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Abstract. Tropical cyclones are among the most damaging and fatal extreme weather events. An increase in Atlantic tropical

cyclone activity has been observed, but attribution to global warming remains challenging due to large inter-annual variability

and modelling challenges. Here we show that the increase in Atlantic tropical cyclone activity since the 1980s can be robustly

ascribed to changes in atmospheric circulation as well as sea surface temperature (SST) increase. Using a novel weather

pattern based statistical model, we find that the forced warming trend in Atlantic SSTs over the 1982-2018 period increased5

the probability of extremely active tropical cyclone seasons by 14%. Seasonal atmospheric circulation remains the dominant

factor explaining both inter-annual variability and the observed increase. Our weather pattern-based statistical decomposition

helps to understand the role of atmospheric variability for the Atlantic tropical cyclone activity and provides a new perspective

on the role of ocean warming.

1 Introduction10

Tropical cyclones (TCs) are highly destructive extreme weather events (MunichRe, 2021), with a notable increase in intensity

and associated damages over recent decades (Kossin et al., 2013, 2020; Holland and Bruyère, 2014; Knutson et al., 2019).

Under anthropogenically caused climate change the impact severity of TCs is exacerbated due to more extreme precipitation

(van Oldenborgh et al., 2017; Reed et al., 2020) and increased risk of storm surges following from sea level rise (Lin et al.,

2016), amongst others.15

Whether the observed increase in TC intensity arises from a long-term trend related to global warming however remains

unresolved. While climate models project an increase in TC intensities (Bhatia et al., 2018; Walsh et al., 2016; Knutson et al.,

2020), a recent study suggests that after correcting for missing storm observations prior to satellite observation there is no

robust long-term trend in Atlantic major hurricane counts (Vecchi et al., 2021).

TC formation and intensification mostly depends on the atmospheric environment which varies strongly on inter-annual and20

intra-seasonal time-scales. TC formation mainly requires low vertical wind shear and strong low-level relative vorticity (Frank

and Ritchie, 2001; Sharmila and Walsh, 2017) alongside some initial perturbation (Dieng et al., 2017). The maximal poten-

tial intensity of a storm mostly depends on the vertical temperature gradient from the ocean surface to the upper troposphere

(Emanuel, 1987; Emanuel et al., 2013). Whether a storm reaches its maximum potential intensity is however strongly con-
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strained by the large-scale atmospheric circulation. As a result, substantial uncertainties on the impacts of dynamical effects of25

global warming on changes in TCs globally still exist (Knutson et al., 2019, 2020).

Given the large uncertainty in forced atmospheric circulation changes, and assuming that these changes are small in com-

parison to internal variability (Trenberth et al., 2015) a promising way forward could be to focus on thermodynamically forced

changes instead. Using a numerical TC forecast model, Reed et al. (2020) attributed a portion of the rainfall of hurricane

Florence to thermodynamic effects of global warming. This study followed the story-line approach in which dynamical condi-30

tions of the weather event are reproduced for different counterfactual thermodynamic forcings. Such approaches are however

restricted to individual events with clearly defined atmospheric conditions and cannot be directly generalized to seasonal TC

activity (Reed et al., 2020).

For a more generalizable approach, the role of internal variability needs to be established and separated from the potential

thermodynamic forcing (Shepherd, 2016). Climate models could be used to this extent (Sippel et al., 2019), but would require35

a large ensemble of climate simulations with adequate TC representation. Alternatively circulation analogues can be used.

For example, Cattiaux et al. (2010) reproduced European winter temperatures based on observed circulation patterns and their

influence on local temperatures.

Here we follow the idea of circulation analogues to construct a probabilistic tropical cyclone season emulator based on

the empirically assessed influence of atmospheric circulation patterns over the tropical north Atlantic on TC activity. We find40

that the sequence of weather patterns throughout the main hurricane season (August-October) explains most of the inter-annual

variability in number of storms and their intensities. The full observed variability in TC activity can be reproduced by including

sea-surface temperatures (SSTs) over the main development region (MDR see fig. S7) as an amplifying factor for most intense

TCs. Using counterfactual experiments, we furthermore investigate the extent to which trends in Atlantic SSTs contribute to

highly active tropical cyclone seasons under current climatic conditions.45

2 Data and Methods

2.1 Data & Preprocessing

For the classification of weather patterns we use mean sea level pressure and vertical wind shear calculated as the difference

between 200hPa and 850hPa eastward wind from the ERA5 reanalysis (Hersbach et al., 2020) over the period 1979-2018.

Weather patterns are classified over the tropical north Atlantic (10W-90W and 10N-30N). In order to remove the direct influ-50

ence of TCs in the reanalysis data we replace an area of 9◦x9◦ around the center of the storm with an average of the grid-cells

around this rectangle. Additionally, we regridded the data from a 1◦x1◦ grid to a 2.5◦x2.5◦ grid and averaged to daily data.

For the construction and validation of the TC emulator, we use daily sea surface temperatures from the Daily Optimum Inter-

polation Sea Surface Temperature (DOISST) data set (Huang et al., 2021). SSTs are averaged over the Atlantic main develop-

ment region (MDR) defined as 90W-20W and 10N-30N (see figure S7). To assess long-term trends in Atlantic MDR SSTs, the55

Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) is used (Rayner, 2003).

We use TC observations from the official WMO agency provided by the IBTrACKS database (Knapp et al., 2010, 2018). Only
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storms in the Atlantic basin are considered (see figure S3). As a measure for seasonal TC activity we use accumulated cyclone

energy:

ACE = 10−4
∑

v2
max (1)60

Where vmax is the 6 hourly sustained wind speed in knots.

TCs are classified according to the Saffir-Simpson hurricane wind scale according to which TCs with sustained winds of

more than 64 knots are named hurricanes and TCs with sustained winds above 96 knots are major hurricanes. Following

the definitions of the NOAA national weather service (CPC, 2021) we classify Atlantic hurricane seasons into above normal

seasons if they produce more than 126.1 ACE or extremely active seasons if the produced more than 159.6 ACE.65

2.2 Daily tropical Atlantic weather patterns and sea surface temperatures

We use a self organizing map algorithm (SOM) to classify daily tropical Atlantic weather into 20 patterns. A SOM is an

artificial neural network that is used for dimensionality reduction and can be applied to classify synoptic weather patterns

(Hewitson and Crane, 2002). Here we reduce the highly dimensional information of mean sea level pressure (MSLP) and

vertical wind shear (VWS) over a 2.5◦x2.5◦ grid spanning 10N-30N and 90W-10W to a 5x4 map where each node represents70

a weather pattern (see figure S1-2).

Instead of randomly initializing the SOM we use 20 clusters obtained from a k-means clustering as initial conditions. This

k-means clustering is performed on a Sammon projection of the original data. The advantage of this initialization is that we

have one clearly defined initialization and do not have to select one SOM result from a number of random initializations.

To guarantee that both variables (MSLP and VWS) have equal weight in the classification we standardize the variables to the75

1980-2010 mean and standard deviation. The combination of these two variables is a suitable choice for our application as

TC formation and intensification strongly depends on VWS while MSLP is generally helpful to characterize the prevailing

atmospheric circulation.

Some selected weather patterns are shown in figure 1: Strongest TC activity is observed during weather pattern w15 which is

characterized by a large low-pressure anomaly and nearly no vertical wind shear in the east of the MDR. Strong VWS in this80

region leads to fewer and weaker storms (see weather pattern w12). A strong high-pressure anomaly as in weather pattern w1

is similarly TC inhibiting. A weak pressure gradient from east to west with low VWS in the MDR is associated with moderate

TC activity (w6). All 20 weather patterns are shown in the supplementary material (figures S1, S2, S4).

The intensities of TCs also depend on SSTs in the region. As shown in figure S10, strongest storms are found over warm

SSTs. A quantile regression shows a significant relationship between warm SSTs and above median TC intensities. Weather85

patterns are not fully independent from SSTs: weather patterns with low pressure anomalies occur more often on days with

warm SST anomalies (see figure 1 blue bars). However, no systematic association between SSTs and VWS is apparent (see

figure S1 and S4). Although we will not be able to treat our weather patterns as independent from SST anomalies in the region,

both variables contain distinct information that is relevant for TC intensification.
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Figure 1. Tropical cyclone activity during selected weather patterns. Mean sea level pressure anomalies (a-d) and vertical wind shear

anomalies (e-h) for four selected weather patterns w15, w6, w1 and w12. The last row (i-l) shows relative deviations from the average of all

weather patterns expressed in standard deviations for the following statistics: frequency of the weather pattern, SST in the MDR, number of

storm formations during the weather pattern, storm days, hurricane days, major hurricane days and average ACE generated during days with

this weather pattern. A value of 2 indicates, that the statistic is 2 standard deviations higher during this weather pattern than for the average

over all weather patterns. All 20 weather patterns are shown in figures S1, S2, S4

2.3 Seasonal Tropical Cyclone Emulator90

We construct a probabilistic emulator that creates series of storms with maximum sustained wind speeds for each day. TCs

are rare events and their formation and intensification involves complex physical processes. In our emulator we break these

processes down into three components that are fully independent from each other: i) storm formation, ii) storm duration, iii)

daily storm intensity. In these components the daily weather pattern slightly alters the probabilities for a new storm formation

and it’s duration and the weather pattern in combination with regionally averaged SSTs alters the probabilities for intensification95

of an existing storm (see figure 2).

2.3.1 Storm formation

The number of storm formations varies strongly between different large scale weather patterns (Jaye et al., 2019). Storm

formation predominantly occurs during weather patterns with low vertical wind shear, high relative humidity in the lower

troposphere and the existence of some kind of perturbation. The component relies on the following assumptions: i) Weather100

patterns can favour or hamper storm formations, ii) persistent weather conditions can further increase or decrease formation

probabilities.
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Storm formations
Probability of:
• Weather
• Weather on the two day before

Storm intensities
Probability distribution function 
depending on:
• Weather
• SST in the MDR
• Intensity on the day before

Storm Duration
Probability distribution function 
depending on:
• Weather

Emulator Components

Weather Patterns
Daily time series of 
weather patterns.
Weights of the weather 
patterns are shown in 
figures S1, S2

Sea surface 
temperatures
Daily time series of SSTs 
averaged over the main 
development region 
(10N-20N 85W-20W), see 
figure S7

Input Emulator
for each day in season:

if new storm emerges:
estimate storm duration

for each active storm:
estimate max. wind speed

Output
A list of storms with daily 
storm intensities for each day 
and each storm

Figure 2. Schematic overview of the emulator. The input required to emulate TC seasons is shown on the left side. In the center, the three

components of the emulator are listed. On the right side, the functioning of the emulator is sketched and the format of the output is indicated.

Arrows between the left hand columns indicate which input is used in which components of the emulator.

Based on these assumptions we estimate the probability of a storm formation event Pgen on a day d with weather pattern

w(d) as:

Pgen(d) = Pobs(gen|w(d)) ∗
√
Pobs(gen+1d|w(d− 1)) ∗ Pobs(gen+2d|w(d− 2))

Pobs(gen|all)
(2)105

The first factor Pobs(gen|w(d)) is the observed probability of storm formations for the given weather pattern w. The sec-

ond factor includes the probabilities of storm formations one and two days after the weather pattern that occurred one

(Pobs(gen+1d|w(d−1))) and two (Pobs(gen+2d|w(d−2))) days earlier respectively. These probabilities are given less weight

by applying a square root and the factor is normalized by a dividing by the overall observed storm formation probability

(Pobs(gen|all)).110

2.3.2 Storm duration

There are numerous processes that can weaken and eventually dissipate TCs. The most common end of a TC is landfall. As

we do not have information about the location of storms in our emulator, estimating the duration of a storm is challenging.

For the development of this component we use the following assumptions: i) storms dissipate when making landfall, ii) the

time a storm has before making landfall is modulated by its formation location, iii) the formation location is to some extend115

influenced by weather patterns (see figure S5).
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We incorporate this dependence of storm duration on weather patterns on the day of storm formation by sampling the

duration D of a storm s from a Gaussian kernel estimate fg of all storms that have formed during the weather pattern during

which the storm has formed w(df ) and all neighboring weather patterns.

D(s) = fg(Dobs[wrow −wrow(df )< 2 & wcol−wcol(df )< 2]) (3)120

2.3.3 Storm intensity

We quantify storm intensity through the daily maximum sustained wind speed. We use the following assumptions for our

daily storm intensity emulations: i) intensification can be favored or hampered by weather patterns, ii) the intensity of a storm

depends on the intensity on the day before, iii) warmer SSTs in the MDR favour the intensification of strong TCs, iv) the

relationship between SSTs and storm strength can be regularized by a quantile regression.125

Assessing probability density functions for daily storm intensities for all possible combinations of weather patterns, SSTs,

and storm intensities on the day before is challenging given the insufficient number of storm observations. Therefore, instead

of estimating a PDF for the daily intensity from all observations that match to certain conditions (e.g. weather pattern w6, 28◦C

SST and 60kts wind speed on the day before) we estimate the intensity PDF from the 100 storm observations that are most

similar to these conditions.130

Furthermore, the distribution of observed intensities is skewed towards weak storms which would result in a low intensity

bias in a straight forward application of the nearest neighbors approach (see figure S13). We therefore introduce a linear

relationship between regionally averaged SSTs and storm intensities (see quantile regression in figure S10) to guarantee that

the intensities from which we sample are not systematically to weak.

For a given SSTtarget we transform all observed storm intensities to artificial pseudo-intensities vshifted using the slope βτ135

of the next quantile τ below the observed storm strength v(s,d):

vshifted(s,d,SSTtarget) = v(s,d) +βτ(s,d) ∗ (SSTtarget−SSTobs(d))

τ(s,d) =min(τ : v(s,d)> βτ + cτ )
(4)

We use the Euclidean distance metric applied on standardized variables to identify the 100 nearest neighbors in terms of

weather pattern and storm intensity on the day before:

D(di,dj)2 =
(w(di)−w(dj))2√
1
N

∑
m(w(dm)−w)2

+
(vshifted(di− 1)− vshifted(dj − 1))2√

1
N

∑
m(vshifted(dm)− vshifted)

(5)140

For the weather patterns, which are not a continuous variable, we consider their coordinates in the SOM grid as locations

and calculate differences between weather patterns as the sum of the squared differences in row and column numbers.

w(di)−w(dj) =
√

(wrow(di)−wrow(dj))2 + (wcol(di)−wcol(dj))2 (6)
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3 Results

3.1 Validation of the emulator145

Figure 3 sketches the functioning of the emulator for three Atlantic hurricane seasons: 2017 was a highly active season with

predominantly warm SSTs and favorable large-scale weather conditions allowing for strong TCs throughout most of the season.

2016 had similarly warm SSTs but less favorable weather conditions resulting in overall fewer days with strong storms. 1983

was an El Niño year with cool SSTs in the tropical Atlantic and mostly unfavorable weather conditions for TCs in the Atlantic

basin. The chance of finding storms and especially the chance of finding major hurricanes in simulations (fig. 3d) for the150

respective years reflects the observed weather patterns and SSTs.

To validate the emulator, we re-simulated every hurricane season between 1982 and 2018 1000 times using the observed

sequence of daily weather patterns and SST averages over the MDR. We construct a new emulator for each decade using all

the years but the decade we want to re-simulate as training data.

Large scale weather patterns are sufficient to explain most of the inter-annual variations in the number of storm formations155

(see fig. 4A). The remaining spread between individual simulation runs is to be expected as tropical storm formations have a

strong stochastic component. Besides favorable weather conditions, storm formation requires a (small scale) perturbation in the

atmospheric flow such as African easterly waves to be initiated (Dieng et al., 2017), information that is lacking in our emulator.

The number of storm days per season is strongly related to the number of storms. The simulated storm durations enhance

the representation of number of storm days resulting in a accurate representation of storm durations (see fig. S6, S25) and a160

Pearson rank correlation coefficient of 0.68 between observations and the median of all simulations (see fig. 4B).

Finally, the storm intensity component produces a variety of storm intensities including major hurricanes (see fig. 4C). As

for the number of storm days the number of strong storms is tightly linked to the number of storm formations. But as storm

intensification is favored by certain weather patterns and warm SSTs, the potential for intensification alters between years.

In combination, this results in an adequate representation of inter-annual variability in seasonal accumulated cyclone energy165

(ACE) as shown in figure 4D.

3.2 Sensitivity analysis

Strong simplifications were required to emulate TCs based on sequences of weather patterns and regionally averaged SSTs.

The assumptions on which our methodological choices are made are plausible and appear to work well, they are however not

without alternatives. We therefore test how alternative emulators perform.170

The most critical part is the treatment of SSTs in the intensification component of the emulator as it directly influences

some of the results. As shown in table S3 (also figures S22, S23, S24), emulators without any SST influence have significant

trends in residuals for ACE (15 ACE per decade) and the number of major hurricanes (4 maj. hurricanes per decade). Including

SSTs into the intensification component of the emulator reduces these trends significantly which suggests, that SSTs contain

information that is required for an adequate representation of strongest TCs.175
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Figure 3. Functioning of the tropical cyclone emulator. a, Sequence of daily weather patterns grouped into four categories from least

favorable for TC formation and intensification to most favorable for the years 2017 (purple), 2016 (cyan) and 1983 (orange). b, Daily SSTs

averaged over the main development region for the same years. c, Intensity of the strongest storm for each day grouped into the categories

storm, hurricane and major hurricane. d, Probability of exceeding the intensity thresholds of c in simulations from the emulator.

A simpler way of including SSTs in our emulator could be to estimate intensity probability functions directly from the 100

nearest neighbors in terms of weather patterns, storm intensities on the day before and SSTs. While this approach works well

in the range of average conditions, there are systematic deviations between the nearest neighbors and the target conditions for

more extreme conditions. As shown in figure S12 there is a warm bias for cool SSTs and vice versa which is a result of to few

observations from which the nearest neighbors can be searched. Similarly, there is a bias towards weaker storms in the nearest180

neighbors (see figure S13 S14). Reducing the number of nearest neighbors from 100 to 20 only slightly reduces these biases.
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Figure 4. Cross validated hurricane season emulations. a, Number of storms as observed (black) and simulated (cyan). The light shading

shows the 95% range of the 1000 simulations, the darker shading shows the 66% range. The median is indicated by a solid line. The cross

validated Pearson correlation coefficient between hindcasts and observations is indicated in the legend (see methods for more details on the

decadal cross validation). b, As a but for the number of storm days in a season. c, As a but for the number of major hurricanes in a season.

d, As a but for the seasonal ACE.

Ultimately, this results in a lack of sensitivity in our emulator that leads to a systematic underestimation of strongest TCs (see

figures S23 S24).

In the supplementary information we present a number of additional emulators with slightly altered storm formation, storm

duration and storm intensity components. Most of these altered emulators yield similar results which supports the robustness185

of our results.

3.3 Understanding recent TC variability

We deploy the emulator to assess the contributions of large scale atmospheric circulation and long-term warming of tropical

Atlantic SSTs towards the likelihood of extremely active hurricane seasons. Over the period 1982-2018, SSTs in the Atlantic

MDR have warmed at a rate of 0.3 K per decade (fig. S8). This is a considerably stronger trend than the long-term trend of190
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0.05 K per decade for the period 1850-2018 (S9). Thus most of the SST trend over the 1982-2018 period is a result of internal

variability.

To disentangle forced changes from internal variability we construct counterfactual scenarios in which we remove the long-

term SST trend from the 1982-2018 observations and then shift these SST time-series so that on average they match the

values of the long-term trend at three years: 2018, 1982 and 1900 (e.g. pre-industrial). We thereby obtain three counterfactual195

scenarios of stable climate for different SST levels, all sharing identical internal variabilities (see fig. 5a). For all scenarios we

re-simulate each year of the period 1982-2018 1000 times using the observed weather pattern sequences, a counterfactual SST

time series and the emulator trained on the years 1982-2008.

Over the period 1982-2018, large scale atmospheric circulation patterns are the dominant factor explaining year to year

variability in TC activity. Our emulations show high TC activity in the same years irrespective of the counterfactual SSTs (see200

fig. 5b). For instance, the low activity in the years 1982-1987 is also simulated in the experiment with 2018’s SST levels while

the years 1995, 2005, 2010 and 2017 have a high likelihood of becoming an extremely active season also with 1982’s SST

levels.

Nevertheless, differences in seasonal TC activity are apparent between the different scenarios. On average, the seasonal

activity is 5 ACE lower for 1982’s SST levels as compared to 2018’s SST levels (see fig. 5c). Consequently, the probability of a205

season becoming an above normal season is 11% lower in the 1982 scenario (an above normal seasonal activity being defined

as > 126.1 ACE (CPC, 2021)).

Differences between the counterfactual scenarios are stronger in years with high TC activity (see fig. 5c). For years in which

half of the simulations with 2018’s SST levels are above normal seasons, the simulations are on average 10 ACE more active

with 2018’s SST levels than with 1982’s SST levels. For these years the risk of finding an extremely active season (with ACE210

> 159.6) drops from 44% under current climate to 38% under 1982’s SSTs (see fig. 5g).

Assuming that the observed relationship between TC activity and regionally averaged SSTs can be extrapolated outside of

the period 1982-2018, we simulate Atlantic hurricane seasons as we would expect them with pre-industrial SSTs (only few

years with particularly low TC activity lie outside of the data on which the emulator was trained, see gray shading in figure 5a).

According to our simulations the hurricane activity of the recent decades would have been significantly lower under pre-215

industrial SSTs. Compared to the 2018’s SST levels, the average seasonal activity is 15 ACE lower in the pre-industrial exper-

iment resulting in 9% lower likelihood of finding an above normal season. While in our emulator the influence of 0.5 K SST

warming has a remarkable effect on highly active hurricane seasons, weather patterns remain the dominant factor influencing

the potential of becoming an active season.

Simulations from the emulator can moreover be used to analyze contributions to extremely damaging hurricane seasons220

such as that of 2017. 2017 is in the top 10 most active recorded hurricane seasons with 225 ACE and 6 major hurricanes,

characterized by weather patterns that are favorable for TC formation and intensification and relatively warm SSTs. Figure 6a

shows the probabilities of finding such a season under counterfactual SST scenarios.
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Figure 5. Atlantic hurricane seasons under different counterfactual SST scenarios. a, Observed SSTs averaged over the Atlantic MDR

(black) and three counterfactual scenarios: SSTs from which the long-term SST trend has been removed and that are shifted to 2018 SST

levels (purple), shifted to 1982 SST levels (cyan) and shifted to 1900 SST levels (gray). b, Simulations for the counterfactual scenarios of a.

c, Simulations for all years aggregated and for the most favorable years defined as years for which half of the simulations in the current SST

scenario have more than 126.1 ACE. d, Probability of above normal seasons (ACE > 126.1). e, As d but for all years and favorable years. f,

as d but for extremely active seasons (ACE > 159.6). g, As e but for extremely active seasons.
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Figure 6. Influence of ocean warming on the hurricane season 2017. a, Cumulative distribution functions for seasonally aggregated ACE

for the three scenarios: current SST levels (solid), 1982’s SST levels (dashed) and pre-industrial SST levels (dotted). All years between

1982-2018 aggregated in cyan, 2017 in purple and 2005 in red. The area between the 2018 scenario and the pre-industrial scenario is shaded.

The horizontal gray line indicates 225 ACE which was observed in 2017. b, Fraction of risk of an ACE > 225 season attributable to the SST

difference between the 2018’s SST levels and 1982’s SST levels (dashed lines) and 2018’s SST levels and pre-industrial SST levels (dotted

lines). The histograms show the FAR distributions from a 10000-member bootstrapping for the 1982 SST level scenario, the horizontal lines

indicate the median FARs.

Compared to other years, 2017 has a high probability of becoming an above normal season (44%) and a considerable

probability of becoming an extremely active season (23%). Nevertheless, the observed activity was rather exceptional with225

only 4% of the simulations reaching the observed ACE of 225 (see fig. 6a).

Under a counterfactual scenario of early 1980’s with similar modes of internal climate variability, weather patterns and short

term variations in Atlantic SSTs, the season would have less likelihood to become an above normal hurricane season (40%) or

even an extremely active season (19%).

For 2017 weather conditions, the warming of Atlantic SSTs since the 1980s makes finding a season with 225 ACE 20% more230

likely (see fig. 6b). For a year like 2005 which according to our analysis had a higher likelihood of becoming an extremely

active season than 2017, the fraction of risk that can be attributed to the long-term SST warming since the 1980 is even higher

than for 2017 (30%).

An extrapolation of our model to pre-industrial SSTs suggests, that the likelihood of extremely active seasons such as 2017

would have been significantly lower with pre-industrial SSTs. In such, the chance of finding an extremely active season under235

2017’s conditions would have been 13% instead of 23% with pre-industrial versus current SST levels.

12

https://doi.org/10.5194/wcd-2021-64
Preprint. Discussion started: 7 October 2021
c© Author(s) 2021. CC BY 4.0 License.



4 Discussion and conclusions

We have demonstrated that the observed Atlantic tropical cyclone activity over the last 40 years can be reproduced with a

probabilistic emulator based on large-scale weather patterns and SSTs. Over this period, we observe a trend in weather patterns

favoring more active TC seasons. Whether or not this trend can be attributed climate change or other external drivers such as240

aerosol loading’s (Dunstone et al., 2013) remains an open question.

Our weather patterns and regional SST time series are not fully independent. Specifically, it appears that years with warm

Atlantic SSTs are also years where Atlantic SSTs are warm relative to the rest of the tropics and it has been argued, that this

effect of relative SSTs is the dominant contribution to TC activity (Sobel et al., 2016; Murakami et al., 2018). The temperature

difference between the tropical Atlantic and other tropical basins has a strong impact on atmospheric circulation. However,245

our sensitivity analysis suggests, that SSTs over the MDR contain relevant information and that our approach to include SSTs

in the emulator as an addition to the sequences of weather patterns is suited to simulate intense TCs. The potential maximum

intensity a TC can reach depends on the temperature difference between the ocean surface and the tropopause layer and it is

plausible, that increasing SSTs have an amplifying effect on strong TCs (Emanuel, 1987). However, it has been argued that

over the satellite era, tropopause layer cooling might have dominated over the role of SSTs (Emanuel et al., 2013), a hypothesis250

we cannot exclude based on our analysis.

Ultimately, the integration of SSTs in our model relies on assumptions that are pysically motivated and that lead to a better

representation of TC activity over the period 1982-2018 than other assumptions. Since the early 1980’s, global warming of more

than 0.5K has occured and we would argue that over this period SSTs in the region serve as a useful proxy for thermodynamic

changes in the climate system. However, given some of the model limitations highlighted above, we refrain from making255

a climate change attribution statement of the observed changes in cyclone activity and caveat extrapolated assessments of

changes relativ to pre-industrial conditions.

There is increasing consensus in the scientific literature that the number of tropical cyclones might not or only moderately in-

crease, while the number of most intense storms would increase substantially (Masson-Delmotte et al., In Press). Our emulator

results indicate that increasing SSTs could be a potential driver for such an intensification.260

By separating out the thermodynamic and dynamic changes for observed ACE, our approach allows us to link the observed

trend in seasonal cyclone activity and extreme season probability to warming SSTs. Our findings indicate that warming SSTs

over the tropical Atlantic might have already contributed significantly to more extreme tropical cyclone seasons, and thereby

to the fatalities, destruction and trillion dollar losses that these cyclones have caused over this the last four decades (MunichRe,

2021). Given the projected increases of SSTs with increasing warming, our findings suggest that the probability of extreme265

seasons might further increase. To minimise future risks, achieving net-zero CO2 emissions and stringent emission reductions

in other greenhouse gases would be required to halt global warming in line with the goal of the Paris Agreement (Masson-

Delmotte et al., In Press).
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