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Abstract. This study compares the trends of Hadley cell (HC) strength using different HC measures applied to the ECMWF

ERA5 and ERA-Interim reanalyses in the period 1979-2018. The HC strength is commonly evaluated by indices derived

from the mass-weighted zonal-mean stream function. Other measures include the velocity potential and the vertical velocity.

Six known measures of the HC strength are complemented by a measure of the average HC strength, obtained by averaging

the stream function in the latitude-pressure (ϕ-p) plane, and by the total energy of unbalanced zonal-mean circulation in the5

normal-mode function decomposition. It is shown that measures of the HC strength, which rely on point values in the ϕ-p plane,

produce unreliable long-term trends of both the northern and southern HCs, especially in ERA-Interim; magnitudes and even

the signs of trends depend on the choice of HC strength measure. The two new measures alleviate the vertical and meridional

inhomogeneities of the trends in the HC strength. In both reanalyses, there is a positive trend in the total energy of zonal-mean

unbalanced circulation. The average HC strength measure also shows a positive trend in ERA5 in both hemispheres, while the10

trend in ERA-Interim is insignificant.

1 Introduction

The Hadley circulation is a thermally forced overturning circulation, consisting of two symmetrical cells, which span between

the tropics and the subtropics. Each cell consists of the ascending branch in the deep tropics, which is associated with en-

hanced precipitation, poleward upper-tropospheric flow, the descending motion in the subtropics that suppresses rainfall, and a15

frictional return flow in the lower troposphere. Therefore, potential changes of the Hadley cells (HCs), either to their strength

or their meridional extent, will have a profound impact on the global hydrological cycle (Held and Soden, 2006; Burls and

Fedorov, 2017) and the biosphere, particularly in the subtropics. For example, the subsidence region has already become drier

because of the enhanced descending motion, in line with the satellite observations of upper tropospheric humidity and total

water vapor (Sohn and Park, 2010).20

A number of studies of the HC strength using reanalyses suggested strengthening of both the northern HC (NHC) and

southern HC (SHC) in the recent decades. However, the reported magnitude and uncertainty of the trends differ (Tanaka et al.,

2004; Mitas and Clement, 2005; Stachnik and Schumacher, 2011; Nguyen et al., 2013; Chemke and Polvani, 2019). This is,
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alongside different reanalyses (with e.g. different resolutions) and study periods used, partly due to a variety of metrics that

have been used to define the HC strength. For example, the strength of the overall Hadley circulation can be evaluated using25

the velocity potential in the upper troposphere, e.g. at 200 hPa, as the meridional divergent flow in the upper branch of the HC

is strongest there, which is associated with the maximal upward motions in the layer beneath (Tanaka et al., 2004). The Hadley

circulation strength can also be defined by the minimum pressure velocity ω at some predefined mid-tropospheric level (Wang,

2002). Both measures describe the properties of the ascending branch of the Hadley circulation.

The majority of the studies describe the HC by the mass-weighted zonal-mean stream function ψ in the latitude-pressure30

(ϕ-p) plane (Oort and Yienger, 1996). The ψ function is computed by the vertical integration of the zonal-mean meridional

wind

ψ(ϕ,p) =
2πRcosϕ

g

p∫

0

[v](ϕ,p′)dp′, (1)

where [v] is the zonal- and annual/seasonal/monthly-mean meridional wind, R is Earth’s radius, g is gravity, ϕ is latitude and

p is pressure. Several indices of the HC strength based on point values (maxima or minima) of ψ(ϕ,p) have been used:35

1. the maximum (minimum) values of ψ in the ϕ-p plane (e.g. Mitas and Clement, 2005; Stachnik and Schumacher, 2011;

D’Agostino and Lionello, 2017);

2. the maximum (minimum) value of ψ at some selected pressure level, e.g. 500 hPa (e.g. Kang et al., 2013; Son et al.,

2018; Chemke and Polvani, 2019; Mathew and Kumar, 2019);

3. the vertical average of the maxima (minima) of ψ at different pressure levels in the troposphere (e.g. in the layer 200 hPa40

- 900 hPa, as in Nguyen et al. 2013).

Nguyen et al. (2013) is also the only study that addresses the vertical inhomogeneity of the HC strength and its trends.

While several studies have compared the Hadley circulation in different reanalyses and climate models (e.g. Stachnik and

Schumacher, 2011; Chemke and Polvani, 2019), no study (to our knowledge) has yet compared the measures of the HC strength

in the same dataset. In this study we perform such an inter-comparison and we assess how the trends estimated by different45

measures compare with each other in the ERA5 and ERA-Interim reanalyses. For example, we assess how sensitive are the

trends derived from measures based on the latitude-pressure stream-function profile (1) to the choice of the pressure level.

Motivated by uncertainties in the results based on the different measures, we propose two alternative measures of the HC

strength: a) a stream-function based measure of average strength, which also grasps the overall trends of each Hadley cell; and

b) a normal-mode function based index which measures the strength of the global unbalanced zonal-mean circulation to which50

the Hadley cell makes the greatest contribution.

The paper is organised as follows. Section 2 describes the data and methods. The measures are compared in Section 3.

Discussion and conclusions are given in Section 4.
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2 Data and Methods

2.1 Reanalysis data55

Two modern ECMWF reanalyses are analysed: ERA5 (Hersbach et al., 2020) and ERA-Interim (Dee et al., 2011). 40 years

(1979-2018) of daily data at 00 UTC are used. Meridional wind (v), zonal wind (u) and vertical velocity (ω) data are provided

on 37 pressure levels between 50◦S and 50◦N on latitude-longitude grid with 1◦ resolution for both reanalyses. Among these

levels, 23 are between 1000 hPa and 200 hPa.

The normal-mode function based index was computed using 40 years of monthly means of daily means for the zonal wind,60

meridional wind, temperature, geopotential and surface pressure. For details on the normal-mode function derivation and

their applications, see Žagar et al. (2015) and Žagar and J. Tribbia (2020). For ERA5, the global data were analysed on regular

Gaussian grid F80 with 1.125◦ resolution and 137 hybrid model levels. ERA-Interim data were analysed on the same horizontal

grid but using 60 vertical levels.

2.2 Mean HC and its trend65

Trends are evaluated from the time series of ψ for different point values ψ(ϕ,p) as linear regression coefficients. The trends are

considered significant if they pass the 95% threshold of the modified Mann-Kendall test (Hamed and Ramachandra Rao, 1998).

Note that the trends presented in this study are only representative of the analysed 40-year period and that we do not evaluate

an extent to which they represent a climate-change signal. A separate study (Zaplotnik et al., 2021, in review) addresses this

question and its results suggest that a part of the 40-year trends in the HC strength may be due to the multi-decadal variability.70

Fig. 1 shows climatological monthly-mean stream function and its pointwise trends in the ERA5 reanalysis between 1979 and

2018. A significant enhancement of the winter cells can be observed: the northern Hadley cell (NHC; red contours) strengthens

most between December and April, whereas the southern Hadley cell (SHC; blue contours) strengthens most between April

and October. Both cells are strengthening between March and May. A prominent feature is that the trends in the monthly-mean

HC strength are spatially inhomogeneous across the cells, both meridionally and vertically. For example, from December to75

February, the lower-tropospheric part of the descending branch in the NHC is strengthening, while the ascending branch of the

cell in the deep tropics is weakening. From July to October, the SHC exhibits significant strengthening in the ascending branch

in the Inter-Tropical Convergence Zone, while its descending branch mostly shows insignificant strengthening/weakening and

even significant weakening on the southern boundary of the cell. The inhomogeneities in trends are even more pronounced in

the ERA-Interim reanalysis (Fig. A1); for example, vertical inhomogeneity in the SHC trend from May to October is especially80

pronounced in the regions of the strongest ψ gradients. The presence of the inhomogeneities in the HC trends raises a question

about the reliability of some of the climate trends derived from point measures of the HC strength.

2.3 Measures of Hadley cell strength

The trends and their uncertainties are compared for several measures of the HC strength:
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1. maximum (minimum) of annual/monthly-mean stream function between 40◦S and 40◦N and between 200 hPa and 90085

hPa, denoted ψmax (ψmin). Slightly different boundaries were employed by Mitas and Clement (2005); Stachnik and

Schumacher (2011); D’Agostino and Lionello (2017); however, a reasonable choice of boundaries (e.g. excluding the

lower part of the boundary layer and the stratosphere) does not affect the results;

2. maximum (minimum) of annual/monthly-mean stream function at predefined pressure levels (e.g. 400 hPa, 500 hPa,

etc.) within 40◦S and 40◦N, denoted ψmaxp (ψminp ); as used in e.g. Kang et al. (2013); Chemke and Polvani (2019);90

3. stream function value at the location of climatological (1979-2018) annual/monthly-mean maximum/minimum of the

NHC/SHC strength, ψ(ϕmax,pmax), where (ϕmax,pmax) = argmax
(ϕ,p)

(ψ1979−2018), and analogous for ψ(ϕmin,pmin);

4. an average of maximum/minimum values of annual/monthly-mean ψ over pressure levels between e.g. 200 hPa and 900

hPa, with a constant step size of 50 hPa, as in Nguyen et al. (2013):

〈ψmax〉p =
1
N

N∑

i=1

(ψ(pi))max, (2)95

and analogous for
〈
ψmin

〉
p
;

5. maximum of the zonal-mean velocity potential [Φ]max(p) at some predefined pressure level p, typically in the upper

troposphere, e.g. at 200 hPa (Tanaka et al., 2004). The velocity potential is related to the wind divergence as∇·v =∇2Φ;

6. minimum of the zonal-mean vertical velocity [ω]min(p) at some predefined pressure level p, typically in the mid-

troposphere, e.g. at 500 hPa (Wang, 2002), or a minimum ω within the tropical troposphere ([ω]min).100

7. an average HC strength, which is obtained by spatially averaging the stream-function field in the latitude-pressure plane.

For the northern HC, it yields

ψNHC = 〈ψ(ϕ,p)〉, for ψ(ϕ,p)> 0 and (ϕ,p) ∈ [−20◦,40◦]× [50,1000] hPa , (3)

where ψ is uniformly sampled latitudinally, and vertically with a 50 hPa step. Wide latitudinal boundaries ensure that

the Hadley cell is fully contained in every season (as shown in Fig. 1). An analogous measure ψSHC is defined for the105

southern Hadley cell but with conditions ψ < 0 and meridional boundaries within ϕ ∈ [−40◦,20◦].

8. a normal-mode function based measure IM , which is defined as the total energy of the zonal-mean unbalanced circula-

tion. The index is obtained by projecting global geopotential and wind fields onto the normal-mode functions following

Kasahara and Puri (1980); Žagar et al. (2015). The complex expansion coefficients χk,n,m associated with the inertia-

gravity modes (IG) of the mean zonal state (k = 0) are then used to compute the total (kinetic plus potential) energy as110

IM =
∑

m

gDm

∑

n

χIG
k=0,n,m[χIG

k=0,n,m]∗ (4)
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where the indices m and n denote the vertical mode index and the meridional mode, respectively. For every m, Dm

denotes the associated eigenvalue known as the equivalent depth (e.g. Žagar et al., 2015, their Fig. 4), such that D1 >

D2 > .. . > DM > 0, where M is the maximal vertical wave number. To define the HC strength, only coefficients corre-115

sponding to IG modes with k = 0, representing the zonal-mean state, are taken into account in Eq. (4). The radius of de-

formation on the equatorial β−plane, ae, which defines the trapping scale of the modes, is defined byDm: ae =
√

gDm

β ,

where β = 2Ω/R, and Ω is Earth’s angular velocity. Thus, larger m-s correspond to stronger equatorial trapping, e.g.

for D7 = 708 m the trapping scale is roughly 17◦. With all vertical and meridional modes included, the mean IG cir-

culation resides mainly within the tropics, and to a small extent near the major orographic features in the extratropics120

and in the polar winter stratosphere, as shown in Žagar et al. (2015, their Fig. 10) using ERA-Interim. For more details

on the modal decomposition, see Appendix A. Figure A2 shows that the Hadley circulation is well represented by the

zonal-mean unbalanced (IG) circulation (compare Fig. A2b vs. Fig. A2a).

The described indices have different properties. Indices (1)-(4) and (7) distinguish between the two Hadley cells, whereas

indices (5), (6) and (8) do not. Indices (1) to (3) do not capture the vertical inhomogeneities in the strength of the Hadley cell125

by definition. Index (4) captures the vertical but not the meridional inhomogeneity. Indices (5) and (6) describe the ascending

branch of the Hadley circulation. New measure (7) by definition does not describe spatial inhomogeneities, but captures them

by spatial averaging. The same applies to the new measure (8), which is by definition a global measure, but in large part

explained by the Hadley circulation (Fig. A2) and also does not distinguish between the two HCs.

In the following section, we explore the sensitivity of the trends to different measures of the HC strength.130

3 Sensitivity of the Hadley circulation trends to different measures

3.1 Comparison of the stream-function based measures

The sensitivity of the trends of the annual-mean and monthly-mean HC strength to the stream function-based measures (1)-(4)

and (7), described in Section 2.3, is shown in Fig. 2 for ERA5 and in Fig. A3 for ERA-Interim. In both reanalyses, large

differences are observed between the trends of ψmax(p) at distinct pressure levels p (measure (2)). In ERA5, the multiyear135

trend of the annual-mean NHC (leftmost column in Fig. 2a) is 0.7·108 kg s−1 yr−1 at 400 hPa and 2.3·108 kg s−1 yr−1 at 750

hPa. For the SHC (Fig. 2b), ψmin(p) strengthens by 0.9·108 kg s−1 yr−1 at 800 hPa and by 2.8·108 kg s−1 yr−1 at 400 hPa.

In ERA-Interim, the NHC exhibits even differences in the sign of trends (leftmost major column in Fig. A3a); a strengthening

trend of 2 ·108 kg s−1 yr−1 is present at 750 hPa and a weakening trend of −0.4 ·108 kg s−1 yr−1 at 450 hPa. The SHC has an

insignificant trend of the annual-mean HC in the lower troposphere and a significant weakening of up to −3 · 108 kg s−1 yr−1140

in the upper troposphere (leftmost major column in Fig. A3b), i.e. opposite to what ERA5 shows.

The differences between trends of monthly-means at different pressure levels are even larger. For example, the February

NHC exhibits a large and significant strengthening in the lower troposphere (700 hPa - 800 hPa) with trends around 7 · 108 kg

s−1 yr−1 in both ERA5 (Fig. 2a) and ERA-Interim (Fig. A3a); however the trends in the mid-troposphere (400 hPa - 500 hPa)
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are negative and mostly insignificant. Different magnitudes of the trends at distinct pressure levels can partly be explained by145

differences in the climatological-mean magnitude of the HC strength at different pressure levels. In general, the greater the

mean HC magnitude, the greater the trend. The same feature can be observed in Fig. 1.

The differences in the trends of monthly-means at various pressure levels point at the unreliability of trend. Furthermore,

magnitudes of the differences between indices are of the same order as the uncertainties of derived trends for individual indices.

Thus, by measuring the maximum HC strength at selected pressure level, e.g. 500 hPa (as in measure (2)), the estimated trends150

are affected by the limitation of the measure. At this level, the HC strength also exhibits a greater year-to-year variability of

annual-mean and particularly monthly-mean variability (not shown), and consequently an increased uncertainty in the trend.

Another notable feature of Figs. 2b and A3b is a significant difference between the trends of the annual-mean SHC strength

in ERA5 and ERA-Interim reanalyses; the SHC is strengthening in ERA5 but weakening in ERA-Interim. From July to October

the SHC is strengthening in both reanalyses, while from April to June it is weakening in ERA-Interim and strengthening in155

ERA5. The reasons for such discrepancies are likely in the data assimilation modelling and treatment of observations, and are

therefore beyond the scope of this study.

Measure (1) exhibits significant year-to-year variability in the levels of ψmax, observed also by Mitas and Clement, 2005.

ψmax is switching between 350 hPa and 700 hPa levels in ERA5, and between 400 hPa and 650 hPa levels in ERA-Interim

(Fig. A5, magenta and red lines). In contrast, the level of ψmin remains roughly the same (700-750 hPa, blue and orange lines160

in Fig. A5) in both reanalyses throughout the studied period. Measure (1) also sometimes produces anomalous trends, which

do not align with any of the other measures (e.g. in June and July NHC in ERA5, Fig. 2a).

Measure (2) does not capture the vertical inhomogeneity in the trend of the HC strength (as seen from ψ at different levels

in Figs. 2, A3). Measure (3) evaluates each Hadley cell in a spatially-fixed point throughout the observed period (1979-2018 in

our study). Thus, we expect it to be susceptible to potential meridional shifts of the mean Hadley circulation (Grise and Davis,165

2020) or vertical shifts due to vertically expanding tropical troposphere (Hu and Vallis, 2019). As a single-point measure, it

also suffers from spatial inhomogeneity of the trend of the HC strength, similar to measure (2). It can also produce spurious

trends, such as the SHC trends in November in ERA5 (Fig. 2b, red bar), where the climatological maximum of the SHC is

located at the Equator at 850 hPa pressure level (Fig. 1).

Vertically averaged maximum/minimum values of ψ as in measure (4) reduce the discrepancies associated with the varying170

pressure levels of stream-function maxima and minima. Measure (4) also grasps the differences in the trends of the HC strength

and averages them. Furthermore, such a measure averages out the differences between the trends at different pressure levels,

as well as the uncertainty due to the choice of the pressure level in measure (2). However, Fig. 1 also revealed significant trend

inhomogeneities in the meridional direction, e.g. between the ascending and the descending branches of the Hadley circulation,

which are addressed by the measure of average HC strength (i.e., by adding a meridional average).175

The HC strength measured by (7) is on average weaker than in other ψ-based measures as spatial averaging leads to smaller

magnitude of ψ (not shown). Consequently, also the trends are smaller (Figs. 2, A3, rightmost violet bar in each major column).

When trends are spatially more homogeneous, measure (7) exhibits relatively smaller uncertainties than the other measures

(e.g. trends in monthly means of the NHC from March to May, ERA5, Fig. 1 and Fig. 2a), and conversely for spatially less
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homogeneous trends (e.g. trends in monthly-means of the NHC from July to September and December, ERA5, Fig. 1 and180

Fig. 2a). The average HC measure (7) thus provides an average over “extreme” local HC strength measures (1-4), as well as an

overall uncertainty. Note that Figs. 2, A3 merely showcase the stronger year-to-year variability of monthly means (compared

with year-to-year variability of annual means), as well as large discrepancies between ψ-measures at different levels (as also

seen from Figs. 1, A1), however from here on, we limit the analysis only to the trends of the annual-mean Hadley circulation.

3.2 Comparison of stream-function-based measures with other measures185

The time-series of measures with different units and different mean magnitudes can be compared after their normalisation

which is in our case their respective climatological value for the 1979-2018 period, denoted 〈ψ〉. Results are shown in Fig. 3

for ERA5 reanalysis, including the normalized time-series of stream-function-based (ψ) measures (1)-(4) and (7), velocity-

potential (Φ) based measures (5), pressure-velocity (ω) based measures (6), and measure (8) describing the total energy of

the zonal-mean unbalanced circulation. Figure 4 and Table 1 present the trends of the normalized time-series, i.e. the relative190

trends (∂ψ/∂t)/〈ψ〉 in percentages per year, whereas Fig. 5 shows the correlations between the time-series of HC strength

derived from different measures.

In general, the normalized indices are well aligned in both HCs (Fig. 3, in grey colours), with a slightly larger spread over

a few periods (e.g. 1979-1982 in both HCs). The time-series of ψ-indices are better aligned for the SHC than the NHC, both

in ERA5 and ERA-Interim (Fig. A4). They are also highly correlated (Fig. 5), as expected from Fig. 3. For example, the time-195

series derived from ψmax(p) (measure (2)) at neighbouring pressure levels (50 hPa apart) are highly correlated with correlation

coefficient r > 0.98, whereas r > 0.94 for measures 100 hPa apart. Absolute ψmax (measure (1)) correlates best with ψmax(p)

at mid-tropospheric presssure levels (550-650 hPa), whereas absolute ψmin correlates best with ψmin(p) at lower-tropospheric

presssure levels (650-800 hPa). The result is in line with Fig. A5. Normalized measure (4) is highly correlated (r > 0.9) with

ψmax(p) and ψmin(p) at various levels.200

A widely utilized HC strength measure ψmax(500hPa) also highly correlates (r = 0.88) with the average HC strength

measure (7), ψNHC . However, in the SHC, the stream function minimum at 500 hPa only moderately correlates (r = 0.77)

with the average SHC strength, ψSHC . On the other hand, ψmin at 700 hPa and 750 hPa has a high correlation with the

average HC strength (r = 0.86). These results suggest that the ψmax-measures at pressure levels between 600 hPa and 500 hPa

are most representative of the overall changes in the NHC, whereas ψmin measures between 750 hPa and 700 hPa are most205

representative for the SHC. The other single levels should probably be avoided as the HC strength indices.

Time-series of the other measures, i.e. ψmax or ψmin, 〈ψmax〉p or
〈
ψmin

〉
p
, ψ(ϕmax,pmax) or ψ(ϕmin,pmin) at the

location of the climatological maximum or minimum all highly correlate (r = 0.82 to 0.88) with the average HC strength

measure as well. This means that the newly proposed average measure (7) is an adequate candidate for assessing the changes

of the HC strength.210

Despite the high correlations, the relative trends of ψ-indices can differ significantly (Fig. 4), especially in ERA-Interim.

ERA5 (Fig. 4a,c) shows mostly significant strengthening from 0.09-0.36% yr−1 for the NHC and 0.08-0.32% yr−1 for SHC

(Table 1). In the NHC, the widely used measure ψmax (500 hPa) shows strengthening of 0.14% yr−1 and is equal to the
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Table 1. Annual-mean HC strength trends normalized by the climatological-mean values of the HC strength in ERA5 between 1979-2018.

The trends derived from stream-function based measures (which distinguish between the NHC and the SHC), are separated by the horizontal

black line from the trends, derived from other measures (which describe the two cells together). The values in the parentheses denote standard

error of the trend estimates.

NHC measure trend (± unc.) [%/yr] SHC measure trend (± unc.) [%/yr] HC measure trend (± unc.) [%/yr]

ψmax 0.177 (± 0.087) ψmin 0.136 (± 0.081) [Φ]max (150 hPa) -0.375 (± 0.121)

ψmax (800 hPa) 0.304 (± 0.104) ψmin (800 hPa) 0.082 (± 0.079) [Φ]max (200 hPa) 0.110 (± 0.126)

ψmax (750 hPa) 0.298 (± 0.108) ψmin (750 hPa) 0.125 (± 0.080) [Φ]max (250 hPa) 1.136 (± 0.140)

ψmax (700 hPa) 0.258 (± 0.108) ψmin (700 hPa) 0.160 (± 0.081) [ω]min (400 hPa) 0.519 (± 0.170)

ψmax (650 hPa) 0.213 (± 0.102) ψmin (650 hPa) 0.192 (± 0.082) [ω]min (500 hPa) 0.349 (± 0.178)

ψmax (600 hPa) 0.178 (± 0.091) ψmin (600 hPa) 0.214 (± 0.082) [ω]min (600 hPa) 0.412 (± 0.187)

ψmax (550 hPa) 0.157 (± 0.080) ψmin (550 hPa) 0.233 (± 0.081) [ω]min 0.738 (± 0.155)

ψmax (500 hPa) 0.140 (± 0.073) ψmin (500 hPa) 0.257 (± 0.079) IM 0.072 (± 0.074)

ψmax (450 hPa) 0.116 (± 0.070) ψmin (450 hPa) 0.280 (± 0.077)

ψmax (400 hPa) 0.094 (± 0.070) ψmin (400 hPa) 0.319 (± 0.075)

ψ(ϕmax,pmax) 0.294 (± 0.106) ψ(ϕmin,pmin) 0.177 (± 0.079)

〈ψmax〉p 0.136 (± 0.077)
〈
ψmin

〉
p

0.183 (± 0.073)

ψNHC 0.358 (± 0.071) ψSHC 0.223 (± 0.070)

trend of 〈ψmax〉p, while ψmax increases by 0.18% yr−1. ψ(ϕmax,pmax) and ψNHC show larger trends with strengthening of

0.29% yr−1 and 0.36% yr−1, respectively. The two measures which perform spatial averaging, 〈ψmax〉p and ψSHC , suggest215

strengthening of the southern cell by 0.18% yr−1 and 0.22% yr−1, respectively. The relative trends derived from the average

HC strength measure (7) show mildly reduced uncertainty compared to the other stream-function-based point measures, in line

with the results of Section 3.1.

The time-series derived from ω-indices have much higher temporal oscillations compared with ψ-indices (Fig. 3), however

the maxima and minima are fairly aligned with ψ-indices, though with larger anomalies, which is captured also by their220

moderate correlations (r = 0.3 to 0.5 for the SHC and 0.4 to 0.65 for the NHC) (Fig. 5, A6). However, the average HC strength

(measure (7)), ψNHC and ψSHC , correlates better with the ω-indices: r = 0.67 to 0.80 for the NHC and 0.63 to 0.71 for the

SHC. The measure (7) also correlates better with the Φ-indices than other ψ-indices, particularly with [Φ]max at 200 hPa and

250 hPa. This further implies that the average HC strength (measure (7)) captures also the changes in the HC in regions of

ascending motion. The correlation of [Φ]max at 150 hPa with other measures is low and mostly insignificant, suggesting that225

the 150 hPa level might already be in the tropical tropopause.

The velocity-potential-based measures [Φ]max(p) show much larger magnitude of the trends compared with the other mea-

sures. They are also very susceptible to the applied pressure level, a similar issue as for the ψ-indices. Therefore, this measure

is also likely susceptible to the potential future changes in the depth of the tropical troposphere. For example, [Φ]max (250
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hPa) in ERA5 shows a strengthening trend of 1.14% yr−1, at 200 hPa roughly 0.11% yr−1, whereas [Φ]max at 150 hPa shows230

a weakening trend of -0.38% yr−1 (Fig. 4a), an outlier among the other measures. The differences among trend magnitudes are

even larger in ERA-Interim (Fig. 4b).

The trends derived from the ω-indices align reasonably well with the trends derived from the ψ-indices. In particular, [ω]min

at 500 hPa (dark grey bar in Fig. 4) shows good agreement with the average HC strength (measure (7)), but with more than

twice as large uncertainty due to larger variability of the ω-indices, as revealed in Fig. 3. As for the other point measures,235

the derived trends of the ω-based HC strength are strongly susceptible to the choice of a pressure level (this is again more

pronounced in the ERA-Interim).

The total energy of the zonal-mean unbalanced circulation IM has strengthened in the 1979-2018 period in both ERA5 and

ERA-Interim with a rate of 0.07% yr−1 and 0.28% yr−1 (Fig. 4). The uncertainty of the trend is relatively small compared

to the other measures (Tables 1, A1). The sign of the derived trends in ERA5 is consistent with other measures in ERA5,240

although the magnitude is smaller. However, IM suggests strengthening of the global unbalanced circulation also in ERA-

Interim (Fig. 4b,d), a trend opposite to that derived from the stream-function-based indices. Furthermore, the correlation of

the unbalanced energy index with other indices is low and insignificant (Fig. 5). Insignificant correlations are not surprising

as this index is largely different from all other indices. First, it is the total energy measure; the kinetic energy part is due to

both components of the horizontal flow and a contribution to the energy comes also from outside the tropics and from the245

stratosphere. We argue that the part of IM from the extra-tropics and the stratosphere is unimportant for the overall signal, but

it may be important for the trends. Zagar et al. (2020) discussed unbalanced circulation in ERA5 and ERA-Interim in relation

to the data assimilation behind the two reanalyses. They showed that in spite of the differences, the two datasets agree on the

positive trend in the most energetic large-scale features of tropical circulation.

To quantify the role of the stratospheric circulation to the uncertainties in the trends in IM , we compared IM in ERA-Interim250

focusing on levels up to 100 hPa only. It revealed a smaller trend though still positive and a somewhat higher correlation with

the other indices (not shown).

Given the importance of the mixed Rossby-gravity (MRG) waves in the Hadley circulation (Hoskins et al., 2020), we also

tested an extension of IM , which consists of adding the MRG wave energy to the zonal-mean unbalanced energy (4). In

this case, the relative trend increased by a slight margin, while the correlation with other measures remained insignificant255

(not shown). Furthermore, performing the summation (4) for a subset of vertical modes (e.g. m≥ 9), thereby reducing the

stratospheric and high-latitude contributions to the IM , results both in greater correlations with other measures, and in a larger

relative trend, which is better aligned with other measures (not shown).

4 Conclusions

In this study, we analysed a number of indices of the Hadley circulation strength including indices based on the mass-weighted260

mean meridional stream-function, velocity potential, pressure velocity ω, and the total energy of the zonal-mean unbalanced

circulation. The indices were applied to ERA5 and ERA-Interim reanalysis data between 1979 and 2018. While ERA5 is our
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main dataset, its comparison with ERA-Interim provides confidence that the observed characteristics of a particular measure

are not an isolated feature of ERA5 reanalysis. However, the comparison is not straightfoward as the two reanalyses differ in

their representation of the unbalanced tropical circulation. This was made evident by a new HC strength measure defined as the265

global total energy of the unbalanced zonal-mean circulation. Another newly proposed measure describes the average strength

of the NHC and SHC using the average stream function and is therefore insensitive to spatial inhomogeneities.

By analysing the temporal changes of the stream function changes in the latitude-pressure plane, we showed that the HC

strength trends are spatially inhomogeneous, both meridionally and vertically (Figs. 1,A1), particularly in ERA-Interim. Dis-

tinct HC strength measures resulted in significantly different and sometimes even opposing trends, decreasing our prospects270

to draw firm conclusions on the circulation changes. The two new measures of the HC strength are characterized by a smaller

uncertainty of the derived trends compared to the current measures of the HC strength, likely due to spatial averaging (average

stream function) or the integration (energy of zonal-mean unbalanced circulation). However, the normal modes based index

is affected by its global definition meaning that the unbalanced zonal-mean circulation outside the tropical and subtropical

troposphere is also accounted for. Future work can refine the index.275

In light of all the results, we recommend using the measure of the average HC strength (measure (7) in Section 2.3) whenever

interested in the variability and trends of the HC strength. Having said this, usage of new and established measures will

ultimately depend on the purpose of a study.

Presented opposing trends suggest that the contribution of physical mechanisms that drive the Hadley cells and govern their

strength (e.g. diabatic heating, friction, eddy heat and momentum fluxes, static stability, etc.) are likely to vary with the chosen280

HC strength measure (Chemke and Polvani, 2019; Zaplotnik et al., 2021). For example, the friction should affect the HC

strength trends more if the measure ψmax(p) is taken at some lower-tropospheric pressure level, whereas its impact is likely

reduced when ψmax(p) is evaluated at mid-to-upper tropospheric levels. However, a detailed analysis of these effects is beyond

the scope of this study and will be pursued in the future.

Our results confirm that caution is needed when comparing HC trends from different studies using different measures of the285

HC strength. A unified index of the Hadley circulation would allow a better estimation of the likelihood of the future changes

in the global atmospheric circulation (e.g., Stocker et al., 2013).

Code and data availability. Scripts are available upon request. The ERA-Interim and ERA5 reanalysis datasets are available from http://www.ecmwf.int.

The data were obtained using Copernicus Climate Change Service information 2021. Data used to generate Figs. 2 to 5 and Figs. A3 to A6 are

publicly available at https://github.com/zaplotnik/Hadley-cell-strength and publsihed in Zenodo data repository: https://zenodo.org/record/290

5135222#.YPzCMXUzb6c.
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Figure 1. Monthly-mean climatology of the Hadley Circulation (red and blue contours) and its trends (shading) in ERA5 reanalysis between

1979 - 2018. Red contours indicate positive climatological stream function values, i.e. (0.1,0.3,0.6,1,1.5,2,2.5) · 1011 kg s−1 and blue

contours their negative equivalents, i.e. (−0.1,−0.3,−0.6,−1,−1.5,−2,−2.5) · 1011 kg s−1. Crosses indicate the statistically significant

trends at the 95% confidence level. Note that the overlapping of contours and shading of the same colour indicates strengthening of the cell,

while overlapping of different colours indicates cell weakening.
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a)

b)

Figure 2. Trends of the NHC strength (a) and SHC strength (b) in ERA5 reanalysis between 1979-2018 for different stream-function-based

measures from Section 2.3. Annual-mean trends of the HC strength are shown in the first column, while monthly-mean trends are shown

in the other columns (as labeled). Different measures of the HC strength are shown in the legend, e.g. in (a) for the NHC: ψmax denotes

annual/monthly stream function maximum (measure (1)), ψmax at 400 hPa, 450 hPa, etc. denotes annual/monthly stream function maximum

at respective pressure level (measure (2)), and ψ(ϕmax,pmax) denotes that the trends are measured at the point of the maximum stream

function in a multiyear average of the NHC strength (measure (3)). 〈ψmax〉p denotes vertically averaged ψmax between 200 hPa and 900

hPa (measure (4), Eq. 2) and ψNHC denotes measure of average HC strength (measure (7), Eq. 3). Analogous notations are used for the

stream function minimum for the SHC in (b). Note that values in (b) are multiplied by (-1), thus positive values in both (a) and (b) indicate

strengthening of the cell. Black error bars indicate standard error of the trend estimates.
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a)

b)

Figure 3. Time-series of the NHC strength (a) and the SHC strength (b) in ERA5 reanalysis between 1979-2018 for different measures

from Section 2.3. Time-series are normalized by their 1979-2018 climatological mean. Different stream-function-based measures of the HC

strength are shown in the legend (in grey colours), e.g. in (a) for the NHC: ψmax denotes the annual/monthly stream function maximum

(measure (1)); ψmax at 800 hPa, 750 hPa, 700 hPa, etc. denotes the annual/monthly stream function maximum at respective pressure level

(measure (2)); ψ(ϕmax,pmax) denotes that the HC strength is measured at the point of the maximum stream function in a multiyear average

of the NHC strength (measure (3)); 〈ψmax〉p denotes the vertically averaged ψmax between 200 hPa and 900 hPa (measure (4), Eq. 2); and

ψNHC denotes the measure of the average HC strength (measure (7), Eq. 3). Analogous notations are used for the stream function minimum

for the SHC in (b). The following measures do not distinguish between the two Hadley cells, but describe the Hadley circulation as a whole

(their time-series are thus the same for NHC in (a) and SHC in (b)): [Φ]max(p) denotes the maximum of the zonal-mean velocity potential

at different pressure levels (measure (5), orange colours); [ω]min(p) denotes the minimum of the zonal-mean vertical velocity (measure (6),

violet colours); and IM denotes the normal-modes-based index of the Hadley circulation (measure (8), red colour).
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Figure 4. Annual-mean HC strength trends normalized by the climatological-mean values of the HC strength in the NH (a,b) and SH

(c,d) in ERA5 (a,c) and ERA-Interim (b,d) reanalyses between 1979-2018 for different measures of HC strength defined in Section 2.3.

Different measures of the HC strength are shown in the legend, e.g. for the NHC: ψmax at 400 hPa, 450 hPa,... denotes the annual-mean

stream function maximum at respective pressure level (measure (2)); ψmax denotes the annual-mean stream function maximum (measure

(1)); ψ(ϕmax,pmax) denotes that the trends are measured at the point of the maximum stream function in a multiyear average of the NHC

strength (measure (3)); 〈ψmax(t)〉p denotes the vertically averaged ψmax(t) between 200 hPa and 900 hPa (Eq. 2) (measure (4)); and ψNHC

denotes the measure of average HC strength (Eq. 3) (measure (7)). Analogous notations are used for the stream function minimum for the

SHC. The following measures do not distinguish between the two Hadley cells, but describe the Hadley circulation as a whole (their results

are the same for the NHC and the SHC, and are separated by the vertical black dashed line): [Φ]max denotes the maximum of the zonal-

mean velocity potential (measure (5)), [ω]min denotes the minimum of the zonal-mean vertical velocity (measure (6)), and IM denotes the

normal-modes based index of the Hadley circulation (measure (8)). Note that positive values in all panels indicate strengthening of the NHC

and SHC. Black error bars indicate standard error of the trend estimates.
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Figure 5. Correlations of time-series, derived from different measures of the Hadley cell strength, described in Section 2.3, for 1979-2018

period in ERA5 reanalysis. The correlations for the northern Hadley cell are shown in the upper right part of the matrix, whereas the southern

Hadley cell correlations are represented in the lower-left part. Time-series of [ω(p)]min are multiplied by (−1) so that more positive values

correspond to HC strengthening. Similarly, the time-series of the stream-function based measures ψmin are also multiplied by (−1) so that

more positive values correspond to HC strengthening. Only correlations exceeding 95% significance threshold are shown.
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Appendix A

MODES software (Žagar et al., 2015) is used to perform scale- and circulation-type-dependent decomposition of the 3D

dynamical fields: the zonal wind u, meridional wind v and modified geopotential h= P/g with P = Φ +RT0 lnps. Here, Φ

represents the geopotential, R is the gas constant, T0(p) is globally-averaged temperature on a certain pressure level. The input295

data vector [u,v,h]T is decomposed using separable series of M orthogonal vertical structure functions Gm(p) and series of

horizontal structure functions (Hough harmonics) Hk
n(λ,ϕ;m), which consist of 2K+1 zonal waves andR meridional waves:




u(λ,φ,p)

v(λ,φ,p)

h(λ,φ,p)


=

M∑

m=1

Gm(p)Sm
R∑

n=1

K∑

k=−K
χknmΘk

n(ϕ;m)eikλ︸ ︷︷ ︸
Hk

n(λ,ϕ;m)

, (A1)

where Sm = diag(
√
gDm,

√
gDm,Dm) is a diagonal matrix, g is gravitatonal acceleration. Dm is an equivalent depth of300

the vertical mode m and couples the vertical and horizontal structure functions. χknm are the spectral Hough coefficients.

Θk
n(ϕ;m) is meridional vector function consisting of multivariately related components [Ukn ,−iV kn ,Zkn]T (ϕ;m). For every

vertical mode m, the system of horizontal structure equations applies

∂u

∂t
− 2Ωv sinϕ+

g

Rcosϕ
∂h

∂λ
= 0

∂v

∂t
+ 2Ωusinϕ+

g

R

∂h

∂ϕ
= 0

∂h

∂t
+Dm∇ ·v = 0.

(A2)

The equations can be made dimensionless by taking ũ= u′/
√
gDm, ṽ = v′/

√
gDm, h̃= h′/Dm and t̃= 2Ωt, so that305

∂

∂t̃
Wm + LWm = 0, (A3)

where Wm = [ũ, ṽ, h̃]T and L is the linear differential matrix operator

L =




0 −sinϕ γ
cosϕ

∂
∂λ

sinϕ 0 γ ∂
∂ϕ

γ
cosϕ

∂
∂λ

γ
cosϕ

∂
∂ϕ (cosϕ(·)) 0


 . (A4)

γ is a dimensionless parameter defined as the ratio of shallow-water gravity wave speed and twice the rotation speed of Earth,

γ =
√
gDm/(2RΩ). The third equation in system (A2) now becomes310

∂

∂t̃
h̃m +

√
gDm

2Ω
(∇ · ṽm) = 0, (A5)

The solution ansatz can be expressed by assuming separability of time-dependent and space-dependent solutions, i.e.

Wm(λ,φ, t̃) = Hk
n(λ,φ;m)e−iσ̃knm t̃, (A6)

where σ̃knm is dimensionless frequency, and Hk
n(λ,ϕ;m) are the associated horizontal structure functions, which are used in

the expansion (A1).315
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Figure A1. As in Fig. 1, but for the ERA-Interim reanalysis.
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Figure A2. The 2018 mean Hadley Circulation (red and blue contours) in ERA5 reanalysis computed from (a) total fields of zonal-mean

meridional wind and (b) unbalanced (inertia-gravity) fields. Contours indicate values of stream function ψ.
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a)

b)

Figure A3. As in Fig. 2, but for the ERA-Interim reanalysis.
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a)

b)

Figure A4. As in Fig. 3, but for the ERA-Interim reanalysis.
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Figure A5. Level of maximum/minimum stream function in annual-mean Hadley circulation between 1979-2018 in ERA5 and ERA-Interim

reanalyses.
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Figure A6. As in Fig. A6, but for ERA-Interim.
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Table A1. As in Table A1, but for ERA-Interim.

NHC measure trend (± unc.) [%/yr] SHC measure trend (± unc.) [%/yr] HC measure trend (± unc.) [%/yr]

ψmax 0.109 (± 0.091) ψmin -0.077 (± 0.082) [Φ]max (150 hPa) -1.221 (± 0.160)

ψmax (800 hPa) 0.240 (± 0.088) ψmin (800 hPa) 0.039 (± 0.075) [Φ]max (200 hPa) 1.125 (± 0.183)

ψmax (750 hPa) 0.259 (± 0.094) ψmin (750 hPa) -0.036 (± 0.079) [Φ]max (250 hPa) 1.686 (± 0.181)

ψmax (700 hPa) 0.239 (± 0.098) ψmin (700 hPa) -0.109 (± 0.082) [ω]min (400 hPa) -0.310 (± 0.148)

ψmax (650 hPa) 0.191 (± 0.098) ψmin (650 hPa) -0.161 (± 0.084) [ω]min (500 hPa) 0.032 (± 0.151)

ψmax (600 hPa) 0.121 (± 0.096) ψmin (600 hPa) -0.188 (± 0.084) [ω]min (600 hPa) 0.710 (± 0.162)

ψmax (550 hPa) 0.043 (± 0.094) ψmin (550 hPa) -0.212 (± 0.082) [ω]min 0.484 (± 0.141)

ψmax (500 hPa) -0.018 (± 0.093) ψmin (500 hPa) -0.248 (± 0.080) IM 0.276 (± 0.075)

ψmax (450 hPa) -0.055 (± 0.095) ψmin (450 hPa) -0.287 (± 0.077)

ψmax (400 hPa) -0.041 (± 0.098) ψmin (400 hPa) -0.278 (± 0.075)

ψ(ϕmax,pmax) 0.138 (± 0.096) ψ(ϕmin,pmin) -0.105 (± 0.084)

〈ψmax〉p 0.092 (± 0.090)
〈
ψmin

〉
p

-0.141 (± 0.074)

ψNHC 0.054 (± 0.086) ψSHC -0.009 (± 0.079)
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