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Abstract. Intensity fluctuations observed during a period of rapid intensification of Hurricane Irma (2017) between 04 Septem-

ber and 06 September were investigated in a detailed modelling study using an ensemble of Met Office Unified Model (MetUM)

convection permitting forecasts. These intensity fluctuations consisted of alternating weakening and strengthening phases. Dur-

ing weakening phases the tropical cyclone temporarily paused its intensification. It was found that weakening phases were

associated with a change in the potential vorticity structure, with a tendency for it to become more monopolar. Convection5

during strengthening phases was associated with isolated local regions of high relative vorticity and vertical velocity in the

eyewall, while during weakening phases the storm became more azimuthally symmetric with weaker convection spread more

evenly. The boundary layer was found to play an important role in the cause of the intensity fluctuations with an increase

in the agradient wind within the boundary layer causing a spin–down just above the boundary layer during the weakening

phases whereas during the strengthening phases the agradient wind reduces. This study offers new explanations for why these10

fluctuations occur and what causes them.

1 Introduction

One of the biggest challenges in weather forecasting is predicting when a tropical cyclone (TC) will rapidly intensify. Rapid

intensification is defined as a rate of surface wind increase of at least 15.4 m s-1 per 24 hours (Kaplan et al., 2010). Most strong

tropical cyclones undergo a period of rapid intensification (Kaplan and DeMaria, 2003). Although convection–permitting15

numerical weather prediction models are capable of producing rapidly intensifying TCs, models still perform poorly when it

comes to the timing of rapid intensification events (e.g. Short and Petch, 2018; DeMaria et al., 2021), indicating that the current

understanding and representation of intensification processes prior to and during rapid intensification is likely incomplete.

Being able to accurately predict rapid intensification events can influence mitigation strategies as the wind speed strongly

influences the potential damage the tropical cyclone may cause.20

The simplest paradigm for tropical cyclone intensification can be understood by considering the case of a stationary vortex

in gradient wind balance. Eliassen (1951) derived the Sawyer–Eliassen equation, that describes the response of the secondary

circulation to angular momentum and heat sources. A point heating source located just within the radius of maximum wind-

speed (RMW) will result in an axisymmetrical response of the secondary circulation, in accordance with the dipolar solutions
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of the Sawyer–Eliassen equation, with most of the streamlines outside the RMW aligning in the radial direction and most of25

the streamlines inside the RMW in the vertical direction. The result is a drawing in of absolute angular momentum (AAM)

surfaces which, in turn, causes an increase in the tangential velocity, and forms a more intense tropical cyclone (Vigh and

Schubert, 2009).

The boundary layer spin–up mechanism, as described by Montgomery and Smith (2018), has extended the understanding

of intensification mechanisms by examining the role of the highly unbalanced boundary layer. If air parcels spiral inwards30

towards a tropical cyclone centre fast enough to compensate for frictional AAM loss, then an initially subgradient tangential

wind in the boundary layer inflow may become supergradient, allowing the tangential wind within the boundary layer to be

higher than the tangential wind above it. The unbalanced mechanism can also spin up the free vortex above the boundary layer

through vertical transport of the high AAM air at the top of the boundary layer.

The axisymmetric theory does not fully explain the development of a TC, particularly during rapid intensification, due to35

the presence of asymmetric processes. These include the role of vortical hot towers (VHTs), which are local small, regions

of high relative vorticity and high vertical velocity regions within the eyewall. VHTs and their associated downdrafts can act

to transport heat and angular momentum inwards to the eye prior to rapid intensification (Guimond et al., 2010) causing the

storm to intensify by warming the eye and increasing the relative vorticity in the region of the VHTs. One other phenomenon

not accounted for in the balanced, symmetric paradigm is vortex Rossby waves (VRWs) which are waves that propagate on the40

radial potential vorticity (PV) gradients in tropical cyclones in a similar way to Rossby waves on planetary scale meridional

PV gradients (Montgomery and Kallenbach, 1997). Vortex Rossby waves are capable of inducing barotropic instability within

the eyewall which can affect the annular heating distribution and therefore impact on the intensity of the storm (Schubert et al.,

1999).

Many of these unbalanced and asymmetric processes have been examined in studies of intensity fluctuations that occur45

during the intensification of TCs, which are not easily explained by an axisymmetric balanced dynamical theory. One example

is vacillation cycles, a form of intensity fluctuations that sometimes occurs during rapid intensification. Nguyen et al. (2011)

showed that, during rapid intensification, Hurricane Katrina (2005) exhibited structural changes that caused it to ‘vacillate’

between monopolar and ring–like states, which also led to short–term intensity changes with the more monopolar states asso-

ciated with acceleration of the tangential wind well inside the RMW and little intensification near the eyewall. The monopolar50

and the ring–like states were termed ‘symmetric’ and ‘asymmetric’ respectively because the former was associated with a

smaller azimuthal standard deviation of PV and the latter a higher azimuthal standard deviation of PV. It should be noted

that monopolar vs. ring–like and symmetric vs. asymmetric are independent metrics but are, in this case, correlated. Hankin-

son et al. (2014) showed that the asymmetric states were associated with radially inward moving isolated PV anomalies. The

cause of the asymmetric states was further examined by Reif et al. (2014) who related asymmetric periods to both convective55

and barotropic instability. Hardy et al. (2021) showed similar processes occurring during the rapid intensification of Typhoon

Nepartak (2016) with monopolar states associated with near stagnant tangential wind tendency and weaker eyewall updrafts

than in the ring–like phase. Similar changes in structure have been identified in observational data, notably in Kossin and Eastin
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(2001) who identified two regimes with a monopolar and ring–like angular velocity distribution, which also have concomitant

monopolar and ring–like equivalent potential temperature distributions.60

Another form of intensity fluctuation that can occur in strong TCs are eyewall replacement cycles, where convection asso-

ciated with outer rainbands develop into a second outer eyewall that gradually moves inwards and replaces the original inner

eyewall (Willoughby et al., 1982). Eyewall replacement cycles are known to cause large intensity changes in TCs; however,

the RI does not typically resume immediately after the formation of the secondary eyewall, although they are often the cause

of cessation of a rapid intensification period, for instance in Hurricane Earl (2010) (Montgomery et al., 2014). Diurnal cycles65

have also been known to induce intensity fluctuations in TC structure during rapid intensification (Lee et al., 2020; Dunion

et al., 2014) although these fluctuations can be explicitly linked to the external environment and have an imposed period of 24

hours.

Hurricane Irma (2017) underwent RI twice (Fig. 1b). During the latter RI event intensity fluctuations have been observed

by Fischer et al. (2020) who used observational data to identify two periods of weakening during rapid intensification where70

the RMW suddenly increased. The two periods of weakening were hypothesised to have different causes but were both linked

to lower tropospheric convergence and VRW activity. The intensity fluctuations in Fischer et al. (2020) were subtle (relatively

small intensity changes compared to most eyewall replacement cycles), but did involve an expansion of the RMW which, as in

the case of a full eyewall replacement cycle, can increase the radius of gale force winds and increase the probability of storm

surge, hence motivating a need to understand and be able to predict these forms of fluctuations.75

In this paper we analyse the intensity fluctuations of Hurricane Irma using both observations and convection–permitting

ensemble simulations to help to understand whether or not the inner core intensity fluctuations are a previously unknown

phenomenon or exist on a spectrum that may include vacillation cycles, eyewall replacement cycles or other structural changes

that occur during rapid intensification. This will involve investigating the cause of the intensity fluctuations and understanding

the structural and dynamical changes of the TC in the transition between a strengthening and weakening phase.80

The paper will be organised in the following way: Section 2 will describe the evolution of Hurricane Irma during the relevant

rapid intensification period and highlight the structural and intensity changes as well as the track. Section 3 will describe the

data used in the analysis, including observations, and the setup of the model simulations. The results are presented in section

4 with discussion in section 4.5. Section 5 generalizes the results across more ensemble forecasts and concluding remarks are

given in Section 6.85

2 Synoptic overview of Hurricane Irma (2017)

Hurricane Irma was the first major hurricane of the 2017 North Atlantic hurricane season. Irma peaked at an intensity of

80 m s−1 (1-minute sustained surface wind speeds) with a central surface pressure estimate of 914 hPa early on 06 September

before making landfall in Barbuda. A summary of the track of Irma is shown in Fig. 1 along with the best track surface wind

speed.90
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Irma formed out of an African easterly wave off the west coast of Africa at around 30°W, 17°N on 30 August. On 31 August

Irma began to rapidly intensify, reaching hurricane strength with a cloud free eye structure and moving in a north westerly

direction. This first period of rapid intensification terminated early on the 1 September with an intensity of 50 m s−1 at 03

UTC. Irma remained at an intensity of around 50 m s−1 during the period from the 01 September to 02 September and did not

intensify further due to less favourable environmental conditions. Irma’s track also became more southwestward.95

The second period of rapid intensification began on 04 September with Irma intensifying from a Category 3 storm (945 hPa,

50 m s−1) at 00 UTC on 04 September to a Category 5 storm (929 hPa, 75 m s−1) at 12 UTC on 05 September. At this

time, Irma was in a low wind shear environment with sufficient mid–level tropospheric moisture for intensification and high

sea surface temperatures. The influence of the subtropical anticyclone to the north of Irma pushed the storm in a westward

direction with a translational velocity of about 5 m s−1. A peak intensity of 80 m s−1 was reached on 06 September at 06100

UTC. Irma made landfall in Barbuda at near peak intensity at 0536 UTC with a minimum recorded sea level pressure of

915.9 hPa. During the course of 06 September Irma maintained its intensity and landfall occurred later that day at St. Martin at

1115 UTC and Virgin Gorda at 1630 UTC.

Despite favourable environmental conditions Irma weakened to Category 4 during 07 September due to the start of an

eyewall replacement cycle. Irma passed over Little Inagua at 05 UTC on the same day.105

Thereafter, apart from a brief period of intensification that occurred around 03 UTC on the 09 September, Irma gradually

weakened due to increasing vertical wind shear and eventually land interaction after making landfall in Florida on 11 Septem-

ber. Irma finally dissipated inland on 13 September. Further details on the synoptic overview of Hurricane Irma (2017) are

available in Cangialosi and Berg (2018).

3 Data and Methods110

3.1 Observational data

A key source of observational data were aircraft flyovers. Multiple flights were made through Hurricane Irma operated by

the National Oceanic and Atmospheric Administration (NOAA). The flyovers were conducted with aircraft from the NOAA

aircraft operations centre and the 53rd Weather Reconnaissance Squadron. Observations used from these flights include in-

situ wind speed and pressure measurements, dropsondes and airborne radar. Satellite visible, infra-red (IR) and morphed115

integrated microwave imagery (MIMIC; Wimmers and Velden, 2007) provide additional information. Intensity estimates from

the Satellite Consensus (SATCON) algorithm using blended data (Velden and Herndon, 2020) are used in conjunction with

those from the lower temporal resolution best track data (HURDAT2; Landsea and Franklin, 2013).

The SATCON intensity estimates are derived from the structure of the TC with heavy usage of microwave and satellite IR

imagery, so relating structural changes to intensity changes would be a circular argument. Where possible, therefore, MSLP120

data from flights and dropsondes is also used for short periods where there are a large number of flyovers such as in the

afternoon of 05 September. Mean sea level pressure data is preferable to tangential wind data as an intensity proxy, because

the latter is strongly dependent on the direction of the flight into the eyewall and the height of the aircraft.
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The dropsonde data is available in a quality–controlled post processed format (in some cases raw data was used instead due

to lack of availability). In addition some of the NOAA aircrafts are equipped with C–band and doppler radars on the nose,125

lower fuselage and tail. The processed lower fuselage and tail radar data is used in the analysis and shows precipitation in dBZ

reflectivity. All the processed dropsonde and flight–level data used in this analysis is available from the Hurricane Research

division. 1.

3.2 Intensity fluctuations in observations

The focus of the analysis is on the second period of rapid intensification which starts on 04 September at around 00 UTC and130

finishes around 00 UTC on 06 September (Fig.1b, Fig.2). During the period of rapid intensification the MSLP decreases from

around 970 hPa to its minimum value of 914 hPa. This rapid deepening is interrupted by two periods of stagnation or slight

weakening where the MSLP does not continue to decrease. These periods of weakening are marked by blue bands in Fig.2. The

first weakening period starts around 13 UTC on 04 September and lasts for about 12 hours and is followed by a strengthening

period from 01 UTC on 05 September until 11 UTC on 05 September. The second weakening period starts around 11 UTC on135

05 September and lasts for about 4 hours.

Figure 3 shows observations, from in–flight radar and satellite imagery, of the structural changes just before and after the

start of the second weakening period. The convection during the weakening period appears more azimuthally symmetric and

continuous as shown in Fig. 3b compared to Fig. 3a where two regions in the north–west and south–east eyewall have relatively

high rainrates. The convection is shallower in the weakening period as indicated by warming cloud tops shown in Fig. 3d140

compared to Fig. 3c. The shallower nature of the convection is also evident in the microwave imagery in Fig. 3e and Fig. 3f. A

similar structural change occurs during the first weakening period (not shown) with banded features within the eyewall giving

way to broader but shallower convection compared to prior to the weakening period.

3.3 Numerical model

An 18-member ensemble of convection-permitting forecasts for Hurricane Irma has been produced using a limited-area con-145

figuration of the Met Office Unified Model (MetUM; Cullen, 1993), coupled to the Joint UK Land Environment Simulator

(JULES) model for the land surface (Best, 2011; Clark et al., 2011). The ensemble forecast was initialised at 00 UTC 03

September 2017 and run out to four days.

The MetUM solves the fully compressible, deep-atmosphere, non–hydrostatic equations of motion using a semi-implicit,

semi-Lagrangian scheme (see Wood et al. (2014) for details). Model prognostic variables are defined on a grid with Arakawa–150

C grid staggering (Arakawa and Lamb, 1977) in the horizontal and Charney–Phillips grid staggering (Charney and Phillips,

1953) in the vertical, with a terrain-following vertical coordinate.

Both the MetUM and JULES include a comprehensive set of parametrisation schemes for key physical processes, and the

way in which these are configured defines a model science configuration. Here we use the tropical version of the Regional

Atmosphere and Land – Version 1 (RAL1-T) configuration presented in Bush et al. (2020), designed for use in km-scale155

1URL: https://www.aoml.noaa.gov/hrd/Storm_pages/irma2017/
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regional models in the tropics. We have made one change to the RAL1-T configuration, which is to reduce the air–sea drag at

high wind speeds, as motivated by observational data (Powell et al., 2003; Black et al., 2007). This improves the match to the

observed wind–pressure relation of tropical cyclones and has since been included in RAL2-T.

The extent of the regional model domain is shown in Fig. 1, and has been chosen so that Irma is located well away from the

boundaries at the forecast initialisation time. The horizontal grid spacing is 0.04 deg (approximately 4.4km) in both directions,160

and there are 80 vertical levels with a horizontal lid at 38.5 km above sea level (ASL). The model time step is 75 s.

Each member of the convection-permitting ensemble is one-way nested inside a corresponding member of the Met Office

global ensemble prediction system, MOGREPS-G (Bowler et al., 2008). The science configuration used in MOGREPS-G is

Global Atmosphere 6.1 (GA6.1; Walters et al. (2017)), which was used operationally at the Met Office for global deterministic

and ensemble weather forecasting at the time the research was undertaken. The most important difference between GA6.1 and165

RAL1-T is that convection is parametrised in the former but explicit in the latter. The global model grid spacings are 0.28125°

and 0.1875° in the zonal and meridional directions (about 31 km × 21 km in the tropics), respectively. In the vertical there

are 70 levels up to a fixed model lid 80 km ASL. The model time step is 450 s. Initial conditions for each MOGREPS-G

member are formed by adding perturbations to the Met Office global analysis, where the perturbations are generated using an

ensemble transform Kalman filter (Bishop et al., 2001). The initial state of each MOGREPS-G member is then interpolated170

to the finer regional grid to provide initial conditions for the nested convection-permitting ensemble member. There is no data

assimilation or vortex specification scheme in the regional model itself, but central pressure estimates from tropical cyclone

warning centres are assimilated as part of the global model data assimilation cycle (Heming, 2016). Lateral boundary conditions

for each convection-permitting ensemble member are provided by the driving MOGREPS-G member at an hourly frequency.

The initial SSTs, which differ between perturbed members, are held fixed throughout each forecast.175

MOGREPS-G includes two stochastic physics schemes to represent the effects of structural and subgrid-scale model uncer-

tainties: the random parameters scheme (Bowler et al., 2008) and the stochastic kinetic energy backscatter scheme (Bowler

et al., 2009). These are not included in the convection-permitting ensemble, so that ensemble spread is generated only by

differences in the initial and boundary conditions inherited from the driving model.

3.4 Diabatic tracers180

Incorporated into the MetUM are two sets of tracers (PV and potential temperature, θ) capable of diagnosing diabatic con-

tributions from various parametrisations within the model (Saffin et al., 2016). Examples of this being done previously in

extratropical cyclones include, for example, Chagnon et al. (2013). The PV is diagnosed in a semi–Lagrangian way by the

tracer such that,

D(PV)
Dt

=
∑

phy

D(PV)
Dt

+
∑

dyn

D(PV)
Dt

+ ε. (1)185

The change in PV is given by the sum of increments from all physical processes in the first term represented by the subscript

phy (namely radiation, microphysics, gravity wave drag, boundary layer diabatic heating and friction and cloud pressure
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rebalancing). There are also dynamical processes in the second term represented by the subscript dyn which include the

dynamical solver and mass conservation tracers. Ideally these would be zero and preserve the material conservation of PV.

However, approximations in the dynamical core mean that such processes may be non zero. The ε term represents residuals in190

the PV budget which may come from truncation errors or non linear interaction effects between the physical tracers. The tracer

used most in this analysis is the “initial PV advected" tracer, PVadv, which can be used to work out what portion of the change

in PV at a particular grid point is due to advection only (i.e. ignoring any change in PV generated by diabatic processes). Every

hour the PVadv tracer is reset to the diagnosed PV. The change in PV due to advection at a grid point (x,y,z) over the course of

an hour is then given by:195

PVadv(x,y,z,t + 1)−PV(x,y,z,t). (2)

3.5 TC centre finding method

Much of the analysis is done from an axisymmetric perspective in storm relative cylindrical coordinates. Calculations such as

this can be highly sensitive to the location of the storm centre. The simplest way to find the TC centre in the model simulation

is to find the coordinates that minimize the surface level pressure field. However, meso–vortices within the eyewall often lead200

to the minimum surface level pressure being displaced from the geometric centre of the eye into the inner eyewall which can

cause the tangential flow within the eye to be overestimated and the tangential flow outside the eye to be underestimated.

Several more robust methods have been proposed, each with their own advantages and disadvantages. These include finding

PV centroids (e.g. Riemer et al., 2010), geopotential height minima (e.g. Stern and Zhang, 2013) or finding the point that

maximises tangential wind speed in cylindrical coordinates at its RMW (e.g. Ryglicki and Hart, 2015).205

The method used in this analysis balances the need for a consistent and reliable method for finding the location of the TC

centre to an appropriate degree of precision, while considering the computational cost of doing so for 18 ensemble members

over a 4 day simulation period. The method used here is similar to the one used by Reasor et al. (2013) for flight–level radar

data which can also be applied to model fields and uses a simplex algorithm to find the point that maximises the tangential

wind within an annulus with a radius equal to the RMW. The simplex algorithm applies geometric transformations to triangles210

consisting of three points (the simplex) to find the next set of three points. Each point in each simplex is a prospective TC

centre where the tangential wind within the RMW annulus can be evaluated. For each iteration in the simplex algorithm the

three points will, progressively, increase the tangential wind within the RMW annulus until it is maximised.

The convergence criteria for the algorithm are: no more than 50 function evaluations, an absolute error between iterations

of no more than 0.5 m s−1 for the function evaluation, and an absolute error of no more than 0.5 km between points inside a215

simplex (well under the grid spacing of the model at 4.4 km). Some studies (e.g. Bell and Lee, 2012) average an ensemble of

solutions based on different initial simplexes; however, it was found that changing the location of the initial simplex did not

result in a significantly different TC centre and so a single solution method was used.
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4 Results

The fluctuations modelled during rapid intensification in Hurricane Irma have similarities to both vacillation cycles and eyewall220

replacement cycles but with important differences that will be discussed in detail.

4.1 Model simulation of intensity fluctuations

The second period of rapid intensification in Hurricane Irma is broadly captured by the convection-permitting ensemble fore-

casts (Fig. 1). One of the ensemble members (ensemble member 15) was analysed in detail as it was judged to be most

representative in terms of the size of the RMW, the surface wind speed, mean sea level pressure and track, in comparison to the225

observations. Fig. 4 shows how the MSLP and surface wind speed change in this ensemble member in addition to the RMW.

The modelled MSLP is slightly higher than the NOAA best track values but the rate of deepening is captured well with the

rapid intensification occurring at the correct time. Even with the reduced drag at high wind speeds the wind–pressure relation in

the model is too steep (wind speeds too slow for a given central pressure) and consequently the wind–speed is underestimated

compared to observations once RI occurs. However, the timing of the rapid intensification and its cessation is accurate. The230

track of this forecast and the other ensemble members are shown in Fig. 1 and all agree reasonably well with the best track.

By examining the change in the wind speed, MSLP and RMW over time (Fig. 4) the development of the TC has been split

into distinct phases. The pre–fluctuation rapid intensification phase covers the first 45 hours of the simulation. During this

time, after an initial model spin–up period, the storm intensifies nearly monotonically; the wind speed increases rapidly at all

levels, the MSLP decreases and the RMW contracts. During weakening phases (blue bands in Fig. 4) the MSLP stagnates or235

increases, the maximum surface total wind speed decreases and the RMW expands.The opposite occurs in the strengthening

phases (red bands in Fig. 4).

The maximum tangential wind, particularly near the top or just above the boundary layer (e.g. at 1532 m) also exhibits these

fluctuations but does lag behind compared to higher levels (e.g. at 3002 m) where the maximum tangential wind follows a

similar pattern to the surface total wind speed. This is also true of the expansion of the RMW, with the increase in the RMW240

happening at 1532 m (dark green line) prior to the increase in the surface RMW (aqua line). At the surface, the signal in the

tangential wind speed is weaker compared to at higher levels. The role the radial flow plays in modifying the total surface

windspeed during the fluctuations, and the reason for the tangential wind spin–down preceding a weakening phase is explored

in detail in Section 4.4.

The simulation shows four weakening periods and three strengthening periods which are defined in terms of surface wind245

speed, surface RMW and MSLP. There is also an uninterrupted period of intensification prior to these fluctuations. During the

period of intensity fluctuations from 45 hours to 84 hours Irma is still rapidly intensifying overall, so the brief interruptions in

intensification do not stop rapid intensification from happening. The main aim of the analysis is to determine why these intensity

fluctuations happen during this period of rapid intensification, the mechanisms behind them and any structural changes with

which they are associated.250
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It should be noted that during the analysed rapid intensification period Hurricane Irma was a fairly symmetric storm under

low vertical wind shear with environmental factors playing a minimal role in these fluctuations. Changes in vertical shear,

translation speed, sea surface temperature, maximum potential intensity and the diurnal cycle of convection are not correlated

with the intensity fluctuations (not shown).

4.2 Barotropic structural changes255

4.2.1 PV symmetry and structure

Distinct structural changes took place during the strengthening and weakening phases of Hurricane Irma. Fig.5 and Fig.6 show

the PV field from a horizontal (just above the boundary layer where the change is most visible) and azimuthally–averaged

perspective with times selected to best illustrate the evolution of the PV from just prior to the start of a weakening phase to

the end of the weakening phase and start of the next strengthening phase. The evolution during the strengthening phases is260

less dramatic and is not shown. Prior to each weakening phase the PV field is ring–like and elliptical (Fig. 5a, f, k, p). This

elliptical PV field becomes more circular at the start of each weakening phase (Fig. 5b,g,l,q). The PV field also becomes more

monopolar during a weakening phase with higher PV in the centre of the storm and lower PV in the eyewall. A comparison

of Fig. 6a,f,k,p with Fig. 6b,g,l,q shows that the transition from a ring–like to a more monopolar PV structure at the start

of the weakening phase occurs primarily just above the boundary layer especially between 1 km and 2 km height. The trend265

towards a more monopolar distribution continues to the middle of the weakening phases where a ‘C’ shaped ring of high PV

(Fig. 5c,h,m,r) develops near the TC centre above the boundary layer (Fig. 6c,h,m,r). The PV within the boundary layer also

declines but maintains a more ring–like structure. The end of the weakening phase is characterised by the upward movement

of the high PV zone at around 2 km height in the eye (Fig. 6d,i,n,s), and re–formation of a weak, circular, PV ring above the

boundary layer (Fig. 5d,i,n,s). The start of the strengthening phase roughly coincides with the strengthening of this new PV270

ring (Fig. 5e,j,o,t) which becomes increasingly elliptical during the strengthening phase. The elliptical to circular transitions

are particularly prominent in W1 and W4 which are more pronounced weakening phases than W2 and W3.

Figure 7a summarises these PV structure changes throughout the simulation with an index that describes how monopolar or

ring–like the PV distribution is above the boundary layer (Hardy et al., 2021). Higher values of the ratio PV0/PVmax, where

PV0 is the layer averaged PV at the centre of the storm and PVmax is the maximum layer averaged PV, imply the vorticity275

structure is more monopole–like while lower values imply the structure is more ring–like.

During the weakening phases there is a trend for the PV structure to become more monopolar. At the end of each weakening

phase the trend suddenly reverses and the vorticity structure becomes more ring–like. The change in the tendency of the

vorticity structure is very sudden and coincides exactly with the start and end of each phase. However, as indicated by Fig. 6

the PV distribution does not change uniformly at all heights. At lower levels closer to the boundary layer the PV field is more280

monopolar at the beginning of the weakening phase, while at higher levels it lags behind and is more monopolar at the start of

the next strengthening phase. Note how the storm is continually transitioning away from or towards a ring-like structure. This

behaviour is different to intensity fluctuations associated with vacillation cycles where the storm can remain in the monopolar
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state for 10 hours or more (Hardy et al., 2021). It should be noted that the more dramatic weakening phases, W1 and W4

shown in Fig. 5a–e,p–t and Fig. 6a–e,p–t are associated with a more pronounced realignment of PV both in terms of the ring285

becoming more monopolar and an overall decrease in PV between Fig. 5 c,r and Fig. 5 d,s. Fig. 7a shows a much bigger increase

in PV0/PVmax for W1 and W4 compared to W2 and W3. This is also seen in Hardy et al. (2021) with a greater change in

PV0/PVmax associated with a more dramatic intensity fluctuation. Other metrics that describe the barotropic structure (Fig.

7b–d) also show a more pronounced change during W1 and W4 compared to W2 and W3. It is well understood that annular

vorticity rings can only be maintained by constant diabatic forcing and that without this the rings will be unstable and the290

vorticity will be redistributed into a monopole like structure (e.g. Prieto et al., 2001; Nguyen et al., 2011). The change in this

PV distribution is likely due to PV being transported from the eyewall into the eye. To demonstrate this PV transport Fig. 8

shows the PV tendency due to radial and vertical advection only over the previous hour. The start of the weakening phase shows

PV transported to the eye at T+45 h (Fig. 8a). At T+48 h (Fig. 8b) the PV transport occurs above the boundary layer including

at the 1532– m level shown in Fig. 5. At T+45 h the transport of PV into the eye at this level is weak with different azimuthal295

starting points in the trajectories leading to rather different end points. Therefore, the gain of PV within the eye is due to eddies

transporting more PV inwards than outwards. By T+48 h there is a more distinct vertical transport of PV in the eye from the

boundary layer. So, the change to a more monopole structure can be explained by an initial inward asymmetric radial transport

of PV within the eye followed by the development of a very weak (on the order of 0.02 m s−1), deep ascent layer, transporting

PV slowly upward. PV is also transported radially inward in the eye although the radial transport is weak (trajectories in Fig.300

8b). The weak ascent that develops within the eye originates within the eyewall and gradually extends inwards into the eye (not

shown). The upward vertical motion is weak and inconsistent, only becoming apparent when 10–minute data is averaged over

an hour. The PV contribution from diabatic processes other than large scale transport, during the weakening phase, is negative

indicating the entire positive PV tendency is linked to movement of PV into the eye. The negative PV tendency regions in Fig. 8

are caused by the loss of PV through the updraft in the eyewall. There is also a gain of PV advected near the surface particularly305

at T+48 h (Fig. 8b) which can be linked to an increase in the inflow within the eye region and transport of frictionally generated

PV from greater radii.

In addition to the radial PV structure the PV also varies azimuthally with the intensity fluctuations. One way of describing

the azimuthal PV symmetry is the method of Nguyen et al. (2011) and Reif et al. (2014), where the azimuthal standard

deviation of PV is calculated at each radius and the maximum value is taken. A high standard deviation of PV implies a less310

azimuthally symmetrical storm. It should be emphasised that this is a separate metric not related to the radial distribution of PV

(i.e monopolar and ring–like distributions). In the case of Nguyen et al. (2011) for example, the radial and azimuthal measures

of PV were used interchangeably to describe ‘symmetric’ or ‘asymmetric’ states (the ring–like PV distribution in Nguyen et al.

(2011) was correlated to an azimuthally symmetric state which is not the case here). In this study, references to symmetry only

refer explicitly to variations in the azimuthal distribution of PV.315

Figure 7b shows how this metric varies throughout the simulation. The red curve shows that the change in the variation of

azimuthal PV at the RMW follows a similar pattern to the maximum azimuthal PV (black line). At the start of a weakening

phase the maximum azimuthal standard deviation of PV decreases rapidly or becomes more azimuthally ‘symmetrical’ with
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the inverse happening during strengthening phases. The weakening phases are, therefore, characterised by more azimuthally

symmetric, more monopolar PV fields while the strengthening phases are characterised by a less azimuthally symmetric,320

more ring–like PV distribution. The azimuthal symmetrisation of the PV field occurs at approximately the same time that the

field becomes more monopolar. This contrasts with prior work on vacillation cycles (e.g. Nguyen et al., 2011) where a more

azimuthally symmetric PV field in Hurricane Katrina (2005) was associated with a ring–like distribution of PV. The change

in the azimuthal symmetry is also described in Fig. 7c which shows that during the strengthening phases the initially circular

PV rings become increasingly more elliptical (higher eccentricity) confirming that the start of a weakening phase is associated325

with a rapid change from an elliptical PV ring to a more circular one (also seen in Fig. 5).

To attempt to explain the causes of the change in PV structure the barotropic conversion rate was computed (as in Hankinson

et al., 2014). The barotropic conversion rate describes how kinetic energy is transferred between eddies and the mean flow.

Hankinson et al. (2014) showed that the conversion rate, in their simulation, is always negative which implies a conversion of

kinetic energy between the mean state and the eddy state.330

Figure 7d shows the barotropic conversion rate as a function of time. The beginning of the weakening phase is accompanied

by a distinct rise in the barotropic conversion rate (it becomes less negative) while the commencing of the strengthening phase is

associated with a more negative conversion rate. As the strengthening phases are associated with a less symmetric PV structure

more kinetic energy is transferred from the mean state to the eddy state. The start of a weakening phase is therefore associated

with a rapid reduction in the amount of kinetic energy transferred away from the mean state to the eddy state.335

4.2.2 Vortical hot towers

During the strengthening phases, VHT–like features are apparent as small–scale local regions of high vorticity and vertical

velocity within the eyewall. These features resemble VHTs, formally defined in Smith and Eastin (2010), with local maxima

in perturbation vertical velocity and with significant vertical depth albeit with lower values in these quantities (weaker and

shallower). These structures appear frequently and may play a significant role in the development of the cyclone. Since they340

look like VHTs but are not strong or deep enough to meet the criteria for a VHT they will simply be described as VHT–like

structures.

Figure 9 shows perturbation vertical velocity and relative vorticity at different heights at the same times as in Fig. 5. The

VHT-like structures are more likely to be present during strengthening phases (particularly towards the end of the strengthening

phases) and rarely form during weakening phases although an already existing VHT–like structure may persist for a couple of345

hours into the weakening phase. These structures typically last on the order of an hour which is a little shorter than the lifespan

of convective structures found by Yeung (2013) during the rapid intensification of Typhoon Vicente. The VHT–like structures

move anticlockwise, with the flow, near the RMW. Filaments of high pertubation vertical velocity, but relatively low pertubation

relative vorticity, associated with inner rain–bands, also commonly emanate outward from these VHT–like structures (see, for

example Fig. 9p north of the RMW). It is fairly common, within the strengthening phases, to see two VHT–like structures at350

once which typically are 180 degrees from each other. In this case one VHT–like structure tends to be much stronger than the
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other. An example of this is shown in Fig. 9a with the VHT–like structure in the southwest quadrant being more intense and

deeper than the one in the northeast quadrant.

During the weakening phases VHT–like structures rarely form such that in the middle of a weakening phase it is unusual

to see one of these structures. The T+72.2 h panel (Fig. 9 m) does show a weak, shallow, VHT–like structure in the northwest355

quadrant though it should be noted that W3 is the weakest weakening phase. Towards the end of a weakening phase VHT–

like structures may redevelop and often form outside of the RMW. The T+50.7 h panel (Fig. 9d) shows signs of a VHT–like

structure on the eastern side of the TC outside of the RMW that forms before moving inwards. If Fig. 9 is compared to Fig.

5 it can be seen that the VHT–like structures are typically located at the two points on the elliptical PV rings furthest away

from the centre (i.e. along the semi–major axis of the PV elliptical ring). The strongest VHT–like structures tend to form just360

prior to a weakening phase and may last for the first few hours of the weakening phase. The VHT–like structure in Fig. 9a,p

are examples of particularly strong VHT–like structure that occur just prior to the W1 and W4 phases respectively but are

shown to very quickly dissipate during the start of W1 and W4 respectively (Fig. 9b,q). The regions of locally high vertical

velocity and relative vorticity associated with the VHT–like structures becomes increasingly de–localized and distributed over

the entire eye–wall region resulting in a more axi–symmetric structure. Any regions of high pertubation vorticity or vertical365

velocity that form during the weakening phases are much weaker and shallower than the VHT–like structures that form during

the strengthening phases (such as the low–level region of high relative vorticity north–west of centre in Fig. 9m) or occur well

outside of the RMW (such as the updraught south–east of centre in Fig. 9r).

4.2.3 Tangential wind budget

The spin–up of a TC can be examined in terms of the tangential wind budget which describes contributions to the mean370

tangential wind tendency from radial and vertical advection of absolute angular momentum, which can be further split up into

mean and eddy contributions. A form of the tangential wind budget based on Persing et al. (2013) is:

∂v

∂t
=−u (f + ζ)− w

∂v

∂z
− (u′ζ ′) −

(
w′

∂v′

∂z

)
+ F, (3)

where v is the tangential wind, u is the radial wind, w is the vertical velocity, f is the Coriolis parameter, and ζ is the

relative vorticity. Overbars represent azimuthal averages of these terms while primes represent perturbations from the azimuthal375

average. The terms on the right hand side of the equation from left to right are: mean radial vorticity flux, mean vertical

advection of absolute angular momentum, eddy radial vorticity flux and vertical eddy advection of absolute angular momentum.

The final term, F , represents sub–grid frictional contributions to the budget which are negligible outside of the boundary layer.

In order to understand the contribution of the VHT–like structures to the spin–up or spin–down of the TC, the eddy and380

mean contributions to the tangential wind budget were examined. Fig. 10 shows the contributions to the tangential wind budget

through mean and eddy radial vorticity fluxes and vertical advection of AAM. Near the eyewall, the mean term has a positive

contribution to the tangential wind in the boundary layer due to the radial inflow and a negative contribution above the boundary
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layer where the boundary layer outflow jet is (Fig. 10a,c). The larger positive contribution to the tangential wind in the boundary

layer, and larger negative contribution above the boundary layer in S1 compared to W1 is attributed to a stronger inflow and385

outflow in and above the boundary layer respectively.

Just above the boundary layer the eddy term has a positive contribution to the tangential wind budget in both S1 and W1

(Fig. 10 b,d). However, in S1 the magnitude of the positive eddy contribution above the boundary layer (around 1500 m) is

larger. This finding is robust across all strengthening and weakening phases and extends generally to other ensembles that show

these intensity fluctuations (see Section 5). The greater positive contribution, to the tangential wind, of the eddies just above390

the boundary layer during the strengthening phases is associated with VHT–like activity. These results are illustrated in Fig.

11 which shows during the 45.5 hour to 57.5 hour period (comprising both W1 and S1 periods) a composite of all times where

there is either no VHT activity (Fig. 11 a,b) or strong VHT activity (Fig. 11 c,d). In total there were 12 times where strong

VHT activity occurred and 10 times where no VHT activity occurred during this period. This allows the effect of the VHT–like

structures to be analysed more directly. As can be seen by comparing Fig. 11 b and d VHT–like structure activity is associated395

with an increased positive tangential wind tendency from the eddy terms just above the boundary layer compared to times

without VHT activity. This is despite the increase in the negative contribution from the mean flow (Fig. 11 a,c). It is harder

to say if the association between VHT–like structures and an increased eddy positive wind tendency above the boundary layer

is causal and may instead be related to the relative frequency of VHTs during weakening phases compared to strengthening

phases. Times during S1 with VHT activity (not shown) were associated with greater eddy tangential wind tendency compared400

to times during S1 without VHT activity but the effect was small.

However, the radial location of the VHT–like structure seems to be important, the VHT–like structure inside the RMW in

Fig. 9p is concurrent with an eddy effect that spins down the eyewall (negative contribution to the tangential wind budget) and

spins–up the eye (not shown). Likewise the VHT–like structure in Fig. 9t is associated with a positive eddy tangential tendency

outside the eyewall and a spin down within the eyewall. VHT–like structures may have the ability to change the PV structure405

of the storm by stirring in higher PV from the eyewall into the eye which can spin up the eye (e.g. Hankinson et al., 2014) and

induce a transition from a ring–like to monopole PV structure.

4.3 Convective structural changes

To understand how the convective structures change with the intensity fluctuations the diabatic heating profiles are investigated,

in particular, how the heating profiles change from strengthening phases transitioning to weakening phases. The diabatic heating410

(Fig. 12 and 13) is calculated using Eularian potential temperature increments directly output from the MetUM.

During both weakening and strengthening phases there are some similarities, notably two separate heating maxima, one in

the inflow boundary layer at around 1 km and the other in the mid–troposphere associated with the latent heat release above the

freezing level in the free vortex at around 7 km. The majority of the heating occurs around the RMW in the eyewall, although

small amounts of heating also occur out to 150 km associated with outer rainbands.415

All of the weakening phases have a heating distribution with a greater radial extent compared to all of the strengthening

phases (not shown). This can also be seen in the observations in Fig. 3 a,b which shows the convection in the eyewall appearing
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to thicken with the moderately high precipitation rates occupying a greater radial extent during a weakening period than

just prior to it. The overall heating rates are substantially weaker during the middle of the weakening phases compared to the

strengthening phases (e.g. a maximum of around 30 K h−1 in the middle of W1 compared to around 45 K h−1 at the start of S1)420

with substantial heating occurring outside the RMW. In the strengthening phases the heating is concentrated in a narrow band

(of around 10 km width) just inside the RMW, while in the weakening phases the heating maximum is shifted outside of the

RMW. Just above the boundary layer there is a heating maximum in both the strengthening and weakening phases, the heating

here is stronger in the strengthening phases but is located inside the RMW during both the weakening and strengthening phases.

The dominant component of diabatic heating, just above the boundary layer is from the latent heating due to cloud formation425

at the top of the boundary layer. The change in heating distribution during the course of the strengthening phases (not shown)

is much less significant with no secondary heating maxima appearing, although there is a tendency for the diabatic heating

within the eyewall to become a bit stronger during the course of a strengthening phase.

The effect of eddy diabatic heating was also investigated. These results are not shown since the azimuthally averaged eddy

heating was small, typically an order of magnitude smaller than the mean heating terms which is similar to the results of, for430

instance, Montgomery and Smith (2018). The eddy terms had the largest contribution just below the freezing level and had

a dipole–like structure with heating below and cooling above. No significant differences in the azimuthally averaged eddy

heating distribution were detected between the strengthening and weakening phases with eddy momentum effects from the

VHT–like structures playing a much more significant role in causing the intensity fluctuations than their effect on azimuthally

averaged eddy diabatic heating.435

In terms of how the heating distribution changes just prior to a weakening phase Fig. 12b,c shows a secondary heating

maxima at around 55 km radius and 5 km height associated with the inner rainbands. Along these rainbands near their inter-

section with the eyewall there are regions of enhanced convection which can be seen in Fig. 13a T+44.5 h in the northwest and

southeast associated with VHT–like structures which are responsible for most of the heating. The secondary heating maxima

associated with the inner rainbands becomes more distinct by T+45.5 h (Fig. 12b) which develops into a secondary updraft by440

T+46.5 h (Fig. 12c). A single VHT–like structure is still visible at T+46.5 h in the southeast quadrant (Fig. 13c). However, by

T+47.5 h (Fig. 13d) an azimuthal symmetrisation has taken place with the inner-rainband convection visible as a second ring

outside the eyewall. The heating from VHT–like structures that occur in the inner rainbands near where they intersect with the

eyewall becomes less significant between T+44.5 h and T+47.5 h (Fig. 12a–d), but the secondary heating maximum from the

inner rainbands becomes more distinct (Fig. 13a–d).445

Over the next few hours the secondary convective ring becomes more symmetrical and the VHT–like structures continue to

become less visible. Eventually by T+50.5 h the secondary convective ring has replaced the first (Fig. 13g). In the remaining

hour of W1 the RMW expands out to coincide with the diabatic heating maximum. Note, the inner rainband activity and the

associated VHT–like structures may be necessary conditions for a weakening phase to begin; however, it is not sufficient. For

example, prior to W1 a VRW event at T+38 h led to the development of a secondary convective ring, which subsequently450

weakened and did not replace the primary ring. Another particularly strong single VHT–like event that occurred around T+35,

in the eyewall region, also did not lead to an intensity fluctuation.
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It was found that weakening phases were associated with weaker heating outside of the RMW compared to strengthening

phases associated with stronger narrower columns of diabatic heating just inside the RMW which is consistent with a simple

balanced dynamical interpretation (e.g. Smith and Montgomery, 2016) whereby convection occurring outside the RMW acts455

to spin–up the primary circulation outside the RMW and spin–down the primary circulation inside the RMW. The cause of

the increase in convection outside the RMW was found to be related to VHT–like structures within inner rainbands which

de–localized to form a symmetric diabatic heating column outside of the RMW and proceeded to become dominant over the

original heating column over a period of a few hours.

4.4 Unbalanced dynamics and the boundary layer460

If the boundary layer plays a significant role in the cause of the intensity fluctuations then it may be necessary to attempt

to understand the fluctuations in terms of the boundary layer spin–up mechanism as described by Montgomery and Smith

(2018). This requires air parcels within the boundary layer to gain more AAM through rapid reduction of radial distance than

is lost through friction. A consequence of this is the initially subgradient tangential wind within the boundary layer becoming

supergradient. Examining the agradient wind in and above the boundary layer allows the importance of the unbalanced spin–up465

mechanism in the intensity fluctuations to be determined.

4.4.1 Primary and secondary circulation in or just above the boundary layer

The agradient wind is the deviation of the tangential wind from gradient wind balance (as in, for example, Miyamoto et al.,

2014). The gradient wind is not output directly from the MetUM but calculated from other diagnostic variables. Details of the

form of the agradient wind are available in the Appendix.470

Figure 14 shows how the agradient wind, the tangential and radial wind vary throughout the simulation both at the radius

of 35 km and at the RMW (such that the agradient wind can be examined both at the eyewall and at a fixed radius as during a

weakening phase the RMW increases). A negative agradient wind corresponds to a subgradient flow while a positive agradient

wind corresponds to a supergradient flow. The blue curve near the surface is chosen to show the subgradient boundary layer

flow. The green curve shows the agradient flow a little higher up but still within the boundary layer (Fig.14a) this is at a height475

where during the weakening phases the subgradient flow becomes supergradient indicated by the crossing of the zero line).

The yellow curve is at a height that roughly corresponds to the middle of the outflow jet and the red curve represents a level

near the top of the outflow jet where the flow has returned to near gradient wind balance.

Just prior to the weakening phase the inflow in the boundary layer at a radius of 35 km decreases (Fig. 14d) while the inflow

at larger radii (e.g. 100 km) may increase (not shown). This decrease in inflow at small radii is followed by a marked increase480

in the agradient wind at all levels (Fig. 14a,c). The increase in the agradient wind is not accompanied by an increase in the

tangential wind (Fig. 14b) at any level which implies the increase in the agradient wind is caused by a decrease in the pressure

gradient force per unit mass (PGF) which is also shown in Fig. 14 a and c. The decrease in the PGF is caused by the appearance

of a convergence zone above the boundary layer where balanced inflow, enhanced by rainband convection, meets with the

boundary layer outflow jet. The presence of rainband convection may also be responsible for the reduction of the inflow in the485
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boundary layer prior to the weakening phase in the eyewall (Fig. 14d) which also explains why the boundary layer tangential

wind (Fig. 14b, green curve) stops increasing before the tangential wind stops increasing at higher levels (Fig. 14b, red curve).

The reduction in inflow, however, is not enough to spin–down the boundary layer nor prevent the boundary layer winds from

becoming more agradient. Therefore, at the surface, the reduction in maximum total winds (black line in Fig. 4) during the

weakening phases are not due to a tangential wind decrease in the boundary layer but rather a combination of a decrease in the490

radial inflow and an azimuthal symmetrisation of the wind field (i.e. the maximum surface wind speed decreases faster than

the mean (azimuthally averaged) surface wind speed).

During the weakening phase an increase in the agradient wind is seen within the boundary layer (Fig. 14 a and c) which

gives rise to a stronger outflow jet just above the boundary layer (Fig. 14d). This enhanced outflow jet continues to increase

throughout the weakening phase and reaches a maximum at the start of the next strengthening phase.495

The start of a strengthening phase is characterised by a strong outflow jet and a slightly subgradient ‘overshoot’ (red line in

Fig. 14a slightly below zero near the start of the strengthening phases) i.e. as the ascending air within the super–gradient layer

decelerates it overshoots to a value lower than the gradient wind.

4.4.2 Tangential wind budgets

To understand how the boundary layer and outflow jet change and lead to a spin–down above the boundary layer Fig. 15 shows500

how the primary and secondary circulation change and what drives these changes by using the tangential wind budget. The

times shown correspond to the times in Fig. 5a–c.

The increase of the agradient wind at the start of the weakening phase leading to an intensification of the outflow jet can be

seen by comparing Fig. 15a with Fig. 15c. The main result of this comparison is a radial advection of low angular momentum

(Fig. 15d) which acts to cause a spin–down of the eyewall above the boundary layer (Fig. 15c). The spin–down of the tangential505

wind just above the boundary layer pushes the RMW outwards and results in the ‘kink’–like appearance of the RMW. Above the

kink the tangential wind is in approximate gradient balance and the flow runs nearly parallel to the AAM surfaces. Eventually

the expansion of the RMW above the boundary layer in combination with the weakening inflow within the boundary layer leads

to the vertical advection of angular momentum into the low angular momentum region above the boundary layer which can be

seen in the pink area near the RMW (in the highlighted yellow ellipse) in Fig. 15f compared to Fig. 15d where the same region510

is blue. At the increased radius, the coherent eyewall structure reforms with a spin–up as a result of the vertical advection of

absolute angular momentum. The outflow jet, which previously reduced the tangential wind in the eyewall now does so within

the eye which brings the TC into a strengthening phase. The PGF increases, the supergradient wind in the boundary layer

becomes less supergradient, and the outflow jet weakens.

In summary the intensity fluctuations in Hurricane Irma can be understood in terms of unbalanced boundary layer dynamics.515

Firstly the agradient wind in the boundary layer increases as a result of a decline of the PGF (likely due to an inner rainband

creating a convergence zone above the boundary layer), the rapid increase in the supergradient wind within the boundary layer

leads to an intensification of the outflow jet just above the boundary layer which acts to spin down the primary circulation

above the boundary layer by advecting in low angular momentum air from the eye, as well as expanding the RMW above
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the boundary layer. The eyewall restrengthens above the boundary layer with a higher RMW and a recoupling of the primary520

circulation at the higher RMW with the boundary layer signals the start of the new strengthening phase. This can be seen

explicitly by looking at Fig.12h; the eye–wall forms at approximately the same radius as the updraft located further from the

centre of the storm in Fig.12d.

4.5 Discussion

During the weakening phases the RMW expanded, the wind speed decreased and the MSLP stagnated or rose, while during525

the strengthening phases the opposite occurred. These phases were found to be associated with different diabatic heating

distributions, with weakening phases associated with broad and weak columns of heating outside the RMW and strengthening

phases associated with stronger, narrower heating columns just inside the RMW. The changing diabatic heating structure during

the weakening and strengthening phases is consistent with a simple balanced interpretation of the results; however, heating in

high inertial stability environments as in Schubert and Hack (1982) was not found to be a useful predictor of the fluctuations,530

although inertial stability in the core region did overall increase throughout rapid intensification.

The fluctuations observed in Hurricane Irma are proposed to be the result of changes in both the barotropic and convec-

tive structure of the storm which is similar to Hankinson et al. (2014) where both convective and barotropic effects caused

vacillation cycles in Hurricane Katrina (2005). The start of a weakening phase during a rapid intensification period seems to

be triggered by the presence of inner rainband activity, often associated with VHT–like structures, outside of the eyewall that535

produce significant heating and create a secondary updraft outside of the eyewall (Fig. 18a,d). However, unlike in the case

of an eyewall replacement cycle in Judt and Chen (2010) the rainbands are not associated with the convective generation of

PV outside the eyewall, but some PV is transported into the eye instead. We have been able to extend the work of Hankinson

et al. (2014), using Lagrangian tracers, by showing that PV increases within the centre of the eye were caused by upward and

inward advection of PV from the outer eye region. In contrast to Hankinson et al. (2014) this increase of PV in the eye was not540

associated with a pressure drop.

The effect of the secondary heating maximum is to create a balanced secondary circulation above the boundary layer which,

in turn, produces a region of convergence just above the boundary layer radially outward from the outflow jet and lowers the

PGF within the boundary layer. The reduced PGF results in an increased supergradient flow within the boundary layer which

in turn is ventilated by an increased boundary layer outflow jet. The unbalanced spin–up mechanism as described by Smith545

et al. (2009) allows the wind to become supergradient within the boundary layer. The boundary layer outflow jet causes further

weakening by advecting low angular momentum outwards from the eye and increasing the RMW while spinning down the flow

above the boundary layer. Without a coherent heating tower the PV structure tends towards a monopole–like state with high

PV from the boundary layer transported into the eye (Fig. 18e). This could be associated with barotropic instability causing a

breakdown of the ring–like PV structure (e.g. Kuo et al., 1999; Williams, 2017).550

During the weakening phase the VHT–like structures are less favoured to form which results in a more azimuthally symmetric

structure (Fig. 18b). When the eyewall reforms at a greater radial distance this symmetric structure is initially maintained (Fig.

18c). However, during the strengthening phase the development of these VHT–like structures becomes increasingly favourable
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(Fig. 18a). Most of the time these VHT–like structures are not harmful to the storm’s intensification and can, through the

eddy transfer of AAM, contribute to intensification. VHT–like structures that move too far inwards can have a disruptive555

effect and trigger a weakening phase by decelerating the tangential wind within the eyewall and accelerating it within the eye.

These results seem surprising given that Kilroy and Smith (2016) suggest that an updraft in a vortex results in an increased

contribution to the tangential wind budget radially outwards of the updraft and a negative contribution radially inwards of the

updraft (with more pronounced effects from updraughts further from the storm centre). Some of these VHT-like structures

may be related to the vortex Rossby wave activity which occured concurrently in some cases. VHTs often appear in a tropical560

cyclone’s immature phase just prior to rapid intensification, such as in Guimond et al. (2010), where their appearance precedes

the rapid strengthening and increased azimuthal symmetry of the storm. Although the VHT–like structures in Hurricane Irma

do precede a more azimuthally symmetric state of the storm, this is typically during a weakening phase. This difference, on the

storm’s intensification, between the impact of VHT–like structures in this study and pre–RI such as in Guimond et al. (2010)

suggests that VHT–like structures may have different impacts on a mature storm undergoing rapid intensification compared to565

a much weaker storm that has not yet undergone rapid intensification.

In a study on vacillation cycles Nguyen et al. (2011) described VHT–like structures that appeared to be the result of barotropic

and convective instabilities. The VHT–like structures, in Hurricane Irma here, precede the weakening phase and thus seem to be

a cause of the instability rather than a symptom of it. Additionally, the mixing of PV described in Nguyen et al. (2011) causes

a decrease in MSLP. However, the opposite of this occurs in the weakening phases in our simulations with MSLP increasing570

or stagnating during weakening phases. Another key difference between prior work on vacillation cycles is the association of

azimuthal symmetry with the radial structure. In Nguyen et al. (2011) the azimuthal symmetry is positively correlated with the

ring–like PV distribution, whereas here we have found it to be anti–correlated. The reasons for this are uncertain and should be

investigated in future work but it may indicate the fluctuations modelled here may be different kinds of intensity fluctuations

to those found in Nguyen et al. (2011).575

In terms of trying to understand what these fluctuations are, there are similarities to vacillation cycles particularly with the

simulation conducted in Reif et al. (2014) which exhibits transitions from ring–like to monopolar PV distributions but with

a more ring–like state than Nguyen et al. (2011). Although one significant difference compared to the vacillation cycles in

Hardy et al. (2021) is that the more monopolar state during the weakening phases were transient with PV0/PVmax peaking

at the end of the weakening phase before dropping rapidly. The role of barotropic and convective instability does also seem580

to play a role. However, the azimuthally asymmetric VHT–dominated periods (for example in Nguyen et al., 2011) are not

explicitly linked to strengthening phases as they are in this study. Fischer et al. (2020) did identify these fluctuations in the

observational data of Hurricane Irma and described them as two separate eyewall replacement cycles triggered by lower–

tropospheric convergence associated with a rainband and lower–tropospheric convergence associated with a super–gradient

flow respectively. The fluctuations modelled here have some similarities with the second mechanism proposed in Fischer et al.585

(2020) with the secondary eyewall merging with the primary eyewall before dissipating. The intensity fluctuations in Irma

also have some similarities to a ‘partial eyewall replacement cycle’ described in Zhang et al. (2017) where the boundary layer

updraft is unable to properly couple with a potential secondary updraft above. It is proposed that the fluctuations here are the
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result of the eyewall being temporarily disrupted by VHT–like structures in the inner rainbands and the resultant disruption

of the coupling between the boundary layer and the free troposphere and the eventual reformation of the coherent eyewall590

structure. Unlike an eyewall replacement cycle there is no clear secondary eyewall formation event.

5 Composites over multiple ensemble forecasts

The prior analysis has been carried out for one ensemble forecast. To demonstrate the robustness of the analysis composites

of selected key results will be presented across multiple ensemble members. Five out of 18 ensemble members (including en-

semble member 15), initialized on 03 September 00 UTC, showed the intensity fluctuations previously discussed. A further six595

ensembles also showed similar but weaker fluctuations. An additional model simulation, initialized on 02 September 12 UTC,

found seven out of 18 ensemble members with the same kind of fluctuations. The following composites are based on the five

ensemble members initialised on the 03 September at 00 UTC that show the strongest fluctuations. The composites are over all

weakening and strengthening phases in all of these five ensemble forecasts. These weakening and strengthening phases vary

in length from one hour to 10 hours, with 4–5 hours being typical and with the data outputted hourly. There are a total of 45600

weakening and strengthening phases averaged over.

One of the key aspects of the analysis is the transition during weakening phases from a ring–like PV distribution at the start

of the weakening phase towards a more monopolar PV distribution towards the end of the weakening phase. Figure 16 shows

a PV tendency composite plot for all weakening and strengthening phases for the five ensemble members with the strongest

intensity fluctuations. During the weakening phases there is a positive PV tendency within the inner eye and a negative tendency605

within the high PV annulus confirming the results from Section 4.2 for Irma’s PV structure to become more monopolar in the

weakening phases. The opposite is shown in the strengthening phases with PV decreasing in the inner eye and rising in the high

PV annulus. Near the RMW outside the PV ring there are positive PV tendencies at the end of the weakening phases which can

also be seen in Fig. 5e,j,o,t to Fig. 5d,i,n,s which show, from left to right, the structural PV changes that occur from the start of

the weakening phases to the start of the strengthening phases in ensemble member 15. Near the RMW (dashed black line), PV610

starts to increase at the end of the weakening phases and at the start of the next strengthening phase.

Figure 17 shows the contributions to the tangential wind budget through mean and eddy advection of angular momentum

of the strengthening composite relative to the weakening composite (strengthening phases minus weakening phases). Above

the boundary layer at a radial distance of 20 km to 35 km the eddy term plays a beneficial role in both the strengthening and

weakening phases; however, in the strengthening phases the effect is distinctly greater. This comparison confirms some of the615

findings shown in Fig. 10 that the eddy momentum flux acts to cause intensification above the boundary layer particularly

during strengthening phases. The effect of the mean momentum fluxes are also similar with greater tangential wind spin–up in

the boundary layer in strengthening phases compared to weakening phases but also with greater spin–down above the boundary

layer in the outflow jet during the strengthening phases.

The composites demonstrate that similar processes are likely occurring in the other ensemble members. The fluctuations in620

intensity that occurred during rapid intensification and are not just limited to a single ensemble member. This study focuses on
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a single case, Hurricane Irma (2017), so it is unclear how common this type of intensity fluctuations is in tropical cyclones.

The ensemble forecasts showed no link between the likelihood of the intensity fluctuations and the environmental conditions

so the causes of the fluctuations are likely stochastic in nature (in particular with respect to the radial location of VHT–like

convective structures that develop). The fluctuations are shown to occur in around a third of the ensemble forecasts suggesting625

they may be a common feature in rapid intensification and motivating analysis of more cases.

6 Summary and Conclusions

The main aim of this study was to determine the cause of the observed intensity fluctuations in Hurricane Irma (2017), during

rapid intensification, and to identify the processes responsible. Understanding these fluctuations is important as they can affect

both the intensity and size of the RMW in the short term and therefore the destructive potential of the TC. Key and novel results630

include the finding that intensity fluctuations are related to convective and barotropic structural changes with the asymmetric

convection playing a key role in the fluctuations. Both unbalanced and balanced intensification processes were important with

the balanced effect of inner rainband convection leading to an unbalanced boundary layer response which, in turn, caused a

spin–down during weakening phases. Key findings from this analysis include the following:

– In Hurricane Irma, during the second period of rapid intensification, intensity fluctuations occurred, which caused short635

term intensification and weakening periods, although overall the storm continued to intensify.

– During strengthening phases the PV distribution was an elongated ring which became more azimuthally symmetric and

monopole–like during weakening phases. Note that the azimuthal symmetry is independent of the radial PV distribution

and the ring–like PV states (strengthening phases) were associated with less azimuthally symmetric distributions.

– During strengthening phases, the diabatic heating distribution had a smaller radial extent and a stronger heating maximum640

which is located within the RMW. During weakening phases the heating was outside the RMW and had a greater radial

extent than the diabatic heating during the strengthening phases.

– VHT–like structures were stronger and more common during strengthening phases than weakening phases and con-

tributed positively to intensification through eddy advection of angular momentum.

– Unbalanced dynamics were shown to play a role in the intensity fluctuations. During the weakening phases an unbalanced645

supergradient tangential flow produced an outflow jet which acted to spin–down the flow above the boundary layer by

transferring low angular momentum from the eye outwards.

In conclusion, the findings from this analysis, as summarized in Fig. 18, show the proposed mechanism for the intensity

fluctuations observed in Hurricane Irma, and highlight the importance of both the VHT–like structures that develop on the

intersection of inner rainbands with the eye–wall and of the development of the supergradient wind within the boundary layer.650

It was found that these intensity fluctuations appear in about 1/3 of the ensemble simulations. No link was found between the

20

https://doi.org/10.5194/wcd-2021-81
Preprint. Discussion started: 3 January 2022
c© Author(s) 2022. CC BY 4.0 License.



environment of the storms and the presence of these intensity fluctuations indicating they are governed by stochastic processes.

In addition, the intensity of the storms at the end of the simulations with intensity fluctuations were similar to those without,

indicating that the increased intensification rates during strengthening phases compensated for the weakening phases. This

study gives potentially further insight into intensity fluctuations during rapid intensification, such as the vacillation cycles in655

Nguyen et al. (2011) , and emphasises the role of the inner rainbands in causing weakening periods. It also offers an explanation

for the observed intensity fluctuations in Hurricane Irma observed in Fischer et al. (2020). A future direction of this work would

be to investigate the similarities between these fluctuations in rapid intensification and eyewall replacement cycles and whether

they are caused by similar processes and to analyse more cases to assess to what extent these results can be generalized.

Data availability. Observational data used in this paper is made available online by the Hurricane Research Division and is available at660

https://www.aoml.noaa.gov/hrd/Storm_pages/irma2017/. The microwave data is made available online by CIMSS at http://tropic.ssec.wisc.

edu/real-time/mimtc/2017_11L/web/mainpage.html. The model fields in a 200km box around the storm which are used for the analysis in

this paper have been stored and can be made available on request.

Appendix A: Calculation of agradient wind

The agradient wind is determined by taking the gradient wind balance, where the pressure force is balanced by the sum of665

the Coriolis and centrifugal forces: 1
ρ

∂p
∂r = v2

g

r + fr, where ρ is the dry density, p the pressure, vg is the gradient wind, f the

Coriolis parameter and r the radial distance from the centre. Substituting in the ideal gas law: p = ρRT, where R the ideal gas

constant and T the temperature, and then noting that the agradient wind is given by the deviation of the tangential wind from

the balanced tangential wind: vag = v− vg where vag is the agradient wind we arrive at,

vag = v− 1
2

(√
4RrT

p

∂p

∂r
+ f2r2− fr

)
. (A1)670

Physically the agradient wind represents the deviation of the primary circulation from gradient wind balance. A subgradient

wind means the wind speed is lower than the gradient wind, while a supergradient wind is higher than the gradient wind. In the

boundary layer, both subgradient and supergradient winds are often found. At the surface friction reduces the tangential wind

and causes it to be subgradient but the frictionally induced inflow can also lead to tangential acceleration at higher levels and

smaller radii which sometimes results in a supergradient layer.675
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Figure 1. (a) Best track of Hurricane Irma (black line) with points corresponding to the position of Irma on each date from 30 August

2017 to 13 September 2017. Orography (m) is shown in shading. The domain of the regional model used in this study is shown by the

red rectangle. The 18–ensemble member tracks are displayed in grey with ensemble member 15 shown in orange. Islands where landfall

occurred are indicated by white dots and labels. (b) The best track wind speed (black), the maximun surface wind speed of the ensemble

members initialised on 03 September 00 UTC (grey contours) with ensemble member 15 highlighted in orange. In both panels periods of RI

are highlighted in yellow.
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Figure 2. Observed minimum sea level pressure as a function of time based on SATCON and NHC forecaster assessed Best Track estimates

as well as direct dropsonde and flight measurements. The 96–hour period shown is the same as the simulation initialized on 03 September

00 UTC. Two notable weakening/stagnation periods during the period of rapid intensification are highlighted by the blue bands.
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Figure 3. NOAA P3 flight–level radar (in dBZ) on (a) 05 September 0943 UTC and (b) 05 September 1232 UTC, colour enhanced infrared

(IR) imagery (in °C) on (c) 05 September 0945 UTC and (d) 05 September 1245 UTC, and MIMIC microwave imagery (brightness tempera-

ture in K) for (e) 05 September 0945 UTC, (f) 05 September 1245 UTC. The upper and lower rows correspond to times just before and after

the start of the period indicated by the second blue bar in Fig 2.
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Figure 4. Various model diagnostics (solid lines) and corresponding observations (doted lines, where available) as a function of time. Details

are given in the legend. Blue bands indicate weakening phases, and red bands indicate strengthening phases during the rapid intensification

period. The individual strengthening and weakening phases have been labelled (see top of plot). W stands for ‘weakening’, S stands for

‘strengthening’. Phases have been subjectively identified.
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Figure 5. PV (PVU, shaded) at 1532 m height for selected times and vertical velocity (1 m s−1, black contour). The RMW is indicated by

the dashed black line. A cross marks the centre of the TC. The data is output in 10–minute intervals, times are given to the nearest 0.1 hours.

The data is from ensemble member 15 which was initialised at 03 September 2017 at 00 UTC.
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Figure 6. Azimuthally averaged PV (PVU, shaded) as a function of radial distance and height for selected times. The RMW is indicated by

the grey line. Also shown are the 1 m s−1 (black line) and -1 m s−1 (dashed black line) radial wind contours.
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Figure 7. (a) Ratio of the low–level PV (depth averaged between 1052 m and 4062 m) at the centre of the TC to the maximum azimuthally

averaged low-0-level PV. (b) Maximum standard deviation of PV at 1532 m (black) and standard deviation of PV at 1532 m at the RMW

(red). (c) Eccentricity of the ring fitted to the PV distribution at 1532 m. (d) Average barotropic conversion rate from the surface to 4062 m

averaged between 5 km and 70 km as a function of time. To smooth out high frequency noise a 1–h running mean is applied to the 10–minute

data. Weakening (blue) and strengthening (red) phases are also shown.
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Figure 8. Change in PV over the past hour due to advection only (shaded, PVUh−1). Black line contours show the PV field in intervals of 5

PVU. Additionally, four sets of trajectories are shown for the following (r,z) points (black scatter points): (5 km, 1532 m), (15 km, 1532 m),

(5 km, 782 m), and (15 km, 782 m). Purple lines and scatter points represent the forward trajectory over the next hour while mustard lines

and scatter points represent the backward trajectory over the previous hour. Each set of trajectories contains 8 points going back or forward

with the same radial distance from the storm centre but with different azimuthal angles around the storm centre: to the east, northeast, north,

northwest, west, southwest, south and southeast of the storm centre. The grey contours show vertical velocity (ascent) in 0.25 m s−1 intervals

indicating the location of the inner eyewall. Yellow dashed line shows the –1 m s−1 inflow contour.
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Figure 9. Pertubation vertical velocity ( m s−1, shaded relative to the azimuthal mean), perturbation relative vorticity (10−3 s−1, coloured

line contours) shown at the same times as in Fig. 5. Heights shown are 2532 m for the red shades/lines, 4963 m for the grey shades/lines,

and 9934 m for the blue shades/lines. The centre of the TC is denoted by the cross and the RMW at 4963 m is indicated by the black dashed

line. Black hatches represent regions where the maximum perturbation vertical velocity at any level exceeds 5 m s−1. Yellow crosses show

the locations of locally high pertubation relative vorticity at 4963 m to indicate the location of VHT–like structures.
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Figure 10. Colour shading shows the (a,c) mean and (b,d) eddy contributions to the tangential wind budget (see equation 3) in ms−1 h−1.

Line contours show the average tangential wind tendency in 2 ms−1 h−1 intervals with dashed contours indicating negative tendencies. The

top row shows the composite for W1 (every 10 minute output in the W1 phase averaged over) while the bottom row shows the composite

for S1 (every 10 minute output in the S1 phase averaged over). The frictional term (not shown) also contributes a large positive tangential

tendency in the boundary layer.
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Figure 11. As with Fig. 10 but this time composites of no VHT activity (top row) and strong VHT activity (at least one VHT–like structure

with ascent shading and vorticity contours at all three levels as in Fig. 9; bottom row). Composites are created by averaging any times in the

W1 and S1 combined period with no distinction between weakening and strengthening periods (45.5 hours to 57.5 hours) that either have no

VHT activity (top row) or strong VHT activity (bottom row).
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Figure 12. Diabatic heating (shading, Kh−1 ), vertical velocity (line contours) in intervals of 0.5 m s−1 before and during the first weakening

phase W1. Also shown as a grey line is the RMW.
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Figure 13. Diabatic heating (Kh−1 shading) for height 4963 m before and during the first weakening phase W1. Vertical velocity contours

in intervals of 2 ms−1. Yellow crosses indicate the location of the maximun local pertubation vertical velocity at the same level for any

VHT–like structures as determined by criteria adapted fromn Smith and Eastin (2010).
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Figure 14. Left column shows azimuthally averaged agradient wind as a function of time (m s−1) for (a) a radius of 35 km and (c) at the

RMW. The right column shows, for the 35 km radius, the azimuthally averaged (b) tangential and (d) radial winds (m s−1). The height of the

lines are 12 m (blue), 102 m (green), 1902 m (orange) and 3002 m (red). Panels (a) and (c) also show the pressure gradient force (0.01ms−2,

dashed lines) at selected levels.
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Figure 15. Left column shows, as a function of height and radius: the agradient wind (shading, ms−1 left colourbar), the radial wind in

intervals of 4 m s−1 with dashed lines indicating negative values, the tendency in tangential wind as small dots showing +2 ms−1h−1,

large dots showing +4 ms−1h−1, line hatches showing -2 ms−1h−1 and cross hatches showing -4 ms−1h−1. Right column shows angular

momentum (lines in units of 5× 10−5 m2 s−1) and the secondary circulation as arrows in the plane of the cross section (with the boundary

layer strong inflow omitted for clarity). The shading shows the contribution of the sum of the radial and vertical advection of angular

momentum to the tangential wind budget. The colour scale used indicates which is the dominant term. If radial advection dominates over

vertical advection then the blue/red shading is used and if vertical advection is dominant over radial advection then the green/purple scheme

is used. For example green shading implies that the radial and vertical advection of angular momentum causes a negative tangential wind

tendency and that the vertical term dominates. Also shown is RMW as the dashed grey line. The times shown in (a,b) are T+45 h, (c,d)

T+47.4 h, and (e,f) T+49.8 h (the first three panels in Fig. 9). A region of interest is denoted by the yellow ellipse.
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Figure 16. Composite PV tendencies (PVUh−1 shading) at 1532 m across all weakening and strengthening phases in the five ensembles

with distinct intensity fluctuations. Green dashed lines show the full range of RMWs at the same level. Hatching indicates regions where the

average PV exceeds 30 PVU. Black circles show 25 km radial intervals.
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Figure 17. Absolute angular momentum budget composites showing: (a) mean advection of angular momentum, and (b) eddy advection of

angular momentum . Colour shading shows the difference in tangential wind tendency between the strengthening phase composite and the

weakening phase composite in ms−1h−1. Line contours (5 ms−1h−1 intervals, dashed lines imply negative values) show a composite of

the contribution to tangential wind budget during all the strengthening phases (for example in subplot a at around 50 km there is a strongly

positive tangential wind tendency from the mean term over all the strengthening phases).
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Figure 18. Schematic outlining the proposed mechanism for the fluctuations modelled during the rapid intensification of Hurricane Irma

during: (a,b) the end of a strengthening phase, (c,d) the middle of a weakening phase and (e,f) the start of the strengthening phase. Left

column shows the horizontal structure of the storm including VHT–like structures (red), eyewall convection (grey) and regions of high PV

(blue hatched). Right column shows the azimuthally averaged structure of the storm at each stage with arrows indicating the direction of

the secondary circulation (larger arrows imply stronger flow). A red arrow in panel b indicates that the inflow is a balanced response to the

VHT–like structure. A green arrow in d shows the direction of transport of high PV. In (b,d) the VHT–like structure is indicated by a 2nd

cloud outside of the eyewall.
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