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Tropical Cyclone Season Emulator

0.1 Motivation

The aim of this emulator is to generate plausible Atlantic hurricane seasons for
given large-scale atmospheric conditions - characterized by daily weather pat-
terns - and sea surface temperatures (SST) averaged over the main development
region (MDR). With this simple separation into dynamic (weather patterns)
and thermodynamic (SSTs) input variables we can analyse simple counterfac-
tual scenarios with altered SSTs to estimate the influence of warming oceans on
hurricane activity.
Note that weather patterns are to some extend influenced by SSTs in the region
which makes it impossible to fully disentangle dynamic and thermodynamic
contributions to hurricane activity. Here we take the lack of any robust changes
in atmospheric circulation in the region as basis for the assumption that similar
sequences of weather patterns would occur in a preindustrial climate. With this
assumption we study the question to which extend the observed warming of the
tropical Atlantic Ocean has contributed to an increase in hurricane activity.

0.2 Emulator Design

We construct a probabilistic emulator that creates a series of storms with max-
imum sustained wind speeds for each day. Hurricanes are rare events and their
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formation and intensification involves complex physical processes. In our emu-
lator we break these processes down into three components that are fully inde-
pendent from each other:

1. storm formation

2. storm duration

3. daily storm intensity

In these components the daily weather pattern and the daily SST average over
the MDR (only for the daily storm intensity component) slightly alters the prob-
abilities for a new storm formation or for the intensification of an existing storm.
The design of the emulator is schematically shown in figure S11.
The emulator does not simulate storm locations which is a strong limitation as
the effect of a certain weather pattern on a given storm might strongly vary de-
pending on the storm location. This limitation is however necessary as there is
not enough data to evaluate the effect of weather patterns on storms everywhere
in the Atlantic basin. Due to this limitation there remains a strong stochastic
element in our emulator which reflects the information that would be required
for the simulations on top of the daily weather patterns and regionally averaged
SSTs.
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1 Emulator Components

For each of the emulator components heuristic methodological decision had to
be taken. In the following we explain the underlying assumptions and show how
the emulator performs compared to alternative methodological choices.

1.1 Storm Genesis

Storm formations are rare (roughly XX per season) but they predominantly oc-
cur during favorable weather conditions including low vertical wind shear, high
relative humidity an the lower troposphere and the existence of some kind of
perturbation. Tropical storm formations also require local SSTs of at least 26C.

Assumptions:

1. Weather patterns can favour or hamper storm formations

(a) Persistent weather conditions can further increase or decrease forma-
tion probabilities

2. regionally averaged SSTs contain only limited information on storm for-
mation probabilities

Based on these assumptions we estimate the probability of a storm formation
event Pgen on a day d with weather pattern w(d) as:

Pgen(d) = Pobs(gen|w(d))∗
√
Pobs(gennext day|w(d− 1)) ∗ Pobs(gen2 days after|w(d− 2))

Pobs(gen|all)
(1)

The first factor Pobs(gen|w(d)) is the observed probability of storm formations
for the given weather pattern. The second factor includes the probabilities of
storm formations one and two days after the weather pattern that occurred one
and two days earlier respectively. These probabilities receive less weight and
the factor is normalized by a dividing by the overall observed storm formation
probability.

1.1.1 Tested variations

vG0 – Simplest approach: The probability for a new storm is the number of
genesis events during the weather pattern of the day w divided by the number
of observed days with that weather pattern:

Pgen(d) = Pobs(gen|w(d)) (2)

vG1 - giving more weight to the weather history: As in the main
component, but multiplied by the probability of finding a genesis event on the
following day of the weather pattern of the day before and respectively two days
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before. These additional probability factors are normalised by dividing by the
overall observed genesis probability squared:

Pgen(d) = Pobs(gen|w(d))∗Pobs(gennext day|w(d− 1)) ∗ Pobs(gen2 days after|w(d− 2))

Pobs(gen|all)2
(3)

vG2 - nearest neighbours with weather and SST: For each combi-
nation of SST and weather the 100 nearest neighbours in the observations are
taken and the genesis probability is estimated from these observations.

We use the Euclidean distance metric and standardise our variables for the
distance calculation.

D(di, dj)
2 =

(SST (di)− SST (dj))
2√

1
N

∑
m(SST (dm)− SST )2

+
(w(di)− w(dj))

2√
1
N

∑
m(w(dm)− w)2

(4)

For the weather patterns, which are not a continuous variable, we consider
their coordinates in the SOM grid as locations and calculate differences between
weather patterns as the sum of the squared differences in row and column num-
bers.

w(di)− w(dj) =
√

(wrow(di)− wrow(dj))2 + (wcol(di)− wcol(dj))2 (5)

1.1.2 Conclusions

The genesis component reproduces the inter-annual variations in storm forma-
tions adequately. Removing information about the preceding weather patterns
slightly reduces the skill of the emulator. Adding regionally averaged SSTs does
however lead to considerably worse representation of inter-annual variability.
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1.2 Storm duration

There are numerous processes that can weaken and eventually dissipate tropical
cyclones. The most common end of a TC is landfall. As we don’t have informa-
tion about the location of storms in our emulator, estimating the duration of a
storm is challenging.

Assumptions:

1. The most relevant end of storms is landfall

2. The time a storm has before making landfall depends on its formation
location

3. The formation location is to some extend influenced by the weather pat-
terns

As shown in figure S5, storms predominantly form in the eastern part of
the main development region (MDR) for weather patterns 6, 7, 10, 11 and 15.
Under favorable conditions, storms forming in the eastern part of the MDR
have a long way before encountering land and thereby a potential for lasting
longer than storms forming in the western part of the MDR. We incorporate
this (assumed) dependence of storm duration on weather patterns on the day
of storm formation by sampling the duration D of a storm s from a gaussian
kernel estimate fg of all storms that have formed during the weather pattern
during which the storm has formed w(df ) and all neighboring weather patterns.

D(s) = fg(Dobs[wrow − wrow(df ) < 2 & wcol − wcol(df ) < 2]) (6)

Figure S6 shows the observed duration of storms that formed during a
weather pattern and the distributions from which storm durations are sam-
pled in the emulator. The assumption, that storm durations vary depending
on the weather pattern during which a storm forms holds and is adequately
reproduced by the storm duration component.

1.2.1 Tested variations

vD0 – independent of weather patterns: The duration of a storm is sam-
pled from the probability distribution of all observed storms:

D(s) = fg(Dobs) (7)

vD1 – without averaging over neighboring weather patterns: The
length of a storm is sampled from the probability function of all storms that
emerged during the same weather pattern:

D(s) = fg(Dobs[w = w(df )]) (8)
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1.2.2 Conclusions

The effect of weather conditions on individual storm durations is limited (see
below). Based on our assumptions we are able to estimate plausible durations
for the simulated storms. The tested variations of the component have limited
influence on the emulator performance.
(Note that systematically different approaches for the estimation of storm du-
rations are possible. For example one could estimate the probability for the end
of a storm on each day based on surrounding conditions. In such an approach
the lack of storm locations would be a critical flaw.)
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1.3 Storm intensity

Storm intensity is quantified through the daily maximum sustained wind speed
of the storm. We use the following assumptions for our daily storm intensity
emulations:

1. Intensification can be favoured or hampered by specific weather patterns

2. Warmer SSTs in the main development region generally favour TC inten-
sification

(a) The relationship between SSTs and storm strength con be repre-
sented by a quantile regression

3. The strength of TCs is auto-correlated and depends on the storm strength
of the day before

Assessing probability density functions for daily max. wind speeds intensi-
ties for all possible combinations of weather patterns, SSTs, and storm histories
is challenging given the insufficient number of storm observations. Therefore,
instead of estimating a PDF for the daily max. intensity from all observations
that match to certain conditions (e.g. weather pattern 6, 28◦C SST and 60kts
wind speed on the day before) we estimate the wind speed PDF from the 100
storm observations that are most similar to these conditions.
Furthermore, the range of observed SSTs is limited with only few observations in
the range of pre-industrial SSTs. We therefore assume a linear relationship be-
tween regionally averaged SSTs and storm intensities: for a given SSTtarget we
transform all observed storm intensities to artificial pseudo-intensities vshifted
using the slope βτ of the next quantile τ below the observed storm strength
v(s, d):

vshifted(s, d, SSTtarget) = v(s, d) + βτ(s,d) ∗ (SSTtarget − SSTobs(d))

τ(s, d) = min(τ : v(s, d) > βτ + cτ )
(9)

As a distance metric for the 100 nearest neighbors and the remaining vari-
ables (weather pattern and storm strength on the day before) we use an Eu-
clidean distance with standardized variable:

D(di, dj)
2 =

(w(di)− w(dj))
2√

1
N

∑
m(w(dm)− w)2

+
(vshifted(di − 1)− vshifted(dj − 1))2√

1
N

∑
m(vshifted(dm)− vshifted)

(10)

For the weather pattern, which are not a continuous variable, we consider
their coordinates in the SOM grid as locations and calculate differences between
weather patterns as the sum of the squared differences in row and column num-
bers.
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w(di)− w(dj) =
√

(wrow(di)− wrow(dj))2 + (wcol(di)− wcol(dj))2 (11)

1.3.1 Tested versions

vI0 – 100 nearest neighbours Straight forward 100 nearest neighbors with
conditions being characterized by weather patterns, SSTs and storm strengths
on the day before. This is a simpler variation that works without the quantile
regression between storm strengths and SSTs.

D(di, dj)
2 =

(SST (di)− SST (dj))
2√

1
N

∑
m(SST (dm)− SST )2

+
(w(di)− w(dj))

2√
1
N

∑
m(w(dm)− w)2

+
(v(di − 1)− v(dj − 1))2√

1
N

∑
m(v(dm)− v)

(12)

vI1 – 20 nearest neighbors 20 nearest neighbors based on weather pat-
terns and storm intensities on the day before and SSTs.

vI1 – no sst dependence 100 nearest neighbors based on weather patterns
and storm intensities on the day before.

vI3 - no weather dependence As the main component but without the
dependence on weather patterns.

vI4 - no storm history Intensities are estimate irrespective of the intensity
of the storm on the day before.

1.3.2 Conclusions

The storm intensity component is the most complex component of the emulator.
With our nearest neighbor approach with the chosen variables and the quantile
regression between SSTs and storm intensities we are able to reproduce the
inter-annual variability of ACE hurricane days and major hurricane days.
The initial idea for this component of the emulator was to use a nearest neighbors
approach (vI0). As shown in figure S12 and S13 there is simply not enough data
to find close enough neighbors for all possible combinations of weather pattern,
SST and intensities on the day before. This problem is most pronounced for
strong storms under unfavorable weather conditions. Using 20 nearest neighbors
(vI1) instead of 100 only slightly improves this problem.

Without any SST dependence (vI2), the simulations have a considerably
larger trend in residuals of hurricane numbers, major hurricane numbers and
ACE (see table S3 and figure S22-S24).

Omitting the information about the daily weather conditions (vI3) slightly
reduces the representation of inter-annual variability (see table S2).

Removing the intensity of storms on the day before (vI4) from the nearest
neighbor classification considerably reduces the representation of daily storm
evolution (see figure S26-S28).
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Figure S1: Mean sea level pressure (MSLP) anomalies for the 20 weather pat-
terns expressed in standard deviations.

Figure S2: Vertical wind shear (VWS) anomalies for the 20 weather patterns
expressed in standard deviations.

31N 17W
36N 98W

Figure S3: Storm observations within this polygon are considered in the analysis.
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Figure S4: Tropical storm statistics for the 20 weather patterns expressed as
relative deviations from the average.

Figure S5: Storm formation locations for each weather pattern.
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Figure S6: Histograms of observed storm durations for each weather pattern
(blue). The orange histograms show the distributions from which storm dura-
tions are sampled in the emulator.

Figure S7: Atlantic main development region (MDR).
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Figure S8: SST anomalies to the 1982-2002 average from OISST seasonally
averaged over August-October for the MDR (pink), the tropics 30S-30N (orange)
and MDR relative to the tropics (turquoise). Linear trends are indicated in the
legend.
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Figure S9: SST anomalies to the 1982-2002 average from HADISST seasonally
averaged over August-October for the MDR (pink), the tropics 30S-30N (orange)
and MDR relative to the tropics (turquoise). Linear trends are indicated in the
legend.
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A B

C D

Figure S10: Quantile regression between storm intensities and SSTs over the
MDR. Slopes for each quantile and the p-values of the regression are indicated
in the legend for quantiles for which the regression was significant at the 90%
level. A: Years in the period 1989-2018. B: Years in the period 1982-1988 and
1999-2018. C: Years in the period 1982-1998 and 2009-2018. D: Years in the
period 1982-2008
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Storm formations
Probability of:
• Weather
• Weather on the two day before

Storm intensities
Probability distribution function 
depending on:
• Weather
• SST in the MDR
• Intensity on the day before

Storm Duration
Probability distribution function 
depending on:
• Weather

Emulator Components

Weather Patterns
Daily time series of 
weather patterns.
Weights of the weather 
patterns are shown in 
figures S1, S2

Sea surface 
temperatures
Daily time series of SSTs 
averaged over the main 
development region 
(10N-20N 85W-20W), see 
figure S7

Input Emulator
for each day in season:

if new storm emerges:
estimate storm duration

for each active storm:
estimate max. wind speed

Output
A list of storms with daily 
storm intensities for each day 
and each storm

Figure S11: Schematic of the emulator design.

Figure S12: Deviation in SST from the desired SST for different sizes of nearest
neighbors.

Figure S13: Deviations from the desired storm intensity on the day before for
different sizes of nearest neighbors.
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Figure S14: Deviations from the desired storm intensity on the day before for
the 100 nearest neighbors.

Table S1: Root mean squared deviation for different indicators and versions of
the emulator
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A
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E

main 3.08 21.57 1.67 1.14 38.34
formation: no lag 3.17 23.01 2.07 1.33 46.51
formation: equal weight 3.08 21.46 1.72 1.14 38.54
formation: NN weather + SST 3.46 24.2 2.17 1.35 47.66
duration: random 3.09 21.67 1.86 1.22 41.83
duration: no neighbors 3.1 21.27 1.68 1.09 36.83
intensification: 100 nn 3.05 21.55 1.77 1.22 41.84
intensification: 20 nn 3.09 21.47 1.94 1.24 40.11
intensification: no SST 3.08 21.26 1.85 1.23 40.94
intensification: no weather 3.16 21.58 2.19 1.21 42.14
intensification: no history 3.06 21.46 2.96 2.63 37.18
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Table S2: Pearson correlation coefficients between observations and the median
of 1000 simulations for different indicators and versions of the emulator.
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A
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E

main 0.61 0.68 0.8 0.74 0.77
formation: no lag 0.59 0.72 0.75 0.68 0.76
formation: equal weight 0.61 0.68 0.78 0.73 0.77
formation: NN weather + SST 0.41 0.61 0.7 0.69 0.69
duration: random 0.6 0.67 0.76 0.74 0.77
duration: no neighbors 0.6 0.69 0.79 0.76 0.78
intensification: 100 nn 0.61 0.68 0.78 0.67 0.75
intensification: 20 nn 0.6 0.68 0.74 0.65 0.76
intensification: no SST 0.61 0.68 0.76 0.68 0.73
intensification: no weather 0.59 0.67 0.74 0.72 0.72
intensification: no history 0.61 0.68 0.81 0.77 0.76

Table S3: Linear trends in residuals between observations and the median of
1000 simulations for different indicators and versions of the emulator.
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main -0.0 -0.64* -0.02 -0.01 -0.53*
formation: no lag -0.03 -0.83* -0.03 -0.03 -0.71*
formation: equal weight -0.0 -0.67* -0.02 -0.02 -0.54*
formation: NN weather + SST 0.0 -0.75* -0.04 -0.03 -0.74*
duration: random -0.0 -0.75* -0.03 -0.02 -0.61*
duration: no neighbors 0.0 -0.58* -0.02 -0.01 -0.5*
intensification: 100 nn 0.0 -0.66* -0.05* -0.03* -0.62*
intensification: 20 nn 0.0 -0.64* -0.06* -0.04* -0.61*
intensification: no SST 0.0 -0.65* -0.06* -0.04* -0.6*
intensification: no weather 0.01 -0.66* -0.05 -0.03 -0.6*
intensification: no history 0.0 -0.66* -0.01 0.02 -0.46*
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Figure S15: Simulations of seasonal storm formations for different versions of the
emulator. The black line shows observations. The cyan line shows the median
of 1000 simulations for each year, while the lighter (darker) shading shows the
66% (%95) of simulations.

Figure S16: Simulations of seasonal storm days for different versions of the
emulator. The black line shows observations. The cyan line shows the median
of 1000 simulations for each year, while the lighter (darker) shading shows the
66% (%95) of simulations.
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Figure S17: Simulations of seasonal hurricanes for different versions of the em-
ulator. The black line shows observations. The cyan line shows the median of
1000 simulations for each year, while the lighter (darker) shading shows the 66%
(%95) of simulations.
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Figure S18: Simulations of seasonal major hurricanes for different versions of the
emulator. The black line shows observations. The cyan line shows the median
of 1000 simulations for each year, while the lighter (darker) shading shows the
66% (%95) of simulations.
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Figure S19: Simulations of seasonal ACE for different versions of the emulator.
The black line shows observations. The cyan line shows the median of 1000
simulations for each year, while the lighter (darker) shading shows the 66%
(%95) of simulations.
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Figure S20: Residuals of simulations of seasonal storm formations for different
versions of the emulator. The black line shows observations. The cyan line
shows the median of 1000 simulations for each year, while the lighter (darker)
shading shows the 66% (%95) of simulations.

Figure S21: Residuals of simulations of seasonal storm days for different versions
of the emulator. The black line shows observations. The cyan line shows the
median of 1000 simulations for each year, while the lighter (darker) shading
shows the 66% (%95) of simulations.
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Figure S22: Residuals of simulations of seasonal hurricanes for different versions
of the emulator. The black line shows observations. The cyan line shows the
median of 1000 simulations for each year, while the lighter (darker) shading
shows the 66% (%95) of simulations.
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Figure S23: Residuals of simulations of seasonal major hurricanes for different
versions of the emulator. The black line shows observations. The cyan line
shows the median of 1000 simulations for each year, while the lighter (darker)
shading shows the 66% (%95) of simulations.
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Figure S24: Residuals of simulations of seasonal ACE for different versions of the
emulator. The black line shows observations. The cyan line shows the median
of 1000 simulations for each year, while the lighter (darker) shading shows the
66% (%95) of simulations.

Figure S25: Histogram of storm durations for observed storms (blue) and sim-
ulated storms (orange).
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Figure S26: Maximal intensity of a storm against its duration. Gray shadings
indicate kernel density estimates from observations, while colored contour-lines
show the simualtions.

Figure S27: Daily intensity of a storm against the storm day. Gray shadings
indicate kernel density estimates from observations, while colored contour-lines
show the simualtions.
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Figure S28: Daily intensity change against the storm day. Gray shadings in-
dicate kernel density estimates from observations, while colored contour-lines
show the simualtions.
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