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Abstract. Tropical cyclones are among the most damaging extreme weather events. An increase in Atlantic tropical cyclone

activity has been observed, but attribution to global warming remains challenging due to large inter-annual variability and

modelling challenges. Here we show that the increase in Atlantic tropical cyclone activity since the 1980s can be robustly

ascribed to variations in atmospheric circulation as well as sea surface temperature (SST) increase. Based on a novel weather

pattern based statistical model, we find that the forced warming trend in Atlantic SSTs over the 1982-2020 period has doubled5

the probability of extremely active tropical cyclone seasons. For the year 2020, our results suggest that such an exceptionally

intense season might have been made twice as likely by ocean surface warming. In our statistical model, seasonal atmospheric

circulation remains the dominant factor explaining the inter-annual variability and the occurrence of very active seasons.

However, our study underscores the importance of rising SSTs that lead to more extreme outcomes in terms of cyclone intensity

for the same seasonal atmospheric patterns. Our findings provide a new perspective on the contribution of ocean warming to10

the increase in recent hurricane activity and illustrate how anthropogenic climate change has contributed to a decisive increase

in Atlantic tropical cyclone season activity over the observational period.

1 Introduction

Tropical cyclones (TCs) are highly destructive extreme weather events (MunichRe, 2021), with a notable increase in intensity

and associated damages over recent decades (Kossin et al., 2013, 2020; Holland and Bruyère, 2014; Knutson et al., 2019).15

Under anthropogenically caused climate change the impact severity of TCs is exacerbated due to more extreme precipitation

(van Oldenborgh et al., 2017; Reed et al., 2020) and increased risk of storm surges following from sea level rise (Lin et al.,

2016), amongst others.

Whether the observed increase in TC intensity arises from a long-term trend related to global warming however remains

unresolved. While climate models project an increase in TC intensities (Bhatia et al., 2018; Walsh et al., 2016; Knutson et al.,20

2020), a recent study suggests that after correcting for missing storm observations prior to satellite observation there is no

robust long-term trend in Atlantic major hurricane counts (Vecchi et al., 2021).

TC formation and intensification mostly depends on the atmospheric environment which varies strongly on inter-annual and

intra-seasonal time-scales. TC formation mainly requires low vertical wind shear and strong low-level relative vorticity (Frank
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and Ritchie, 2001; Sharmila and Walsh, 2017) alongside some initial perturbation (Dieng et al., 2017). The maximal poten-25

tial intensity of a storm mostly depends on the vertical temperature gradient from the ocean surface to the upper troposphere

(Emanuel, 1987; Emanuel et al., 2013). Whether a storm reaches its maximum potential intensity is however strongly con-

strained by the large-scale atmospheric circulation. As a result, substantial uncertainties on the impacts of dynamical effects of

global warming on changes in TCs globally still exist (Knutson et al., 2019, 2020).

Given the large uncertainty in forced atmospheric circulation changes, and assuming that these changes are small in com-30

parison to internal variability (Trenberth et al., 2015) a promising way forward could be to focus on thermodynamically forced

changes instead. Using a numerical TC forecast model, Reed et al. (2020) attributed a portion of the rainfall of hurricane

Florence to thermodynamic effects of global warming. This study followed the story-line approach in which dynamical condi-

tions of the weather event are reproduced for different counterfactual thermodynamic forcings. Such approaches are however

restricted to individual events with clearly defined atmospheric conditions and cannot be directly generalized to seasonal TC35

activity (Reed et al., 2020).

For a more generalizable approach, the role of internal variability needs to be established and separated from the potential

thermodynamic forcing (Shepherd, 2016). Climate models could be used to this extent (Sippel et al., 2019), but this would

require a large ensemble of climate simulations with adequate TC representation. Alternatively, circulation analogues can be

used. For example, Cattiaux et al. (2010) reproduced European winter temperatures based on observed circulation patterns and40

their influence on local temperatures.

Here we follow the idea of circulation analogues to construct a probabilistic tropical cyclone season emulator based on

the empirically assessed influence of atmospheric circulation patterns over the tropical north Atlantic on TC activity. We find

that the sequence of weather patterns throughout the main hurricane season (August-October) explains most of the inter-annual

variability in number of storms and their intensities. The full observed variability in TC activity can be reproduced by including45

sea-surface temperatures (SSTs) over the main development region (MDR see fig. S6) as an amplifying factor for most intense

TCs. Using counterfactual experiments, we furthermore investigate the extent to which trends in Atlantic SSTs contribute to

highly active tropical cyclone seasons under current climatic conditions.

2 Data and Methods

2.1 Data & Preprocessing50

For the classification of weather patterns we use mean sea level pressure (MSLP) and vertical wind shear (VWS) calculated as

the difference between 200hPa and 850hPa eastward wind from the ERA5 reanalysis (Hersbach et al., 2020) over the period

1982-2020. Weather patterns are classified over the tropical north Atlantic (10W-90W and 10N-30N). For the following pre-

processing we transform the data from the original 0.28◦x0.28◦ to a 1◦x1◦ grid. In order to remove the direct influence of TCs

in the reanalysis data we replace the 3x3 grid-cell square area encompassing the center of the storm with the average of its55

surrounding 16 grid cells. Finally, we transform the data from a 1◦x1◦ grid to a 2.5◦x2.5◦ grid and average 6-hourly data to

daily data.
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For the construction and validation of the TC emulator, we use daily sea surface temperatures (SST) from the “Daily Op-

timum Interpolation Sea Surface Temperature” (DOISST) data set (Huang et al., 2021). SSTs are averaged over the Atlantic

main development region (MDR) defined as 90W-20W and 10N-20N (see figure S6). Majority of Atlantic TCs originate and60

develop in this region. Since the MDR is commonly used in the literature, we choose to use it here even though it is slightly

smaller than the region we use to classify weather patterns.

We use historical climate model simulations from the 6th phase of the “Coupled Model Intercomparison Project” (CMIP6)

to estimate anthropogenically forced trends in Atlantic MDR SSTs over the period 1982-2014. A list of the used models can

be found in table S1 in the supplementary information. As a reference for longer SST observations we use the “Hadley Centre65

Sea Ice and Sea Surface Temperature” data set (HadISST) is used (Rayner, 2003).

We use TC observations from the world meteorological organization (WMO) agency provided by the “International Best

Track Archive for Climate Stewardship” (IBTrACS) database (Knapp et al., 2010, 2018). Only storms in the Atlantic basin that

are classified as tropical storms are considered resulting in a total number of 454 storms. Following Bell et al. (2000), we use

accumulated cyclone energy (ACE) as a measure of seasonal TC activity:70

ACE = 10−4
∑

v2max (1)

Where vmax is the 6 hourly sustained wind speed in knots of storms that have at least tropical storm strength according to the

Saffir-Simpson hurricane wind scale (vmax > 34 kts).

TCs are classified according to the Saffir-Simpson hurricane wind scale according to which TCs with sustained winds of

more than 64 knots are named hurricanes and TCs with sustained winds above 96 knots are major hurricanes. Following75

the definitions of the “National Oceanic and Atmospheric Administration” (NOAA) national weather service (CPC, 2021),

we classify Atlantic hurricane seasons into above normal seasons if they produce more than 126.1 ACE or extremely active

seasons if the produced more than 159.6 ACE.

2.2 Daily tropical Atlantic weather patterns and sea surface temperatures

We use a self organizing map algorithm (SOM) to classify daily tropical Atlantic weather into 20 patterns. A SOM is an80

artificial neural network that is used for dimensionality reduction and can be applied to classify synoptic weather patterns

(Hewitson and Crane, 2002). Here we reduce the highly dimensional information of mean sea level pressure (MSLP) and

vertical wind shear (VWS) over a 2.5◦x2.5◦ grid spanning 10N-30N and 90W-10W to a 5x4 map where each node represents

a weather pattern (see figure S1-2). We use an initialization that is based on a principle component analysis to guarantee the

reproducibility of the results.85

To guarantee that both variables (MSLP and VWS) have equal weight in the classification we standardize the variables to

the 1982-2011 mean and standard deviation. The combination of these two variables is a suitable choice for our application

as TC formation and intensification strongly depends on VWS while MSLP is generally helpful to characterize the prevailing

atmospheric circulation.
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Some selected weather patterns are shown in figure 1: Strong TC activity is observed during weather pattern w0 which is90

characterized by a large low-pressure anomaly and nearly no vertical wind shear in the east of the MDR. Strong VWS in this

region leads to fewer and weaker storms (see weather pattern w3). A strong high-pressure anomaly as in weather pattern w15

is similarly TC inhibiting. A weak pressure gradient from west to east with low VWS in the MDR is associated with high TC

activity (w12). All 20 weather patterns are shown in the supplementary material (figures S1, S2, S3).

Figure 1. Tropical cyclone activity during selected weather patterns. Mean sea level pressure anomalies (a-d) and vertical wind shear

anomalies (e-h) for four selected weather patterns w0, w12, w3 and w15. The last row (i-l) shows relative deviations from the average of all

weather patterns expressed in standard deviations for the following statistics: frequency of the weather pattern, SST in the MDR, number of

storm formations during the weather pattern, storm days, hurricane days, major hurricane days and average ACE generated during days with

this weather pattern. A value of 2 indicates, that the statistic is 2 standard deviations higher during this weather pattern than for the average

over all weather patterns. All 20 weather patterns are shown in figures S1, S2, S3

The intensities of TCs also depend on SSTs in the region. As shown in figure S7, strongest storms are found over warm95

SSTs. A quantile regression shows a significant relationship between warm SSTs and above median TC intensities. Weather

patterns are not fully independent from SSTs: weather patterns with low pressure anomalies occur more often on days with

warm SST anomalies (see figure 1 blue bars). However, no systematic association between SSTs and VWS is apparent (see

figure S1 and S3). Although we will not be able to treat our weather patterns as independent from SST anomalies in the region,

both variables contain distinct information that is relevant for TC intensification.100

2.3 Seasonal Tropical Cyclone Emulator

We construct a probabilistic emulator that creates series of storms with maximum sustained wind speeds for each day. TCs

are rare events and their formation and intensification involves complex physical processes. In our emulator we break these

processes down into three components that are fully independent from each other: i) storm formation, ii) storm duration

and iii) daily storm intensity. In these components the daily weather pattern slightly alters the probabilities for a new storm105
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formation and it’s duration and the weather pattern in combination with regionally averaged SSTs alters the probabilities for

intensification of an existing storm (see figure 2).

Storm formations
Probability of:
• Weather
• Weather on the two days before

Storm intensities
Probability distribution function 
depending on:
• Weather
• SST in the MDR
• Intensity on the day before

Storm Duration
Probability distribution function 
depending on:
• Weather

Emulator Components

Weather Patterns
Daily time series of 
weather patterns.
Weights of the weather 
patterns are shown in 
figures S1, S2

Sea surface 
temperatures
Daily time series of SSTs 
averaged over the main 
development region 
(10N-20N 90W-20W), see 
figure S6

Input Emulator
for each day in season:
   if new storm emerges:
       estimate storm duration
   for each active storm:
       estimate max. wind speed

Output
A list of storms with daily 
storm intensities for each day 
and each storm

Figure 2. Schematic overview of the emulator. The input required to emulate TC seasons is shown on the left side. In the center, the three

components of the emulator are listed. On the right side, the functioning of the emulator is sketched and the format of the output is indicated.

Arrows between the left hand columns indicate which input is used in which components of the emulator. The light purple arrow indicates,

that the estimation of storm intensities depends on the previous intensity of a storm.

2.3.1 Storm formation

The number of storm formations varies strongly between different large scale weather patterns (Jaye et al., 2019). Storm

formation predominantly occurs during weather patterns with low vertical wind shear, high relative humidity in the lower tro-110

posphere and the existence of some kind of perturbation. The storm formation component relies on the following assumptions:

i) Weather patterns can favour or hamper storm formations (Jaye et al., 2019; Lee et al., 2018), ii) persistent weather conditions

can further increase or decrease formation probabilities.

Based on these assumptions we estimate the probability of a storm formation event Pgen on a day d with weather pattern

w(d) as:115

Pgen(d) = Pobs(gen|w(d)) ∗
√

Pobs(gen+1d|w(d− 1)) ∗ Pobs(gen+2d|w(d− 2))

Pobs(gen|all)
(2)

The first factor Pobs(gen|w(d)) is the observed probability of storm formations for the given weather pattern w. The sec-

ond factor includes the probabilities of storm formations one and two days after the weather pattern that occurred one

5



(Pobs(gen+1d|w(d−1))) and two (Pobs(gen+2d|w(d−2))) days earlier respectively. These probabilities are given less weight

by applying a square root and the factor is normalized by a dividing by the overall observed storm formation probability120

(Pobs(gen|all)).

2.3.2 Storm duration

There are numerous processes that can weaken and eventually dissipate TCs. The most common end of a TC is landfall. As

we do not have information about the location of storms in our emulator, estimating the duration of a storm is challenging.

For the development of this component we use the following assumptions: i) storms dissipate when making landfall, ii) the125

time a storm has before making landfall is modulated by its formation location and iii) the formation location is to some extent

influenced by weather patterns (see figure S4 and S5).

We incorporate this dependence of storm duration on weather patterns on the day of storm formation by sampling the

duration D of a storm s from a Gaussian kernel estimate fg of all storms that have formed during the weather pattern during

which the storm has formed w(df ) and all neighboring weather patterns.130

D(s) = fg(Dobs[wrow −wrow(df )< 2 & wcol −wcol(df )< 2]) (3)

2.3.3 Storm intensity

We quantify storm intensity through the daily maximum sustained wind speed. We use the following assumptions for our daily

storm intensity emulations: i) intensification can be favored or hampered by specific atmospheric circulation patterns (Frank

and Ritchie, 2001; Lee et al., 2016), ii) the intensity of a storm depends on the intensity on the day before, iii) warmer SSTs135

in the MDR favour the intensification of intense TCs (Bhatia et al., 2018; Trepanier, 2020), iv) the relationship between SSTs

and storm strength can be regularized by a quantile regression (see figure S7).

Assessing probability density functions for daily storm intensities for all possible combinations of weather patterns, SSTs,

and storm intensities on the day before is challenging given the insufficient number of storm observations. Therefore, instead

of estimating a PDF for the daily intensity from all observations that match to certain conditions (e.g. weather pattern w6, 28◦C140

SST and 60kts wind speed on the day before) we estimate the intensity PDF from the 100 storm observations that are most

similar to these conditions.

Furthermore, the distribution of observed intensities is skewed towards weak storms which would result in a low intensity

bias in a straight forward application of the nearest neighbors approach (see figure S10a-c). We therefore introduce a linear

relationship between regionally averaged SSTs and storm intensities (see quantile regression in figure S7) to guarantee that the145

intensities from which we sample are not systematically too weak.

For a given SSTtarget we transform all observed storm intensities to artificial pseudo-intensities vshifted using the slope βτ

of the next quantile τ below the observed storm strength v(s,d):
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vshifted(s,d,SSTtarget) = v(s,d)+βτ(s,d) ∗ (SSTtarget −SSTobs(d))

τ(s,d) =min(τ : v(s,d)> βτ + cτ )
(4)

We use the Euclidean distance metric applied on standardized variables to identify the 100 nearest neighbors in terms of150

weather pattern and storm intensity on the day before:

D(di,dj)
2 =

(w(di)−w(dj))
2√

1
N

∑
m(w(dm)−w)2

+
(vshifted(di − 1)− vshifted(dj − 1))2√

1
N

∑
m(vshifted(dm)− vshifted)

(5)

For the weather patterns, which are not a continuous variable, we consider their coordinates in the SOM grid as locations

and calculate differences between weather patterns as the sum of the squared differences in row and column numbers.

w(di)−w(dj) =
√
(wrow(di)−wrow(dj))2 +(wcol(di)−wcol(dj))2 (6)155

3 Results

3.1 Validation of the emulator

Figure 3 sketches the functioning of the emulator for three Atlantic hurricane seasons: 2020 was a highly active season with

predominantly warm SSTs and favorable large-scale weather conditions allowing for strong TCs throughout most of the season.

2009 had similarly warm SSTs but less favorable weather conditions resulting in overall fewer days with strong storms. 1983160

was an El Niño year with cool SSTs in the tropical Atlantic and mostly unfavorable weather conditions for TCs in the Atlantic

basin. The chance of finding storms and especially the chance of finding major hurricanes in simulations (fig. 3d) for the

respective years reflects the observed weather patterns and SSTs.

To validate the emulator, we re-simulated every hurricane season between 1982 and 2020 1000 times using the observed

sequence of daily weather patterns and SST averages over the MDR. We construct a new emulator for each decade using all165

the years but the decade we want to re-simulate as training data.

Large scale weather patterns are sufficient to explain most of the inter-annual variations in the number of storm formations

(see fig. 4A). The remaining spread between individual simulation runs is to be expected as tropical storm formations have a

strong stochastic component. Besides favorable weather conditions, storm formation requires a (small scale) perturbation in the

atmospheric flow such as African easterly waves to be initiated (Dieng et al., 2017), information that is lacking in our emulator.170

The number of storm days per season is strongly related to the number of storms. The simulated storm durations enhance

the representation of number of storm days resulting in a accurate representation of storm durations (see fig. S5) and a Pearson

correlation coefficient of 0.69 between observations and the median of all simulations (see fig. 4B).

Finally, the storm intensity component produces a variety of storm intensities including major hurricanes (see fig. 4C). As

for the number of storm days the number of strong storms is tightly linked to the number of storm formations. But as storm175
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Figure 3. Functioning of the tropical cyclone emulator. a, Sequence of daily weather patterns grouped into four categories from least

favorable for TC formation and intensification to most favorable for the years 2020 (purple), 2009 (cyan) and 1983 (orange). b, Daily SSTs

averaged over the main development region for the same years. c, Intensity of the strongest storm for each day grouped into the categories

storm, hurricane and major hurricane. d, Probability of exceeding the intensity thresholds of c in simulations from the emulator.

intensification is favored by certain weather patterns and warm SSTs, the potential for intensification alters between years.

In combination, this results in an adequate representation of inter-annual variability in seasonal accumulated cyclone energy

(ACE) as shown in figure 4D.

According to the correlation coefficients, major hurricane counts are slightly better represented than storm counts. While the

number of major hurricanes is tightly linked to the amount of storm formations, the storm intensity component is an additional180
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a b

c d

Figure 4. Cross validated hurricane season emulations. a, Number of storms as observed (black) and simulated (cyan). The light shading

shows the 95% range of the 1000 simulations, the darker shading shows the 66% range. The mean is indicated by a solid line. The cross

validated Pearson (Spearman) correlation coefficient between hindcasts and observations is indicated in the legend (see methods for more

details on the decadal cross validation). b, As a but for the number of storm days in a season. c, As a but for the number of major hurricanes

in a season. d, As a but for the seasonal ACE.
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instance controlling under which conditions many major hurricanes are likely. The higher correlation for major hurricane

counts is therefore an indication for a meaningful treatment of storm intensification in the emulator.

3.2 Sensitivity analysis

Strong simplifications were required to emulate TCs based on sequences of weather patterns and regionally averaged SSTs.

The assumptions on which our methodological choices are made are plausible and appear to work well, they are however not185

without alternatives. We therefore test how alternative emulators perform.

The most critical part is the treatment of SSTs in the intensification component of the emulator as it directly influences

some of the results. As shown in figures S11, emulators without any SST influence have considerable trends in residuals for

major hurricane counts of 0.3 per decade (or 0.9 per Kelvin of seasonal SST, see fig. S11d). This misrepresentation in major

hurricanes translates into a negative trend in seasonal ACE residuals (see figure S12). Including SSTs into the intensification190

component of the emulator reduces these trends significantly which suggests, that SSTs contain information that is required

for an adequate representation of strongest TCs.

A simpler way of including SSTs in our emulator could be to estimate intensity probability functions directly from the 100

nearest neighbors in terms of weather patterns, storm intensities on the day before and SSTs. While this approach works well

in the range of average conditions, there are systematic deviations between the nearest neighbors and the target conditions for195

more extreme conditions. As shown in figure S10d-e there is a warm bias for cool SSTs and vice versa which is a result of

to few observations from which the nearest neighbors can be searched. Similarly, there is a bias towards weaker storms in the

nearest neighbors (see figure S10a-c). Reducing the number of nearest neighbors from 100 to 20 only slightly reduces these

biases. Ultimately, this results in a lack of sensitivity in our emulator.

In the supplementary information we present a number of additional emulators with slightly altered storm formation (see200

figure S8), storm duration (see figure S9) and storm intensity components (figures S10-S14). Most of these altered emulators

yield similar results which supports the robustness of our results.

3.3 The effect of ocean warming on recent TC activity

We deploy the emulator to assess the contributions of large scale atmospheric circulation and forced warming of tropical

Atlantic SSTs towards the likelihood of extremely active hurricane seasons. According to DOISST and over the period 1982-205

2020, SSTs in the Atlantic MDR have warmed at a rate of 0.3 K per decade (figure 5b). This trend is slightly weaker in

the HadISST dataset (figure 5a) for which also the global trend in SSTs over the period 1982-2020 is weaker than in other

SST datasets (Yang et al., 2021). Using CMIP6 historical simulations we estimate that the forced trend on SSTs in the MDR

throughout the hurricane season is 0.22 K per decade for the period 1982-2014 (fig. 5a). Thus, the observed SST trend over

the 1982-2020 period is to a large extent forced by global warming.210

To disentangle forced changes in TC activity from internal variability we construct counterfactual scenarios in which we first

remove the forced SST trend as estimated from CMIP6 simulations for the period 1982-2014. We then shift these detrended

SST time-series so that on average they match the values of the forced trend for the years 2020 and 1982 and call these
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a b c

Figure 5. Sea surface temperatures averaged over August-October and the MDR. a, Ensemble mean of historical CMIP6 simulations (red)

relative to 1850-1900 and HadISST observations (gray) relative to 1870-1900. The 66% range of the CMIP6 ensemble is represented by

the red shading. Linear trends for CMIP6 (HadISST) over the period 1982-2014 (1982-2020) are indicated by dashed lines. b, DOISST

observations for the period 1982-2020 in blue and respective to the right y-axis. Besides the linear trend in DOISST the linear trend of

CMIP6 is indicated by a red dashed line using the left y-axis. c, Counterfactual SST scenarios based DOISST observations from which the

CMIP6 trend is removed. This detrended SST time series is shifted to the value of the CMIP6 trend in the year 1982 (cyan) and the year 2020

(purple). The remaining linear trend in these counterfactual scenarios is indicated by a dashed line.

artificial SST time series 2020 scenario and 1982 scenario (figure 5c). The counterfactual SST scenarios contain the observed

year to year variations that can be linked to natural modes of variability such as ENSO. The only difference between these two215

scenarios is that the 2020 scenario has 0.9 K warmer SSTs than the 1982 scenario.

Both counterfactual scenarios contain a small linear trend of 0.08 K per decade (fig. 5c). This remaining trend reflects that

the observed trend in DOISST is not solely due to global warming but that natural climate variability also contributes to the

trend over the period 1982-2020.

In the CMIP6 historic simulations, no forced warming in MDR SSTs is simulated for the period before 1980. The long220

term average over the period 1850-1900 (27.27 K) is close to the value of the 1982-2014 trend in the year 1982 (27.32 K).

Therefore, SSTs in the counterfactual 1982 scenario are similar to pre-industrial levels for the MDR. Despite differences in the

1982-2020 trend, the HadISST dataset confirms the findings that SSTs in the MDR have not warmed considerably before the

1980’s.

Over the period 1982-2020, large scale atmospheric circulation patterns are the dominant factor explaining year to year225

variability in TC activity. Our emulations show high TC activity in the same years irrespective of the counterfactual SSTs (see

fig. 6b). For instance, the low activity in the years 1982-1987 is also simulated in the 2020 scenario while the years 1995, 2005,

2010 and 2017 have a high likelihood of becoming an extremely active season also in the 1982 scenario.

Nevertheless, differences in seasonal TC activity are apparent between the two scenarios. On average, the seasonal activity

is 25 ACE lower in the 1982 scenario as compared to the 2020 scenario (see fig. 6c). As a result, more than one third of the230

seasons that are simulated to be above normal seasons in the 2020 scenario are below normal seasons in the 1982 scenario

(an above normal seasonal activity being defined as > 126.1 ACE (CPC, 2021)). Similarly, the number of simulations that are
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Figure 6. Atlantic hurricane seasons under different counterfactual SST scenarios. a, Two counterfactual SST scenarios: SSTs from which

the forced SST trend has been removed and that are shifted to 2020 SST levels (purple) and shifted to 1982 SST levels (cyan). The gray

recantangle indicates the range of observed seasonal SST averages. See figure 5 for more details. b, Simulations for the counterfactual

scenarios of a displayed as boxplots. For years, where the seasonal SST averages in the counterfactual scenario are outside of the range

of observed seasonal SST averages, the simualtions are shown in lighter shading. c, Simulations for all years aggregated and for the most

favorable years defined as years for which half of the simulations in the 2020 SST scenario have more than 126.1 ACE. d, Probability of

above normal seasons (ACE > 126.1). e, As d but for all years and favorable years. f, as d but for extremely active seasons (ACE > 159.6).

g, As e but for extremely active seasons.
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classified as extremely active (with ACE > 159.6) doubles from 11% in the 1982 scenario to 22% in the 2020 scenario (see

fig. 6g).

Differences between the counterfactual scenarios are stronger in years with high TC activity (see fig. 6c). For years in which235

half of the simulations of the 2020 scenario are above normal seasons, the simulations are on average 36 ACE more active

in the 2020 scenario than in the 1982 scenario. For these years the risk of finding an extremely active season (with ACE >

159.6) drops from 50% under current climate to 27% in the 1982 scenario (see fig. 6g). Our results do not imply that increasing

sea-surface temperatures lead to more TC formations – but point towards a trend of more extreme outcomes for seasons with

many TCs. This is in line with a global trend towards more intense tropical cyclones over the observational record as well as240

projections (Masson-Delmotte et al., In Press).

Simulations from the emulator can moreover be used to analyze contributions to extremely damaging hurricane seasons such

as that of 2020. 2020 is one of the most active recorded hurricane seasons with an ACE index of 178 and 5 major hurricanes

in August-October (and two additional major hurricanes in November). The season was characterized by weather patterns that

are favorable for TC formation and intensification and relatively warm SSTs. Figure 7a shows the probabilities of finding such245

a season under counterfactual SST scenarios.

Compared to other years, 2020 has a high probability of becoming an above normal season (78%), a considerable probability

of becoming an extremely active season (60%) and 47% of the simulations reach the observed ACE of 178 (see fig. 7a).

Under a counterfactual 1982’s SST scenario with similar modes of internal climate variability, weather patterns and short

term variations in Atlantic SSTs, the season would have less likelihood to become an above normal hurricane season (61%),250

an extremely active season (33%) or even a season with 178 ACE (21%).

For 2020 weather conditions, the warming of Atlantic SSTs since the 1980’s has increased the probability of finding a season

with 178 ACE by a factor of 2.2 (see fig. 7b). For a year like 2005 which according to our analysis had a higher likelihood of

becoming an extremely active season than 2020, the probability of finding a seasonal ACE of 178 is a factor of 1.6 higher in

the 2020 scenario as compared to the 1982 scenario. The likelihood of finding 178 ACE in any year irrespective of the weather255

conditions is increased by a factor of 2.4. The increase in likelihood of finding 178 ACE is higher for seasons with weather

conditions that are hampering TC formation and development. For a year like 1983 with very few TC formations there are no

simulations that reach 178 ACE in neither of the counterfactual scenarios.

4 Discussion and conclusions

We have demonstrated that the observed Atlantic tropical cyclone activity over the last 40 years can be reproduced with a260

probabilistic emulator based on large-scale weather patterns and SSTs. Over this period, we observe a trend in weather patterns

favoring more active TC seasons. Whether or not this trend in atmospheric circulation can be attributed to anthropogenic

climate change or other external drivers such as aerosol loading’s (Dunstone et al., 2013) remains an open question.

It is important to highlight that our weather patterns and regional SST time series are not fully independent. Specifically, it

appears that years with warm Atlantic SSTs are also years where Atlantic SSTs are warm relative to the rest of the tropics and it265
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Figure 7. Influence of ocean warming on the hurricane season 2020. a, Cumulative distribution functions for seasonally aggregated ACE for

the 2020 scenario (solid) and the 1982 scenario (dashed). All years between 1982-2020 aggregated in green, 2005 in purple, 2020 in blue,

and 1983 in orange. The area between the 2020 scenario and the 1982 scenario is shaded. The horizontal gray lines indicate 178 ACE which

was observed in 2020 (solid), the threshold for above normal seasons 126.1 (dotted) and the threshold for extremely active seasons 159.6

(dashed). b, Fraction of risk of an ACE > 178 season attributable to the SST difference between the 2020’s SST levels and 1982’s SST levels

(dashed lines). The histograms show the fraction of attributable risk (FAR) distributions from a 10000-member bootstrapping for the 1982

SST level scenario, the vertical lines indicate the median FARs.

has been argued, that this effect of relative SSTs is the dominant contribution to TC activity (Sobel et al., 2016; Murakami et al.,

2018). The temperature difference between the tropical Atlantic and other tropical basins has a strong impact on atmospheric

circulation. However, our sensitivity analysis suggests, that SSTs over the MDR contain relevant information and that our

approach to include SSTs in the emulator as an addition to the sequences of weather patterns is suited to simulate intense TCs.

The potential maximum intensity a TC can reach depends on the temperature difference between the ocean surface and the270

tropopause layer and it is plausible, that increasing SSTs have an amplifying effect on strong TCs (Emanuel, 1987). However,

it has been argued that over the satellite era, tropopause layer cooling might have dominated over the role of SSTs (Emanuel

et al., 2013), a hypothesis we cannot exclude based on our analysis.

Ultimately, the integration of SSTs in our model relies on assumptions that are physically motivated and that lead to a better

representation of TC activity over the period 1982-2020 than other assumptions. Since the early 1980’s, an increase in global275

average surface air temperature of more than 0.5 K has occured and we would argue that over this period SSTs in the region

serve as a useful proxy for thermodynamic changes in the climate system.
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There is increasing consensus in the scientific literature that the number of tropical cyclones might not or only moderately

increase, while the number of most intense storms would increase substantially (Masson-Delmotte et al., In Press). Our em-

ulator results indicate that increasing SSTs could be a potential driver for such an intensification, also allowing for potential280

avenues to link those changes more directly to anthropogenic climate change.

In this first application of the emulator we have focused on ocean warming. Applying the emulator to future climate pro-

jections from state of the art earth system models might, however, also help to estimate the dynamic forcing on TC activity

resulting from atmospheric circulation changes. While most climate models have a poor representation of TCs, their projections

of atmospheric circulation changes contain valuable information that could be meaningfully analyzed using this TC emulator.285

By separating out the thermodynamic and dynamic forcings for observed ACE, our approach allows us to link the observed

trend in seasonal cyclone activity and extreme season probability to warming SSTs. Our findings indicate that warming SSTs

over the tropical Atlantic might have already contributed significantly to more extreme tropical cyclone seasons, and thereby

to the fatalities, destruction and trillion dollar losses that these cyclones have caused over this the last four decades (MunichRe,

2021). Given the projected increases of SSTs with increasing warming, our findings suggest that the probability of extreme290

seasons might further increase. To minimise future risks, stringent emission reductions in line with achieving the goals of the

Paris Agreement would be required (Masson-Delmotte et al., In Press).
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