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Abstract. Systematic changes, since the beginning of the 20th century, in average and extreme Australian rainfall and 

temperatures indicate that Southern Australian climate has undergone regime transitions into a drier and warmer state. South-

west Western Australia (SWWA) experienced the most dramatic drying trend with average streamflow into Perth dams, in the 

last decade, just 20% of that before the 1960s and extreme, decile 10, rainfall reduced to near zero. In south-eastern Australia 

(SEA) systematic decreases in average and extreme cool season rainfall became evident in the late 1990s with a halving of the 10 

area experiencing average decile 10 rainfall in the early 21st century compared with that for the 20th century. The shift in annual 

surface temperatures over SWWA and SEA, and indeed for Australia as a whole, has occurred primarily over the last 20 years 

with the percentage area experiencing extreme maximum temperatures in decile 10 increasing to an average of more than 45% 

since the start of the 21st century compared with less than 3% for the 20th century mean. Average maximum temperatures have 

also increased by circa 1oC for SWWA and SEA over the last 20 years. The climate changes are associated with atmospheric 15 

circulation shifts and are indicative of second order regime transitions, apart from extreme temperatures for which the dramatic 

increases are suggestive of first order transitions.  

1 Introduction 

Over the last seventy years, since the middle of the 20th century, aspects of Australian climate, particularly rainfall and 

temperatures, have undergone significant changes (CSIRO and Bureau of Meteorology, 2015; Alexander and Arblaster, 2017; 20 

Dey et al., 2019; Bureau of Meteorology and CSIRO, 2020; Osbrough and Frederiksen, 2021, hereafter OF21, review the 

literature). The notable rainfall deficits in southern Australia have been linked to declines in extra-tropical storminess and the 

intensity of explosive storms (Frederiksen and Frederiksen, 2005, 2007; Hope, 2006; Pezza et al., 2008; Frederiksen et al., 

2010; Alexander et al., 2011; Pook et al., 2012; Risbey et al., 2013; Frederiksen et al., 2017; Quinting et al., 2019; OF21). 

Some of those changes have been quasi-cyclical due, for example, to variability associated with the El Niño-Southern 25 

Oscillation or the Indian Ocean Dipole (Cai et al., 2009; L’Heureux et al., 2017; Whelan and Frederiksen, 2017; Frederiksen 

and Francey, 2018; OF21 review the literature). On the other hand, there is also compelling evidence for systematic climate 

shifts in both hemispheres due to global warming (Corti et al., 1999; Frederiksen et al., 2010; O'Kane et al., 2013; CSIRO and 

Bureau of Meteorology, 2015; Franzke et al., 2015; Frederiksen and Grainger, 2015; Freitas et al., 2015; Frederiksen et al., 

2017; Grose et al., 2019; Bureau of Meteorology and CSIRO, 2020; OF21).  30 

https://doi.org/10.5194/wcd-2021-72
Preprint. Discussion started: 15 November 2021
c© Author(s) 2021. CC BY 4.0 License.



2 
 

Our particular interest in this article is whether the changes that have occurred in Australian climate and climate extremes over 

the last seventy years are indicative of regime transitions in a noisy environment. There has been a long history of studies 

examining the possibility of regime transitions in various aspects of the climate system. The early simple energy balance 

models (EBMs) of the earth's climate (Budyko, 1969; Sellers, 1969; Faegre, 1972; Schneider and Gal-Chen, 1973; Frederiksen, 

1976; Ghil, 1976) exhibited thermodynamical regime transitions in the mean temperature between several states as the order 35 

parameter, the solar constant, is varied. Indeed, as shown in Figures 1 and 3 of Frederiksen (1976), the number of stable states 

and the number of bifurcation points (or critical or tipping points) may vary depending on the form of the thermodynamical 

functions, such as the effective albedo, and lead to the possibility of closely spaced tipping points. 

Charney and Devore (1979) and Wiin-Nielsen (1979) studied low order dynamical models of the atmospheric circulation and 

found multiple equilibrium states dominated by either strong zonal flow and weak wave structure or weak zonal flow and 40 

strong wave structure that they interpreted as a blocking state. Charney and Devore (1979) found that regime transitions 

between the zonal and blocking states occurred as the order parameter, the height of the topography, varied through the 

bifurcation point. Similar regime transitions were also found in baroclinic models by Charney and Straus (1980). Frederiksen 

and Frederiksen (1989) reviewed subsequent developments in the theory of multiple equilibria and the role of topographic 

instability in regime transitions.  45 

Frederiksen (1985, 1991) examined regime transitions of inviscid barotropic and baroclinic zonal flows over topography in 

high dimensional systems using methods of equilibrium statistical mechanics. The critical points for barotropic flow and 

critical lines and triple points for baroclinic flows were determined and the similarities and differences with magnetic phase 

transitions (Patashinski and Pokrovskii, 1979; Thompson, 1979) were examined. Zidikheri et al. (2007) studied the interaction 

of barotropic zonal flows with topography in high resolution forced dissipative numerical simulations and established the phase 50 

diagram (their Figure 2) for regime transitions. They found hysteresis effects in transitions between strong and weak zonal 

flow states with qualitative similarities to those for magnetic phase transitions (e.g., Figure 3 of Saghayezhian et al. (2019) and 

references therein). The regime transitions between strong zonal states and blocking found in simple models have also been 

found in comprehensive weather prediction models (e.g., Frederiksen et al. (2004)) and associated with observed climate shifts 

(O'Kane et al., 2013). 55 

Further developments in the role of regime transitions and tipping points in various aspects of the climate system, including 

under global warming, have been considered by Franzke et al. (2015); Freitas et al. (2015); Jones and Ricketts (2017); Dijkstra 

(2019); Lenton (2019); Kypke et al. (2020); Yan et al. (2020); Fabiano et al. (2021); and Australian Academy of Science 

(2021). It is clear from all the studies mentioned in this Introduction that there are dynamical and thermodynamical processes 

of the climate system that can result in regime transitions. However, the methodologies for analysing components and 60 

simplifications of the climate system are not easily applied to the full system given its complex equations and interactions over 

vast scales. This is clearly the case for the analytical and semi-analytical bifurcation methods, including singularity theory 

(Ball, 2007), for analysing low order systems (Dijkstra, 2013) and for the equilibrium statistical mechanics methods 

(Frederiksen, 1985, 1991). Renormalization group methods (Wilson and Kogut, 1974; Wilson, 1979; McComb, 2004 reviews 
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the literature) and renormalized perturbation theory (McComb, 2004; Frederiksen, 2017 review the literature) are more 65 

generally applicable to the statistical dynamics of phase transitions but the complex equations and interactions of the climate 

system again make these approaches unfeasible. In this study we therefore take an approach based on the general characteristics 

of phase transitions which involve a discontinuity in the dependent variable (first order phase transition) or its derivative 

(second order phase transition) as the order parameter transits through a critical point (Harter et al., 2017; Saghayezhian et al., 

2019 and references therein). 70 

The paper is structured as follows. The mean and extreme rainfall, streamflow into Perth dams, the mean and extreme surface 

temperature data sets, and the reanalysis data determining atmospheric flow fields, are described in Section 2. Section 3 

examines changes in SWWA mean and extreme rainfall and streamflow since the beginning of the 20th century and relates the 

changes to those of the atmospheric circulation in the surrounding regions. There, systematic shifts in these variables and their 

trends or gradients over different time periods are examined and are related to regime transitions. In Section 4, a corresponding 75 

analysis is performed for mean and extreme rainfall for SEA and in Section 5 results for northern Australia are presented. The 

changing nature of SWWA average and extreme maximum surface temperatures are examined in Section 6 and the shifts in 

temperatures and trends again related to transitions between regimes. Section 7 presents an analysis of temperature trends in 

SEA, and for states and regions fully or partially within this area, while Section 8 summarizes corresponding results for 

Australia as a whole. The implications of our findings and our conclusions are discussed in Section 9. 80 

2 Data sets 

2.1 Rainfall, temperature and streamflow data sets 

The average and extreme rainfall and temperature data used in this paper have been obtained from the Bureau of Meteorology 

(2020) website. In this study we focus on various regions such as SWWA, SEA, northern Australia, and Australian states, 

shown in Fig. 1. The construction of the rainfall data set is described by (Jones et al., 2009) and the temperature data set by 85 

(Trewin, 2013). The data for streamflow into Pert dams has been obtained from the Water Corporation (2020) of Western 

Australia. 

2.2 Reanalysis data sets 

The analysis of the changes in atmospheric circulation in our study uses the reanalysis data set of the National Centers for 

Environmental Prediction (NCEP) and the National Centre for Atmospheric Research (NCAR), (Kalnay et al., 1996). It will 90 

be referred to as the NNR data set. 
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3 South west Western Australian rainfall, rainfall extremes and atmospheric circulation 

In this section, we analyse rainfall over SWWA and streamflow into Perth dams since the early 1900s. There was a notable 

deficit in Southern Wet Season (SWS), April to November, rainfall in SWWA and an even larger relative reduction in annual 

streamflow into Perth dams between the mid-1970s and early 1980s. This has been documented in numerous studies, starting 95 

with the articles by Pittock (1988) and Sadler et al. (1988), and further analysed and reviewed by Hope (2006); Bates et al. 

(2008) and OF21. Frederiksen and Frederiksen (2005; 2007 - hereafter FF05, FF07) noted that there was an associated 17% 

reduction in the peak upper troposphere winter jet-stream and a 20% drop in the 300 − 700 hPa baroclinicity in the region of 

SWWA between 1949-1968 and 1975-1994. They showed through instability model calculations, with the respective observed 

climate states for the above two 20-year periods, that there was a circa 30% reduction in the growth rate of leading storm track 100 

modes crossing SWWA and a poleward deflection of some storms. OF21 have recently confirmed, through a detailed data 

driven study, that the cause of the SWWA winter rainfall decrease over the last 50 years is in fact the reduction in the intensity 

of the fast-growing storms associated with changes in the basic state. 

Our aim here is to present evidence that both SWS rainfall over SSWA and Perth annual streamflow have undergone regime 

transitions with qualitative similarities to the phase transitions discussed in the Introduction.  105 

3.1 SWWA rainfall, rainfall extremes and streamflow 

We start by examining the time series of SWS rainfall over SWWA rainfall and annual streamflow into Perth dams between 

January to December. The SWWA region is shown in Fig. 1 which also displays other regions of Australia that we consider 

in this study. Figure 2 shows the time series of (a) SWWA rainfall in SWS from 1900 to 2019, (b) the Percentage Area with 

Rainfall in Decile 10 (PARD10) for SWWA in SWS and (c) the January to December Perth streamflow from 1911 to 2018. We 110 

note that the three graphs show a general decline with time. This is perhaps most easily seen from Table 1 where averages of 

these quantities are displayed for different time spans. For each time interval shown the rainfall, streamflow and PARD10 

decrease systematically apart from a slight recovery of PARD10 in the last period. The reductions shown there are quite profound 

for streamflow and extreme rainfall. We note that Perth streamflow decreased from an annual average of 414 giga litres for 

1911-1958 to 389 giga litres for 1959-1978 to 183 giga litres for 1979-2018 and to as little as 88 giga litres for 2009-2018. 115 

Thus, in the last decade Perth streamflow has reduced to just 21% of the historical annual average inflow into dams.  Extreme 

rainfall, represented by PARD10 in Table 1, followed a similar dramatic decrease. By these two measures the climate of SWWA 

has transited into a completely different regime. Somewhat lesser declines in streamflow have also occurred in other drainage 

divisions across southern and eastern Australia (Bureau of Meteorology and CSIRO, 2020). For SWWA rainfall (Fig. 1a) the 

broad decreases with time follow a similar pattern to streamflow (Fig. 1c) but with the magnitudes of the reductions being 120 

considerably less, at circa 20%, since the 1970s.  

Table 2 shows correlations (and detrended correlations) for the period 1911-2018 of annual streamflow into Perth dams with 

SWWA rainfall and PARD10 for SWS. As expected from Fig. 2, the correlations are substantial. They are even somewhat larger 
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with the rainfall squared and with a quadratic fit of rainfall with streamflow. Annual streamflow into Perth dams is particularly 

well predicted or described by the quadratic fit with correlation ݎ = 0.88  (detrended ݎ = 0.86 ). 125 

Next, we consider decadal variability of rainfall, streamflow and PARD10. Figure 3 shows time series of 10 year running means 

of these variables that make the systematic decrease since the mid 1970s more evident than the noisier annual data in Fig. 2. 

The close covariability of the low-pass filtered SWWA rainfall and Perth streamflow is evident and the correlations are even 

larger (ݎ = 0.94 and detrended ݎ = 0.83) than for interannual variability (ݎ = 0.84 and detrended ݎ = 0.81). Perhaps most 

dramatic is the drop in PARD10 displayed in Fig. 3b from before the 1970s to after. This illustrates an important point that how 130 

evident a regime transition is depends on the variable of interest and its sensitivity to the changes in the forcings or external 

environment (order parameters). Clearly extreme rainfall is more sensitive to changes in the circulation that in turn affect the 

extratropical storms and rainfall (FF07; OF21). 

The nature of the regime transition can be further elucidated by examining the average trend or gradient of the rainfall and 

streamflow data over relevant time spans. This is summarized in Table 3 which show the trends up to 1958, between 1959 and 135 

1978 and since 1979. For each of the data sets there is a considerable decreasing trend in the twenty years between 1959-1978 

compared with in the periods before and after. Again, these results support the proposition that SWWA rainfall and streamflow 

into Perth dams underwent a regime transition from a relatively high rainfall state to a lower much drier state and that this 

occurred over a period of about twenty years. The broad findings detailed for SWS over SWWA apply equally to winter rainfall 

and Cool Season (April to October) rainfall (not shown). 140 

3.2 SH atmospheric circulation  

As noted in FF07 and further analysed and reviewed by OF21, the July rainfall reduction in SWWA after the 1970s was 

accompanied by significant decreases in the July upper tropospheric subtropical jet near 30oS over Australia. Here, we examine 

the time series of the SH jet stream changes since the mid-20th century in more detail focusing on the SWS of April to 

November. Figure 4 shows a latitude cross section of the (1975-1994) minus (1949-1968) zonal wind difference in the region 145 

30oS-35oS, 100oE-130oE. It has broadly similar structure to the corresponding difference for July show in Fig. 1c of FF07. In 

both cases there are significant wind decreases in the upper troposphere near 35oS, with increases near 60oS and decreases 

again near 75oS. As well these findings are reflected in January to December annual average differences (not shown) indicating 

the systematic nature of the changes. 

Heavy rainfall from rapid extratropical storm development (OF21 and references therein) depends on the baroclinicity of the 150 

atmosphere. Phillips (1954) formulated a simple instability criterion for storm development which may be expressed as  

ܷ௨௣௣௘௥ −ܷ௟௢௪௘௥ −ܷ௖௥௜௧௜௖௔௟ > 0 

which is necessary for baroclinic instability. The superscripts denote the winds at appropriate upper and lower levels of the 

atmosphere and the critical value, ܷ௖௥௜௧௜௖௔௟ , depends on the vertical temperature gradient and the Coriolis parameter. In 

spherical geometry the expression for ܷ௖௥௜௧௜௖௔௟  is given, for example, by Frederiksen (1978, Eq (3.9)) and in Eq. (1) of OF21 155 

(and references therein). FF07 and Frederiksen and Frederiksen (2011 – hereafter FF11) found that the primary determinant 
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of changes in the SH baroclinicity during the 20th century were changes in the zonal wind shear with changes in the vertical 

temperature gradient, and thus in  ܷ௖௥௜௧௜௖௔௟, being relatively minor.   

Figure 5 shows the interannual variability of the April to November (SWS) 150 hPa zonal wind (part a) and baroclinicity 

measured by the 300 − 700 hPa zonal wind (part b) between 30oS-35oS, 100oE-130oE and from 1948 to 2018 based on NNR 160 

data. For both the peak upper tropospheric zonal wind and the baroclinicity there is a general reduction from 1948 until the 

mid-1970s and thereafter there is a flattening of the running mean curve until the end of the record. These changes are further 

quantified in Tables 4 and 5. Table 4 show the systematic decrease in 150 hPa zonal wind and  300− 700 hPa tropospheric 

baroclinicity for the time spans 1948-1958, 1959-1978 and 1979-2018. The corresponding trends or gradients of these field 

for 1959-1978 and 1979-2018 are given in Table 5. The gradients decrease rather steeply between 1959-1978 and thereafter 165 

the trend is near zero. In these respects, the results in Table 5 mirror those for SWWA rainfall and stream flow into Perth dams 

shown in Table 3. The flow field results are consistent with a regime transition into a weaker zonal flow and baroclinicity state 

in the regions upstream and over SWWA in the twenty-year period 1959-1978. Tables 4 and 5 also show the corresponding 

changes in the mean values and gradients for the 700 hPa zonal wind in the region 20oS-35oS, 110oE-130oE. We note that in 

the lower troposphere the relative changes in the mean zonal wind values and particularly gradients are considerably weaker 170 

than in the upper troposphere.  

Table 6 shows correlations between mid-tropospheric baroclinicity and characteristics of SWWA rainfall for SWS and annual 

streamflow into Perth dams for the time span 1959-2018; similar results are obtained for 1948-2018 (not shown). Correlations 

with the 300− 700 hPa zonal wind are as high as 0.58 except with PARD10 where they are lower. We note however that 

somewhat larger correlations between baroclinicity and rainfall may be obtained by optimizing the region and levels of the 175 

flow fields (OF21). This is done in the right-hand column of Table 6 where correlations (as high as 0.66) with the 700 hPa 

zonal wind in the region 20S-35S 100E-132.5E are shown for SWS. As noted in OF21 the strong correlations of SWWA 

rainfall with the low-level flow suggests that surface cyclogenesis is a major contributor to the rainfall and the variability of 

the 700 hPa zonal wind is a primary determinant of variability in low-level baroclinicity. Their results for July are confirmed 

here for the time span of April to November. 180 

4 South east Australian rainfall, rainfall extremes and atmospheric circulation 

Next, we examine changes in SEA rainfall since the early 1900s with a particular emphasis on indications of regime transitions 

as in Section 3 for SWWA rainfall. We focus on the Cool Season (CS), April to October, SEA rainfall which is most affected 

by extra-tropical storms (OF21). Perhaps the most dramatic period of rainfall reduction during the 20th and early 21st century 

was the Australian Millennium Drought (AMD) of 1997 to 2009. SEA rainfall changes, particularly during the AMD, have 185 

been the focus of numerous diagnostic studies including by Fawcett (2004); Gallant et al. (2007) and Watkins and Trewin 

(2007), and further investigated and reviewed by Risbey et al. (2013); Cai et al. (2014); Dey et al. (2019); and OF21. These 

works have established the AMD as one of the most widespread and devastating droughts of the last century. FF11 related the 
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changes in 1997-2006 rainfall over Southern Australia compared to the 1949-1968 base-line period to changes in the large-

scale circulation and changes in the growth of weather systems. Their theoretical primitive equation calculations showed that 190 

the growth rates of leading extra-tropical storm track modes were reduced by more than 30% and onset-of blocking modes by 

around 20% although there was some increase in the growth rate of North-West Cloud Band modes (NWCBs) and 

intraseasonal oscillation modes. These theoretical analyses of the causes of the AMD were also supported by the observational 

study of Risbey et al. (2013), who found fewer fast growing and intense frontal storms and cut-off lows during the AMD and 

again attributed this to the reduction in baroclinicity in the Australian region. The data driven analysis in OF21 confirmed 195 

these findings and established that changes in the intensity of explosive storms were primarily responsible for the reduced 

winter rainfall in Southern Australia during the AMD. They also found that while the El Niños played a significant role in the 

SEA rainfall reduction during the AMD the general drying of Southern Australia continued and is evident during the longer 

period 1997-2016. 

4.1 SEA rainfall and streamflow 200 

Figure 6 shows the annual and 10 year running mean time series of SEA rainfall and extreme rainfall characterized by PARD10 

for the Cool Season (CS) of April to October; results based on April to November (SWS) are broadly similar (not shown). The 

reduction in SEA rainfall and PARD10 are most evident from the late 1990s as also see in from Table 7. The SEA reductions 

in rainfall of about 10% and a halving of PARD10 since the late 1990s are very significant as they affect the Murray Daring 

Basin (MDB; see Fig. 1) which is Australia's main food bowl. Nevertheless, they are not yet as dramatic as the larger reductions 205 

experienced by SWWA since the late 1970s discussed in Section 3. As one would expect, many of the states and sub-regions 

making up, or overlapping with, SEA experienced very similar Cool Season changes as those depicted for SEA. This is the 

case for the states of Victoria (VIC) and New South Wales (NSW) and for the MDB region (Fig. 1). In fact, the variability of 

rainfall and PARD10 for VIC (the central part of SEA) is essentially the same as for SEA with CS rainfall (PARD10) correlation 

of 0.97 (0.94). Indeed, the relationships between explosive storms and SEA rainfall established in OF21 apply equally to VIC 210 

rainfall. 

The Tasmanian variability of CS rainfall and PARD10 are less representative of SEA with correlations of 0.64 and 0.60 

respectively.  Interestingly, the changes in TAS rainfall and PARD10 have some similarities to those for SWWA in that the 

noteworthy reductions of total and extreme CS rainfall also commenced in the late 1970s as shown in Fig. 7 and in Table 7. 

However, the Tasmanian rainfall reductions have been more typical of SEA than the larger deficits for SWWA. The reductions 215 

in CS rainfall, and extreme rainfall, over the state of South Australia (SA) (not shown) have some similarities with those over 

SWWA (although not as large) and Tasmania in that they became evident in the late 1970s with further reductions at the start 

of the 21st century.  

For CS total and decile 10 rainfall averages over the Southern Australian (SNA) and Eastern Australian (EA) regions (Fig. 1) 

the reductions became most evident at the start of the 21st century (not shown); this is also the case for the state of Queensland 220 

(QLD) and to a lesser extent even for the Northern Australian (NA) region (not shown).  
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In this study we shall not make an extensive analysis of the associated changes in streamflow that occurred in SEA or other 

regions. As might be expected from the relative changes in rainfall between SEA and SWWA the streamflow reductions into 

some drainage divisions across SEA have been notable but less impactful than those into Perth dams as discussed, for example, 

in Bureau of Meteorology and CSIRO (2020).  225 

4.2 SH atmospheric circulation 

The dynamical study of FF11 noted that the July rainfall reductions during 1997 to 2006, in the AMD, (compared with the 

baseline 1949-1968 period) were associated with reductions as large as 6 ms-1 in the strength of the SH upper tropospheric 

subtropical jet centred on 30S between the longitudes of 110E and 160E. Similar increases in peak jet strength near 55S were 

also noted. From Figure 2 of FF11, it is evident that there was also a noteworthy reduction in the baroclinicity of the SH mid-230 

troposphere near 30S particularly in the Australian region. OF21 further discussed the changes in the SH circulation, as 

characterized by several local, hemispheric, and globally important predictors or indices. In particular, they found that July 

SEA rainfall variability was highly correlated with the 700 hPa zonal wind in the region 20S-35S, 132.5E-155E. Table 8 shows 

that average the correlations between SEA and Tasmanian rainfall and this 700 hPa regional zonal wind are even larger for the 

seven-month cool season of April to October that for July (OF21, Table 4). 235 

5 Northern Australian rainfall and rainfall extremes 

While Southern Australia has undergone noteworthy reductions in rainfall since the 1970s, due largely to a reduction in 

storminess and, particularly, in the intensity of fast-growing extratropical storms (FF05; FF07; FF11; Hope, 2006; Alexander 

et al., 2011; Risbey et al., 2013; Frederiksen et al., 2017; OF21), Northern Australia (Fig. 1) has seen increased precipitation 

(Frederiksen and Grainger, 2015; Dey et al., 2019; Bureau of Meteorology and CSIRO, 2020 and references therein). Table 6 240 

shows the increases in total rainfall (of circa 15%) and in extreme precipitation measured by PARD10 (of a nearly three-fold 

increase) since the late 1960s. While these increases are of importance, they cannot make up for the decreases that have 

occurred in the population centres and food bowls of Southern Australia which are our primary concern in this study. 

6 South west Western Australian temperature and temperature extremes 

Next, we examine the changes in Australian temperatures that have occurred primarily in the latter part of the 20th century and 245 

in two decades of the 21st century. Average Australian temperatures have increased by circa 0.9oC since 1910 with increases 

in the temperature extremes (Trewin and Vermont, 2010; Trewin, 2013; CSIRO and Bureau of Meteorology, 2015 reviews the 

literature). In this Section we start with an analysis of temperatures and temperature extremes over SWWA. Figure 8 shows 

time series of annual maximum temperatures and annual Percentage Area with Temperatures in Decile 10 (PATD10) for 

maximum temperatures between 1911 and 2019 for SWWA. Results are presented for variability on the annual timescale as 250 

https://doi.org/10.5194/wcd-2021-72
Preprint. Discussion started: 15 November 2021
c© Author(s) 2021. CC BY 4.0 License.



9 
 

well as for 10 year running means which again bring out the regime transitions. Despite the interannual variability maximum 

temperatures have increased considerably from the early 1990s and extreme maximum temperatures from the start of the 21st 

century. From Table 9 we see that the increase in maximum temperatures since the early 1990s is circa 0.9oC while the average 

area experiencing extreme maximum temperatures has increased from a negligible percentage to 46% of SWWA since the 

start of the 21st century.  The average trends, or gradients, of the 10-year running means of SWWA temperatures, shown in 255 

Figs. 8c and d, are presented in Table 10 for the time spans relevant to the above regimes. We note that the gradient associated 

with the maximum temperature increases by a factor of nearly 5 between the early and late periods shown while the trend in 

maximum extreme temperatures (PATD10) changes from negligible (1910-2001) to 4.8% yr-1 (2002-2019). Indeed, the rate of 

increase of maximum temperatures and PATD10 for the period 2002-2019 is higher than for any of the other major geographical 

regions considered next for which corresponding results are also shown in Table 10. 260 

7 South east Australian temperature and temperature extremes 

We now turn to regime transitions of south east Australian temperatures that began near the start of the 21st century with a 

focus on maximum temperatures including extreme temperatures. Figure 9a shows the annual anomaly in maximum 

temperatures over SEA with nearly identical results for VIC (correlation of 0.99) and quite similar results for New South Wales 

(NSW) and the Murray Darling Basin (MDB) (not shown). The MDB is Australia's main food bowl which stretches inland 265 

between Victoria through NSW to southern Queensland (Fig. 1). We note from Fig. 9a that while there is considerable 

interannual variability in the graph it is evident that maximum temperatures have increased considerably in the early 21st 

century compared with the 20th century. This change between centuries is more dramatic when considering extreme 

temperatures. Figure 9b shows time series of the annual Percentage Area with Temperatures in Decile 10 (PATD10) for SEA 

maximum temperatures with again nearly identical results for VIC (correlation of 0.99). Again, Figs. 9c and 9d show the 270 

corresponding 10-year running mean results corresponding to Figs. 9a and 9b respectively. It is clear from Fig. 9 that during 

the circa 20 years of the early 21st century there were many occasions when extreme maximum temperatures in the decile 10 

band covered large areas of SEA compared with earlier. Figure 10 shows corresponding results for changes in annual maximum 

temperatures over Tasmania. We note that the temperature increases started earlier than shown for the combined temperatures 

for SEA in Fig. 9. 275 

The main deductions that can be made from the results in Figs. 9 and 10 are summarised in Table 9. We note that for the whole 

of the SEA region, and for NSW and MDB (and VIC - not shown), annual maximum temperature anomalies averaged between 

1910-2001 are quite small while in the eighteen years of 2002-2019 the differences are circa 1.1oC to 1.2oC. For Tasmania the 

change is less at circa 0.7oC.  We also see that extreme maximum temperatures have become more prevalent. For the 20th 

century PATD10 for maximum temperatures is just a few percent for SEA, NSW and MDB (and VIC - not shown) but for 2002-280 

2019 the area of extreme maximum temperature rises to between 47% and 49% for SEA, NSW, MDB and VIC and to 32% 
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for Tasmania. These temperature changes for SEA are quite dramatic and if continued could have major implications for the 

primary food bowl of the Murray Darling Basin. 

The smoothed 10-year running means of the results, shown in Figs. 9c and d for SEA (respectively Figs. 10 c and d for 

Tasmania), aid in the visualization of the regime transitions. It is evident that maximum temperature anomalies in SEA, and 285 

in NSW and MDB, as well as maximum temperature extremes for these regions change dramatically at the start of the 21st 

century. Table 10 lists the averaged trends or gradients of these 10-year running means of both annual maximum temperature 

anomalies and temperature extremes for 1910-2001. The distinct increases in trends in the early 21st century again support the 

concept of a regime transition in SEA temperatures. 

For annual average maximum temperatures and PATD10 for maximum temperatures averages over the Southern Australian 290 

(SNA) and Eastern Australian (EA) regions (Fig. 1), and for the state of QLD, the notable increases again occurred at the start 

of the 21st century (not shown). For the Northern Australian (NA) region the increases in maximum temperatures and PATD10 

started in the 1990s and became more evident during the 21st century (not shown).  

8 Australian temperature and temperature extremes 

The regime transitions of SWWA and SEA maximum temperatures and particularly extreme maximum temperatures in fact 295 

apply to extreme temperatures averaged more generally across the whole of Australia, as might be expected from the results 

in the previous sections. For both mean and maximum temperatures extremes characterized by PATD10 increase dramatically 

in the first two decades of the 21st century; PATD10 increases from just a few percent to 44% for mean and 47% for maximum 

temperatures for 2002-2019 as show in Table 9.  Again, Table 10 shows that there is a considerable change in the averaged 

gradient around 2002 based on 10-year running means of PATD10 for both mean and maximum temperatures. The distinct 300 

increases in trends in the early 21st century again support the concept of a regime transition in Australian temperatures. 

9 Discussion and conclusions 

The main purpose of this study has been to present evidence of regime transitions during the 20th and early 21st century in 

important aspects of Australian climate. We have focussed on the changes over Southern Australia in rainfall, temperatures 

and extremes, and associated circulation features since the early 20th century. We have also examined some particularly 305 

dramatic shifts in streamflow into Perth dams.  

We have found very clear signals that the climate of south-west Western Australia (SWWA) has transited into a drier and 

warmer state with some of these changes in rainfall, rainfall extremes and streamflow into Perth dams starting as early as the 

1960s. Annual streamflow into Perth dams over the last decade has reduced to just 20% of the pre-1960s average. We have 

determined that the gradient of the 10-year running mean (RM) of streamflow is negligible for the period 1911-1958 followed 310 

by a steep decline between 1959 and 1978 and a lesser decline between 1979 and 2018 (circa 40% of that for 1959-1978). 
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Similarly, the Southern Wet Season (SWS) Percentage Area with Rainfall in Decile 10 (PARD10) for SWWA decreased from 

16% for the period 1900-1958 to just 0.2% for 2009-2018. As in the case of streamflow into Perth dams most of the decrease 

in PARD10 occurred between 1959-1978 but with little further systematic decrease between 1979-2018. The changes in 

magnitude and gradients for streamflow and PARD10 are strong indicators of regime transitions in these variables for SWWA. 315 

Perth streamflow has been shown to be essentially proportional to the square of rainfall and is thus a more sensitive indicator 

than rainfall itself. Indeed, in comparison SWWA rainfall in the SWS in 2009-2018 was reduced by 21% compared with the 

long-term average over 1900-1958. The gradients for the 10-year RM of rainfall again show similar behaviour to Perth 

streamflow with the steepest drop between 1959-1978 and a lesser drop between 1959-2018 (circa 45% of that for 1959-1978). 

As proposed in FF07, and further established in the data driven study of OF21 for winter, reductions in the intensity of fast-320 

growing storms in the SWWA region are responsible for the declines in rainfall. We have shown here that the atmospheric 

flow fields are consistent with a regime transition into a weaker zonal flow and baroclinicity state in the regions upstream and 

over SWWA in the twenty-year period 1959-1978. 

Surface temperatures in SWWA have also increased with most of the rise occurring from the late 20th or early 21st century. 

Annual maximum temperatures have increased over the last 20 to 30 years by circa 0.9oC compared with the earlier period 325 

starting in 1910. The change in extreme maximum temperatures has been more dramatic; the Percentage Area with 

temperatures in Decile 10 (PATD10) increased from 2.7% for 1910-2001 to 46% for 2002-2019. On average, maximum 

temperatures also increased nearly 5 times faster in 2002-2019 compared with 1910-2001 based on changes in the gradient of 

the 10-year RM. For PATD10 the average gradient was negligible for 1910-2001 but with a rapid rise of 4.8% yr-1 for 2002-

2019. These shifts in maximum temperatures (with somewhat similar shifts in mean and minimum temperatures) and extremes 330 

and their gradients are consistent with phase transitions in the temperatures of SWWA in addition to the earlier transitions in 

rainfall. Interestingly, the alignment of increasing areas of SWWA (Figs. 8b and d) to experiencing extreme temperatures since 

2002 is reminiscent of the alignment of atomic spins in ferromagnets in transition to the magnetic state. 

SWWA has seen the earliest and most dramatic systematic shifts in climate to a drier state with South-Eastern Australia (SEA) 

impacted towards the end of the 20th century. Cool Season (CS) rainfall over SEA reduced by an average of 12% between the 335 

two periods 1900-1998 and 1999-2019 while PARD10 reduced from 11% to 5%. For Victoria (VIC), which is the central region 

of SEA, the relative changes are virtually identical, and they are also very similar for New South Wales (NSW) and the Murray 

Darling Basin (MDB). In Tasmania (TAS), the southern part of SEA, rainfall reductions, particular for extreme rainfall, 

occurred earlier with PARD10 reducing from 12.5% to 5% between the period 1910-1978 and 1979-2019. Again, the changes 

in rainfall in SEA is associated with changes in the circulation over and around this region. 340 

Annual maximum temperatures anomalies for SEA, and for VIC, NSW and MDB, averaged over the early period 1910-2001 

are quite small while in the eighteen years of 2002-2019 the differences are circa 1.1oC to 1.2oC. For Tasmania the change is 

less at circa 0.7oC. Further, PATD10 for SEA increased from 2.7% for 1910-2001 to 47% for 2002-2019, which is very similar 

to the case for SWWA and VIC, with slightly larger changes for NSW and MDB, and smaller changes for TAS. For SEA, 
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maximum temperatures rose circa 7 times faster in 2002-2019 compared with 1910-2001 based on changes in the gradient of 345 

the 10-yr RM. For PATD10 the average gradient was negligible for 1910-2001 but with a rise of 2.7% yr-1 for 2002-2019.  

The regime transitions of SWWA and SEA temperatures are in fact mirrored by shifts over Australia, as a whole. This is seen 

particularly in extremes, with PATD10 increasing from very low values to 44% for mean and 47% for maximum temperatures 

for 2002-2019. 

We note that there is considerable interannual variability in average and extreme rainfall and temperatures and in streamflow 350 

into Perth dams. For that reason, we have also examined 10-year running means to see the systematic changes in the climate 

variables and their gradients.  We have noted discontinuities in the average gradients of the smoothed data typical of second 

order regime transitions. However, the large and sudden shifts in the temperature extremes are suggestive of first order regime 

transitions.  

 355 
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Table captions 

Table 1: The mean SWWA rainfall in SWS, January to December streamflow into Perth dams and percentage area of SWWA 

with SWS rainfall in decile 10 (PARD10) for different time periods. 

Table 2: Correlations (ݎ)  between SWWA rainfall, PARD10, streamflow into Perth dams (as in Table 1), rainfall squared and 

a quadratic fit of rainfall to streamflow with detrended correlations in brackets.  530 

Table 3: The average gradients or trends of 10-year RM of SWWA rainfall in SWS, January to December streamflow into 

Perth dams and percentage area of SWWA with SWS rainfall in decile 10 (PARD10) for different time periods. 

Table 4: The mean April-November (SWS) 150 hPa zonal wind averaged between 30o S – 35 o S, 100o E – 130o E, 300 hPa 

minus 700 hPa zonal wind shear averaged between 30o S – 35 o S, 100o E – 130o E and 700 hPa zonal wind averaged between 

20o S – 35 o S, 110o E – 132.5o E, for different time periods. 535 

Table 5: The average gradients or trends of SWS 150 hPa zonal wind averaged between 30o S – 35 o S, 100o E – 130o E, 300 

hPa minus 700 hPa zonal wind shear averaged between 30o S – 35 o S, 100o E – 130o E and 700 hPa zonal wind averaged 

between 20o S – 35 o S, 110o E – 132.5o E, for different time periods. 

Table 6: Correlations (ݎ), and detrended correlations in brackets, of SWWA rainfall, PARD10, streamflow into Perth dams, 

rainfall squared and a quadratic fit of rainfall to streamflow with SWS 300 hPa minus 700 hPa zonal wind shear averaged 540 

between 30o S – 35 o S, 100o E – 130o E and 700 hPa zonal wind averaged between 20o S – 35 o S, 110o E – 132.5o E. 

Table 7: As in Table 1 for SEA and TAS Cool Season (CS) rainfall and PARD10 and NA Northern Wet Season (NWS) rainfall 

and PARD10. 

Table 8: Correlations (ݎ), and detrended correlations in brackets, of SEA and TAS Cool Season (CS) and Southern Wet Season 

(SWS) rainfall with 700 hPa zonal wind averaged between 20o S – 35 o S, 132.5o E – 155o E. 545 

Table 9: The annual mean of maximum temperatures and percentage areas with maximum temperatures in decile 10 (PATD10) 

for SWWA, SEA, NSW, MDB and TAS and Australian PATD10 for mean and maximum temperatures, for different time 

periods. 

Table 10: As in Table 9 for the gradients or trends of 10-year RM of the temperatures and PATD10. 

 550 

 

Figure captions 

Figure 1: Map of Australian regions showing South-western (SWWA), South-eastern (SEA – with a box around Tasmania), 

Eastern (EA), Southern (SNA), Northern (NA) and Murray Darling Basin (MBD) areas for averaged rainfall and temperature 

data. 555 

 Figure 2: Interannual variability of (a) SWWA rainfall totals (mm) for April-November (SWS), (b) percentage area (%) of 

SWWA with rainfall in decile 10 (PARD10) for SWS and (c) January-December streamflow (GL) into Perth dams. 

Figure 3: As in Figure 2 for 10-year running means (RM) of rainfall and streamflow data. 
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Figure 4: Vertical cross-section of April-November zonal wind (m s-1) averaged between 100o E – 130o E as a function of 

latitude and pressure (p in hPa) for (1975–1994) minus (1949–1968). Contour intervals are 1 ms-1. 560 

Figure 5: Interannual variability of April-November (a) 150 hPa zonal wind averaged between 30o S – 35o S, 100o E – 130o E 

and (b) 300 hPa minus 700 hPa zonal wind shear averaged between 30o S – 35o S, 100o E – 130o E. 

Figure 6: (a) SEA rainfall totals (mm) for April-October (CS), (b) percentage area (%) of SEA with rainfall in decile 10 

(PARD10) for CS (c) 10-year RM of SEA rainfall totals for CS and (d) 10-year RM of SEA PARD10 for CS. 

Figure 7: As in Figure 6 for TAS. 565 

Figure 8: (a) SWWA annual maximum temperature variability (oC), (b) SWWA percentage area (%) with maximum annual 

temperatures in decile 10 (PATD10), (c) 10-year RM of SWWA annual maximum temperatures and (d) 10-year RM of SWWA 

PATD10. 

Figure 9: As in Figure 8 for SEA. 

Figure 10: As in Figure 8 for TAS. 570 
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Tables 

Table 1 

Time Period Variable Mean 

1900-1958 SWWA Rainfall SWS 639 mm yr-1 

1959-1978 SWWA Rainfall SWS 610 mm yr-1 

1979-2018 SWWA Rainfall SWS 545 mm yr-1 

2009-2018 SWWA Rainfall SWS 502 mm yr-1 

2014-2018 SWWA Rainfall SWS 500 mm yr-1 

1911-1958 Perth Streamflow 414 gl yr-1 

1959-1978 Perth Streamflow 389 gl yr-1 

1979-2018 Perth Streamflow 183 gl yr-1 

2009-2018 Perth Streamflow 88 gl yr-1 

2014-2018 Perth Streamflow 76 gl yr-1 

1900-1958 SWWA % Area- Rainfall Decile 10 SWS 15.5% 

1959-1978 SWWA % Area- Rainfall Decile 10 SWS 10.3% 

1979-2018 SWWA % Area-Rainfall Decile 10 SWS 2.03% 

2009-2018 SWWA % Area-Rainfall Decile 10 SWS 0.19% 

2014-2018 SWWA % Area-Rainfall Decile 10 SWS 0.38% 

 575 

Table 2 

 Rainfall SWS Streamflow 

Rainfall SWS ݎ = ݎ (1.0) 1.0 = 0.84 (0.81) 

Streamflow Jan-Dec ݎ = ݎ (0.81) 0.84 = 1.0 (1.0) 

Percentage Area Rainfall Decile 10 ݎ = ݎ (0.73) 0.74 = 0.79 (0.78) 

Rainfall Squared ݎ = ݎ (0.90) 0.99 = 0.87 (0.84) 

Quadratic Fit ݎ = ݎ (0.95) 0.96 = 0.88 (0.86) 
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Table 3 

Time Period Variable Gradient 

1900-1958 SWWA Rainfall SWS 10yr RM -0.81 mm yr-2 

1959-1978 SWWA Rainfall SWS 10yr RM -4.0 mm yr-2 

1979-2018 SWWA Rainfall SWS 10yr RM -1.8 mm yr-2 

1911-1958 Perth Streamflow 10yr RM 0.20 gl yr-2 

1959-1978 Perth Streamflow 10yr RM -11.1 gl yr-2 

1979-2018 Perth Streamflow 10yr RM -5.4 gl yr-2 

1900-1958 SWWA % Area- Rainfall Decile 10 SWS 10yr RM -0.11 % yr-1 

1959-1978 SWWA % Area- Rainfall Decile 10 SWS 10yr RM -0.76 % yr-1 

1979-2018 SWWA % Area-Rainfall Decile 10 SWS 10yr RM -0.04 % yr-1 

 580 

Table 4 

Time Period Variable Mean 

1948-1958 U150 30S-35S 100E-130E SWS 42.1 ms-1 

1959-1978 U150 30S-35S 100E-130E SWS 37.9 ms-1 

1979-2018 U150 30S-35S 100E-130E SWS 34.4 ms-1 

1948-1958 U300− U700 30S-35S 100E-130E SWS 24.0 ms-1 

1959-1978 U300− U700 30S-35S 100E-130E SWS 21.4 ms-1 

1979-2018 U300− U700 30S-35S 100E-130E SWS 20.1 ms-1 

1948-1958 U700 20S-35S 110E-132.5E SWS 6.76 ms-1 
1959-1978 U700 20S-35S 110E-132.5E SWS 6.12 ms-1 
1979-2018 U700 20S-35S 110E-132.5E SWS 5.92 ms-1 

 

Table 5 

Time Period Variable Gradient 

1959-1978 U150 30S-35S 100E-130E SWS 10yr RM -0.33 ms-1 yr-1 

1979-2018 U150 30S-35S 100E-130E SWS 10yr RM -0.003 ms-1 yr-1 

1959-1978 U300− U700 30S-35S 100E-130E SWS 10yr RM -0.22 ms-1 yr-1 

1979-2018 U300− U700 30S-35S 100E-130E SWS 10yr RM -0.015 ms-1 yr-1 

1959-1978 U700 20S-35S 110E-132.5E SWS 10yr RM -0.018 ms-1 yr-1 
1979-2018 U700 20S-35S 110E-132.5E SWS 10yr RM -0.019 ms-1 yr-1  

 

585 
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Table 6 
 

 U300− U700 30S-35S 100E-130E SWS U700 20S-35S 100E-132.5E SWS 
Rainfall SWS ݎ = ݎ (0.51) 0.58 = 0.66 (0.63) 

Streamflow Jan-Dec ݎ = ݎ (0.451) 0.56 = 0.57 (0.54) 
Rainfall % Area Decile 10 ݎ = ݎ (0.29) 0.359 = 0.34 (0.29) 

Rainfall Squared ݎ = ݎ (0.51) 0.58 = 0.64 (0.61) 
Quadratic Fit ݎ = ݎ (0.49) 0.56 = 0.60 (0.57) 

 

Table 7 

Time Period Variable Mean 

1900-1998 SEA Rainfall CS 410 mm yr-1 

1999-2019 SEA Rainfall CS 361 mm yr-1 

1900-1998 SEA % Area- Rainfall Decile 10 CS 11.0% 

1999-2019 SEA % Area- Rainfall Decile 10 CS 5.15% 

1900-1978 TAS Rainfall CS 934 mm yr-1 
1979-2019 TAS Rainfall CS 914 mm yr-1 
1900-1978 TAS % Area- Rainfall Decile 10 CS 12.5% 

1979-2019 TAS % Area- Rainfall Decile 10 CS 5.15% 
1900-1968 NA Rainfall NWS 437 mm yr-1 
1969-2019 NA Rainfall NWS 509 mm yr-1 
1900-1968 NA % Area- Rainfall Decile 10 NWS 5.45% 
1969-2019 NA % Area- Rainfall Decile 10 NWS 16.2% 

 590 

Table 8 

 U700 20S-35S 132.5E-155E  
SEA Rainfall CS ݎ = 0.73 (0.73) 

SEA Rainfall SWS ݎ = 0.72 (0.73) 
TAS Rainfall CS ݎ = 0.75 (0.74) 

TAS Rainfall SWS ݎ = 0.73 (0.73) 
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 595 

Table 9 

Time Period Variable Mean 

1910-1991 SWWA Max Temp Anomaly Annual -0.21oC 
1992-2019 SWWA Max Temp Anomaly Annual 0.67oC 
1910-2001 SWWA Max Temp Anomaly Annual -0.27oC 
2002-2019 SWWA Max Temp Anomaly Annual 0.46oC 
1910-2001 SWWA % Area with Max Temp Decile 10 Ann 2.7% 
2002-2019 SWWA % Area with Max Temp Decile 10 Ann 46.0% 
1910-2001 SEA Max Temp Anomaly Annual -0.11oC 
2002-2019 SEA Max Temp Anomaly Annual 1.02oC 
1910-2001 NSW Max Temp Anomaly Annual -0.03oC 
2002-2019 NSW Max Temp Anomaly Annual 1.23oC 
1910-2001 MDB Max Temp Anomaly Annual -0.02oC 
2002-2019 MDB Max Temp Anomaly Annual 1.22oC 
1910-2001 TAS Max Temp Anomaly Annual -0.22oC 
2002-2019 TAS Max Temp Anomaly Annual 0.49oC 
1910-2001 SEA % Area with Max Temp Decile 10 Ann 2.7% 
2002-2019 SEA % Area with Max Temp Decile 10 Ann 47.2% 
1910-2001 NSW % Area with Max Temp Decile 10 Ann 2.4% 
2002-2019 NSW % Area with Max Temp Decile 10 Ann 49.0% 
1910-2001 MDB % Area with Max Temp Decile 10 Ann 2.4% 
2002-2019 MDB % Area with Max Temp Decile 10 Ann 49.0% 
1910-2001 TAS % Area with Max Temp Decile 10 Ann 5.7% 
2002-2019 TAS % Area with Max Temp Decile 10 Ann 31.9% 
1910-2001 AUS % Area with Mean Temp Decile 10 Ann 3.3% 

2002-2019 AUS % Area with Mean Temp Decile 10 Ann 44.3% 

1910-2001 AUS % Area with Max Temp Decile 10 Ann 2.8% 

2002-2019 AUS % Area with Max Temp Decile 10 Ann 46.6% 
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Table 10 

Time Period Variable Gradient 

1910-1991 SWWA Max Temp Anomaly Annual 10yr RM 0.73 x10-2 oC yr-1  
1992-2019 SWWA Max Temp Anomaly Annual 10yr RM 3.7 x10-2 oC yr-1 
1910-2001 SWWA Max Temp Anomaly Annual 10yr RM 0.93 x10-2 oC yr-1  
2002-2019 SWWA Max Temp Anomaly Annual 10yr RM 4.5 x10-2 oC yr-1 
1910-2001 SWWA % Area with Max Temp Decile 10 Ann 10yr RM 0.11 % yr-1 
2002-2019 SWWA % Area with Max Temp Decile 10 Ann 10yr RM 4.8 % yr-1 
1910-2001 SEA Max Temp Anomaly Annual 10yr RM 0.45 x10-2 oC yr-1 
2002-2019 SEA Max Temp Anomaly Annual 10yr RM 3.00 x10-2  oC yr-1 
1910-2001 NSW Max Temp Anomaly Annual 10yr RM 0.36 x10-2  oC yr-1 
2002-2019 NSW Max Temp Anomaly Annual 10yr RM 3.5 x10-2  oC yr-1 
1910-2001 MDB Max Temp Anomaly Annual 10yr RM 0.33 x10-2  oC yr-1  
2002-2019 MDB Max Temp Anomaly Annual 10yr RM 3.2 x10-2  oC yr-1 
1910-2001 TAS Max Temp Anomaly Annual 10yr RM 0.73 x10-2  oC yr-1  
2002-2019 TAS Max Temp Anomaly Annual 10yr RM 1.9 x10-2   oC yr-1 
1910-2001 SEA % Area with Max Temp Decile 10 Ann 10yr RM 0.002% yr-1 
2002-2019 SEA % Area with Max Temp Decile 10 Ann 10yr RM 2.7 % yr-1 
1910-2001 NSW % Area with Max Temp Decile 10 Ann 10yr RM 0.0002 % yr-1 
2002-2019 NSW % Area with Max Temp Decile 10 Ann 10yr RM 2.2 % yr-1 
1910-2001 MDB % Area with Max Temp Decile 10 Ann 10yr RM -0.02 % yr-1 
2002-2019 MDB % Area with Max Temp Decile 10 Ann 10yr RM 2.2 % yr-1 
1910-2001 TAS % Area with Max Temp Decile 10 Ann 10yr RM 0.02 % yr-1 
2002-2019 TAS % Area with Max Temp Decile 10 Ann 10yr RM 2.0 % yr-1 
1910-2001 AUS % Area with Mean Temp Decile 10 Ann 10yr RM 0.14 % yr-1  

2002-2019 AUS % Area with Mean Temp Decile 10 Ann 10yr RM 2.9 % yr-1 

1910-2001 AUS % Area with Max Temp Decile 10 Ann 10yr RM 0.05 % yr-1 

2002-2019 AUS % Area with Max Temp Decile 10 Ann 10yr RM 2.5 % yr-1 

 600 
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Figures 

Figure 1 605 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 

 
  

https://doi.org/10.5194/wcd-2021-72
Preprint. Discussion started: 15 November 2021
c© Author(s) 2021. CC BY 4.0 License.



28 
 

Figure 6 625 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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