is verified. We remove the first variable from the model and construct models with the variable selected

from step (ii) and each of the remaining variables separately. If any of the new models have a higher R2 than that constructed

in step (ii), the new variables replace those previously selected, else those from step (ii) remain. (iv) Collinearity between155

variables is checked. The linear correlation between the indices selected at each step is used to calculate the Variance Inflation

Factor (Freund et al., 1998). If this exceeds a threshold (here chosen to be 5.0), indicating the predictors are highly correlated,
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the variable adding least skill to the model is removed. (v) Steps (ii) to (iv) are repeated until the addition of a predictor

increases the explained variance by less than 1% or until all the predictors have been included already.

3 The large-scale circulation during air stagnation160

Figure 1. (a) The annual of frequency of air stagnation in Europe between 1979 and 2018 in the ERA5 data set. (b) Regions within Europe

identified as having distinct air stagnation characteristics. These regions have been named Scandinavia (SCAN), northern Europe (NEU),

central Europe (CEU), southwest Europe (SW) and southeast Europe (SE), following Garrido-Perez et al. (2018).

The climatological frequency of air stagnation in the ERA5 dataset is shown in Figure 1. In Europe, air stagnation is most

common in the Mediterranean region (plus northern Africa) with annual stagnation frequencies in the region around 40%.

Frequencies then reduce polewards (values of 15% for the UK and across north-central Europe) before increasing again in

Scandinavia where stagnation frequency is near 30%. Five regions within Europe with distinct air stagnation characteristics

were identified by clustering the monthly frequencies of air stagnation as inGarrido-Perez et al. (2018): Scandinavia (SCAN),165

northern Europe (NEU), central Europe (CEU), southwest Europe (SW) and southeast Europe (SE). The regions are depicted

in Figure 1 (b).
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3.1 Annual air stagnation events

In this section, composites of the large-scale circulation are shown for air stagnation events occurring in selected regions. Air

stagnation events are defined as occasions when stagnation occurs in at least half of the grid points within a region for at least170

four consecutive days. A threshold of four days was also used to define stagnation events in Wang and Angell (1999) and

Huang et al. (2017). Composites are shown for two regions, SW and NEU, as examples of the distinct effect of the large-scale

circulation on stagnation in Southern and Northern Europe. Note that in the case of subtropical ridges, the algorithm described

in Section 2.2 detects them in three longitudinal sectors (ATL, EUR and RUS). In the following, they will be considered over

the three stagnation regions where they may be found (SW, CEU and SE), because by definition they do not extend northward175

to cover NEU and SCAN.

Figure 2. Composites of the (a) blocking index (shading) and Z500 (line contours), (b) ridge index (shading) and Z500 (line contours),

and (e) Rossby wave breaking index (shading) and θ2PV U (line contours) for stagnant days over SW. In (a), (b) and (e) the blocking, ridge

and Rossby wave breaking index frequencies are presented as departures from their annual climatological frequencies, respectively. (c) The

climatological annual eddy-driven jet stream latitude distribution (blue) and jet latitude distribution during stagnant days (red). (f) As in (c)

but for the speed of the eddy-driven jet stream. (d) The climatological annual subtropical jet stream latitude distribution (blue) and that during

stagnation (red). (g) As in (d) but or the subtropical jet speed. Data source: ERA5 reanalysis during 1979-2018.

Annual mean composites of the large-scale circulation for air stagnation events in SW are shown in Figure 2. When stag-

nation occurs in SW, there is often a subtropical ridge extending into southwestern Europe. This is evidenced by an ∼20%

increase in the climatological frequency of subtropical ridging over the region (Fig. 2 (b)). The ridging pattern present in the

composite Z500 field (Fig. 2 (a), (b)) can sometimes exhibit a flow reversal in midlatitudes, resulting in a slight increase in180

block frequency over the region. Rossby wave breaking is less frequent to the north of SW during stagnation, consistent with
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the upper-level jet being centred over this region. Both jets are more frequently observed around 50◦N during stagnation, which

likely reflects that the two can merge north of the SW region. Specifically, the eddy-driven jet is less frequently in its southern

mode during SW stagnation (red distribution in Fig. 2(c)) and tends to be located further north. The subtropical jet latitude

distribution during stagnation is more similar to its climatology, with only a slight increase in its northern flank and decrease185

in its southern latitudes. The speed of the eddy-driven jet is increased when stagnation occurs in SW, which is a robust feature

associated with subtropical ridges (Sousa et al., 2018), while the subtropical jet speed is reduced. Note that the intensification

and weakening of the eddy-driven and subtropical jets, respectively, occur at different latitudes and longitudinal sectors. The

stagnation speed and latitude distributions of both jets are significantly different from their climatologies (p<0.01). The com-

posites of each dynamical index are similar for SE stagnation, but with the increased frequency of ridges shifted to the east190

(not shown).

Figure 3. As in Figure 2 but for stagnation in NEU.

In Figure 3, composites of the large-scale circulation for stagnation in NEU are shown as a representation of northern Europe

(SCAN, NEU and CEU). Stagnation occurring in northern regions is associated with a large increase in block frequency over

the stagnant area, seen also as an amplified large-scale wave in Z500 (Fig. 3(a), (b)). For NEU, it extends from the UK across

most of Europe and a cut off region of high pressure is evident at its centre with the increase in block frequency exceeding195

25%. The flow reversal associated with this blocking pattern also involves lower pressures and hence a strong reduction in

subtropical ridge frequency south of the block structure (Fig. 3 (b)). The large-scale, upper-level wave is also seen in the

mean potential temperature field on the dynamical tropopause, which features an anticyclonically breaking Rossby wave. This

corresponds to an increase of anticyclonic RWB slightly south of the region of increased block frequency. The eddy-driven jet

is less frequently in its central mode (Fig. 3 (c)) as it would typically result in strong winds not conducive to stagnation over200
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the regions, and shows the largest departures in northern latitudes (poleward of 60◦N). Differently, the subtropical jet latitude

exhibits a strong increase in the central latitudes of its distribution (around 40◦N), reflecting the southern branch of the split

jet pattern associated with the block. Both jet streams are also significantly less intense during NEU stagnation (p<0.01): the

distributions of jet speed are both notably shifted toward lower wind speeds (Fig. 3 (f), (g)). Blocking and RWB are also more

frequent for stagnation in SCAN and CEU and are also associated with amplified upper-level waves centred over the regions205

(not shown). The reduction in ridge frequency during stagnation in NEU is present for SCAN but not for stagnation in the more

equatorward latitudes of CEU. For stagnation in CEU and SCAN, the eddy-driven jet is less frequently over the latitudinal

ranges encompassed by these regions (the southern and northern modes, respectively), and the subtropical jet index captures

the southern branch of the blocking-induced split jet pattern in both regions.

Summing up, the dynamical signatures of stagnation as inferred from the composited departures of the dynamical indices210

are larger for northern regions in Europe. The comparatively weaker anomalies for the southern regions reflect the fact that

the mean weather conditions in southern Europe are more favourable (drier and less windy) for stagnation. This does not

however mean that stagnation in southern regions is less related to the large-scale circulation. Finally, the composites shown

in Figures 2 and 3 are for stagnation defined by the Horton et al. (2012) index. Repeating the analysis using the Wang et al.

(2018) and Huang et al. (2018) indices gives very similar results (not shown) and suggests that the large-scale circulation215

signatures highlighted are indeed important for stagnant air occurrence and not a feature of the chosen ASI. The composites

of the large-scale flow are also similar when considering stagnation in each season separately (not shown), suggesting that

stagnation occurs under similar set ups of the large-scale flow in all seasons. The seasonality of the large-scale connection to

stagnation is further explored in the remainder of this section.

3.2 Seasonal and lag dependence of the large-scale circulation220

Stagnation events occurring year-round have been examined so far. Now we explore the seasonality and time dependence of the

relationship between the large-scale dynamics and air stagnation. To do this, we define a metric quantifying the correspondence

between stagnation and selected dynamical indices. We term this the departure measure and define it as

1
NR

∑

i∈R

|Istagnation− Iclimatology|, (2)

where R is the region, i a grid point within region R, NR is the number of grid points in the region and I is the dynam-225

ical index. For simplicity, this subsection excludes large-scale dynamical factors (i.e. jet streams) and focuses on the most

immediate regional drivers (block, RWB and ridge index-frequency), for which lagged relationships can be better interpreted.

The departure measure is thus unitless. The Rossby wave breaking index is included for all regions while the block and ridge

indices are shown only for regions where they are most influential (northern and southern regions, respectively; Section 3). In

addition, the four day persistence criteria is removed here to ensure enough stagnant days are included in the analysis, which230

is necessary when considering northern regions in winter.

Departure measures as a function of lag about stagnant day are shown in Figure 4, for each region, season and dynamical

index. There are three features to highlight in Figure 4. Firstly, the large-scale dynamics and stagnation correspondence tends
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Figure 4. Departure measures for the blocking or ridge index (solid lines), and the Rossby wave breaking index (dotted lines) during

stagnation for each season as a function of lag from stagnant days in (a) SCAN, (b) NEU, (c) CEU, (d) SW and (e) SE. The blocking index

is shown for SCAN, NEU and CEU and the ridge index for SW and SE.

to be strongest in winter (departure measure is largest), except for ridges in SE which peak in summer (Fig. 4 (e)) and blocks

in SCAN which peak in spring (although with departure measures very close to those in autumn and winter, Fig. 4 (a)). Air235

stagnation is more closely related to the large-scale circulation in winter because calm, dry conditions are rarer at this time of

year, and need to be driven by a synoptic-scale anticyclone more frequently. Secondly, the departure measures for SCAN, NEU

and CEU are higher than in SW and SE, involving larger departures of the atmospheric circulation. This again relates to the

less favourable weather conditions for stagnation in northern regions, which means that larger anomalies are required therein

for stagnation to occur, as compared to southern regions. Finally, the large-scale dynamics leads the changes in air stagnation240

by a few days. This can be inferred from the peak in departure measure for negative lags. This lag between the large-scale

dynamics and air stagnation could have implications for the predictability of air stagnation.

Concerning the specific regional drivers, overall, stagnation is around 30% more likely to occur when there is a block or ridge

present, though this number is sensitive to the precise definition of a region being blocked or ridged (not shown). The increase

in stagnation for a given driver also depends on the region and season. A ridge being present in SW and SE increases the245

occurrence of stagnation in those regions considerably (on average, around 75% of ridge days are also diagnosed as stagnant),

particularly in summer. On days identified as having a block in SCAN, NEU and CEU the frequency of stagnation is increased

on average by more than 40% for all seasons. Rossby wave breaking also increases the likelihood of stagnation occurring

in SCAN and NEU (by around 25%) but has no clear impact for the southern regions. We now explore to what extent the

large-scale circulation can explain the variability in air stagnation.250

4 Modelling the variability of European air stagnation

In this section, the MLR method described in section 2.3 is used to model the monthly variability of air stagnation. The monthly

count of stagnant days in each region and season is modelled separately using the dynamical indices as predictors. A day is

10

https://doi.org/10.5194/wcd-2021-5
Preprint. Discussion started: 27 January 2021
c© Author(s) 2021. CC BY 4.0 License.



counted as stagnant if the number of stagnant grid points in the region is above its 50th percentile in the climatology. The

results presented in this section are robust to the choice of this threshold. The dynamical indices are used as predictors as255

follows. The blocking (BI), Rossby wave breaking (RWBI), and ridge (RI) indices are regionalized as the number of days in a

month when the region was dominated by such weather systems, which occurs if the number of affected grid points is above

its 50th percentile. As mentioned above, ridges are only considered for CEU, SW and SE. The monthly mean latitude and

speed of the eddy-driven (JL and JS) and subtropical (STJL and STJS) jets are used as direct predictors (the time series of

these predictors are the same for every region). Recall that we only use regional or large-scale predictors (based on Z500, wind260

speed throughout the troposphere, and θ on 2 PVU) to quantify the percent of variance in stagnation that can be explained from

the dynamics, without including smaller-scale or local phenomena, such as local winds or convection. We exploit the stepwise

procedure to identify the large-scale dynamical processes most related to air stagnation as follows.

The stepwise MLR models are constructed for each region and season. All regions share the jet-based predictors, as they are

defined independently of the region (i.e. Europe-wide). For the remaining drivers (BI, RWBI, RI), each region has its own set265

and time series of predictors that account for regional information on the frequency of occurrence of synoptic-scale systems,

with RI being included only for those regions where ridges occur (SW, SE and CEU). For example, we model the monthly

variability of air stagnation in SCAN (ASSCAN ) as

ASSCAN ≈ β0 +β1BISCAN +β2RWBISCAN +β3JL +β4JS +β6STJL +β6STJS, (3)

where BISCAN and RWBISCAN are the monthly time series of blocked days in SCAN and RWB days in SCAN respectively.270

β0 is the model intercept and the βi terms are the regression coefficients.

In addition, for each region we construct a second model that also incorporates the regional predictors defined for the

remaining regions. By including the time series of BI, RWBI and RI for all regions we can account for remote influences of

the atmospheric circulation on air stagnation. These synoptic systems can have a remote (non-local) impact on stagnation by

influencing the weather conditions both upstream and downstream of their location. Therefore, the second model expands the275

set of predictors by considering those that are specific of the other regions. Using stagnation in SCAN as an example again,

this second model is constructed as

ASSCAN ≈
∑

regions

BIR +
∑

regions

RWBIR +
∑

regions

RIR + JL+ JS +STJL + STJS, (4)

where subscriptR refers to the region of the index time series included. As in equation 3, the model includes an intercept and

regression coefficients but they are omitted here for clarity. For both models, the stepwise procedure is subsequently applied to280

select the leading predictors and avoid the inclusion of predictors that are too highly correlated with one another. We term the

first model (equation 3) the regional model and the second (equation 4) the European model for the remainder of this section.

4.1 Variance in stagnation explained by the dynamical predictors

The coefficients of determination (R2) for the regional and European stepwise MLR models are presented in Figure 5. Between

30 and 50% of the monthly variability of air stagnation can be explained by the regional models in most cases, though this285
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is dependent on region and season. For instance, more than 50% of the variance in stagnation in NEU can be explained by

the regional model for most seasons, whereas it is less than 25% for SCAN in spring. This increases to between 40 and 70%

when including remote predictors in the regression, highlighting the faraway effect weather systems, such as blocks and ridges,

can have on the surface weather. Both model set ups give a statistically significant relationship between air stagnation and

the large-scale circulation for all regions and seasons (p<0.01). The model skill is generally highest in winter, consistent with290

the closer association between stagnation and the large-scale circulation in winter shown in section 3. The model does not

perform better in northern or southern regions in Europe: model skill is similar in SW, CEU and NEU and generally lowest in

SCAN and SE. This suggests that weaker circulation anomalies can have a comparatively larger effect in southern compared

to northern regions, such that smaller departure measures (Fig. 4) in southern regions can lead to R2 values as high as those in

northern regions.295

Figure 5. Skill of the stepwise multiple linear regression models (R2) of air stagnation in each region and season (colours). Skills are shown

for the regional models (triangles) and the European models (circle). See text for an explanation of the regional and European models.

Comparing the explained variance between the two models gives insight into which seasons and regions are most affected

by the remote drivers. Overall, the remote predictors compensate for the lower skill of local predictors in SCAN and SE in

most seasons (R2 increases greater than 0.15). They add comparatively lower skill in NEU and CEU in the cold seasons and

SW in the warm seasons. The variance in stagnation explained by the European models in these regions is more consistent

across seasons than that obtained from the regional models. As regional predictors are favourable for stagnation in the region300

they occur, we hypothesize that the remote predictors most likely bring model improvements by informing the occasions when

stagnation is disfavoured in the region, i.e. they have a negative coefficient in the MLR equation.
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4.2 Dynamical predictors of air stagnation

The predictors selected by the stepwise regression method are discussed in this section for each region and season. We now only

consider the European model that uses both local and remote predictors as it consistently outperforms the regional model. The305

predictors selected by the model represent the dynamical drivers that are needed to explain the most variance in air stagnation.

There are a total of 17 predictors for the stepwise method to select from: five regional BI and RWBI predictors (one for each

region), three RI predictors (for CEU, SW and SE), together with the jet latitude and speed time series for the eddy-driven and

subtropical jets. The model skill (R2) achieved by the selected predictors are shown for each season and region in Figure 6.

The model skills shown in the maps correspond to the R2 values reached after adding the final predictor into the model.310

First we detail some statistics about the selected large-scale predictors for air stagnation. The number of predictors necessary

to include in the MLR model of air stagnation varies between 4 and 12, depending on the region and season. The average num-

ber of predictors included in the model is about 7 for SCAN and NEU and 9 for CEU, SW and SE. Therefore, fewer predictors

are typically required to explain stagnation variability in northern regions. The colours behind each included predictor show

the model R2 as each of the predictors is added (from left to right) in the formulation. In some cases, one predictor can explain315

a large fraction of the variance, for example in NEU winter stagnation, and the additional predictors add relatively little skill

to the model (though still more than the 1% threshold required by the stepwise formulation). Other times, more predictors

have a more equal contribution to the overall model skill, for example when describing stagnation in SW winter. This does not

necessarily impact the overall skill of the model, which is in both cases above 60% of monthly stagnation variability.

The leading predictors for regional air stagnation are most often RWB and blocking (each 7 times out of the total 20320

region/season combinations), with ridges and the subtropical jet speed being the leading predictor in 3 combinations each.

Many regions and seasons include both RWBI and BI as predictors (in a few cases from the same regions). Despite their

apparent similarity, these two indices can reflect different block configurations and persistent signatures, as stated above,

which may partly explain this result. Out of the 20 leading predictors 12 have a positive contribution to the model (8 have

negative) and 9 are local processes (11 remote drivers), although these figures are all dependent on the region and the season325

considered. We recall that in many cases the difference in explained variance between a given predictor and the following one

is small. Therefore, the specific order in which predictors are selected may not be necessarily meaningful from a dynamical

point of view.

In spite of these limitations, we can use the stepwise regression results to make some inferences on the dynamical influences.

In SCAN, RWB and blocking occurring locally dominate stagnation variability. Only in winter are both predictors included330

by the model, though, suggesting the indices are identifying different features in this season. BI and RWBI occurring in

other regions (south of SCAN) inform stagnation reduction (negative coefficient), because they are associated with a poleward

strengthening of zonal winds and hence increased wind speeds over SCAN. Subtropical ridges in SE and CEU have similar

effects (e.g. Sousa et al., 2018), in agreement with their negative contribution to stagnation frequency. The eddy-driven jet is

not identified as an important driver for stagnation in SCAN (only appearing twice as the final predictor selected in the model)335

supporting the results of Madonna et al. (2017) who found that variations in Scandinavia blocking and the eddy-driven jet are
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Figure 6. Model R2 for stagnation occurring in (a) spring, (c) summer, (e) autumn and (g) winter. Predictors included in the stepwise linear

regression for each region in (b) spring, (d) summer, (f) autumn and (h) winter, where the plus and minus signs for each predictor represent

whether the coefficient in the MLR model is positive or negative, respectively. Colours in the right hand panels show the R2 of the model as

each predictor is added in its formulation. The R2 values are calculated for monthly data in 1979–2018.

relatively unconnected. The poleward strengthening of the zonal wind associated with blocks and ridges occurs outside the

region of the eddy-driven jet index. The subtropical jet is also not important for stagnation in SCAN, which is expected as this

region is too far north.

Local blocking or RWB also drive stagnation in NEU, appearing as the leading predictor in every season except winter340

(when it appears second). Winter stagnation in NEU is neatly described using only four predictors. It is favoured by local RWB
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and reduced when the eddy-driven jet is strong and located over this region, as inferred from the negative terms for JS and JL,

as well RI over SW. On the other hand, subtropical ridges reduce stagnation in NEU in the other seasons by shifting the jet

stream over the region. Indeed, the eddy-driven jet is an important predictor for NEU across all seasons, as this region lies at

the jet exit region and will be more directly impacted by its characteristics.345

In CEU, both local and remote occurrences of blocking and RWB influence stagnation occurrence. This region covers a

relatively small region meridionally, smaller than the typical meridional scale for a blocking event, so a block situated over

NEU or SE would also be expected to extend over CEU and favour stagnation therein. Blocking and RWB in CEU, NEU

and SE are thus typically positive predictors in the model, with the exception of Rossby wave breaking over NEU in summer

when it only appears as the ninth predictor. RWB in SCAN can have a positive or negative influence on stagnation in CEU,350

depending on the season (although the amount of variance explained by this predictor is often small). This behaviour could

reflect seasonal changes in the latitude of RWB or in the associated pattern. For example, a dipole-type block over SCAN

would be associated with a cyclonic circulation anomaly over CEU and hence increased wind, and a reduction in stagnation

likelihood. An omega-type block may extend across parts of both SCAN and CEU and bring settled anticyclonic conditions

to both regions. Stagnation in CEU is typically reduced when the eddy-driven jet speed is increased. The opposite is true355

in summer, when the eddy-driven jet shifts north towards latitudes farther from CEU. Local ridges are not as important for

stagnation in CEU, appearing further down the list of predictors, arguably because they involve large meridional excursions

form their subtropical sources and tend to break, therefore being better described by the RWBI or BI.

In contrast to CEU, subtropical ridges are key for stagnation variability in SW, appearing twice as the leading predictor

and once as the second included predictor. They bring sunny, settled conditions over SW and can thus support stagnation360

occurrence (e.g. Santos et al., 2009). The so-called low-latitude blocking events (i.e. those occurring in SW and SE) can be

easily confounded with subtropical ridges (Sousa et al., 2018), which sometimes expand over vast subtropical regions and

hence can also promote stagnation in SW. Blocking systems centered polewards of SW, such as those in CEU, can also extend

over their anticyclonic influence over SW depending on their location, scale and shape. The subtropical jet speed is a key

predictor for SW stagnation in summer and autumn when a weaker subtropical jet favours stagnation occurrence. In winter, the365

subtropical jet is situated further south than the SW region so it will not directly impact stagnation therein (it appears as the last

predictor, with positive sign and adds a small amount of explained variance). Increases in the eddy-driven jet speed also predict

a reduction in SW stagnation for all seasons except summer, when the eddy driven jet is located at its northernmost latitudes.

Although local blocking and RWB also tend to dominate stagnation variability in SE, the dynamical predictors are more

numerous and seasonally-varying in this region than in the others. A strong subtropical jet reduces stagnation in all seasons but370

winter. Highlighting a similar same weather pattern, local ridges are associated with increased stagnation in most seasons. In

spring, when blocking reaches large areal extents, the leading predictor of SE stagnation is blocking in the neighbouring region

of NEU. As the SE region is farther downstream of the North Atlantic, the eddy-driven jet speed and latitude are not identified

as important drivers of regional stagnation.

Thus far, we have given a broad explanation of some of the key predictors of stagnation in each region. A complete explana-375

tion of the predictors related to stagnation in every region and season is unfeasible, so, as an example, air stagnation occurring
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in SW during winter is explored further, which is the combination yielding the highest skill. The leading five predictors are

included in our discussion. They are local subtropical ridges, blocking in CEU, RWB over SE, the eddy driven jet speed, and

subtropical ridges over CEU. To aid in the explanation two measures are considered. Firstly, the partial correlation in the MLR

model between the stagnation time series and each predictor is calculated. The partial correlations are similar for each of these380

predictors and so none of the large-scale features dominate over the others. Secondly, composites of air stagnation frequency

anomaly are produced for the four selected predictors that are defined regionally. The composites are produced by comparing

stagnation occurring on days when each predictor index covers half the region to the climatological frequency of stagnation

(the same method for the composites shown in Section 3). Whilst these composites do not reflect the linear behaviour of the

MLR model, they do demonstrate the direct impact the predictors have individually on the occurrence of air stagnation and are385

useful when interpreting the stepwise model results.

Figure 7. Composite departures (colour shading) and partial correlations (numbers in brackets on top of panels, based on monthly data) of

stagnation occurrence in winter for days with (a) subtropical ridges in SW, (b) blocking in CEU, (c) Rossby wave breaking in SE and (d)

subtropical ridges in CEU. These are among the five leading terms in the stepwise model for stagnation in SW winter.

Subtropical ridges identified in SW and the contiguous CEU region are both associated with increased stagnation frequencies

in SW. The associated anomalously high geopotential height in these regions promotes anticyclonic circulation and settled

conditions with suppressed rainfall, which favour stagnation. The influence of SW ridges is locally restricted whereas ridges

in CEU promote stagnation across the Mediterranean (Fig. 7 (a), (d)). SW ridges are likely related to those defined as Atlantic390

ridges in Sousa et al. (2018) and hence are associated with stronger winds north of SW, where stagnation is reduced. Ridges

identified in CEU will also include European ridges in the definition of Sousa et al. (2018) associated with high geopotential

heights across the region. Blocking in CEU has a similar effect (Fig. 7 (b)). Blocks in this region often develop from subtropical
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ridges extending from lower latitudes and are identified by the block index when the ridge begins to overturn. This typically

begins anticyclonically on the eastern flank of the ridges and hence block onsets in this region are typically identified as395

anticyclonic (Masato et al., 2012). This means that the area to the south and east of the block remains in a region of anticyclonic

circulation with conditions favourable for stagnation as the ridge develops. This feature is evident in the composite of block

frequency for SW stagnation (Fig. 2 (a)) as an increase in block frequency extending from SW into CEU with a SW-NE

orientation. The fourth predictor has a negative regression coefficient and describes the eddy-driven jet speed. Strong winds

are obviously not conducive for stagnation occurrence, particularly when the jet is located in its southern mode which is400

directly above SW (Fig. 2 (c)). SW stagnation is also more frequent on days defined as having Rossby wave breaking in SE.

Anticyclonic RWB can occur over SE as a result of the regional meridional shear of the zonal wind (i.e. when mid tropospheric

winds intensify to the north of the region and/or weaken over SE). This is expected to enhance the SE-NE tilt of the eddy-

driven jet, diverting cyclone tracks away from southern Europe and the Mediterranean. On the other hand, RWB in SE can also

be a regional signature of anticyclonic RWB on the eastern flank of a large-scale European block extending its anticyclonic405

influence (weak winds and absence of precipitation) towards SW. The large-scale circulation pattern would resemble that in

Figure 3 (e), but shifted to the south.

4.3 Comparison with other ASIs

All of the results included in the article thus far have been obtained using the ASI of Horton et al. (2012). In this section the

European stepwise MLR is repeated for modelling the monthly variability of air stagnation in the Huang et al. (2018) and Wang410

et al. (2018) ASIs. The Horton et al. (2012) ASI includes the wind speed at 500 hPa in its formulation whereas the Huang et al.

(2018) and Wang et al. (2018) ASIs contain no criteria based on the flow at upper levels.

The skill of the models of each ASI variability are shown in Figure 8, for each region and season. Generally, the skill of the

model is quite consistent across the ASIs, although the model does slightly better for the Horton et al. (2012) index in most

seasons and regions. The overall consistency implies that the ASI does not need a criterion based on the mid-tropospheric flow415

for the large-scale dynamics to be able to explain a significant amount of the variability. The largest difference in skill is seen

for stagnation in the SW summer (Fig. 8 (d)). This reflects the fact that the upper-level wind is the controlling variable defining

stagnation in the Horton et al. (2012) index in SW summer. Indeed, removing the upper-level wind criterion from the Horton

et al. (2012) index in SW summer reduces the amount of variance that can be explained by the dynamics (R2 reduces from

0.563 to 0.496, not shown). This loss of explained variance also implies that the large-scale dynamics may be less related to420

precipitation in SW summer, since precipitation is the common variable in the three ASIs. In fact, precipitation in SW summer

is infrequent and typically associated with mesoscale features. The small difference in skill between models of the three ASIs

for the other regions and seasons shows that the results are robust and that the large-scale circulation is important for regional

air stagnation in Europe.
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Figure 8. Stepwise multiple linear model skill for air stagnation in (a) SCAN, (b) NEU, (c) CEU, (d) SW and (e) SE defined using the Horton

(solid), Huang (dashed) and Wang (dotted) indices.

5 Conclusions425

Air stagnation is known to have a large influence on air quality (e.g. Jacob and Winner, 2009; Garrido-Perez et al., 2018;

Toro et al., 2019). As poor air quality is hazardous to human health (Pope III et al., 2002; Cohen et al., 2017), it is crucial to

understand the processes causing air stagnation. Different local meteorological conditions have been shown to drive both air

stagnation events and the build-up of specific pollutants in particular regions and seasons (Prtenjak et al., 2009; Dawson et al.,

2014; Zhang et al., 2014). However, the large-scale circulation features driving such local conditions have comparatively been430

poorly addressed and are here used to describe air stagnation characteristics within Europe.

In the present paper, air stagnation in Europe is shown to be strongly influenced by the large-scale circulation. Moreover,

the large-scale leads changes in stagnation by a few days, which could have implications for its predictability. The large-scale

circulation more often resembles a synoptic-scale high pressure system when stagnation is present. For northern regions this

is achieved through the presence of an atmospheric blocking event whereas in southern regions it is more typically associated435

with subtropical ridges. Indeed, subtropical ridges are unfavourable for stagnation in northern Europe, as they are associated

with a poleward strengthening of winds which is unfavourable for stagnation. Similarly, stagnation in Southern Europe is less

frequent during high latitude blocking events (when strong winds and low pressure systems are diverted to the south of the

block). These results are generally consistent with previous studies linking air stagnation or pollutant build up with large-scale

meteorological drivers such as blocking and subtropical ridges (Garrido-Perez et al., 2017; Ordoñez et al., 2017), the position440

of the midlatitude jets (Barnes and Fiore, 2013; Shen et al., 2015; Ordóñez et al., 2019; Kerr et al., 2020a,b), Rossby wave
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breaking (Webber et al., 2017), or cyclone frequency (Leibensperger et al., 2008; Tai et al., 2010, 2012; Leung et al., 2018),

but our results provide a complete picture for stagnation events occurring year-round across Europe and allow discerning the

relative roles of these multiple drivers.

Multiple linear regression models using a stepwise selection procedure have been used to model the monthly variability445

of regional air stagnation in each region and season. Dynamical indices describing the large-scale circulation can be used to

model the monthly variability of air stagnation and can explain around 60% of its variance. The model generally performs best

when predicting stagnation in winter, particularly in SCAN. Winter weather conditions are typically windier and wetter than in

other seasons so for stagnation to occur it is more likely to be driven by a large-scale circulation feature. This means stagnation

and the large-scale flow are more closely related and the model skill is higher. Furthermore, surface weather conditions are450

more strongly controlled by circulation changes in winter than in summer (Vautard and Yiou, 2009). The amount of variance

explained by the large-scale circulation increases when including both local and remote predictors in the statistical model,

particularly in cases when local phenomena are able to explain relatively little of the stagnation variability. Synoptic scale

weather systems influence weather in upstream and downstream regions and are able to affect stagnation both locally and

remotely.455

The conclusions drawn from the results presented in this paper are robust to the choice of air stagnation index. The large-

scale circulation shows similar signatures for the air stagnation events defined by three different indices, and is able to explain

a similar amount of their variability, though for some regions and seasons the large-scale circulation shows stronger influences

on the Horton et al. (2014) index, which also accounts for upper-level winds. Each of the stagnation indices considered here

have been shown to identify situations in which pollutants can build up in various regions of the globe (Schnell and Prather,460

2017; Garrido-Perez et al., 2018; Liao et al., 2018; Huang et al., 2018; Garrido-Perez et al., 2021), though air stagnation and

pollution are not always strongly connected (Kerr and Waugh, 2018; Garrido-Perez et al., 2019). Indeed, the high variability of

air stagnation explained by the large-scale circulation is similar to the variability of ozone and PM explained by meteorological

parameters (Ordóñez et al., 2005; Barmpadimos et al., 2011, 2012; Carro-Calvo et al., 2017). This suggests that the variance

in air stagnation explained by the large-scale circulation can be used to understand pollutant variability, as well as changes in465

future high pollution episodes, which is what is most important to understand for health related climate impacts.

Air stagnation is generally expected to become more frequent with climate change (Leung and Gustafson Jr, 2005; Horton

et al., 2012, 2014; Caserini et al., 2017). Projected increases in temperature, reductions in precipitation and cyclone frequency,

and shifted jet streams contribute to the projected increase in stagnation (Mickley et al., 2004; Leung and Gustafson Jr, 2005;

Horton et al., 2012, 2014; Caserini et al., 2017), which can result in increased pollutant levels (Weaver et al., 2009; Jacob and470

Winner, 2009). In addition, air stagnation and high pollution episodes tend to coincide with heatwaves during summer (Schnell

and Prather, 2017), exacerbating the health impacts of each phenomenon, so understanding and trusting future changes in

them is crucially important. In Horton et al. (2014), a bias correction was needed to account for climate model deficiency in

simulating conditions favourable for air stagnation. Caution must be taken when analysing bias-corrected climate model output,

as it cannot overcome all model errors or correct model variability (Maraun et al., 2017), and can alter relationships between475

variables and break conservation principles (Ehret et al., 2012). The identification of air stagnation in climate models uses
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meteorological variables that climate models may struggle to represent, such as precipitation and near-surface wind speeds

(Flato et al., 2013). Climate model simulations are expected to better represent features of the large-scale circulation than

the variables used to compute air stagnation indices. Therefore, the findings presented in this paper can be used to evaluate

the reliability of air stagnation in climate models and assess their future changes. The large-scale circulation and stagnation480

correspondence in climate model simulations will be presented in a future article.
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