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Abstract. Theory indicates that tropical cyclone intensity should respond to environmental temperature changes near the 18 

surface and in the tropical cyclone outflow layer. While the sensitivity of tropical cyclone intensity to sea surface temperature 19 

is well understood, less is known about the role of upper-level stratification. In this paper, we combine historical data analysis 20 

and idealised modelling to explore the extent to which historical low-level warming and upper-level stratification can explain 21 

observed trends in the tropical cyclone intensity distribution. Observations and modelling agree that historical global 22 

environmental temperature changes coincide with higher lifetime maximum intensities. Observations suggest the response 23 

depends on the tropical cyclone intensity itself. Hurricane-strength storms have intensified at twice the rate of weaker storms 24 

per unit surface and upper tropospheric warming, and we find faster warming of low-level temperatures in hurricane 25 

environments than the tropical mean. Idealized simulations respond in the expected sense to various imposed changes in the 26 

near-surface temperature and upper-level stratification representing present-day and end-of-century thermal profiles and agree 27 

with tropical cyclones operating as heat engines. Removing upper tropospheric warming or stratospheric cooling from end-of-28 

century experiments results in much smaller changes in potential intensity or realized intensity than between present-day and 29 

end-of-century. A larger proportional change in thermodynamic disequilibrium compared to thermodynamic efficiency in our 30 

simulations suggests that disequilibrium, not efficiency, is responsible for much of the intensity increase from present-day to 31 

end-of-century. The limited change in efficiency is attributable to nearly constant outflow temperature in the simulated TCs 32 

among the experiments. Observed sensitivities are generally larger than modelled sensitivities, suggesting that observed 33 

tropical cyclone intensity change responds to a combination of the temperature change and other environmental factors. 34 

 35 

Non-Technical Summary. We know that warm oceans generally favour TC activity. Less is known about the role of air 36 

temperature above the oceans and extending into the lower stratosphere. Our analysis of historical records and computer 37 

simulations suggests that TCs strengthen in response to historical temperature change while also being influenced by other 38 

environmental factors. Ocean warming drives much of the strengthening, with changes in the efficiency of TC heat transfer 39 

contributing very little.    40 
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1 Introduction 72 

Understanding how tropical cyclones (TCs) and their impacts respond to climate change is of critical scientific and societal 73 

importance (e.g., Knutson et al., 2020). However, TC response to environmental change is complex and multi-faceted.  Here, 74 

we use observations and idealized models to examine the TC intensity response to changes in the environmental near-surface 75 

and upper-level temperatures. 76 

 77 

Historical global surface temperature trend analyses show significant warming since the mid-1970s, attributed to 78 

anthropogenic forcing (Meehl et al., 2004; 2012). Yet trends in the vertical thermal structure and their attribution are less well 79 

understood (O'Gorman and Singh, 2013; Prein et al., 2017). Since the mid-1970s most datasets show that the troposphere has 80 

warmed while the lower stratosphere has cooled (e.g., Thompson et al., 2012; Philipona et al., 2018). However, analysing these 81 

trends is particularly challenging in the global tropics because of sparse long-term historical upper-air records and the potential 82 

for artificial trends driven by observing system changes (e.g., Thorne et al., 2011). Indeed, Vecchi et al. (2013) showed marked 83 

differences in the magnitude of the thermal changes among a collection of observational and reanalysis datasets.  84 

 85 

Uncertainty in temperature trends also arises from the complexity of the driving mechanisms and their representation in 86 

reanalyses (Emanuel et al., 2013; Vecchi et al., 2013) and general circulation models (GCMs). A historical warming maximum 87 

in the upper troposphere can be explained through moist adiabatic ascent above warming oceans and has been attributed to 88 

increasing greenhouse gas forcing (Santer et al., 2005; 2008). A shift in the moist adiabat corresponds to larger warming aloft 89 

than at the surface. For the lower stratosphere, a strengthened Brewer-Dobson circulation has been proposed as a mechanism 90 

contributing to the cooling (Butchart, 2014). Here, cooling occurs through enhanced adiabatic cooling and reduced ozone 91 

concentration due the to upwelling of ozone-poor tropospheric air. At the same time, observed step changes in cooling have 92 

been attributed to the volcanic eruptions of El Chichón in 1982 and Mt. Pinatubo in 1991 (Fujiwara et al., 2015). Ramaswamy 93 

et al. (2006) isolated the role of changes in ozone, carbon dioxide, aerosols, and solar radiation in observed lower stratospheric 94 

cooling, concluding that anthropogenic factors were the driver of overall cooling between the late 1970s and the early 2000s.  95 

 96 

The representation of these complex mechanisms differs among GCMs and may contribute to the wide range in the magnitude 97 

of GCM-simulated profile changes (Cordero and Forster, 2006; Santer et al., 2008; Gettelman et al., 2010; Hill and Lackmann, 98 

2011; Hardiman et al., 2014). GCMs are generally unable to reproduce observed profile change at the uppermost tropospheric 99 

levels (Po-Chedley and Fu, 2012; Mitchell et al., 2013), though whether this is due to model or observational error remains 100 

unclear. This large spread among models and disagreement with observations may limit our ability to project tropical cyclone 101 

(TC) intensity. Emanuel et al. (2013) conclude that tropopause layer cooling contributed to increased TC potential intensity in 102 

the North Atlantic basin and that improved process representation of profile changes in GCMs is critically needed to improve 103 

TC projections. 104 
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 113 

As the thermal profile has changed, so has the distribution of global TC intensity (e.g., Kossin et al., 2013; Sobel et al., 2016). 114 

A recent analysis of a homogeneous historical TC intensity record from 1979 to 2017 revealed a statistically robust increase 115 

in global lifetime maximum intensity (Kossin et al., 2020). The observed intensity distribution has not simply shifted to higher 116 

intensities, but has become increasingly bimodal (Holland and Bruyère, 2014; Lee et al., 2016; Jewson and Lewis, 2020). 117 

 118 

These changes in the TC intensity distribution may be attributable to a variety of environmental and internal processes, 119 

including both natural and anthropogenic effects. Changes in vertical wind shear (Ting et al., 2019), humidity (Dai, 2006), 120 

temperature (at the sea surface, near surface, and in the TC outflow layer), and the nature of incipient disturbances may all 121 

contribute to TC intensity change. It is also understood that the observational datasets used in these analyses have limitations 122 

(e.g., Landsea et al., 2006; Klotzbach and Landsea, 2015), although recent efforts have reduced these uncertainties (e.g., 123 

Knutson et al., 2019; Kossin et al., 2020; Emanuel, 2021). TC intensity sensitivity to the underlying sea surface temperature 124 

(SST), or more accurately the thermal disequilibrium between the SST and the near-surface atmosphere, is relatively well 125 

understood (Emanuel, 1987; Elsner et al., 2008; Strazzo et al., 2015; Gilford et al. 2017). Global average TC intensity scales 126 

by 2.5% per degree Kelvin SST warming (Knutson et al., 2019). Yet the magnitude and mechanistic response of TC intensity 127 

to changes in upper-level stratification and TC outflow layer temperatures are less well understood. 128 

 129 

A Carnot heat engine has been used to link TC intensity with near-surface and TC outflow layer temperatures (Emanuel, 1986; 130 

1991; 2006; Ramsay, 2013; Pauluis and Zhang, 2017). This maximum potential intensity (PI) theory suggests that TC intensity 131 

changes in response to SSTs that drive atmosphere-ocean disequilibrium and to the engine’s efficiency (the temperature 132 

difference between the surface and the level of the TC outflow) (e.g., Emanuel 1988; Holland 1997). Specifically, the square 133 

of PI is proportional to the product of the thermodynamic efficiency and the thermodynamic disequilibrium. Changes in 134 

disequilibrium, rather than efficiency, have been shown to dominate PI variations for seasonal variations (Gilford et al., 2017) 135 

and interannual to decadal variations (Rousseau-Rizzi and Emanuel, 2021). In idealised axisymmetric simulations under 136 

radiative-convective equilibrium, PI increased by about 1 ms-1 per degree of lower stratospheric cooling, and by about 1.5 to 137 

2 ms-1 per degree of surface warming (Ramsay, 2013).  But the relative importance of disequilibrium and efficiency likely 138 

varies by basin (Gilford et al. 2017). SST and outflow temperature are strongly linked when the outflow is confined to the 139 

troposphere thereby limiting TC intensification associated with ocean warming (Shen et al., 2000; Hill and Lackmann, 2011; 140 

Tuleya et al., 2016). However, there is greater potential for larger efficiency changes when the outflow extends above the 141 

tropopause and occurs in the cooling lower stratosphere. 142 

 143 

The realized response of the TCs themselves may be quite different from the response of PI (e.g., Vecchi et al., 2013). This 144 

could be due to the different TC outflow layer temperatures in the PI algorithm versus the actual storm. But perhaps more 145 

important are environmental factors such as wind shear and humidity acting in combination with internal processes such as 146 
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asymmetries in the distribution of moist entropy (Riemer et al. 2010; Alland et al. 2021a,b; Wadler et al. 2021) or in the 173 

distribution of convection (Rogers et al. 2013; Zawislak et al. 2016; Alvey et al. 2020) that can limit the TC intensity response. 174 

Furthermore, the realized response of TCs appears to depend on the TC intensity itself. Indeed, the highest sensitivity to surface 175 

warming resides in the strongest storms (e.g., Elsner et al., 2008; Knutson et al., 2010). 176 

 177 

We hypothesize that observed environmental temperature changes exert predictable influences on TC intensity. Furthermore, 178 

we explore whether historic near-surface and upper-level temperature changes are sufficient to explain past trends in the TC 179 

intensity distribution. Our approach blends historical data analysis with idealized numerical modelling. Observational analyses 180 

bring together a global homogenized radiosonde temperature dataset with a homogeneous TC intensity record to minimize 181 

contamination by artificial trends. Naturally, observed trends in TC intensity are not due to changes in temperature alone and 182 

respond to changes in other environmental factors. Our goal is to isolate the influence of temperature change on TC intensity.  183 

We focus on a global-scale analysis over a 37-year historical period - scales at which TC intensity should be more strongly 184 

constrained by thermodynamic change than by other environmental or geographic factors (Deser et al., 2012). Idealized 185 

numerical modelling further isolates and quantifies the TC intensity response to observed trends and future changes in 186 

environmental temperatures. 187 

 188 

The next section describes the observation datasets and analysis procedures, and the numerical model experiments. Results of 189 

the observational analysis and idealized numerical model experiments are presented in Sect. 3. A synthesis and concluding 190 

discussion is provided in Sect. 4. 191 

2 Methods 192 

2.1 Historical temperature and tropical cyclone datasets 193 

We use multiple temperature and TC datasets to characterise historical trends and the relationships between TC intensity and 194 

thermal structure. Temperature data are compared across radiosonde soundings and two reanalysis datasets and related to two 195 

historical TC datasets.  196 

 197 

Global radiosonde data are obtained from the Radiosonde Observation Correction Using Reanalyses (RAOBCORE) v1.5.1, 198 

available on a 10° ´ 5° grid, 16 pressure levels, and twice daily (Haimberger, 2007; Haimberger et al., 2012). RAOBCORE 199 

was developed to be suitable for climate applications and was created by applying a time-series homogenization to the 200 

Integrated Global Radiosonde Archive (IGRA; Durre et al., 2006). This procedure uses temperature differences between 201 

radiosonde observations and background forecasts from the European Centre for Medium-Range Weather Forecasts 202 

(ECMWF) Re-Analysis (ERA-40, Uppala et al., 2005) to correct discontinuities tied to observing system changes and remove 203 
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persistent biases. These corrections are particularly important for lower stratospheric temperatures where measurements are 220 

susceptible to radiation errors (Sherwood et al., 2005). Haimburger et al. (2008) showed that RAOBCORE compares 221 

favourably with satellite-derived estimates of temperature trends in the upper troposphere and lower stratosphere consistent 222 

with theoretical and model expectations. Sounding profiles are sufficiently numerous to characterise the thermal structure from 223 

the 925-hPa level up to 50 hPa. While sounding locations in TC genesis regions are sparse, their spatial representativeness for 224 

temperature scales with the large radius of deformation at low latitudes. In addition, we only use stations that have at least 70 225 

% complete records over the period 1981 to 2017 and do not contain breakpoints. Breakpoints are detected following the 226 

methods described in Prein and Heymsfield (2020). Briefly, four different breakpoint detection algorithms are applied and 227 

time series for which more than two algorithms identified a breakpoint in the same year were excluded.  228 

 229 

The two reanalysis datasets analysed here, both produced by the ECMWF, are the Interim reanalysis (ERA-I; Dee et al., 2011; 230 

accessed from European Centre for Medium-Range Weather Forecasts, 2009) and the more recent ERA5 (Hersbach et al., 231 

2020; accessed from European Centre for Medium-Range Weather Forecasts, 2019). These reanalyses differ in important ways 232 

that may affect trends in near-surface temperatures and upper-level stratification, including horizontal and vertical grid spacing, 233 

model physics, data assimilation technique, and the data sources assimilated. The horizontal grid spacings are 79 km/TL255 234 

(ERA-I) and 31 km/TL639 (ERA5), and the numbers of vertical levels and vertical extent are 60 levels up to 10 hPa for ERA-235 

I and 137 levels up to 1 hPa for ERA5. 236 

 237 

ERA-I and ERA5 assimilate vast quantities of in situ, radiosonde, and remote sensing observations, and the observing systems 238 

change over time. This can lead to discontinuities in the simulated time series (Dee et al., 2011; Simmons et al., 2014). ERA-239 

I assimilates the RAOBCORE data and ERA5 assimilates radiosonde data that have been homogenized using a newer 240 

procedure that uses neighbouring stations rather than departure statistics alone. ERA5 contains a pronounced cold bias in the 241 

lower stratosphere from 2000 to 2006 due to the use of inappropriate background error covariances (Hersbach et al., 2020; 242 

Simmons et al., 2020). This bias has been corrected in ERA5.1 which is a rerun of ERA5 for the period 2000-2006 only 243 

(Simmons et al., 2020; accessed from European Centre for Medium-Range Weather Forecasts, 2020). For our analysis we join 244 

ERA5 and ERA5.1 by replacing ERA5 with ERA5.1 for the years 2000 to 2006 and continue to refer to this merged dataset 245 

as ERA5.  246 

 247 

Observations of historical TCs are taken from two sources: The International Best Track Archive for Climate Stewardship 248 

version 4 (IBTrACS, Knapp et al., 2010, downloaded on June 14, 2021) and a reanalysed intensity record provided by Kossin 249 

et al. (2020). The IBTrACS has formed the basis for many studies of TC variability and change. Here, we use USA agency 250 

data, which are largely derived from the National Hurricane Center’s HURricane DATa 2nd generation (HURDAT2) dataset 251 

and reports from the Joint Typhoon Warning Center. However, spatial and temporal variations in the instrumental observing 252 

system challenge the interpretation of TC variability and change, particularly in the early record (e.g., Landsea et al., 2006; 253 
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Klotzbach and Landsea, 2015). Indeed, substantial differences across the reporting agencies (Knapp and Kruk, 2010) can 267 

contaminate global climatologies (Schreck et al., 2014).  In response, Kossin et al. (2013) reanalysed the historical intensity 268 

record by applying an intensity algorithm (the advanced Dvorak Technique, ADT) to a homogenized geostationary satellite 269 

dataset (the Hurricane Satellite record, HURSAT). The resulting ADT-HURSAT dataset was recently extended to cover the 270 

period 1979 to 2017 (Kossin et al., 2020). The key advantage of ADT-HURSAT compared to IBTrACS is its consistency in 271 

time and space which makes it suitable for trend analysis, especially from 1981 onwards. Both TC datasets are included here 272 

to demonstrate the sensitivity of TC intensity change to artifacts of the datasets, and to connect results back to prior work. 273 

 274 

The 37-year observational analysis period of 1981 to 2017 is chosen as a balance between data availability and to roughly 275 

coincide with the start of the recent warming trend (e.g., Rahmstorf et al., 2017, their Fig. 2) and its influence on global TC 276 

behaviour (Holland and Bruyère, 2014).  277 

2.2 Idealized model experiments 278 

We hypothesize that observed environmental temperature changes exert predictable influences on trends in the intensification 279 

rate and maximum intensity of TCs. As discussed above, previous studies have explored the sensitivity of TC intensity to both 280 

the tropical upper-tropospheric warming maximum and lower stratospheric cooling. Changes in temperature stratification near 281 

the tropopause may influence the sensitivity of TC outflow temperature for a given SST warming (and therefore also influence 282 

the thermodynamic efficiency). We use ensembles of simulations from an axisymmetric model to test these predictions and 283 

quantify the magnitude of these influences on TC intensity. 284 

 285 

The axisymmetric TC capability of Cloud Model 1 (CM1, Bryan and Fritsch, 2002; Bryan and Rotunno, 2009a) is well suited 286 

for our experiments.  The limitations of axisymmetric simulations are outweighed by the reduced computational expense, 287 

which allows us to run ensembles of simulations. Axisymmetric models have proven useful in the evaluation of TC maximum 288 

intensity (e.g., Rotunno and Emanuel, 1987; Bryan and Rotunno, 2009a; Hakim, 2011; Rousseau-Rizzi and Emanuel, 2019). 289 

We acknowledge that some three-dimensional effects, such as vortex Rossby waves, are known to be important to TC intensity 290 

(e.g., Wang, 2002; Gentry and Lackmann, 2010; Persing et al., 2013). So too are asymmetric thermodynamic processes such 291 

as downdrafts and radial ventilation that can occur as a response to TC-environment interactions. While axisymmetric models 292 

miss the component of the TC response due to internal thermodynamic and kinematic asymmetries, they offer a controlled 293 

experimental design to start to link theory and observations.  Thus, the response of axisymmetric vortices to changes in the 294 

thermodynamic profile is deemed sufficient to test our hypotheses, but fully 3-dimensional simulations are needed to 295 

investigate this limitation.  The axisymmetric domain in our simulations features a 4 km grid length, a model top of 25 km (59 296 

vertical levels), and a radial domain length of 1500 km. At radial distances greater than 280 km the grid length stretches to the 297 

larger grid spacing. Sensitivity tests to a doubling of the radial domain length and a simultaneous doubling of the radial distance 298 

at which the grid length stretches showed the sensitivity is small compared to changes in physics options or responses to 299 
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temperature changes (not shown). The horizontal mixing length in this version of CM1 is a linear function of surface pressure, 325 

varying from 100 m at 1015 hPa to 1000 m at 900 hPa (Bryan, 2012). 326 

 327 

We initialize CM1 (version r19.10) with the Dunion (2011) “moist tropical” sounding, derived from western North Atlantic 328 

rawinsonde data from 1995 to 2002 (Fig. 1a). The model is initialized with a weak vortex (~12 ms-1 maximum azimuthal 329 

velocity in gradient thermal wind balance) like that in the control simulation of Rotunno and Emanuel (1987). A potentially 330 

important difference between our experimental design and that of Rotunno and Emanuel (1987) is that our initial conditions 331 

are not in a state of radiative-convective equilibrium. This is to assess the influence of temperature profile differences more 332 

directly during the TC intensification stage, although we acknowledge that the TC begins to modify the environment 333 

immediately, and we have not eliminated these changes in our simulations. Our present-day simulations feature an SST of 334 

28°C, close to the near-surface air temperature (following Bryan and Rotunno 2009b) 335 

 336 

We ran the simulations for 8 days, which allowed the idealized TCs to intensify to a maximum and then equilibrate to a quasi-337 

steady-state intensity. We recognize that much longer integrations have been used in several equilibrium studies (e.g., Hakim, 338 

2011; Ramsay, 2013), but TC modification of the environment in longer integrations would limit our ability to detect 339 

environmental influences. Shorter simulations also limit the effect of excessive large-scale drying in the subsidence region 340 

leading to storm weakening found in some longer CM1 simulations (Rousseau-Rizzi et al., 2021). Given our goal of examining 341 

TC responses to changes in environmental temperatures, we focus on the core steady-state (CS) period where intensity varies 342 

only slowly after the time of peak core strength (Rousseau-Rizzi et al., 2021), though we also present the peak core strength 343 

given its approximate equivalence to LMI. Owing to the sensitivity of simulated TC intensity to various model 344 

parameterization choices, we ran an ensemble of 21 simulations for each environmental profile, varying the turbulence, 345 

radiation, sea surface, and microphysical parameterizations (Tables 1, and A1).  346 

 347 

 348 
Table 1: CM1 model physics ensemble namelist choices for the surface model (sfcmodel), ocean model (oceanmodel), surface 349 
exchange coefficients (isftcflx), atmospheric radiation (radopt), relaxation term that mimics atmospheric radiation (rterm), and 350 
explicit moisture scheme (ptype); see Table A1 for specific settings for each of the 21 ensemble members. 351 

parameter description 

sfcmodel CM1 (1), “WRF” (2), “revised WRF” (3), GFDL (4), MYNN (6) 

oceanmodel constant SST (1), ocean mixed layer model (2) 

isftcflx Donelan (1), or Donelan/Garratt for Cd and Ce (2) 
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radopt simple (0, with rterm = 1), NASA (1), or RRTMG (2) 

ptype Morrison (5) or Thompson (3) 

 375 

 377 

To explore the sensitivity of simulated TC intensity to changes in the environmental thermodynamic profile, we ran five 378 

additional 21-member ensemble experiments (Table 2). These were primarily designed to explore TC intensity response to 379 

extrapolated observational trends based on RAOBCORE data discussed in Sect. 2.1 and presented in Sect. 3.1. The “mid-380 

century” experiment corresponds to conditions approximately in the year 2050 if current trends are extrapolated, and the “end-381 

of-century” experiment applies changes extrapolated over a century-long period (Fig. 1c). SSTs for the mid- and end-of-382 

century experiments were chosen to be close to the near-surface air temperature. Two additional experiments allow us to isolate 383 

the sensitivity of TC intensity to specific changes observed in tropical temperature profiles. The “no upper warming maximum” 384 

ensemble is based on a temperature change profile that is nearly constant with height in the troposphere (Fig. 1d), and the “no 385 

stratospheric cooling” simulations explore the TC response to a temperature change profile that eliminates lower stratospheric 386 

cooling (Fig. 1e). Recognizing the limitations in the extrapolation of current observational trends, we ran an additional 387 

ensemble experiment based on a multi-model mean of IPCC AR5 GCM tropical change profiles, for end-of-century conditions 388 

under the RCP8.5 scenario (Fig. 1b, and see Jung and Lackmann, 2019, their Table 2). For all simulations involving 389 

temperature perturbations, relative humidity is held constant, resulting in increased water vapor content with warming. This 390 

assumption is supported by observations (e.g., Dai 2006; Willett et al. 2007) in addition to theoretical and modelling studies 391 

(e.g., Allen and Ingram 2002; Held and Soden 2006; Pall et al. 2007).  392 

 393 
Table 2:  Ensemble experiments and maximum intensity (i.e., Pmin); values are for time-filtered time series.  For three right columns, 394 
numbers in parentheses represent standard deviation. A Butterworth low-pass time filter was applied to remove high-frequency 395 
fluctuations. Core steady-state (CS) Pmin is taken over simulation hours 150 to 193, while Pmin is peak intensity.  “Complex” denotes 396 
the 13-member ensemble subset with complex radiation parameterization. Settings for the Emanuel potential intensity (E-PI) 397 
calculation, based on the pyPI software package (Gilford, 2021), include dissipative heating (Bister and Emanuel, 1998), an enthalpy-398 
drag coefficient ratio of 0.9, and a wind reduction coefficient of 0.9. 399 

Experiment SST E-PI Pmin  

(full ensemble) 

Pmin  

(complex)  

CS Pmin  

(complex) 

Present-day 301.2 K 

(28.0 °C) 

923.4 hPa 

(74.7 ms-1) 

917.8 hPa 

(10.8 hPa) 

913.3 hPa 

(8.7 hPa) 

 

920.5 hPa 

(10.9 hPa) 
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Mid-Century 301.8 K 

(28.6 °C) 

920.1 hPa 

(75.7 ms-1) 

913.7 hPa 

(12.0 hPa) 

912.1 hPa 

(9.8 hPa) 

917.2 hPa 

(13.7 hPa) 

 

End of 

Century 

302.4 K 

(29.2 °C) 

917.1 hPa 

(76.4 ms-1) 

907.0 hPa 

(10.3 hPa) 

906.0 hPa 

(8.5 hPa) 

913.3 hPa 

(10.5 hPa) 

 

No upper 

warming max 

302.4 K 

(29.2 °C) 

916.4 hPa 

(76.4 ms-1) 

909.0 hPa 

(11.6 hPa) 

906.8 hPa 

(10.5 hPa) 

911.0 hPa 

(13.7 hPa) 

 

No stratos. 

cooling 

302.4 K 

(29.2 °C) 

917.1 hPa 

(76.4 ms-1) 

909.5 hPa 

(12.0 hPa) 

906.5 hPa 

(8.8 hPa) 

916.2 hPa 

(13.3 hPa) 

 

GCM  

RCP 8.5 

304.5 K 

(31.3 °C) 

910.9 hPa 

(77.5 ms-1) 

903.5 hPa 

(12.8 hPa) 

901.0 hPa 

(10.2 hPa) 

908.1 hPa 

(12.9 hPa) 

 

 416 

 417 

Despite temporal variability, the ensemble mean intensity appears close to the analytical value predicted by the Emanuel (1988) 418 

maximum potential intensity (E-PI, Table 2); we recognize that considerable uncertainty also exists in the E-PI values owing 419 

to various choices that go into that calculation. We also note that the E-PI algorithm used here is formulated using a Convective 420 

Available Potential Energy (CAPE)-based definition of E-PI, which does not depend explicitly on efficiency and 421 

disequilibrium. Rather, it is based on the equivalence between disequilibrium and the difference between environmental CAPE 422 

and saturation CAPE.  Rousseau-Rizzi et al. (2022) show that the two formulations are physically linked via parcels’ surface 423 

moist static energy, thus increasing confidence in our use of the CAPE-based formulation. 424 

 425 

Based on the thermodynamic and Carnot efficiency considerations mentioned in Sect. 1 and the E-PI calculations shown in 426 

Table 2, we predict a priori that the present-day simulation would produce the weakest ensemble-mean TC, followed in order 427 

of increasing intensity by the mid-century and end-of-century simulations. We further expect that simulations omitting the 428 

tropical upper warming maximum would be slightly stronger than the default end-of-century ensemble and that the ensemble 429 

removing stratospheric cooling would be slightly weaker in intensity relative to the default end-of-century run. We expect the 430 
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GCM-based ensemble to yield the strongest storm, given significantly greater warming. Of course, the numerical simulations 432 

are not constrained to agree with these theoretically motivated predictions. 433 

 434 

To further test our hypotheses relating changes in TC intensity to environmental temperature changes, we computed 435 

thermodynamic efficiency and thermodynamic disequilibrium following Emanuel (1987; 1988) and Gilford (2021). Given the 436 

availability of high-resolution numerical simulations, we also computed the simulated TC outflow temperature directly, 437 

defined as the temperature of air with outward radial flow exceeding 1.0 ms-1 and cloud ice mixing ratio exceeding 10-5 kg kg-438 
1. Experimentation with these threshold values demonstrates that this setting works well to represent the temperature of the 439 

cirrostratus outflow layer, though the ensemble average values obtained were not highly sensitive to changes in the radial 440 

velocity or cloud ice mixing ratio thresholds (not shown). In our analysis of derived outflow temperatures, we noted substantial 441 

differences between simulations conducted with “complex” versus “simple” representations of radiation and have stratified 442 

the results accordingly. 443 

 444 
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 445 
Figure 1: (a) Dunion (2011) Moist Tropical sounding; (b) Tropical temperature change profile derived from an average of 21 CMIP5 446 
GCMs under the RCP8.5 emission scenario; (c) Temperature change profiles extrapolated from hurricane-season tropical trends in 447 
the RAOBCORE database and modified (d) by removal of the upper warming maximum and (e) by removal of stratospheric cooling. 448 
Note the differences in vertical axis ranges between panel b and panels c,d, and e. 449 
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3 Results 459 

3.1 Historical temperature and tropical cyclone observations 460 

To begin exploring whether observed changes in near-surface temperature and upper-level stratification are sufficient to 461 

explain observed trends in the TC intensity distribution, we start with an analysis of historical data. Historical summertime 462 

tropical temperature trends are compared across RAOBCORE, ERA5, and ERA-I in Fig. 2a. The known upper tropospheric 463 

warming maximum and lower stratospheric cooling are present across all three datasets but vary significantly in magnitude 464 

and vertical structure. As expected, ERA-I and RAOBCORE trend profiles agree well with each other (since ERA-I assimilates 465 

RAOBCORE data) with peak warming located at the 300 hPa level. The ERA5 exhibits 30 % weaker peak warming than 466 

RAOBCORE and locates peak warming higher in altitude, at 175 hPa. Cooling rates in the lower stratosphere are strongest in 467 

ERA5, reportedly due to the assimilation of radiosonde data adjusted by the RICH method (Haimberger et al., 2012; Hersbach 468 

et al., 2020). Simmons et al. (2014) suggest that the weaker cooling trend in ERA‐I may be related to a cold bias in the lower 469 

stratosphere which persisted through the early 2000s and then was corrected through new assimilation of radio occultation 470 

data.  471 

 472 
Figure 2: Historical tropical temperature profiles averaged over 0° to 20°N for Aug-Sept-Oct and -20°S to 0° for Dec-Jan-Feb using 473 
RAOBCORE, ERA5 and ERA-I is shown as a) the linear trend over the period 1981 to 2017 (K per decade), and b) departures of 474 
decadal averages from the 1981 to 2017 average (K) for ERA5 and ERA-I only. Decadal averages are calculated over the periods 475 
1981 to 1989, 1990 to 1999, 2000 to 2009, and 2010 to 2017. c) as in a) for ERA5 and including trends for proximal environments for 476 
tropical storms (ADT-HURSAT LMI less than 33 ms-1) and for hurricane strength TCs (ADT-HURSAT LMI greater or equal to 33 477 
ms-1). Proximal environments are defined as averages within a 0.5° radius of the LMI locations two days before the TC arrives at 478 
the location using ERA5. Filled circles indicate sea surface temperatures (SSTs) where the position on the y-axis is chosen for clarity. 479 
Shading, dashed lines, and lines through the filled circles in a) and c) indicate plus/minus twice the standard error of the trend lines, 480 
approximating the 95 % confidence interval.  481 
 482 
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 489 

 490 

We next examine whether the trend is stable across the decades, or whether the change concentrates in a particular decade. 491 

The rate of change is roughly constant across the four decades throughout the troposphere (Fig. 2b). But decadal changes in 492 

the lower stratosphere are less stable, reflecting the known step changes in temperature linked to volcanic eruptions 493 

(Ramaswamy et al., 2006).  494 

 495 

Figure 2c shows that temperature trends proximal to strong TCs are significantly different from trends for the tropics as a 496 

whole. Proximal is defined here as an average within 0.5° of the LMI locations (according to ADT-HURSAT) two days before 497 

a TC arrives at the location. Area averaged soundings are crude approximations for the spatially varying profiles the TCs 498 

experience (e.g., Zawislak et al. 2016). However, we consider area-averaged profiles appropriate for this assessment of global 499 

trend signals, where spatial profile variations specific to individual TCs may be less important. The sample sizes are 2174 500 

tropical storm environments and 1774 hurricane environments. Strong TC environments have warmed significantly faster than 501 

the tropical mean environment below the 850-hPa level. The SSTs in strong TC environments have also warmed faster than 502 

the tropical mean SSTs (Fig. 2c) and are likely driving the rapid warming at low levels. The warming surface and low-level 503 

temperatures would sustain the thermal disequilibrium supportive of strong potential intensities. The peak warming in the 504 

upper troposphere is correspondingly stronger for strong TC environments and located at a higher level relative to the tropics 505 

overall. Trends also differ between proximal environments for tropical storms and hurricane-strength storms, but not 506 

significantly so. Tropical storm environments also do not trend significantly differently from the tropical mean environment. 507 

 508 

Our purpose here is not to comment on which temperature dataset produces the most accurate trends, but rather to document 509 

that the choice of temperature dataset matters for the magnitude and structure of the temperature trend. We also update previous 510 

work (Emanuel et al., 2013; Vecchi et al., 2013) that compared across reanalysis datasets by including the more recent ERA5 511 

combined with ERA5.1. By extension, analysed relationships between TC intensity trends and near-surface temperature and 512 

upper-level stratification trends may also vary by choice of temperature dataset. Later in this section, we make links between 513 

temperature trends and TC intensity trends. This requires a temperature dataset with globally uniform coverage. We choose 514 

the ERA5 dataset for this purpose given its higher spatial resolution and newer data assimilation procedures compared to ERA-515 

I. We next turn our attention to the changing TC intensity distribution. 516 

 517 

At the same time as the global tropical temperatures have changed, so too has the distribution of global TC intensity. Figure 518 

3a,b shows TC intensity distributions by historical decade in both the IBTrACS and ADT-HURSAT datasets. First, we notice 519 

the differently shaped distributions between IBTrACS and ADT-HURSDAT. Kossin et al. (2020) explain that cirrus-obscured 520 

TC eyes can cause underestimation of lifetime maximum intensity (LMI) at around 33 ms-1. It’s likely that this dataset, 521 
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therefore, over-reports LMI values less than 33 ms-1, with higher LMI only reported if the algorithm locks onto a clearing eye 534 

signature as TCs intensify. ADT-HURSAT, therefore, sacrifices storm-level accuracy for improved long-term statistics. 535 

 536 
Figure 3: a,b) Distributions of global TC LMI (lifetime maximum 1-minute sustained wind speed at 10 m above the surface, ms-1) 537 
for the period 1981 to 2017 split by historical decade using IBTrACS and ADT-HURSAT. The exact years for each decadal period 538 
are 1981 to 1989, 1990 to 1999, 2000 to 2009, and 2010 to 2017. Kernel density is estimated using Gaussian smoothing kernels with 539 
a standard deviation of 5 ms-1. Panel b) provides a close-up view of the portion of panel a) outlined by the grey dashed line. 540 
 541 

The well-established bi-modal distribution is present in both datasets, and both reproduce the known result of an increasing 542 

proportion of the strongest storms over time (e.g., Elsner et al., 2008; Kossin et al., 2020). We also reproduce the stronger 543 

trends in IBTrACS than ADT-HURSAT. For the proportion of major hurricanes (category 3 and higher on the Saffir-Simpson 544 

scale), Kossin et al. (2020) find the increase in ADT-HURSAT is about half that in IBTrACS and suggest that half the trend 545 

in IBTrACS is attributable to changes in observing systems. When considering the proportion of category 4 and 5 storms, we 546 

find even larger discrepancies. In IBTrACS, the proportion of category 4 and 5 storms increases from 11.3 % in the 1980s to 547 

20.9 % in the 2010s; a factor of 1.85 increase. For ADT-HURSAT, the proportion increases from 14.1 % in the 1980s to 17.7 548 

% in the 2010s; a factor of only 1.26, and a rate approximately 3 times lower than in IBTrACS. Our finding here is consistent 549 

with the greater impact of observing system change for the strongest storms (Kossin et al., 2020). Interestingly, we also find 550 

that IBTrACS produces more than half the change between the first two decades (the 1980s to the 1990s), whereas ADT-551 

HURSDAT produces more than half the change between the final two decades (2000s to the 2010s).  552 

 553 
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We now begin to explore statistical linkages between the changing TC intensity and near-surface and upper-level temperatures. 559 

We use quantile regression models to explore how the strength of the statistical relationship between LMI and environmental 560 

temperature varies by storm intensity, following the approach used in Elsner et al. (2008) and Kossin et al. (2013). Our quantile 561 

regression models specify how the LMI quantile changes with temperature variation. This allows us to identify whether 562 

relationships with the surface or upper-level temperature differ between strong and weak storms. We later compare these 563 

assessments to those derived from our numerical simulations. 564 

 565 

We start by quantifying temporal trends in LMI to link back to existing work and provide a starting point from which to explore 566 

trends concerning temperature. When considering all TCs (Fig. 4a), only those exceeding hurricane strength (>33 ms-1) show 567 

intensification, but trends are not significantly different from zero. Kossin et al. (2020) report that quantile regression can be 568 

highly sensitive to the range of the data. When considering only hurricane-strength storms (Fig. 4b) we found that 569 

intensification is significantly different from zero, peaking at 3 ms-1 per decade for a hurricane quantile of 0.4. These results 570 

reproduce those of Kossin et al. (2020). 571 

 572 

We next explore how these trends in LMI quantiles compare to trends in the theoretical maximum potential intensity, to 573 

determine how strong vs. weak storms have kept pace with trends in their PI. The theoretical maximum potential intensity is 574 

calculated using E-PI (Emanuel, 1988) on thermodynamic profiles from ERA5 data proximal to individual TCs at the time of 575 

LMI. The linear trend in mean E-PI is 1.2 ms-1 per decade for locations of all TCs and 0.9 ms-1 per decade for locations of 576 

hurricane-strength TCs only. Given that tropical storm strength TCs show no temporal trend, they have not kept pace with 577 

their rising E-PI. But hurricane-strength storms exhibit super-E-PI trends and have therefore closed the gap between realized 578 

and maximum potential intensity. 579 
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 588 
Figure 4: Trends in global LMI quantiles using ADT-HURSAT over the period 1981 to 2017. a) Temporal trends for all TCs, b) 589 
temporal trends for hurricane strength (>33 ms-1) TCs only, c) trends with SST for all TCs, d) trends with temperature at the 300 590 
hPa level (T300) for all TCs, and e) trends with temperature at 50 hPa (T50) for all TCs. Quantiles vary between 0.025 and 0.0975 591 
with an interval of 0.05. The 95 % confidence interval (grey shading) is calculated from bootstrapping with 200 replications. The 592 
grey vertical dashed lines are reference lines indicating hurricane category 1 intensity. The slope of the E-PI trend line is shown in 593 
horizontal red dashed lines in a) and b). E-PI is calculated using LMI-proximal data. The second x-axis along the top of each panel 594 
shows the LMI values corresponding to the LMI quantiles. In b) the second x-axis starts at 33 ms-1 (by definition) and remains at 33 595 

ms-1 until the 0.2 quantile. R code is adapted from Elsner and Jagger (2013) available at https://rpubs.com/jelsner/5342. 596 

 597 

Figures 4c,d,e show relationships between LMI quantiles over all TCs and SST, temperature at the 300-hPa level (T300), and 598 

temperature at the 50-hPa level (T50). As before for the calculation of E-PI, representative environmental temperatures are 599 
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obtained using LMI proximal values. In general, we find large and statistically significant relationships. Intensity has increased 604 

substantially with warming SSTs almost universally across LMI quantiles, but with a markedly different response between 605 

hurricane-strength storms and weaker storms. Tropical storm strength quantiles have increased by approximately 0.6 ms-1 per 606 

K, whereas the rate rises rapidly with LMI quantiles above hurricane category 1 strength, reaching a maximum of 2.6 ms-1 per 607 

K at the highest quantiles. This is markedly different behaviour from the temporal trends where the higher rates are located at 608 

the middle quantiles. We also note the dip in the trend at quantiles close to about 33 ms-1. These may not be reliable because 609 

it coincides with the intensity at which the ADT-HURSAT determinations can be influenced by cirrus-obscured eyes.  610 

 611 

The response of LMI quantiles to T300 is qualitatively similar to the response to SST but trends plateau for the highest 612 

quantiles. This similarity may be expected given the strong correlation between proximal SST and proximal T300 (R = 0.78). 613 

The reduced rates of change for the highest quantiles may also be expected given the larger change in upper tropospheric 614 

temperature per unit change in SST. As before for SST, hurricane strength TCs exhibit markedly different behaviour to weaker 615 

storms: They intensify with T300 warming at approximately twice the rate of weaker storms.  616 

 617 

The response of LMI quantiles to T50 temperature (Fig. 4c) shows increasing intensity with cooling across most LMI quantiles 618 

but is statistically significant for tropical storm strength storms only. We, therefore, do not find a significant relationship 619 

between trends in hurricane intensity and lower stratosphere temperature, at least for this global-scale analysis. This is 620 

consistent with the GCM study by Vecchi et al. (2013) but inconsistent with idealized simulations of Ramsay (2013). 621 

 622 

In summary, our analysis of historical records finds that hurricane-strength storms exhibit markedly different behaviour to 623 

weaker storms in environments of changing near-surface and upper-level temperature. Hurricane strength storm intensity 624 

increases at twice the rate or more compared to weaker storms within environments of sea surface temperature warming. 625 

Hurricane strength storm intensity also increases at twice the rate compared to that of weaker storms in environments of upper 626 

tropospheric warming. Despite upper warming having a limited correlation with TC intensity, this result is perhaps 627 

unsurprising given the strong correlation between SST and T300 (not shown). The response of hurricane-strength storms within 628 

environments of lower stratospheric cooling was mixed and did not reach statistical significance.  629 

3.2 Idealized model experiments 630 

Towards the goal of isolating and quantifying the effects of near-surface temperature and upper-level stratification changes on 631 

TC intensity, we turn to idealized simulations which are free from other changes.  If the results of these simulations agree with 632 

expectations, we can be more confident in attributing observed TC intensity trends to temperature changes, which are perhaps 633 

more reliably projected by GCMs.  On the other hand, if the idealized simulations indicate TC intensity trends that differ 634 

markedly from observations, then we can be more confident that other environmental changes are dominant in driving the 635 
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observed changes. As discussed in Sect. 2.2, numerical simulations were conducted with the CM1 model in an axisymmetric 645 

TC configuration.  646 

 647 

The 21-member control (present climate) ensemble features an initial period of slightly weakening TC intensity, followed by 648 

steady vortex intensification between simulation hours 12 and 90 (Fig. 5).  Considerable ensemble spread develops by hour 649 

50, with central pressure values ranging from less than 900 hPa to nearly 960 hPa at hour 100. The simulated ensemble mean 650 

TC minimum sea-level pressure attained a minimum (maximum intensity) around hour 130, followed by slight weakening and 651 

quasi-steady ensemble mean intensity until the end of the simulation. Simulations using a simple Newtonian cooling radiation 652 

parameterization generally resulted in weaker TCs (blue lines in Fig. 5), motivating the use of an ensemble subset consisting 653 

of the 13 members using more complex radiation parameterizations. The complex-radiation subset features reduced ensemble 654 

spread, and a lower ensemble-mean central pressure (Table 2). The intensification phase of TCs in the complex radiation 655 

members consistently begins earlier in the simulation relative to the simple-radiation subset; for instance, the time required for 656 

Pmin to reach 960 hPa is nearly 24 hours faster for the complex radiation members (Fig. 5). We evaluate both the maximum 657 

ensemble mean core intensity and the quasi-steady period around core intensity period later in the simulations, consistent with 658 

“core steady-state (CS)” in the nomenclature of Rousseau-Rizzi et al. (2021). The core intensity roughly corresponds to the 659 

LMI.  660 

 661 
Figure 5: CM1 time series of axisymmetric TC minimum central pressure (Pa) for the default present-day ensemble based on the 662 
Dunion moist tropical sounding, distinguishing ensemble members with complex (black) and simple radiation (blue). 663 
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For the additional experiments, time series of ensemble-mean maximum near-surface wind speed and minimum central 674 

pressure sort out precisely as expected based on theoretical predictions: The present-day simulation features the weakest 675 

ensemble-mean TC, while the end-of-century simulations are all stronger, with the mid-century ensemble falling between (Fig. 676 

6, Table 2). This overall trend matches the E-PI calculations in a relative sense (Table 2). One notable difference is the removal 677 

of the stratospheric cooling, which had no impact on E-PI but weakened the simulated storm slightly. The GCM-modified end-678 

of-century environment yields the greatest intensity, with filtered ensemble-mean Pmin values approaching 900 hPa in the 679 

complex-radiation ensemble subset (Fig. 6a).  This is consistent with the fact that future changes under the CMIP5 RCP8.5 680 

scenario exceed that due to extrapolation of current observed trends (compare purple and red curves in Fig. 6a and Fig. 6b, 681 

and abscissa values in Figs. 1b,c). In all simulations, the ensemble mean Pmin values were lower than the E-PI calculations. 682 

Note that there is uncertainty in the E-PI calculation owing to several choices in parameter settings, as is the case with the 683 

CM1 model. But perhaps the greatest discrepancy arises from our calculation of E-PI at the initial time, leading to possible 684 

differences in the E-PI-calculated outflow and the realized outflow temperature in our simulations.   685 

 686 

Each ensemble experiment exhibits considerable variability, and the ensemble standard deviations are generally larger than 687 

the differences in the ensemble mean between the experiments (Fig. 6b, Table 2). That the relative ranking of the experimental 688 

ensemble mean intensity matches expectation from theory is notable, but the large ensemble variability provides context 689 

regarding statistical robustness, or lack thereof. We refrain from a dichotomous declaration of “statistically significant” or not 690 

(e.g., Amrhein et al., 2019; Wasserstein et al., 2019).  Yet, an inspection of the individual ensemble experiments demonstrates 691 

that the relative intensity of the different ensemble members exhibits considerable consistency, motivating the use of a 692 

Wilcoxon signed-rank test (Wilcoxon 1945), appropriate for paired samples (Fig. 6c).  Except for the mid-century experiment, 693 

small p-values relative to the present-day simulation provide more confidence in the significance of the results relative to what 694 

comparison to the overall ensemble mean suggests (top labels in Fig. 6c). Comparison of the end-of-century with the no-upper-695 

warming ensemble yields a signed-rank p-value of 0.13 and compared with the no-stratospheric-cooling ensemble value of 696 

0.29 (not shown). 697 

 698 
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 709 
Figure 6: Time series of CM1 ensemble mean (a) maximum wind speed (ms-1) and (b) minimum sea level pressure (Pa) for present-710 
day simulations with complex radiation parameterization; experiments as indicated in legend in (a).  Ensemble mean time series 711 
have been smoothed with a Butterworth filter to remove high-frequency fluctuations. (c) Box plot showing the distribution of average 712 
CS period minimum central pressure over the 13 complex radiation ensemble members.  Mean values are shown as green triangles, 713 
p-values from a Wilcoxon paired rank-sum test shown at the top for each experiment versus the present climate. 714 
 715 

While the smoothed, ensemble mean changes are highly consistent with theoretical expectations, neither the changes predicted 716 

by E-PI theory nor those resulting from the numerical simulations are dramatic in terms of Pmin. For extrapolations of current 717 

RAOBCORE trends, the end-of-century ensemble mean is characterized by Pmin values that are approximately 10 hPa lower 718 

than for the present-day ensemble.  That is not to say that these intensity increases are insignificant, however. Changes in the 719 

GCM-modified environment under the RCP8.5 scenario exhibit the strongest changes in ensemble-mean Pmin, approximately 720 

12 hPa lower. The strengthening seen in the extrapolated RAOBCORE experiments is consistent with that reported for a 2 K 721 

change by Knutson et al. (2020), while the GCM experiment change, accompanied by an SST warming over 3 K, is somewhat 722 

less than what would be anticipated from the Knutson et al. (2020) review.  723 
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The consistency between the CM1 simulation results and the theoretical E-PI intensity calculations suggests that the 732 

interpretation of the simulated TC responses to environmental change is consistent with the concept of a Carnot heat engine 733 

(e.g., Emanuel, 1988; 1991).  Because we use Pmin to measure storm intensity, we are not concerned with supergradient wind 734 

speeds as analysed by Rousseau-Rizzi and Emanuel (2019), Hakim (2011), and Smith et al. (2008).  Our hypothesis in this 735 

analysis is that in the quiescent (un-sheared) axisymmetric CM1 environment, the TC response to changes in environmental 736 

temperature will be consistent with PI theory and the concept of thermodynamic engines. These idealized simulations provide 737 

an estimate of the expected effect of such changes on TC characteristics, allowing us to relate the simulation responses to the 738 

observational TC statistics presented in Sect. 3.1. 739 

 740 

To understand comparisons between our simulated TC intensity and E-PI changes, we compute thermodynamic efficiency and 741 

thermodynamic disequilibrium changes in our simulations. As stated earlier, the square of PI is proportional to the product of 742 

the thermodynamic efficiency and the thermodynamic disequilibrium (Eqn. 1 in Gilford et al. 2017). We therefore examine 743 

whether changes in our simulated intensity (Vmax2) are proportional to simulated changes in the product of thermodynamic 744 

efficiency and the thermodynamic disequilibrium.  But first, we compare relative changes in the thermodynamic efficiency 745 

and thermodynamic disequilibrium terms themselves. 746 

 747 

We compute the temperature of cloudy, outflowing air in the upper troposphere for each ensemble member in each experiment, 748 

and use this information in conjunction with SST to compute the thermodynamic efficiency (see Sect. 2.2) according to Eq. 749 

(1):  750 

𝐸𝑓𝑓 = !!"	$	%!"#
%!"#

 .            (1) 751 

 752 

Thermodynamic disequilibrium is computed as the difference between the saturation moist static energy at the sea surface and 753 

a near-surface value of moist static energy. It is calculated at the initial time whereas efficiency is calculated for the CS period.  754 

 755 

First, we examine changes in outflow temperature and pressure. The outflow temperature is remarkably similar between the 756 

different experiments (Table 3) despite varying outflow pressures. While the warmest outflow is in the GCM-modified 757 

experiment, as expected, this does not reach statistical significance. The similarity in outflow temperatures is consistent with 758 

the Fixed Anvil Temperature (FAT) hypothesis (Hartmann and Larson, 2002) which argues that the environmental cooling 759 

rate is largely governed by temperature. This follows from the saturation vapor pressure dependence on temperature via the 760 

Clausius-Clapeyron relation. The temperature at which cooling rates rapidly decrease with height (and therefore also the 761 

temperature of the outflow) should remain approximately constant. Surface warming, therefore, raises the altitude of the 762 

outflow but has less effect on outflow temperature. In agreement, we find the average pressure altitude of the outflow exhibits 763 

considerable difference among the experiments, with the present-day ensemble showing the lowest outflow altitude, and the 764 
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GCM experiment the highest (~190 hPa, Table 3). Although the differences are small relative to the ensemble standard 770 

deviation, the no stratospheric cooling and no upper warming maximum experiments exhibit the expected changes in outflow 771 

pressure. The FAT hypothesis could be contributing to the small changes in efficiency in our experiments with modified upper-772 

level stratification. Interestingly, the average outflow pressure generally reflects an altitude above the upper warming 773 

maximum, especially for the stronger TCs in the GCM ensemble.  774 

 775 
Table 3:  Ensemble mean thermodynamic disequilibrium, outflow temperature, outflow pressure, and thermodynamic efficiency 776 
computations for the 13-member complex-radiation ensemble subset; radial wind threshold of 1.0 ms-1 and cloud ice threshold of 777 
10-5 kg kg-1.  Ensemble standard deviation (SD) is shown for outflow temperature and pressure. Disequilibrium (defined as the 778 
difference between the saturation moist static energy at the sea surface and a near-surface value of moist static energy) is calculated 779 
at the initial time and all other values apply to the CS time window of the simulations, hours 150 to 192. 780 

Experiment SST (K) 
Disequilibrium 

(J/kg) / (%)  T outflow / SD (K) P outflow / SD (hPa) Efficiency / % 

Present-day 301.15 9342.2 / -- 224.25 / 2.73 216.88 / 14.89 0.3429 / -- 

Mid-Century 301.77 9701.0 / 3.8 224.22 / 3.31 211.92 / 17.42 0.3459 / 0.9 

End of Century 302.39 10072.2 / 7.8 224.22 / 3.45 207.34 / 17.40 0.3486 / 1.7 

No upper warming max 302.39 10072.2/ 7.8 224.08 / 3.11 205.87 / 15.70 0.3495 / 1.9 

No stratos. cooling 302.39 10072.2/ 7.8 224.57 / 3.20 208.05 / 17.03 0.3465 / 1.1 

GCM RCP 8.5 304.46 11410.6 / 22.1 224.95 / 3.02 190.59 / 15.11 0.3535 / 3.1 

 781 

For the GCM experiment, the slightly warmer outflow temperature is more than compensated by the increased SST, resulting 782 

in the greatest thermodynamic efficiency among the experiments. The GCM experiment also produces the lowest Pmin (Table 783 

2). The numerical simulation experiments ranked by intensity match exactly the ranking in thermodynamic efficiency (Tables 784 

2 and 3). However, differences in thermodynamic efficiency between the ensemble members are small in magnitude, and 785 

relative changes in thermodynamic disequilibrium with increased SST are much larger. Percent changes in disequilibrium 786 

relative to the default run are +3.8% for the mid-century run, +7.8% for the end-of-century runs (including the no upper 787 

warming, and no stratospheric cooling runs), and +22.1% for the GCM RCP8.5 run. Upper-level changes have no impact on 788 

disequilibrium in our modelling. Percent changes in efficiency are much less at +.9% for the mid-century run, +1.7% for the 789 

end-of-century runs, and +3.1% for the GCM RCP8.5 run. In contrast to disequilibrium, efficiency does change a little with 790 

upper-level changes, but changes remain small.  The lack of change in efficiency is related to the nearly constant TC outflow 791 

temperatures between our experiments. 792 
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Having established the dominance of thermodynamic disequilibrium over thermodynamic equilibrium in driving PI, we now 803 

examine how close our simulated intensity behaviour is to theoretical expectations. Specifically, we quantify whether our 804 

simulated intensity changes are proportional to changes in the product of thermodynamic disequilibrium and thermodynamic 805 

equilibrium. Quantitative comparisons are challenging given the differing absolute changes, but we do so here using percent 806 

changes (as also used in Gilford et al. 2017).  Table 4 shows close agreement between percent changes in the square of the 807 

realized intensity and percent changes in the product of efficiency and disequilibrium. This indicates that PI theory explains 808 

much of the TC responses to changes in environmental temperature. However, there are notable discrepancies in the 809 

experiments with changed upper-level stratification.  Possible explanations for the discrepancies are discussed in the next 810 

section. 811 

 812 

Table 4:  Maximum intensity (Vmax) and percent changes in the left-hand side (Vmax2) and right-hand side (efficiency ´ 813 
disequilibrium) of Equation 1 in Gilford et al. (2017) as simulated by the complex radiation ensemble experiments. All values are 814 
for time-filtered time series and represent the core steady-state (CS) period except for disequilibrium which is calculated at the 815 
initial time. 816 

Experiment 
 Vmax 
(m/s) 

Vmax2 
(%) 

 Efficiency ´ Disequilibrium 
(%) 

Present-day 66.14 -- -- 

Mid-Century 67.59 4.4 4.7 

End of Century 69.13 9.3 9.6 

No upper warming max 70.79 14.6 9.9 

No stratos. cooling 69.41 10.1 8.9 

GCM RCP 8.5 74.44 26.7 25.9 

 817 

 818 

4 Concluding Discussion 819 

In a quiescent environment, theory indicates that TC intensities should exhibit considerable sensitivity to changes in near-820 

surface temperatures and upper-level stratification (Emanuel, 1991; Kieu and Zhang, 2018; Tao et al., 2020). In this paper, we 821 

explored whether observed environmental temperature changes are sufficient to explain observed trends in the TC intensity 822 

distribution, to improve the understanding and interpretation of observed and emerging trends in the TC intensity distribution. 823 
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To do so we worked to isolate and quantify the response of TC intensity to observed trends in environmental temperature using 829 

a combination of historical data analysis and idealized numerical modelling. While our choice of axisymmetric modelling 830 

misses potentially important TC asymmetries, such models are useful tools to begin to link theory and observations.  831 

 832 

Our historical data analysis focused on global scales spanning four decades to emphasise the scales where thermodynamic 833 

change is large and circulation change is minimized. Tropical storm strength intensities show no temporal trend and have 834 

therefore not kept pace with rising PI. Hurricane strength storms, however, exhibit significant temporal trends that reach super-835 

PI rates for some intensity quantiles. Storms at these quantiles have therefore closed the gap between realized and maximum 836 

potential intensity. The larger trends in the more intense storms is consistent with our finding that hurricane environments have 837 

warmed faster than the tropical mean environment. The faster warming is most apparent in the lower troposphere and is likely 838 

driven by faster SST warming.  839 

 840 

The differing trends in TC environments compared to the tropical mean environment has implications for climate change 841 

studies that use “storyline” or “Pseudo Global Warming (PGW)” methods. These methods typically apply a long time-average 842 

change from GCMs to reanalysis conditions and uses those high-resolution conditions to drive regional model simulations of 843 

historical and future weather events (e.g., Hazeleger et al. 2015; Lackmann, 2015; Gutmann et al., 2018; Shepherd 2019). TCs 844 

may respond differently to environmental change more representative of that taking place locally within TC environments. 845 

 846 

In changing our frame of reference from time to temperature, we again found markedly different sensitivities between tropical 847 

storms and hurricane-strength storms. Hurricane strength storms intensified at up to four times the rate of tropical storms per 848 

unit increase in surface and upper tropospheric temperature. The response of storms within environments of lower stratospheric 849 

cooling was mixed and did not reach statistical significance. However, our global scale of analysis may miss basin-specific 850 

sensitivities arising from the differing TC outflow layer heights relative to the tropopause (Gilford et al. (2017). SST and 851 

outflow are strongly linked when the outflow is confined to the troposphere, but there is greater potential for larger efficiency 852 

changes when the outflow extends above the tropopause. In addition, the differing trend magnitudes among commonly used 853 

historical temperature and TC intensity datasets challenges our ability to understand relationships using historical data alone.  854 

 855 

We then turned to idealized modelling to further isolate, quantify, and understand the effects of near-surface temperature and 856 

upper-level stratification change on TC intensity, and to interpret the empirical statistics. Idealised TC simulations responded 857 

in the expected sense to various imposed changes in environmental temperatures and generally agree with TCs operating as 858 

heat engines. We found close agreement between percent changes in the square of the realized intensity in our simulations and 859 

percent changes in the product of efficiency and disequilibrium. This indicates that PI theory explains much of the TC 860 

responses to changes in environmental temperature. Removing upper tropospheric warming or stratospheric cooling from the 861 

end-of-century experiment resulted in much smaller changes in E-PI or realized intensity than between present-day and end-862 
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of-century. The larger proportional change in thermodynamic disequilibrium compared to thermodynamic efficiency in our 900 

experiments (in agreement with Rousseau-Rizzi and Emanuel 2021) also suggests that disequilibrium, not efficiency, is 901 

responsible for the intensity increase from present-day to end-of-century in our simulations. Possible explanations for residual 902 

differences between realized intensity change and PI change include i) necessary differences in the timing of the efficiency 903 

and disequilibrium computations, ii) limitations to the model, related to axisymmetry and parameterizations, and iii) 904 

assumptions in the E-PI algorithm. 905 

 906 

The weak influence of lower stratospheric cooling on TC intensity in our simulations and our observational analysis is 907 

consistent with the GCM study by Vecchi et al. (2013).  However, axisymmetric simulations out to radiative-convective 908 

equilibrium by Ramsay (2013) showed stronger vortex intensity with stronger imposed lower stratospheric cooling rates. This 909 

was despite much of the outflow confined to the upper troposphere. We agree with Ramsay (2013) and Ferrara et al. (2017) 910 

that it is challenging to reconcile contrasting results across different models with different parameter settings and analysis 911 

procedures, and across studies using limited historical datasets. 912 

 913 

Analysis of TC outflow found little change in the outflow temperature but a rising mean pressure outflow altitude that is 914 

located above the altitude of peak upper tropospheric warming. The near constancy of outflow temperatures limited  915 

thermodynamic efficiency changes with surface warming, and upper level temperature change mattered less than we originally 916 

thought. The FAT hypothesis appears to explain our findings well, and would limit thermodynamic efficiency change under 917 

changed upper-level stratification. Further work is needed to understand, at a process level, the extent of applicability of the 918 

FAT hypothesis for TCs. For tropical convection it has support from observational analysis (Xu et al., 2007) and convection-919 

resolving idealized numerical simulations (Kuang and Hartmann, 2007). Some additional supporting evidence for a FAT for 920 

TCs is provided by idealized cloud-resolving modelling (Khairoutdinov and Emanuel, 2013) and by analysis of TC cloud top 921 

temperatures in ADT-HURSAT data (Kossin, 2015). However, detecting trends in TC cloud top temperatures is complicated 922 

by a poleward trend in the latitude of LMI (Kossin, 2015). 923 

 924 

Increasing thermodynamic disequilibrium with warming may also explain the fastest temporal trends in intensity for the middle 925 

LMI quantiles. With warming, middle LMI quantile TCs are closing the gap with PI. The strongest storms, however, were 926 

already close to their PI, and weaker storms are more strongly limited by other environmental factors such as shear or dry air. 927 

Techniques to simulate weaker storms within the idealized modelling framework are needed to test this hypothesis.  928 

 929 

The magnitude of the simulated changes, even for extrapolated trends, is relatively small compared to observed trends in TC 930 

characteristics.  This suggests that environmental temperature changes contributed to some of the observed TC intensity 931 

change, but that other environmental factors dominated as the root causes, including, for example, changes in vertical wind 932 

shear, humidity, incipient disturbances, or internal asymmetries.  933 
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 950 

Extrapolated observational temperature trends resulted in weaker TC intensity trends relative to change profiles based on an 951 

ensemble of CMIP5 GCMs under the RCP 8.5 emission scenario.  Future extensions of this work could omit the GCM-based 952 

tropical upper warming maximum or stratospheric cooling to determine whether a more substantial change results relative to 953 

these exercises with the extrapolated observations. The use of CMIP6 trends would also be informative.  Future work could 954 

also start from a different base sounding, other than the Dunion (2011) North Atlantic moist tropical sounding.  It’s possible 955 

that different magnitude sensitivities between the historical data analysis and the idealized simulations could be due, in part, 956 

to our use of this single profile that allows all simulated storms to reach the highest observed intensities. Base soundings 957 

representative of the observed tropical storm and hurricane-strength storm environments may yield more nuanced sensitivity 958 

to environmental temperature change, given permitted variations in outflow altitude. Future work should also include tests 959 

with fully 3-D TC simulations; such simulations would include the effects of potentially important internal asymmetries and 960 

also allow examination of changes in intensification rate and timing. Finally, more comprehensive physical process studies are 961 

needed to interpret the empirical and idealized modelling findings reported here and work towards untangling the factors 962 

driving observed intensity changes.  963 

 964 

Appendix A 965 
Table A1: Description of namelist settings for axisymmetric CM1 ensemble simulations. 966 

member sfcmodel oceanmodel isftcflx radopt rterm ptype 

1 1 1 1 0 1 5 

2 2 2 2 0 1 5 

3 2 1 1 0 1 5 

4 2 1 2 0 1 5 

5 3 2 2 0 1 5 

6 3 1 1 0 1 5 

7 3 1 2 0 1 5 

8 3 2 2 2 0 3 

9 4 1 1 0 1 5 

10 1 1 1 1 0 5 

11 2 2 2 1 0 5 

12 2 1 1 1 0 5 

Deleted: Omission of the observed lower stratospheric cooling 967 
exerted relatively little influence on TC intensity in our simulations, 968 
consistent with our observational analysis. This is consistent with the 969 
GCM study by Vecchi et al. (2013). However, the simulated 970 
equilibrium TC intensity with the omission of stratospheric cooling 971 
did weaken, as expected, albeit slightly (Table 2). Axisymmetric 972 
simulations out to radiative- convective equilibrium by Ramsay 973 
(2013) showed stronger vortex intensity with stronger imposed 974 
lower stratospheric cooling rates. This was despite much of the 975 
outflow confined to the upper troposphere. We agree with Ramsay 976 
(2013) and Ferrara et al. (2017) that it is challenging to reconcile 977 
contrasting results across different models with different parameter 978 
settings and analysis procedures, and across studies using limited 979 
historical datasets.¶980 
¶981 
We hypothesized that observed tropical temperature profile changes 982 
also exert predictable influences on trends in the intensification rate 983 
of TCs. A preliminary analysis of observations finds historical trends 984 
in intensification characteristics (not shown). Specifically, the 985 
average onset time of rapid intensification now occurs significantly 986 
sooner (by 16 h) after the first reported track point than in the first 987 
half of our period of record (not shown). Emanuel (2017) notes that 988 
sooner earlier rapid intensification has important implications for 989 
watches, warnings, and predictability. Our idealized modelling setup 990 
did not allow us to pursue intensification due to possible 991 
contamination from model initialization and potentially important 992 
missing processes in the 2Dd dynamics. Suitable modelling 993 
frameworks need to be developed to test this hypothesis.¶994 
¶995 
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13 2 1 2 1 0 5 

14 6 1 1 1 0 5 

15 3 1 1 1 0 5 

16 6 1 2 1 0 3 

17 4 1 1 1 0 3 

18 2 2 2 2 0 3 

19 6 1 1 2 0 3 

20 4 1 1 2 0 3 

21 1 1 1 1 0 5 
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