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Abstract. The Arctic Oscillation (AO) describes a seesaw pattern of variations in atmospheric mass over the polar cap. It is by
now well established that the AO pattern is in part determined by the state of the stratosphere. In particular, sudden stratospheric
warmings (SSWs) are known to nudge the tropospheric circulation toward a more negative phase of the AO, which is associated
with a more equatorward shifted jet and enhanced likelihood for blocking and cold air outbreaks in mid-latitudes. SSWs are
5 also thought to contribute to the occurrence of extreme AO events. However, statistically robust results about such extremes
are difficult to obtain from observations or meteorological (re-)analyses due to the limited sample size of SSW events in the
observational record (roughly 6 SSWs per decade). Here we exploit a large set of extended-range ensemble forecasts within
the subseasonal-to-seasonal (S2S) framework to obtain an improved characterization of the modulation of AO extremes due
to stratosphere-troposphere coupling. Specifically, we greatly boost the sample size of stratospheric events by using potential
10 SSWs (p-SSWs), i.e., SSWs that are predicted to occur in individual forecast ensemble members regardless of whether they
actually occurred in the real atmosphere. For example, for-the ECMWZE-the S2S ensemble this-of the European Centre for
Medium-Range Weather Forecasts gives us a total of 6101 p-SSW events for the period 1997-2021.
A standard lag-composite analysis around these p-SSWs validates our approach, i.e., the associated composite evolution
of stratosphere-troposphere coupling matches the known evolution based on reanalyses data around real SSW events. Our
d@tistical analyses further reveal that following p-SSWs, relative to climatology: 1) persistently negative AO states (> 1
week duration) are 16% more likely, 2) the likelihood for extremely negative AO states (< —30) is enhanced by atleast
35about 40-80%, while that for extremely positive AO states (> +30) is reduced to almost zero, 3) approximately 50% of
extremely negative AO states that follow SSWs may be attributed-attributable to the SSW, whereas about one quarter of
all extremely negative AO states during winter may be attributed-attributable to SSWs. A corresponding analysis relative to

fGong stratospheric vortex events reveals similar insights into the stratospheric modulation of positive AO extremes. However,

conclusions in terms of causality remain difficult, in part due to unconsidered confounding factors.

1 Introduction

Day-to-day variability of the northern extratropical hemispheric-scale circulation during winter is dominated by the so-called
Northern Annular Mode (NAM, ?). The surface manifestation of the NAM is often referred to as Arctic Oscillation (AO). This

25 variability pattern primarily describes fluctuations of atmospheric mass over the polar cap with associated opposite fluctuations
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on its equatorward flank. In its positive phase the AO corresponds to decreased mass over the polar cap with associated
strengthened pressure gradient across mid-latitudes that goes along with a stronger polar-front/eddy-driven jet that is shifted
poleward and more zonally aligned. Likewise, in its negative phase the jet is weakened, shifted equatorward and often more
meriodonally distorted.

Although a single index cannot represent the entire extratropical weather, it indicates tendencies towards certain weather
patterns, which in turn can also have strong local effects. Especially AO values that deviate considerably from O (the climato-
logical mean) are rare, by construction, and can often be associated with strong local weather extremes (?): For instance, the
daily AO index was around —2.5 in winter 2009/10, which was accompanied by record cold snaps and snow fall over large
parts of the United States, Europe and East Asia (?). In winter 2019/20, extreme storminess over Central Europe occurred
during a highly positive AO phase with wind gusts of up to 177 km/h being recorded over Germany (?). Furthermore, ? report
increased likelihood of Siberian wildfires in April following positive AO periods in February and March.

The AO can also be influenced by "external" weather patterns and one prominent teleconnection exists between the AO and
the stratospheric polar vortex. The latter describes a strong westerly wind band around 60°N extending over 10 hPa, which
forms every year in winter (?). Numerous studies show that, on average, a very strong polar vortex (SPV) is associated with
a strengthened circumpolar flow in the troposphere - as indicated by a positive AO index (e.g., ???). The reverse is true for a
weak polar vortex, with such events being a special case: The breaking of planetary waves in the stratosphere and the associated
westward forcing can lead to a complete breakdown of the polar vortex. In these cases, the zonal mean zonal wind reverses and
the climatologically dominant westerly winds are replaced by weak or moderate easterlies. During the vortex disruption, air
masses converge in the center of the vortex and are forced to sink. The accompanying strong and rapid adiabatic heating is the
reason that such extreme weak vortex events are called sudden stratospheric warmings (SSWs, ?). SSWs are observed about 6
times per decade and are, as described previously, associated with a negative AO index on average. On synoptic scales, SSWs
have also been tight to subsequently favored occurrence of certain weather regimes over the North Atlantic (?) and over North
America (?).

Consistent with the local implications of a negative AO index, SSW5s can for example lead to cold spells in Northern Europe
and increased storminess over Southern Europe (?, and references herein). Whether it is generally valid that SSWs and also
strong polar vortex events lead to a subsequently more likely occurrence of AO extremes (and associated local extremes) is
difficult to analyze because the statistical links are weak in each case, i.e., not each SSW/SPV event is followed by an AO
extreme. Therefore, a very large sample of SSW and SPV events are needed to quantify the subsequent risk increase of AO
extremes. However, reanalyses data only cover about 40-70 years, depending on the data set, and thus about 30-40 SSWs -
too few to robustly determine conditional probabilities (e.g., given a stratospheric extreme event, how likely is a following
tropospheric extreme event).

In order to allow for analyses of larger event sample sizes, past studies have used, for example, idealized model simulations
(e.g., 2?). Even though such models have proven to be useful to develop a qualitative and conceptual picture, they often show
a weaker tropospheric response to stratospheric events compared to observational data (?). In this study, we aim to improve the

characterization of coupled stratospheric and tropospheric circulation extremes using operational, state-of-the-art, extended-
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range forecasts. Relatively large ensembles, frequent model initializations and the generation of hindcasts allow us to analyze
a large set of predicted SSWs and SPV events (p-SSWs/ p-SPVs, see discussion in section 2). Although the vast majority of
these p-SSWs did not materialize in the real atmosphere we show that they nevertheless provide reliable statistical information
about stratosphere-troposphere coupling. Our analyses implicitly assume that each ensemble member corresponds to a possible
real-atmospheric evolution. The diagnosed p-SSWs include false alarm events (see, e.g., ?), which we assume are based on the
same underlying physics as those SSWs that occurred in the real atmosphere. Furthermore, the individual evolution (related to
forecast score) is arguably not relevant for statistical characterizations of circulation anomalies.

The analysis is thus based on the assumption that the forecast models simulate the observed variability of the AO sufficiently
well, including its modulation due to stratospheric variability. High-top models, in particular, show realistic stratosphere-
troposphere coupling {22)(2?). However, due to the small sample size of observed events, it is generally difficult to conclude
whether any discrepancies between model and observational data are due to model or sampling errors. For this study, we will
show that the models agree with observations in established diagnostics that can be robustly derived from reanalyses, including,
e.g., the frequency of SSWs, their seasonality and their average impact on the subsequent AO. Although our quantitative
statistical analyses cannot be compared directly to observational data, they may be considered as best estimate given the

currently available observational record and modeling capabilities.

Wefocus-on-We will compute statistical measures that combine conditional and baserate probabilities for stratospheric and
AO extreme (co-)occurrences and in order to address our following research questions:

1. By how much de-stratespheric-pelar-vortex-extremes-inerease-is the probability of persistently positive or negative AO
phases increased following stratospheric polar vortex extremes?

2. By how much de-stratospheric-polar-vortex-extremes-inerease-is the probability of subsequent AO extremes increased
following stratospheric polar vortex extremes?

3. What fraction of AO extremes may be attributed-attributable to preceding stratospheric polar vortex extremes?

- To illustrate which AQ extremes are classified as "attributable”, consider the following scenarios where a stratospheric event
is followed by an AQ extreme: In relation to the AQ extreme the stratospheric extreme may

€8) represent a necessary and sufficient cause

(b) represent one among multiple contributory causes

(¢) be caused by a confounding factor, which also causes the AQ extreme

(d) not be causal

In scenario g, the AQ extreme is attributable to the preceding stratospheric event, whereas it is not attributable in scenario
g01n scenario b, disentanglement of different contributory factors is difficult. Each involved process can but does not need
to be also a necessary cause. (Consider for example a situation where an AO extreme would have occurred also without a
preceding stratospheric extreme, but the stratospheric extreme resulted in a stronger or earlier manifestation.) In this study, we
do neither aim to disentangle the multiple involved pathways a-c nor to provide a rigorous quantification of causality (which is
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itself ambiguous in a complex system). Instead, we estimate how many AQ extremes may be attributable to the stratospheric
streme, which refers to the fraction that would have statistically not occurred without the stratospheric event, Importantly,
scenario ¢ shows that "without the stratospheric event” requires to also remove any confounding factors. The analysis follows
an observational approach (which is based on post-hoc computation of conditional probabilities) rather than a counterfactual
roach (which is based on active interventions in the system; ?
- However, even without disentangling scenarios g, b and ¢, the observational approach provides relevant and practical insights

1@ the statistical association between and the importance of stratospheric and subsequent AO extremes.
The paper is organized as follows: Section 2 provides an overview of the extended-range forecasts used in this study. Section

see section 8 for a more detailed interpretation of the results with respec

3 defines stratospheric and tropospheric circulation extremes and presents basic event statistics. For SSWs, we validate in
section 4 that the predicted events agree, in well-known diagnostics, with events that are identified in reanalysis data. This
motivates section 5, where the probability of AO extremes following predicted SSWs is analyzed. Conversely, section 6 shows
how often predicted AO extremes are preceded by predicted SSWs and how many AO extremes may be attributed-attributable
to preceding SSWs. Section 7 reveals in a similar fashion the statistical relation between predicted strong polar vortex events

and predicted positive AO extremes, before the key findings are discussed and summarized in section 8.

2 Description of extended-range ensemble forecasts

The subseasonal to seasonal (S2S) prediction project (?) provides a collection of extended-range (up to 60 days lead time)
ensemble forecasts from different weather services. Forecasts differ in terms of model specifications (e.g., spatial resolution,
parameterizations, maximum lead time). All forecast systems create hindcasts in addition to the realtime forecasts in order to
calibrate the forecasts and to allow the construction of the model’s climatology. For our application, the most relevant demand
is an accurate representation of the stratosphere and in particular of stratosphere-troposphere coupling. Furthermore, a forecast
model with a large number of hindcasts is beneficial, because it allows for more robust analyses by including multiple past
years. Lastly, a large maximum lead time is needed as we want to identify extreme events in the forecasts and are then also
interested in the time periods before and after the event.

We choose to use ECMWF and UKMO forecasts for this study, as these models best meet the above listed requirements. Im-
portantly, both models have been demonstrated in previous studies to have a realistic representation of stratosphere-troposphere
coupling €22(2?).

For the decision on which initialization dates to use for the analyses, a trade-off has to be made between having as large a
sample as possible and the fact that the forecast models are updated about every 1-3 years. Since late 2016, the ECMWF model
(CY43R1) has been running at a higher horizontal resolution. Therefore, to avoid mixing forecasts before and after 2016,
forecasts from winter 2017/18 up to and including 2020/21 are analyzed. Note that a minor model version change occurred
in 2019, where initial conditions for the hindcasts are then obtained from ERAS instead of ERA-Interim. However, we do
not expect this to be a major limitation for our analyses, as we are mostly interested in the overall statistical behavior of

stratosphere-troposphere coupling, as opposed to single forecast performance.
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Table 1. Dataset specifications.

S2S ECMWF S2S UKMO ERAS
Type Forecast Forecast Reanalysis
Vertical Res. Lo1 L85 L137
Time Range d 0-46 d 0-60 1979-2021
Realtime 51 member, 2 inits / week 4 member, daily inits -
Hindcast 11 member, 2 inits / week, past 20y 7 member, 4 inits / month, 1993-2015 -
# Realtime Ens. Used 114 396 -
# Hindcast Ens. Used 2280 1173 -
# Individual Model Runs 30894 9795 -

We focus on Northern winter dynamics by analyzing forecasts initialized between mid-November (11/16) and end of Febru-
ary (02/22). For the four winter seasons, the ECMWF model thus features 114 real-time ensemble forecasts of 51 members
each and 2280 ensemble hindcasts of 11 members each. This results in a total of 30 894 individual model runs, all of which we
refer to as "forecasts" for simplicity. For consistency, UKMO forecasts are used from the same initialization period, leading to
9795 forecasts available for this model. A summary of the key specifications of the forecasts is given in Table 1, along with

details of the ERAS data (?) used.

3 Event statistics of stratospheric and tropospheric circulation extremes
3.1 Data sets and overall methodology

Each of the forecasts from the total set of 30894 ECMWF forecasts provides a 47-day time series of the evolution of the
atmosphere (UKMO: 61 days). In this study, we define specific events and then scan each forecast for the occurrence of such
an event. If there are multiple events of one event type within one forecast, only the first event is used. Note that, by definition,
all identified events are predicted events, but each may or may not actually occur in the real atmosphere. To highlight this
aspect, and to avoid confusion with actual real-atmospheric events, the events identified in the forecasts may be denoted with a
"p"-prefix, where "p" stands for "predicted" (alternatively, it could be thought of as "potential" for some aspects). In this study,
all event composites and computed probabilities refer to predicted events.

For both datasets, ECMWF and UKMO, all individual forecast runs are treated equally and independently. This assumption
is violated especially for forecasts belonging to the same ensemble. In fact, at initialization time these forecasts agree entirely
except for ensemble perturbations. The individual members diverge from each other only with increasing lead time, when the
predictability of the atmospheric flow gradually decreases. For this reason, we analyze only those events that occur at or after a

forecast lead time of 10 days. It is assumed that initial condition-memory has sufficiently reduced by this point so that no two

individual forecasts fully match, and the same is thus true for the evolution of the identified events. This ensures a degree of
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statistical independence. The use of hindcasts further guarantees sampling of different boundary conditions, such as due to the
El-Nifio-Southern-Oscillation, the Maddan-Julian-Osciallation or sea ice variations.

Furthermore, it is ensured that for each identified event both negative and positive lags can be considered. Due to the finite
maximum lead time of each forecast, this demand is generally limited. For a predicted event that occurs early in the forecast
(but after 10 days at the earliest), only a short period before the event can be examined, and the reverse is true for an event that
occurs shortly before the end of the forecast. Therefore, to ensure a minimum common lag time that can be analyzed, events
are additionally required to occur no later than 10 days before the end of the forecast. Consequently, events are allowed to
occur between day 10 and 36 for ECMWF forecasts and between day 10 and 50 for UKMO forecasts. Thus, for all events, the
lag period +10 days can be examined, but with increasingly longer positive and negative lag times, fewer and fewer events
contribute to the composite.

Extreme events are defined that refer to exceptional anomalies in the stratospheric and tropospheric circulation, respectively.
As a measure of the strength of the stratospheric polar vortex we use the zonally averaged zonal wind at 10hPa at 60°N,

hereafter referred to as u60.
3.2 Predicted SSWs

We define Sudden Stratospheric Warmings (p-SSWs), as days when u60 transitions from positive to negative, i.e., the polar
vortex breaks down. As explained above, we do not include p-SSWs predicted within the first 10 days after forecast initializa-
tion. However, for p-SSWs, u60 is required to be solely positive within these first 10 days to ensure an intact westerly polar
vortex at the start of the forecast. Following this event definition, we identify 6 101 p-SSWs in the ECMWF and 2716 p-SSWs
in the UKMO model.

Moreover, the analyses were repeated with a modified event definition, which we call dynamical SSWs, in order to investigate
potential sensitivities. Dynamical SSWs were defined as a subset of SSWs, where in addition to the sign change, u60 is required

to drop at least 20 ms~!

averaged over —b to +5 days lag relative to the SSW central date. Thereby, this event definition
forms the intersection between SSWs (following ?) and sudden stratospheric deceleration events (following ?, ensuring a
rapid deceleration around the event central date). Our results reveal only modest quantitative differences between SSWs and
dynamical SSWs and we therefore focus on SSWs only, to allow better comparison with other studies.

In Figure 1 we provide an overview about the distribution of ECMWF p-SSW5s as a function of the year, forecast lead time
and calendar month (see Fig. S1 for a corresponding analysis of UKMO forecasts). p-SSWs are found for all winter seasons
considered. Absolute numbers are presented to show which winter seasons contribute how many events to the analysis. Due
to the realtime-hindcast-setup, the number of underlying forecasts varies across winter seasons. Therefore, we additionally
provide a proxy for the SSW probability per winter season to illustrate inter-annual variability (see appendix B for details).

The largest number of events is identified in the winter season 2017/18, which includes also the most forecasts (realtime

2017/18 plus hindcasts related to initializations from 2018/19 to 2020/21). Different factors lead to a highly varying number

of events between the different years. These include internal dynamic variability, a slightly varying number of underlying
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Figure 1. Distribution of analyzed p-SSWs in ECMWF forecasts. Absolute event counts (center left) and seasonal probability proxy (top
left), grouped by winter. Asterisks denote years with real atmosphere SSWs (?). Grouped by forecast lead time (bottom left) and by month
(bottom right).

forecasts, due to the realtime/ hindcast prediction setup, and the varying number of events per winter due to the evolution of
the polar vortex of the real atmosphere in the respective winter, which determines the initial conditions of the forecasts.

A forecast that is initialized with a strong polar vortex tends to maintain a strong polar vortex and produces fewer SSWs
compared to a forecast with an initially weak polar vortex. Moreover, forecasts that do not start with ten consecutive days of
positive u60 are discarded by default. Thus, if the polar vortex in the real atmosphere is already easterly at the initialization
time or is predicted to become easterly within the quasi-deterministicforecastrange-of-first ten days, such forecasts will not
contribute any events to the analysis. This can be illustrated by the example of the 2009th SSW (24 January 2009, see ?).
The event had low predictability at lead times longer than 8 days (?). Before the event, between end of December 2008 and
mid-January 2009, the polar vortex was exceptionally strong, leading to an only marginal SSW probability in the forecasts and
suggesting that the event itself was unlikely given the prevailing dynamics'. As a result, 2008/09 shows the lowest number
of SSWs: In the first winter half up to initialization dates around mid-January, hardly any events were predicted due to the
relatively strong polar vortex. Later, forecasts predicting the real atmosphere SSW only did so at less than +10 day lead
time, such that those events are discarded. Later initializations up to mid-February are excluded, because these do not predict

persistent positive u60 within the first 10 days lead time, due to the preceding SSW. As a result, winter season 2008/ 09

I'This also seems consistent with the interpretation of this event to fall under the category of self-induced resonance, which requires conditions (vortex

eometry etc.) to be "just right" (see discussion in ?).
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contributes only 64 (UKMO: 22) p-SSWs to the analysis, and at 23% (UKMO: 41%), the approximated SSW probability is
the smallest in the period considered.

Based on the average number of 226 events per day lead time in the ECMWF model (cf. bottom left panel in Fig. 1), we
estimate the probability of a SSW between mid-November and end of March, which yields 63% (see appendix B for details).
This is consistent with the number of observed SSWs in reanalyses that is roughly 6 per decade (?).

While the rate of events per forecast day fluctuates only weakly in the ECMWF model, it moderately increases with lead
time in the UKMO model (Fig. S1, bottom left panel). One might expect this to be due to the longer maximum lead time of
the UKMO model (+60 days) compared to the ECMWF model (+46 days), which may allow more final-warming-like events.
However, we find that the trend is still apparent when all forecasts initialized in February are excluded from the analyses (not
shown).

Consistent with reanalyses (e.g, ?) and across both, the ECMWF and the UKMO model, the p-SSW frequency shows a
maximum in February (bottom right panel in Fig. 1). However, ? find leadtime-dependent inconsistencies in the seasonal

distribution of SSW probability compared to the observational record.
3.3 Predicted strong vortex events

Past literature has identified stratosphere-troposphere coupling not only following SSWs, but also following strong polar vortex
events (SPVs, e.g., ?). However, the definition of a single event in these cases is somewhat more ambiguous, as there is no
dynamically motivated threshold for u60, compared to 0 ms~! for SSWs. In addition, the dynamical changes in cases of a
strong polar vortex are generally less abrupt, making it harder to pin down one particular central event day. For these reasons,
we focus mainly on SSWs in this paper, however, we also provide a summary of the key results for SPV analyses in section 7.
In these analyses, p-SPVs are defined as the first day on which u60 exceeds a threshold that, based on percentiles, represents
the "opposite" of the SSW threshold of 0 ms . Depending on the model’s climatology, this threshold describes approximately

the 91st percentile of the u60 distribution and is around 47 ms~!.

3.4 Predicted AO events

In the troposphere, we define extreme events based on the Arctic Oscillation Index (short: AO; equivalent to the Northern
Annular Mode Index at 1000 hPa, short: NAM1000). The index is calculated by first area-weighting the geopotential field
between 65 and 90°N by the cosine of latitude and then averaging over the entire polar cap. The AO index then is the negative
standardized anomaly of the obtained quantity. For technical details about the deseasonalization via the hindcasts, the reader
is referred to appendix A. The positive phase of the AO describes a negative geopotential anomaly over the polar cap and a
thereby induced enhanced circumpolar westerly circulation. Conversely, a negative AO reflects a weaker westerly circulation,
which is typically associated with a southward shift of the jet that is also zonally more distorted.

We define tropospheric extreme events as the first day when the AO falls below a certain negative threshold (e.g., AO~3

corresponds to AO < —3) or exceeds a certain positive threshold (e.g., AOT3 corresponds to AO > +3). After testing different
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thresholds, we opt for thresholds of up to 3 standard deviations which represents a tradeoff between severity of event and

sufficiently large resulting sample sizes.
3.5 Conditional probabilities of polar vortex and AO extremes

In this study, conditional probabilities are computed to guantify-estimate the modulated likelihood of AO extremes under the
presence or absence of preceding stratospheric extremes. For example, we expect the probability of at least one AO™ extreme
during a given time period to be higher if that time period follows a SSW compared to the case that it does not follow a
SSW. This is somewhat akin to the situation in climate attribution science, where one aims to quantify the increased risk of an
extreme event due to anthropogenic climate change (e.g., ?), or to the situation in epidemiology, where one aims to quantify
the increased risk of contracting a disease given an exposure to a particular factor (e.g., smoking in the case of lung cancer; ?).
In such situations one may quantify the additional risk due to the exposure based on the so-called relative risk increase (RRI):

risk among the exposed
risk among the unexposed

RRI =

In climate attribution science "exposure” may be thought of as "under the influence of anthropogenic climate change", whereas
lack of exposure (the condition in the denominator) may be thought of as "without the influence of climate change" (e.g., based
Badpre-industrial control climate). In our case of stratosphere-troposphere coupling exposure may be thought of as "given that
a stratospheric extreme occurred". However, lack of exposure has to be evaluated with care. For example, assume that a given
day t fulfills the condition of "no stratospheric extreme" and an AO extreme occurs within a given period following Z. This
AO extreme cannot necessarily be considered "unexposed" as a stratospheric extreme may have occurred between ¢, and the
date of the AO extreme. For our analyses that evaluate the increased probability of an AO extreme following a stratospheric
enfreme event we therefore adopt a modified version of RRI, where we replace the denominator with the risk of AO extreme

occurrence for the population (i.e., including both exposed and unexposed). To avoid confusion we will refer to this modified

RRI simply as "relative probability increase" (RPI, see section 5). A negative RPI indicates that AO extremes become less
likely following stratospheric events. The more positive the RPI, the more likely subsequent AO extremes become and the
better does the stratospheric event serve as predictor for AO extremes.

One way to circumvent the above discussed issue of conditioning onto "unexposed" is to swap the conditioning. That is, we
may condition onto the occurrence of an AO extreme and evaluate the probability that a given preceding time period showed at
least one day with stratospheric extreme occurrence — in this case the AO extreme is considered to be "exposed". Likewise, if the
preceding time period shows no occurrence of stratospheric extreme, the AO extreme is considered to be "unexposed". Using

Bayes theorem this allows us to estimate the fraction of attributable risk (FAR) of AO extremes due-to a preceding stratospheric

extreme—extremes. FAR quantifies the reduction in the fraction (0 to 1) of AO extremes without preceding stratospheric events
and without any confounding factors, see discussion in section 8). We will distinguish FAR among the exposed and among

the population (see section 6).

Detailed-mathematical-definitions-of relative-Relative probability increase, attributable risk among the exposed and among
the population will-be-all quantify, from different perspectives, the increased likelihood of AO extremes following stratospheric



Table 2. Definitions for (conditional) predicted SSW and AO events. Subscript wt is short for "within time ¢". AO events can be negative
(AO™) or positive (AO™) and may refer to a prescribed threshold, i.e., AO,2 or AO? correspond to "at least one day below —3 or above
+3 within time ¢".

Event Description
AO probability that any day shows an AO extreme
AOwt probability that any period of time ¢ shows at least one AO extreme

AOyt | SSW given a SSW, probability of at least one AO extreme within subsequent time ¢

SSWast probability that any period of time ¢ shows at least one SSW event

S SWawt probability that any period of time ¢ shows no SSW event

SSWy | AO given an AO extreme, probability of at least one day with u60 < 0 within preceding period of time ¢

—SSWye | AO  given an AO extreme, probability of no day with u60 < 0 within preceding period of time ¢

AO | SSWt given a preceding period of time ¢ where-with at least one day with u60< 0, probability of AO extreme on day afterwards
AO | ~SSWy: given a preceding period of time ¢ where-with no day with u60< 0, probability of AO extreme on day afterwards

260 events. Mathematical definitions of how they are derived from baserate and conditional probabilities are introduced in the
respective sections. Nevertheless;we-We here provide an overview table about the event definitions that will be used (Tab. 2).

4 Evaluation of stratosphere-troposphere coupling based on predicted SSWs

To provide a baseline for our more detailed statistical analyses in the following sections, we first evaluate the general behavior
of stratosphere-troposphere coupling based on p-SSW events in the S2S data. To do so we focus on the lag-composite evolution
265 of the AO index relative to p-SSWs compared to real-atmospheric SSWs from ERAS. In addition, we show the NAM index at
200hPa (short: NAM200) because the lower stratosphere has been found to play an important role in stratosphere-troposphere
coupling (e.g, ??).
Figure 2 shows the evolution of u60 (top), NAM200 (center) and AO (bottom) during SSWs, averaged over all events,
separately for ECMWF and UKMO. In addition to the composite mean, the 33rd to 66th percentiles across all ECMWF events
270 on the respective lag day are shown. By construction, 100% of all events (ECMWEF: 6 101, UKMO: 2 716) contribute to lag
days £10. For larger positive or negative lags, some forecasts have reached their maximum forecast lead time or have not yet
been initialized. Therefore, the number of events drops off, which makes the statistics less robust: For the ECMWF model, the
number of contributing events falls below 20% for lags smaller than —31 and larger than +31 days (UKMO: smaller than —44
and larger than +39 days).
275 By construction, u60 transitions from westerly to easterly at lag 0. Anomalies of u60 are slightly positive ahead of —14 days
lag, which we interpret as an indication for vortex preconditioning (???). The anomalies become negative within the second
week prior to the event central date. The largest average negative anomalies occur only few days after the event central day

(lag +2 days: —6ms™!). Afterwards, the vortex reestablishes and the average anomalies reach zero again after approximately

10
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Figure 2. Lagged composite evolution of u60 (top panel), NAM200 (middle panel) and NAM1000 (=AO, bottom panel) relative to p-SSWs
(ECMWF, UKMO) and SSWs (ERAS). It is presented the mean across all ECMWF events (orange, solid), the 33rd to 66th percentiles across
all ECMWEF events (orange, shaded), the mean of all UKMO events (purple, dash-dotted) and the mean across all ERAS events (green,
dashed). In the top panel further denoted are the average u60 anomalies (orange, dashed) and the relative number of contributing events to

the composite in the ECMWF model (gray, dotted). Square brackets denote the total number of events, for each dataset.

35 days. Consistent with, e.g., ?, both NAM200 and AO are negative following the event. The shift of the NAM200 happens
earlier (at lag day —11) and the timing aligns well with the weakening of the polar vortex at 10hPa. The NAM200 anomaly
is also more pronounced (= —0.5) compared to the AO (=~ —0.3). Interestingly, the AO distribution is slightly shifted toward
positive values in the week prior to the central date, which is also robust for other diagnostics like the 10th, 30th, 70th and 90th
percentiles (not shown). At long positive lag times, the NAM indices at 200 and 1000hPa are still negative (ECMWFEF: lag +36
days, UKMO: lag +51 days), but the trend goes to weaker negative values again.

Overall, the results are in agreement with ERAS and previous literature and especially the evolution of u60 is remarkably
similar. The negative NAM response at 200hPa and 1000hPa seems to be slightly stronger in the reanalysis, however, it is also

noisier due to the smaller sample size.
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Figure 3. Histogram of the duration of negative AO periods, quantified by the number of consecutive days of AO < 0 and binned by 7-day
chunks. Periods following ECMWF p-SSWs (orange bars, right half) are compared to the ECMWF model’s climatology (green bars, left
half) and a random first order auto-regressive model of the same 1-day-lag-autocorrelation as the AO in ERAS (black, horizontal lines).

ERAS5 climatology is not shown, but agrees very well with the ECMWF forecast climatology.

5 Predicted AO extremes following predicted SSWs

In the following, we will exploit the larger available sample size of p-SSW events to diagnose and gtantify-estimate whether
the shift of the average AO index towards negative values is caused by 1) more persistent negative AO phases and/or 2) an

increased probability of AO~ extremes.
5.1 Persistence of negative AO phases

Figure 3 presents a histogram of the duration of predicted negative AO phases in the ECMWF model, binned into 7 day
chunks. The duration is defined as the number of consecutive days with negative AO. The climatology serves as a reference
including all 30 894 ECMWF forecasts used for this study. With approximately 62%, most phases of negative AO are shorter
than 8 days. As another reference, a first order autoregressive model was set up with zero mean and standard deviation of 1,
which may serve as a baseline. Its 1-day-autocorrelation is chosen to match the ERAS AO timeseries and for robustness, it is
estimated by averaging the lag-1-autocorrelation and the square-root of the lag-2-autocorrelation, yielding 0.91. Therespeetive
AO-climatologiesin ECWMEF (S2S) and ERAS agree very well in terms of climatology and lag-1-autocorrelation (not shown).
However, the AO climatology shows short negative phases (< 7 days) less often and long negatives phases (> 8 days) more
often compared to the AR1 process, indicating an AR1 process cannot reproduce the-observed-AO variability.

In addition, the diagnostic is presented for periods following p-SSWs. Here, the AO index is analyzed between lag day
+1 relative to the event date and the maximum available lag time, which ranges between +10 and +36 days, depending on
the forecast lead time when the event happens. Similar to the reference climatology, this diagnostic also underestimates the
occurrence of long negative AO periods as the forecasts have finite maximum lead time. Nevertheless, periods following SSWs

show a reduced frequency of shorter and an increased frequency of longer negative AO periods, compared to the climatology
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Figure 4. Daily probabilities of AO<O0 (top panel), AO< —3 (middle panel) and AO>+3 (bottom panel) relative to p-SSWs, quantified by
the fraction of events fulfilling the respective condition, separately for ECMWF (orange, solid) and UKMO (purple, dash-dotted). Day 0
corresponds to the p-SSW central date. In addition, probabilities are compared to the corresponding daily ECMWEF climatology (dashed

horizontal lines).

(and thus also to the AR1 process): For instance, 38% of negative AO periods are longer than 7 days in the climatology, whereas
this probability rises to 44% following p-SSWs, which corresponds to a relative increase of 16%.
Sampling uncertainties turn out to be negligible within 95% confidence intervals. A similar analysis based on UKMO data

shows very good quantitative agreement (not shown), which further confirms the robustness of the results.
5.2 Modulated probability of AO extremes

It is known that SSWs shift the subsequent AO distribution (see Fig. 2). This also implies an increased daily probability of neg-
ative and a reduced probability of positive AO extremes compared to their respective climatological probabilities. Fig. 4 shows
the probabilities of negative (< 0), extremely negative (< —3) and extremely positive (> +3) AO values on a particular lag
day ¢ relative to the SSW central date. Mathematically, these probabilities can be written as P(AO | SSW). Per construction,
lag day O describes the SSW central day. At each lag day, the probabilities are computed by normalizing the number of events
fulfilling the respective condition with the total number of available events at the respective lag day (which decreases for large

positive and negative lags).
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In addition, the overall daily probabilities of AO< 0, AO< —3 and AO> +3 are presented, providing climatological base-
lines P(AO), which are independent of lag time. In any forecast, AO events occur at each day with probabilities of about
49.0% for AO < 0, about 0.3% for AO < —3 and about 0.1% for AO > +3. Asymmetry between positive and negative values
arises from the AO distribution that is not perfectly Gaussian (skewness: -0.13).

The fraction of events in the p-SSW composite that have negative AO values fluctuates around P(AO~% | SSW) = 50%
at negative lags with only small deviations from the climatology. Within the first week following the event, this fraction
increases and appears to saturate around 60%. Consequently, in the period following a p-SSW, a negative AO is, at each day,
approximately 50% more likely compared to a positive AO (60% vs. 40%). The results are consistent between ECMWF and
UKMO during the +4 week period where the composites for both models consist of more than 30% of all events.

Extremely negative AO values in the dataset appear with a climatological probability that is similar to what would be ex-
pected for a (one-sided) 3-sigma-event of a standard normal distribution (0.27%). At negative lags, they occur overall less fre-
quent compared to climatology. In contrast, around lag 0, the probability increases and persists at P(AO~3 | SSW) ~ 0.40%
for more than four weeks. The increase appears to be larger in the UKMO model, however due to fewer events the diagnos-
tic is also noisier. The fraction of events with extremely positive AO values is smaller compared to climatology throughout
the entire lag period. This is largely consistent between the models from ECMWF and UKMO. ERAS (not shown) overall
reveals higher probabilities of negative AO values following SSWs, P(AO~° | SSW). However, large uncertainties (95%-CI
~ [45%;85%)]) in ERA5 make it difficult to distinguish whether observed differences arise from sampling errors in the reanal-
ysis or from imperfect models. The ERAS5 baseline probabilities of AO extremes are modestly lower compared to the S2S
models? (PERAS(A0—3) = 0.06%; PERA(AOT?) = 0.02%) and not a single AO*3 extreme event occurred within a four
week period following a real atmosphere SSW, resulting in PFR45(A0%3 | SSW) = 0, likely due to a-the very limited sample
size.

An altered probability of extreme AO events may be of higher socio-economic relevance than a small shift of the mean.
However, the absolute daily probabilities of extremely negative AO events are still small even though the relative increase
given the p-SSWs is indeed considerable. In practice, the relevant question might not be how much the probability increases
on only one specific day following a p-SSW. It may be more relevant to quantify the increased risk for an extreme AO within
a given time period following a p-SSW.

Figure 5 therefore shows the probability of at least one AO~2 extreme between day 1 and day ¢ as a function of £. We compare
the period following p-SSWs, P(AO,? | SSW) to the respective model climatologies, P(AO~?), the ERAS climatology and
Zl

an ARI1 process of the same autocorrelation as the AO index in ERA5. Confidence intervals were obtained for P(AO,,

SSW) by bootstrap sampling all SSW events. For ECMWF and UKMO climatology, probabilities were sampled from lead

Note that we have standardized the AO in ERAS such that the inter-annual standard deviation is 1, similar to the deseasonalization that is applied to the

S2S forecasts. The lower baseline probabilities are consistent with a non-zero kurtosis of the AO distribution in ERAS5 of ~ —0.3 (ECMWF: ~ 0.0, UKMO:

~ 01
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Figure 5. Probabilities of at least one AO~2 event within a window of time ¢ following p-SSWs (dashed, mean incl. 95%-confidence-interval)
are compared to climatology (solid), separately for ECMWEF (orange) and UKMO (purple). In addition, the climatologies for ERAS (green)

and a random first-order auto-regressive model of the same 1-day-autocorrelation (yellow) are presented.

time +10 days® to lead time +10+¢ days within all forecasts. Similarly, baseline probabilities of ERAS5 and the AR-process
are obtained by sampling from all days ¢y of the time series to day ¢y + ¢, respectively.

Clearly, all probabilities increase with ¢, as the time window for finding at least one AO~2 extreme gets wider. However, with
increasing ¢, also fewer events contribute to the composite due to the finite forecast lead time, leading to larger sampling errors.
The results show that p-SSWs are consistently leading to an increased time-integrated risk of AO~3 events. For example, the
probability in the ECMWF forecasts of at least one AO extreme within 30 days following the event is 3.8%, compared to 2.9%
for its climatology. Overall, p-SSWs seem to affect the probability more in the UKMO model, as the probability following
p-SSWs is higher and the climatological baseline is also lower compared to the ECMWF model. The baseline in ERAS is
slightly lower than in the ECMWF model, but agrees well with the UKMO climatology. All probabilities range considerably
higher than the probability of a one-sided 3-sigma event for the AR1-process and as before, this is a result of the negative
skewness of the AO distribution.

Generally, all probabilities appear approximately linear in ¢, but it should be noted that the linear regime only holds for small
enough ¢ as the probability will approach 1 and saturate in the limit of very large ¢. Furthermore, it is expected that for much
larger ¢ (which cannot be evaluated here, due to the finite maximum forecast lead time), the effect of a p-SSW increasing the

subsequent extreme AO™ probability diminishes and the climatology will approach the one for p-SSWs.

3We choose 10 days as we also start to search for p-SSWs at lead time day 10, however, this choice is arbitrary and the resulting climatology is not very

sensitive to this choice.
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Figure 6. Probability increase (in percent) for at least one negative (positive) p-AO extreme below (above) threshold following p-SSWs
within a certain period ¢, relative to climatology, averaged over 25d< ¢ < 40d, separately for ECMWF (orange, solid) and UKMO (purple,
dash-dotted).

Based on the presented probabilities, the probability increase of at least one AO event within time ¢ following SSWs can be
determined-estimated relative to the climatological baseline:

P(AOy | SSW
relative probability increase = (P(AtO|u,t)) N

P(AOy¢ | SSW)

P(AD,) M

relative probability increase =

P(AO

A relative probability %mger than O corresponds to an increase of AO probability following SSWs, while negative

values describe a probability decrease. The-This ratio is a function of the length of the time window ¢ (see supplement Fig.

S2)and-is-assumed-to-approach—+in-. In the limit of large ¢, as-where the SSW influence becomes negligible—, it is expected
to approach 1, such that the relative probability increase approaches 0. However, for medium time windows ¢ that correspond

to a typical timescale of stratosphere-troposphere coupling, the relative probability shows a wide plateau. This motivates the
calculation of the relative probability increase averaged over the plateau, which is estimated to correspond to 25 days < ¢ < 40
days, based on Fig. S2. The resulting relative probability increase (Fig. 6) provides an estimate for the extent to which p-SSWs
increase the probability of p-AO extreme events — not limited to a specific lag day, but time-integrated and thus independent
of t. Note that the measure is relative to the climatology, which also includes AO extremes that occur following SSWs. The
diagnostic can therefore be interpreted as the relative probability modulation of at least one AOT event within a certain time
period following the occurrence of a SSW, relative to the baseline probability where the stratospheric state is unknown.

The relative probability increase of AO events around 0 (e.g., at least one day below/ above 0) is very small, as these events

are already almost certain, even in the climatological reference. Both models show a gradual increase of relative probability of
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Figure 7. Probabilities of at least one day u60 < 0 within day ¢ and day -1 relative to day 0, where day O is either a randomly sampled
day (solid) , an AO™2 extreme event (dashed), or an AO™? extreme event (dotted). S2S ECMWF (orange), S2S UKMO (purple) and ERAS
(green).

more negative AO thresholds (e.g., ~ +35% for AO< —2) and a gradual decrease for more positive AO thresholds (~ —40%
for AO> +2), which is consistent with a shift of the distribution toward more negative values. Quantitative differences in the
results between the models are observed for AO thresholds of £3. Indeed, alse-sampling uncertainties become considerable for
thresholds greater than 2 standard deviations as well, as indicated by 95% confidence intervals that are obtained via bootstrap
sampling among all SSW events. However, model discrepancies reach beyond the indicated confidence intervals, which will

be briefly discussed in section 8.

6 Toward attribution of predicted AO extremes to preceding SSWs

The last section focused on given p-SSWs and subsequent statistical signatures in AO extremes within a period ¢: P(AQO, |
SOIV). It was shown that SSWs-make-AO~ extremes are significantly more likely —following a SSW.

In this section, we will-aim to evaluate the alternative question: How many AO™ events may statistically be attributed
attributable to preceding SSWs?

AO™ extremes occur with and without preceding SSWs. As outlined in subsection 3.5, the distinction of whether an AO
extreme was or was not exposed to a preceding stratospheric extreme requires choosing a time window for the potential
exposure (e.g., was a given AO extreme preceded by a SSW within the preceding 30 days or not).

The basis of the evaluation in this section is that instead of conditioning on the occurrence of a SSW, we condition on the

occurrence of an AO extreme. This allows the classification of all AO events according to whether they were or were not
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exposed to a preceding SSW within a time window ¢. In total, the ECMWF analysis is based on 752 AO~3 and 486 AO*3
events, where asymmetry arises from non-zero skewness of the AO distribution (UKMO: 299 and 186).

Fig. 7 shows the probability that AO*3 events are preceded by at least one day of negative u60 within time ¢, corresponding

to P(SSW: | AO*3). For example, the probability of p-SSW occurrence within 30 days preceding AO~3 extremes is close
to 0.5 in both models, whereas it is around 0.1 preceding AO*? extremes. 95% confidence intervals, which were derived by
bootstrap resampling all AO events, confirm that the diagnostics get less robust for larger time windows, due to fewer available
events contributing to the AO composite. The probabilities of the extremes to be not preceded by at least one day of negative
u60 are given by P(=SSW,,; | AOT3) =1 — P(SSW,,; | AO®3).
__We can use the estimated probabilities P(SSW,,; | AO3) to evaluate the fraction of attributable risk (FAR) of AO~
events due-to-to_preceding SSWs as follows*-—, Note that in this study we neglect potential common drivers of both AO.
and stratospheric extremes, such as due to tropical teleconnections. Consequently our analyses of FAR may overestimate the
part that is solely due to the stratosphere. Nevertheless, they serve to quantify the statistical association between stratospheric
¢t@remes and the AQ, as well as quantify the predictive skill due to the stratosphere.

First we define the FAR among the exposed*:

risk among the exposed — risk among the unexposed

FAR, =
c risk among the exposed

FAR. — risk among the exposed — risk among the unexposed @)
°c risk among the exposed

This quantifies the fraction of AOSSW-AO ™ —SSW-co-occurrences ("exposed" category) that-cannot-be-explained-by-internal
tropospherie-variability-in addition to fortuitously aligned events, where the latter risk in the numerator is given by P(AO™ |
—55Wyt). An FAR, of 0 means that the probability of finding an AO~ extreme is independent of exposure to a preceding
SSW. Likewise, an FAR, of 1 means that AO™ extremes do not happen without exposure to a preceding SSW. We can estimate

the involved probabilities of AO™ events exposed or not to a preceding SSW using Bayes theorem:

_ P(SSW,,i|AO™)-P(AO™
P(AO | SSth) = & P(ISSWU),,,) ( )
_  P(~SSWut|AOT)-P(A0™) _ [1=P(SSWyui|AO7)]-P(AO™)
P(AO™ | =SSWy) = P(oSSWor) = 1= P(~55W,)

4FAR, is commonly used in climate attribution science, e.g., to determine the likelihood that an extreme weather event may—be—a&ribu{ed»\i/s\;a\tt/\r/i\lgl\lkaj\)/lg to
anthropogenic climate change ¢see;e-g5—222?)(see, e.g., 2??).

18



425

430

435

440

P(SSWy | AO™) - P(AO™)

P(AO” | SSWar)= = gas ®
_ P(=SSWyt | AO7)-P(AO~)  [1—P(SSWy: | AO7)]- P(AO™)

P(A - = = 4

PLAO” | 255Whu) P(—SSWay) 1= P(SSWo) @)

Inserting these expressions we obtain for FAR,:

FAR. — P(AO™ | SSWy) — P(AO™ | 2SSWy) 1 P(SSWyt) P(=SSWyt | AO7)
< P(AO~ | SSWy) B P(=SSWy) P(SSWy | AO™)

FAR. — P(AO™ | SSWy) — P(AO™ | =SSWoy) - P(SSWyi) P(=SSW,, | AO™) )
‘< P(AO~ | SSWyy) N P(=SSWy) P(SSWy | AO™)

This expression involves P(SSW,,;), which represents the baseline climatology of the probability that any random day
(i.e., regardless of its AO value) is preceded by a SSW within time ¢ (full lines in Fig. 7). By definition, P(—=SSW,,;) =
1= P(SSWy).

Our estimates of FAR, are shown in Fig. 8a as a function of time window ¢, for two AO event thresholds (-2 and —3). We
find that these estimates are not a strong function of the chosen time window. Fig. 8b summarizes the FAR, averaged over
time windows of 25 to 40 days: For example, based on the ECMWEF forecasts we find-estimate that on average about 50% of
all AO~2 events that are preceded by a SSW may be-statistically-attributed-statistically be attributable to that SSW. For the
UKMO forecasts this value is slightly higher (~60%). For AO~2 events these percentages are somewhat smaller but overall
similar between the models. Boxplots reveal that associated sampling uncertainties are generally small, but larger for AO 3
events.

The attributable risk may also be evaluated for any AO~ extreme (from the entire population). In this case one is interested
in quantifying the fraction of AO™ extremes that occur in addition to those that are "unexposed" (were not preceded by a SSW).

The corresponding FAR among the population is defined as:

risk among the population — risk among the unexposed ~ P(AO™) — P(AO™ | 2SSWy,;) . P(=SSW | AO)

FAR, = -1 == )
P risk among the population P(AO™) P(=SSW)

FAR. — risk among the population — risk among the unexposed ~ P(AO~) — P(AO™ | ~SSWy:) 1_ P(=SSW | AO)
P risk among the population B P(AO™) B P(—=SSW)

(6)

44%/here the corresponding expressions from Bayes theorem have been inserted as before. FAR,, then also quantifies the

fraction of AO extremes that may be-statistically-attributed-statistically be attributable to a preceding SSW. For example, an
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Figure 8. Left: Fraction of AO™? (dotted) and AO ™3 (solid) extremes that are preceded by a SSW within time ¢ that may be attributed
attributable to the SSW (fraction of attributable risk among the exposed/ FAR, panel a). Boxplots (quartiles 1 to 3 and 95% confidence
intervals, obtained via bootstrap resampling) show FAR. averaged over time windows 25 to 40 days (gray shaded), as function of AO
threshold (panel b). Right: Fraction of all AO~2 and AO~2 extremes that may be attributed-attributable to a preceding SSW within time ¢
(fraction of attributable risk among the population/ FAR,, panel c). Boxplots (as in panel b) show FAR,, averaged over time windows 25 to
40 days (panel d). Note that for larger ¢, fewer events contribute to the diagnostics, hence, observed fluctuations for long time windows ¢ are

likely related to sampling uncertainty. UKMO (purple) and ECMWF (orange).

FAR,, of 0 means that SSWs do not increase the probability of AO extremes, whereas an FAR,, of 1 means that all AO extremes
may be attributed-attributable to a preceding SSW within time ¢. The same caveats about common drivers as for FAR, should

Figure 8c shows our estimates of FAR,, as a function of time window ¢, similar as for FAR.. As expected, estimates of FAR,,
are generally lower than for FAR,: the likelihood of any randem-AO extreme to be attributable to a SSW that may or may not
have happened before the AO extreme should be much smaller than that of an AO extreme that was indeed preceded by a SSW.
FAR,, increases somewhat with ¢ for small ¢, but tends to saturate for windows longer than about 2 weeks. For AO™2 events
both models saturate near 0.2, whereas for AO~3 events they show slightly larger FAR,, of around 0.25-0.3. Overall we-may
therefore-conelude-our estimates therefore suggest that between 20-30% of AO™ extremes may be-statistically-statistically be
attributable to a preceding SSW (within 2-6 weeks). Fig. 8d summarizes the FAR,, averaged over time windows of 25 to 40
days. Despite the lower number of contributing events for larger time windows, associated sampling uncertainties are small

(e.g., 95% confidence intervals for FAR,, in ECMWF for AO~3: [21%;28%)).

7 Strong polar vortex events and associated AO extremes

The previous sections revealed that SSWs increase the probability of subsequent AO~ extremes and that a significant fraction
of AO™ extremes may be attributed-attributable to preceding SSWs. In the following, we summarize an analogous analysis for

the statistical relationship between strong polar vortex events (SPVs) and AO™ extremes.
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Figure 9. As in Fig. 2, for p-SPVs.

The composite-mean evolution of p-SPVs (Fig. 9) reveals that u60 anomalies are of opposite sign, somewhat weaker in
magnitude, but otherwise qualitatively similar to p-SSWs (lag 0: ~ +20 ms~! for p-SPVs; ~ —30 ms~! for p-SSWs, cf.
Fig. 2). Both S2S models agree very well in this respect. Moreover, for negative lags, there is little difference compared to a
corresponding composite based on ERAS data, but for positive lags, u60 is slightly stronger in ERAS5. The NAM response at
200hPa and 1000hPa (=AO) is qualitatively similar for p-SPVs and p-SSWs (with opposite sign), but the anomalies are again
slightly weaker for p-SPVs, which is consistent with the weaker u60 anomalies (lag 21: +0.35 at 200hPa, +0.25 at 1000hPa).
It is interesting that the NAM200 seems to react later to p-SPVs than to p-SSWs: While the index for p-SSWs starts to shift
significantly to negative values already at lag —10 on average, a shift to positive NAM200 values for p-SPVs is observed
only from lag —5 on. As with p-SSWs, the evolution of the NAM at 200hPa and 1000hPa relative to p-SPVs is less robust
in ERAS due to the smaller sample size, however, the anomalies tend to be slightly more pronounced than in the two S2S
models. Overall, the composite-mean evolution of p-SPVs in the ECMWF and UKMO models appear to be consistent with
real-atmosphere SPVs (as revealed by reanalysis data), as well as with previous studies (e.g., ?).

Following the same methodology as for p-SSWs, we use the large event sample sizes to quantify the statistical relation

between p-SPVs and subsequent AO™ extremes. First, we quantify the relative probability increase for at least one AO extreme
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after a given p-SPV within a certain time. Second, we analyze how many AO™ extremes may be attributed-attributable to
preceding p-SPVs.
Figure 10 shows the relative probability increase of AO extremes following SPVs relative to climatology as a function of the

AO threshold, for both S2S models and averaged over time windows 25 days < ¢ < 40 days:

P A w P
relative probability increase = W -

P(AOy¢ | SPV)

relative probability increase =
P Y P(A0,)

-1 )
Consistent with the positive shift of the AO distribution following SPVs, the risk gradually increases for positive AO ex-
tremes, whereas it gradually decreases for negative AO extremes. For extreme thresholds of up to 2 standard deviations, the
relative probability change appears to be of similar magnitude compared to periods following SSWs (/30-40%, see Fig. 6).
Larger thresholds reveal a reduced probability change compared to SSWs, however, 95% confidence intervals mark increasing
sampling uncertainty, especially for AO:;? events.

Figure 11 quantifies-shows our estimates of the fraction of positive AO extremes that may be attributed-attributable to a
preceding p-SPV within a time period ¢:

P(AO* | SPV,;) — P(AOT | ~SPVy)

FAR.FAR, = 8

T P(AO* [ SPVyy) @®)
+\ + | 4

FAR FAR, — DA0T) = PAO™ [ 25PViur) N

P(AO™)

where FAR-—andFAR; FAR, and FAR,, denote exposed and population attributable risk, as in section 6 for SSWs and AO™
events. Among all AO*3 events that are preceded by at least one SPV event within four weeks, about 55% (UKMO) to 65%
(ECMWF) may be attributed-attributable to the SPV (Figs. 11a, 11b). However, significant sensitivities to the exact time
window are observed, as well as differences between the models. One problem is the strong seasonal dependence of SPV
events, as most events occur in December when the polar vortex is generally strongest. AO extremes that happen later in the
winter have therefore a smaller probability to be preceded by a SPV event within a short time window than AO extremes that
occur in December or January. AOT? events reveal a fraction of attributable risk among the exposed to preceding SPVs of
around 40% to 55%, similar to SSWs and AO~2 events.

Finally, the fraction of all AO™ extremes that may be attributed-attributable to preceding SPVs is slightly larger but similar
to that for AO~ extremes and SSWs, with a population attributable risk of around one quarter for AO™2 and around one third
for AOT3 extremes for preceding time windows of 25 to 40 days (Figs. 11c, 11d).

More detailed analyses that apply the diagnostics presented in Fig. 3, Fig. 4 and Fig. 5 to positive AO extremes and p-SPVs

are shown in the supplement.
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AO following p-SPVs within time t
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Figure 10. As in Fig. 6, for p-SPVs and subsequent AO extremes within time ¢.
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Figure 11. As in Fig. 8, for positive AO extremes that may be attributed-attributable to preceding SPV events within time ¢.

8 Conclusions

Our results, based on a large number of extended-range ensemble forecasts, provide further evidence for stratospheric mod-
ulation of large-scale weather patterns near the surface, broadly consistent with previous results (?, and references therein).
Previous studies generally suffer from relatively small available sample sizes, which hampers estimation of robust statistical
510 relationships between stratospheric and tropospheric extremes (= rare events). In this study, by analyzing extended-range fore-
cast periods around predicted extreme events (e.g., p-SSWs), we effectively boost the available sample size by more than a

factor of 100 and are therefore in the position to obtain robust estimates in response to our research questions:

___ 1. By how much de-stratospheric-polar-vortex-extremes-inerease-is the probability of persistently positive or negative AO
phases Zincreased following stratospheric polar vortex extremes?
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Climatologically, 38% of negative AO phases (days with consecutive AO< 0) are longer than 7 days. Following p-SSWs,

this is increased to 44%, which corresponds to a relative increase of 16%.

Following p-SPVs, the probability of positive AO phases that last longer than 7 days is increased from 40% to 44%.

___2. By how much de-stratospherie-polar-vortex-extremes-inerease-is the probability of subsequent AO extremes -increased
following stratospheric polar vortex extremes?
Following p-SSWsinerease—, the probability of subsequent negative and-deerease-the-probability-of-subsequent-AQ
extremes increases whereas it decreases for positive AO extremes. For instance, AO 2 events are about 40% (ECMWF

forecasts) to about 80% (UKMO forecasts) more likely following p-SSWs. However, the absolute probabilities are still
low, i.e., only 3.5% of SSWs are followed by AO~? within four weeks, based on ECMWEF forecasts (UKMO: 4%).

Following p-SPVs, the probability of AO™3 is increased by about 25% relative to climatology, whereas AO~* occur
about 40% (ECMWF) to 60% (UKMO) less often.

3. What fraction of AO extremes may be attributed-to-attributable to preceding stratospheric polar vortex extremes?

About 50% (ECMWF) to 60% (UKMO) of AO~2 extremes that occur following a SSW may be atiributed-attributable
to that SSW (fraction of attributable risk among the exposed). 20-30% of all AO~? events may be attributed-attributable
to preceding SSWs (fraction of attributable risk among the population). "Attributable” does not necessarily imply strict

530 causality (see discussion below), but here refers to the fraction of SSW-AO™ co-occurrences in addition to fortuitousl
aligned events.

While our stratospheric event definitions are based on absolute thresholds of the zonal-mean zonal wind, the tropospheric
response is quantified via standardized anomalies of averaged geopotential. The construction of an appropriate correspond-
ing climatology is crucial, in particular for the analysis of extreme events. However, it is also not unambiguous. Standard-

ized anomalies are computed by normalizing differences from a population mean with the population standard deviation -

construetion-of-a-datly(or-sometimes-monthlyelimatology(taking into account seasonal variations). As the population is usu-

ally finite, any additional data point may change the population mean and will change the population standard deviation,

resulting in a small adjustment of all previous (standardized) data points. On the one hand, the effect is negligible in the limit
of a large population. On the other hand, it is generally larger when the additional data point is an outlier ;-with respect to the
previous distribution. For this study, S2S forecasts were deseasonalized using the available hindcasts. The assumption is that
these hindcasts sufficiently sample different kinds of variability, such that a) extreme events that occurred in individual years
do not significantly distort the population distribution and thereby also the population mean and standard deviation and that
b) the constructed population is robust across different initialization dates (e.g., a given event that is equally predicted at two

different leadtimes corresponds to a the same standardized event in both model integrations).
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Do the analyses of modulated probabilities allow conclusions about causal links between stratospheric and tropospheric
circulation extremes?

P(effect | do(cause)) > P(effect | do(—cause)), (10)

where the do operator denotes an intervention that forces the occurrence or not-occurrence of the cause’. In the atmosphere,
such controlled situations can usually only be simulated using numerical model experiments. In this study, a post-hoc analysis
of an existing dataset is presented. No interventions are performed and therefore, no strict causal relations can be inferred
following the provided definition. Instead, conditional probabilities are computed, which ? calls a predictive or observational

PIAO”| SSW) > PAO” | =95W). an

Our knowledge of coupled stratosphere-troposphere dynamics suggests that a causal connection does in principle exist-altheugh

560¢econd, the concept of attributable risk allows in principle to quantify such causal links in a statistical sense, subject to filter-

ing of common drivers % This connection manifests in observed conditional probabilities, which may, however, be modulated
also by further possibly involved pathways.
First, conditional probabilities may in practice overestimate the (direct) causal link between stratospheric and AO extreme

due to the existence of confounding factors (see scenario ¢ listed in the introduction). For example, the Madden-Julian Os-
cillation (MJO) may lead to modified risk of AO extremes (?) while at the same time modifying the likelihood of SSWs (?).

On the other hand, the dynamical coupling between the MJO and the AO may eften-involve a stratospheric pathway (?) and
in such cases the stratosphere does represent a causal driver of AO modulations. Similar arguments hold for lew-frequeney
impaets-impacts due to climate variability, such as Arctic sea ice concentrations (?) and the El Nino Southern Oscillation
(ENSO) (?). Causal pathways may in such cases be disentangled using a causal inference-based network (?). We have carried
out preliminary analyses using such a framework to distinguish causal pathways during different ENSO phases, which suggest
that the direct pathway polar vortex — AO extremes is significantly stronger than those via ENSO. A detailed analysis of these

pathways is left for future work.

even if common drivers can be neglected the statistical nature of inferred fraction of attributable risk can only quantify an

5This definition relies on counterfactual dependence, i.e., if there had not been the cause, then there would not have been the effect (and if there had been

o1t is important to keep in mind that the coupling is, in general, mutual and causality works in both directions (even though, as always, any cause has to

recede the effect).
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effective causality in the following sense. Assume, for the moment, that all SSWs cause an AO~ extreme, but AO™ extremes
additionally occur due to internal tropospheric variability. In this case some of the observed AO~ extremes may have happened
due to internal tropospheric variability alone while additionally be forced/enhanced by a preceding SSW (see scenario b listed
in the introduction). A probability analysis (e.g., estimating the FAR among the population) will then always underestimate the
actual causal link and can only reveal an effective causality. This also represents a limitation of the binary classification (AO

extreme / no AO extreme).

Despite these caveats, conditional probabilities may provide useful insights. The conversion into statistical metrics such as
RPT and FAR may thereby facilitate the practically relevant interpretation. For example, RPI of AO extremes due to the prior
occurrence of a stratospheric extreme does serve to quantify the state of the stratosphere as a predictor of subsequent AQ
extremes, which may be of practical value regardless of its underlying causal nature. Furthermore, FAR provides an estimate
of how many AQ extremes would statistically be expected less without preceding stratospheric events, when keeping in mind
that "without a preceding stratospheric event” would require to remove also confounding factors.

How should the observed differences between ECMWEF and UKMO model be interpreted? Overall, our analyses show that
the probability modulation of AO extremes up to about two standard deviations given preceding stratospheric extremes are
similar between the ECMWF and the UKMO model. AO extremes of three standard deviations, i.e., AO < —3 and AO > +3
reveal discrepancies between the models. Our bootstrapping approach, e.g., for the relative probability increase (Fig. 6), shows
that especially analyses based on UKMO forecasts become less robust. However, the observed discrepancies cannot be solely
attributed to sampling uncertainty, given that they exist also beyond the respective 95% confidence intervals. Which model
better represents the dynamics of the real atmosphere is difficult to assess, as the observational record is too short to allow for
robust, similar analyses. Potential causes of the observed differences are numerous, involving differences in wave-mean flow
feedbacks or external forcings, e.g., from the tropics. ? show that the eddy kinetic energy spectrum in the ECMWF model
is still in parts unrealistic and that the model may be too dissipative even at large scales, clearly indicating that models are
unable to reproduce real-atmosphere dynamics perfectly accurate. ? investigate biases in different S2S models and find, inter
alia, a modest cold bias in the ECMWF and a modest warm bias in the UKMO model in the extra-tropical lower stratosphere.
As the lower stratosphere has been shown to play an important role in stratosphere-troposphere coupling, we speculate that
occurrences of tropospheric extremes following stratospheric circulation anomalies are sensitive to temperature biases in this
region. However, a detailed analysis would be beyond the scope of this study.

In general, we note that any two different imperfect models, will likely always reveal quantitative differences in the analysis
of extreme events for a sufficiently strict extreme threshold. In the present study, we find such differences, e.g., for the relative
risk, at a threshold of around three standard deviations. It is possible that more data are needed to conclusively attribute the
differences to particular dynamical processes. Nevertheless, we argue that our analyses, even at a threshold of 3 standard de-
viations and given the associated uncertainties, are able to provide insightful quantitative estimates; especially as no obvious a

priori estimate exists even for the order of magnitude of the investigated probability metrics.
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In addition to the particular points already mentioned, future work should address the question, how much of the predicted
surface impact following predicted stratospheric extremes, i.e., following p-SSWs and p-SPVs, can be explained by the AO.

Lastly, we conclude that the analysis of predicted events offers potential for improved statistical characterization of other

atmospheric extreme events, provided that the forecast model is capable of truthfully representing the event of interest.

Data availability. Forecasts from the S2S archive can be found at https://apps.ecmwf.int/datasets/data/s2s. ERAS data is available at https:

/lcds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels.

Appendix A: Deseasonalization of S2S Forecasts

In addition to realtime forecasts, all S2S forecasting systems create also hindcasts (or "reforecasts"), which allow the construc-

tion of the respective model’s climatology. In the following, we describe the procedure’ we applied to compute a climatology

of a forecast that starts on some date d (month & day of month).

. Compute the ensemble mean of the hindcasts (Fig. Ala).

. Compute the inter-annual mean of the hindcast ensemble means. In case of the ECMWF forecasts for example, the

hindcasts cover the past 20 years (see Fig. Alb).

. Select all (inter-annually averaged) hindcasts that start within + 14 days relative to the date d (the start of the forecast of

interest). In case of the ECMWF model, this selection subsumes 9 (inter-annually averaged) hindcasts, since hindcasts

are available for every Monday and Thursday (see Fig. Alc).

. Average the hindcasts obtained in 3, such that the forecast valid times match (e.g., average forecasts for Feb 22, Feb 23,

... as opposed to matching forecast lead times, e.g., forecasts with lead time +4, +5, ..., see Fig. Alc).

. Apply, to the resulting time-series, a 7-day running mean filter (Fig. A1d).

. Due to the +-14 day window, the resulting time-series starts earlier than date d and covers a period that is longer than the

forecast of interest. Cut the time-series at the beginning and at the end such that it matches the time-series of the forecast

of interest. This gives the climatology (see Fig. Ald).

Anomalies are obtained by subtracting the climatology from the raw field. Standardized anomalies can be computed by

635 dividing the anomalies through a climatology standard deviation, which is computed similar to the climatological mean, but

where

"based on the ECMWEF article "Re-forecast for medium and extended forecast range" (https://www.ecmwf.int/en/forecasts/documentation-and-support/

extended-range/re-forecast-medium-and-extended- forecast-range, accessed on 23 Aug 2021).
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Figure Al. Schematic workflow for the computation of a climatology for a S2S forecast model, based on hindcasts. Gray planes illustrate

that forecasts belong to the same hindcast year, where the axis from left to right denotes time and the axis from the front to the back.

— (ad step 1) instead of the ensemble mean, the unperturbed control run is selected (or any other single ensemble member).
Using the ensemble mean would result in a too small inter-annual standard deviation at long forecast lead times (see step

2), because at long lead times, the ensemble mean always tends to the climatological mean state.
640 — (ad step 2) instead of the inter-annual mean, the inter-annual standard deviation is computed.

The presented deseasonalization procedure comes with several implications, for example:

The climatologies for realtime forecasts and for hindcasts are always based only on hindcasts.

By computing anomalies from a climatology, model errors that are a function of the season, are mitigated.

By computing anomalies from a climatology, model errors that are a function of the forecast lead time ("model drift"),
645 are not mitigated, because the climatology averages information that stems from different forecast lead times (see step

4).

In case of the ECMWF model, 9 hindcast ensembles / four-week-window - 20 years - 11 ensemble member = 1980

integrations contribute to the construction of one climatology.
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Appendix B: P(SSW) proxy

From observations, the annual probability of SSWs can be derived by normalizing the number of winters with SSWs with the
total number of winters. In the S2S model framework, it is however less straightforward to compute the frequency of SSWs
per winter, as the maximum leadtime is shorter than a winter period and many forecasts overlap. It is reasonable to tie a 0%
SSW-probability to the case where there is not one ensemble member in any of the forecasts that predicts a SSW. The 100%
upper boundary is less clear: Should the probability be 100% if all ensemble members in all forecasts show a SSW? In that
case, a longer maximum leadtime would result in a higher SSW-probability even for the same model. Should the probability
be 100% if there is at least one ensemble forecast in a winter where all members show a SSW? Again, the result would depend
on the ensemble size, i.e., the technical setup, not solely on the model physics.

In this study, we compute a proxy for the model’s seasonal SSW probability based on the number of SSWs per forecast day,
as described in the following:

For each winter season ¢, forecasts with initialization dates between mid-November and mid-February are analyzed, resulting
in a total of N = Do N; forecast runs (counting ensemble members separately). We search for p-SSWs only in forecasts that
have solely positive u60 within the first 10 days after initialization, resulting in N =) . N; forecasts (N < N). We find E; p-
SSW events in the winter seasons, respectively, and group those by daily leadtime (similar to Fig. 1, bottom left panel), yielding
E; q p-SSWs in winter ¢ at leadtime +d days. As F; 4 is approximately constant over leadtime, we compute the average number
of p-SSWs in winter 7 per day leadtime: E; = m, where the overbar denotes the mean over lead times. Hence, the probability
that a random forecast in winter ¢ at a random leadtime shows a p-SSW is p; qairy = % The probability of no SSW for an

entire winter (=~ 135 days from mid-November to end of March) is therefore (1—p; gaity)*>°

. Finally, the probability of at least
one SSW in winter 7 becomes: p; =1 — (1 — pi,dai[y)135, as presented in Fig. 1 (top left panel). The model’s average seasonal
SSW probability becomes p = [p;], where the brackets denote the average over different seasons.

Note that the computed probabilities p and p; quantify the model’s tendency to predict SSWs. Particularly, this allows
for inter-annual comparison and comparison between different models. However, the probabilities themselves require careful

interpretation, which is why we refer to a SSW probability "proxy". Note that

— the probability quantifies SSW occurrences beyond 10 days leadtime. Thus, inter-annual variations of SSW probabilities
arise only from phenomena that are predictable at more than 10 days ahead. This is also the main reason why real

atmosphere SSWs have only limited effect on the computed SSW probability.

— the SSW probability becomes 0% if there are no ensemble members that predict SSWs at any time beyond 10 days
leadtime. A 100% probability is only reached if all ensemble members predict SSWs at each day leadtime. Fig. B1
shows the analytical relation between daily probability p; 441, and the associated seasonal probability p;. For instance,
a daily probability of 2% already leads to a seasonal probability of about 90%. In addition to the analytical relation, the

probabilities are shown for all seasons as derived from the ECMWEF forecasts.

— seasonality is not explicitly resolved in the calculations, but assumed to average out when enough forecasts are sampled.
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Figure B1. Estimating a seasonal SSW probability proxy based on daily SSW probabilities. Colored points show the computed seasonal
probability proxy for different winter seasons as applied to the ECMWF forecasts.
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