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Abstract. Theory indicates that tropical cyclone intensity should respond to changes in the vertical temperature profile. 

While the sensitivity of tropical cyclone intensity to sea surface temperature is well understood, less is known about 15 

sensitivity to the temperature profile. In this paper, we combine historical data analysis and idealised modelling to explore 

the extent to which historical tropospheric warming and lower stratospheric cooling can explain observed trends in the 

tropical cyclone intensity distribution. Observations and modelling agree that historical global temperature profile changes 

coincide with higher lifetime maximum intensities. But observations suggest the response depends on the tropical cyclone 

intensity itself. Historical lower- and upper-tropospheric temperatures in hurricane environments have warmed significantly 20 

faster than the tropical mean. In addition, hurricane-strength storms have intensified at twice the rate of weaker storms per 

unit warming at the surface and at 300-hPa. Idealized simulations respond in the expected sense to various imposed changes 

in the temperature profile and agree with tropical cyclones operating as heat engines. Yet lower stratospheric temperature 

changes have little influence. Idealised modelling further shows an increasing altitude of the TC outflow but little change in 

outflow temperature.  This enables increased efficiency for strong tropical cyclones despite the warming upper troposphere. 25 

Observed sensitivities are generally larger than modelled sensitivities, suggesting that observed tropical cyclone intensity 

change responds to a combination of the temperature profile change and other environmental factors. 

 

Non-Technical Summary. Understanding how tropical cyclones (TCs) are changing is key for the protection of lives and 

livelihoods in vulnerable regions. We know that warm oceans generally favour TC activity. Less is known about the role of 30 

air temperature above the oceans and extending into the lower stratosphere. Our analysis of historical records and computer 

simulations suggests that TCs strengthen in response to historical temperature change while also being influenced by other 

environmental factors. 

 

1 Introduction 35 

Understanding how tropical cyclones (TCs) and their impacts respond to climate change is of critical scientific and societal 

importance (e.g., Knutson et al., 2020). However, TC response to environmental change is complex and multi-faceted.  Here, 

we use observations and idealized models to examine the TC response to changes in the environmental temperature profile. 

 

Historical global surface temperature trend analyses show significant warming since the mid 1970s, attributed to 40 

anthropogenic forcing (Meehl et al., 2004; 2012). Yet trends in the vertical thermal structure and their attribution are less 

well understood (O'Gorman and Singh, 2013; Prein et al., 2017). Since the mid 1970s most datasets show that the 

troposphere has warmed while the lower stratosphere has cooled (e.g., Thompson et al., 2012; Philipona et al., 2018). 

However, analysing these trends is particularly challenging in the global tropics because of sparse long-term historical 

temperature profile records and the potential for artificial trends driven by observing system changes (Thorne et al., 2011). 45 
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Indeed, Vecchi et al. (2013) showed marked differences in the magnitude of the thermal changes among a collection of 

observational and reanalysis datasets.  

 

Uncertainty in temperature trends also arises from the complexity of the driving mechanisms and their representation in 

reanalyses (Emanuel et al., 2013; Vecchi et al., 2013) and in general circulation models (GCMs). An historical warming 50 

maximum in the upper troposphere can be explained through moist adiabatic ascent above warming oceans and has been 

attributed to increasing greenhouse gas forcing (Santer et al., 2005; 2008). A shift in the moist adiabat corresponds to a 

larger warming aloft than at the surface. For the lower stratosphere, a strengthened Brewer-Dobson circulation has been 

proposed as a mechanism contributing to the cooling (Butchart, 2014). Here, cooling occurs through enhanced adiabatic 

cooling and reduced ozone concentration due to upwelling of ozone-poor tropospheric air. At the same time, observed step 55 

changes in cooling have been attributed to the volcanic eruptions of El Chichón in 1982 and Mt. Pinatubo in 1991 (Fujiwara 

et al., 2015). Ramaswamy et al. (2006) isolated the role of changes in ozone, carbon dioxide, aerosols, and solar radiation in 

observed lower stratospheric cooling, concluding that anthropogenic factors were the driver of overall cooling between the 

late 1970s and the early 2000s.  

 60 

The representation of these complex mechanisms differs among GCMs and may contribute to the wide range in the 

magnitude of GCM-simulated profile changes (Cordero and Forster, 2006; Santer et al., 2008; Gettelman et al., 2010; Hill 

and Lackmann, 2011; Hardiman et al., 2014). GCMs are generally unable to reproduce observed profile change at the 

uppermost tropospheric levels (Po-Chedley and Fu, 2012; Mitchell et al., 2013), though whether this is due to model or 

observational error remains unclear. This large spread among models and disagreement with observations may limit our 65 

ability to project tropical cyclone (TC) intensity. Emanuel et al. (2013) conclude that tropopause layer cooling contributed to 

increased TC potential intensity in the North Atlantic basin, and that improved process representation of profile changes in 

GCMs is critically needed to improve TC projections. 

 

As the thermal profile has changed, so has the distribution of global TC intensity (e.g., Kossin et al., 2013; Sobel et al., 70 

2016). A recent analysis of a homogeneous historical TC intensity record from 1979 to 2017 has revealed a statistically 

robust increase in global lifetime maximum intensity (Kossin et al., 2020). The observed intensity distribution has not simply 

shifted to higher intensities, but has become increasingly bimodal (Holland and Bruyère, 2014; Jewson and Lewis, 2020). 

 

These changes in the TC intensity distribution may be attributable to a variety of environmental and internal processes, 75 

including both natural and anthropogenic effects. Changes in vertical wind shear (Ting et al., 2019), humidity (Dai, 2006), 

sea-surface temperature (SST), environmental temperature profile, and the nature of incipient disturbances may all contribute 

to TC intensity change. It is also understood that the observational datasets used in these analyses have limitations (e.g., 

Landsea et al., 2006; Klotzbach and Landsea, 2015), although recent efforts have reduced these uncertainties (e.g., Knutson 
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et al., 2019; Kossin et al., 2020; Emanuel, 2021). TC intensity sensitivity to the underlying SST, or more accurately the 80 

thermal disequilibrium between the SST and the near surface atmosphere, is relatively well understood (Emanuel, 1987; 

Elsner et al., 2008; Strazzo et al., 2015). Global average TC intensity scales by 2.5% per degree Kelvin SST warming 

(Knutson et al., 2019). Yet the magnitude and mechanistic response of TC intensity to changes in the vertical profile of 

temperature are less well understood. 

 85 

A Carnot heat engine has been used to link TC intensity to the vertical temperature profile (Emanuel, 1986; 1991; 2006; 

Ramsay, 2013; Pauluis and Zhang, 2017). This maximum potential intensity (PI) theory suggests that maximum TC intensity 

changes in response to the engine’s efficiency - the temperature difference between the surface and the level of the TC 

outflow (e.g., Emanuel 1988; Holland 1997). Numerical experiments agree (Shen et al., 2000; Bryan and Rotunno, 2009a; 

Emanuel and Rotunno, 2011). In idealised axisymmetric simulations under radiative convective equilibrium, PI increased by 90 

about 1 ms-1 per degree of lower stratospheric cooling, and by about 2 ms-1 per degree of surface warming (Ramsay, 2013). 

While lower stratospheric cooling revs the Carnot engine by increasing thermodynamic efficiency and potential intensity, the 

warming maximum in the upper troposphere has the opposite effect and limits TC intensification associated with ocean 

warming (Shen et al., 2000; Hill and Lackmann, 2011; Tuleya et al., 2016). The spread in historical temperature trends 

across reanalysis datasets also results in a spread in PI trends (Emanuel et al., 2013). 95 

 

Yet the realized response of the TCs themselves may be quite different from the response of the PI. Idealized GCM 

simulations (Vecchi et al., 2013) did not show significant sensitivity of the TC intensity distribution to lower stratospheric 

cooling despite an increasing PI. The TC intensity distribution did, however, respond to temperature perturbations in the 

upper troposphere, corresponding with PI changes. Furthermore, the realized response of TCs appears to depend on the TC 100 

intensity itself. Indeed, the highest sensitivity to surface warming resides in the strongest storms (e.g., Elsner et al., 2008; 

Knutson et al., 2010). 

 

We hypothesize that observed tropical temperature profile changes exert predictable influences on TC intensity 

characteristics including intensification rate and maximum intensity. Furthermore, we explore whether historic temperature 105 

profile changes are sufficient to explain past trends in the TC intensity distribution. Our approach blends historical data 

analysis with idealized numerical modelling. Observational analyses bring together a global homogenized radiosonde 

temperature dataset with a homogeneous TC intensity record to minimize contamination by artificial trends. Naturally, 

observed trends in TC intensity are not due to changes in temperature alone, and respond to changes in other environmental 

factors. Our goal is to isolate the influence of temperature change on TC intensity.  We focus on a global-scale analysis over 110 

a 37-year historical period - scales at which TC intensity should be more strongly constrained by thermodynamic change 

than by other environmental or geographic factors (Deser et al., 2012). Idealized numerical modelling further isolates and 

quantifies the TC intensity response to observed trends and future temperature profile changes. 
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The next section describes the observation datasets and analysis procedures, and the numerical model experiments. Results 115 

of the observational analysis and idealized numerical model experiments are presented in Sect. 3. A synthesis and 

concluding discussion are provided in Sect. 4. 

2 Methods 

2.1 Historical temperature and tropical cyclone datasets 

We use multiple temperature and TC datasets to characterise historical trends and the relationships between TC intensity and 120 

thermal structure. Temperature data are compared across radiosonde soundings and two reanalysis datasets and related to 

two historical TC datasets.  

 

Global radiosonde data are obtained from the Radiosonde Observation Correction Using Reanalyses (RAOBCORE) v1.5.1, 

available on a 10° ´ 5° grid, 16 pressure levels and twice daily (Haimberger, 2007; Haimberger et al., 2012). RAOBCORE 125 

was developed to be suitable for climate applications and was created by applying a time-series homogenization to the 

Integrated Global Radiosonde Archive (IGRA; Durre et al., 2006). This procedure uses temperature differences between 

radiosonde observations and background forecasts from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) Re-Analysis (ERA-40, Uppala et al., 2005) to correct discontinuities tied to observing system changes and 

remove persistent biases. These corrections are particularly important for lower stratospheric temperatures where 130 

measurements are susceptible to radiation errors (Sherwood et al., 2005). Haimburger et al. (2008) showed that RAOBCORE 

compares favourably with satellite-derived estimates of temperature trends in the upper troposphere and lower stratosphere 

consistent with theoretical and model expectations. Sounding profiles are sufficiently numerous to characterise the thermal 

structure from the 925 hPa level up to 50 hPa. While sounding locations in TC genesis regions are sparse, their spatial 

representativeness for temperature scales with the large radius of deformation at low latitudes. In addition, we only use 135 

stations that have at least 70 % complete records over the period 1981 to 2017 and do not contain breakpoints. Breakpoints 

are detected following the methodology described in Prein and Heymsfield (2020). Briefly, four different breakpoint 

detection algorithms are applied and time series for which more than two algorithms identified a breaking point in the same 

year were excluded.  

 140 

The two reanalysis datasets analysed here, both produced by the ECMWF, are the Interim reanalysis (ERA-I; Dee et al., 

2011; accessed from European Centre for Medium-Range Weather Forecasts, 2009) and the more recent ERA5 (Hersbach et 

al., 2020; accessed from European Centre for Medium-Range Weather Forecasts, 2019). These reanalyses differ in important 

ways that may affect trends in the vertical temperature profile, including horizontal and vertical grid spacing, model physics, 
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data assimilation technique, and the data sources assimilated. The horizontal grid spacings are 79 km/TL255 (ERA-I) and 31 145 

km/TL639 (ERA5), and the numbers of vertical levels and vertical extent are 60 levels up to 10 hPa for ERA-I and 137 

levels up to 1 hPa for ERA5. 

 

ERA-I and ERA5 assimilate vast quantities of in situ, radiosonde, and remote sensing observations, and the observing 

systems change over time. This can lead to discontinuities in the simulated time series (Dee et al., 2011; Simmons et al., 150 

2014). ERA-I assimilates the RAOBCORE data and ERA5 assimilates radiosonde data that have been homogenized using a 

newer procedure that uses neighbouring stations rather than departure statistics alone. ERA5 contains a pronounced cold bias 

in the lower stratosphere from 2000 to 2006 due to the use of inappropriate background error covariances (Hersbach et al., 

2020; Simmons et al., 2020). This bias has been corrected in ERA5.1 (Simmons et al., 2020; accessed from European Centre 

for Medium-Range Weather Forecasts, 2020). For our analysis we join ERA5 and ERA5.1 by replacing ERA5 with ERA5.1 155 

for the years 2000 to 2006 and continue to refer to this joined dataset as ERA5.  

 

Observations of historical TCs are taken from two sources: The international best track archive for climate stewardship 

version 4 (IBTrACS, Knapp et al., 2010, downloaded on June 14, 2021) and a reanalysed intensity record provided by 

Kossin et al. (2020). The IBTrACS has formed the basis for many studies of TC variability and change. Here, we use USA 160 

agency data, which are largely derived from the National Hurricane Center’s HURricane DATa 2nd generation (HURDAT2) 

dataset and reports from the Joint Typhoon Warning Center. However, spatial and temporal variations in the instrumental 

observing system challenge the interpretation of TC variability and change, particularly in the early record (e.g., Landsea et 

al., 2006; Klotzbach and Landsea, 2015). Indeed, substantial differences across the reporting agencies (Knapp and Kruk, 

2010) can contaminate global climatologies (Schreck et al., 2014).  In response, Kossin et al. (2013) reanalysed the historical 165 

intensity record by applying an intensity algorithm (the advanced Dvorak Technique, ADT) to a homogenized geostationary 

satellite dataset (the Hurricane Satellite record, HURSAT). The resulting ADT-HURSAT dataset was recently extended to 

cover the period 1979 to 2017 (Kossin et al., 2020). The key advantage of ADT-HURSAT compared to IBTrACS is its 

consistency in time and space which makes it suitable for trend analysis, especially from 1981 onwards. Both TC datasets 

are included here to demonstrate sensitivity of TC intensity change to artifacts of the datasets, and to connect results back to 170 

prior work. 

 

The 37-year observational analysis period of 1981 to 2017 is chosen as a balance between data availability and to roughly 

coincide with the start of the recent warming trend (e.g., Rahmstorf et al., 2017, their Fig. 2) and its influence on global TC 

behaviour (Holland and Bruyère, 2014). Where possible, we use minimum central sea level pressure (Pmin) as a measure of 175 

storm intensity, though for some analyses we also use maximum 10 m wind speeds (Vmax).  The advantages of Pmin over Vmax 

are discussed by Klotzbach et al. (2020), including a significantly higher correlation with normalized TC damage. 
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2.2 Idealized model experiments 

We hypothesize that observed tropical temperature profile changes exert predictable influences on trends in the 

intensification rate and maximum intensity of TCs. As discussed above, previous studies have explored the sensitivity of TC 180 

intensity to both the tropical upper-tropospheric warming maximum and lower stratospheric cooling. From the conceptual 

framework of a Carnot heat engine, an upper tropospheric warming maximum in the ambient TC environment reduces the 

thermodynamic efficiency of a TC by warming the outflow temperature, especially for weaker TCs with lower altitude 

outflow (rising, saturated air parcels experience a lower equilibrium level).  Lower stratospheric cooling, on the other hand, 

could increase thermodynamic efficiency, owing to colder outflow temperatures, particularly for stronger TCs with higher 185 

altitude outflow (this would increase the altitude of a parcel’s equilibrium level). We use ensembles of simulations from an 

axisymmetric model to test these predictions, and to quantify the magnitude of these influences on TC intensity. 

 

The axisymmetric TC capability of Cloud Model 1 (CM1, Bryan and Fritsch, 2002; Bryan and Rotunno, 2009a) is well 

suited for our experiments.  The limitations of axisymmetric simulations are outweighed by the reduced computational 190 

expense, which allows us to run ensembles of simulations. Axisymmetric models have proven useful in the evaluation of TC 

maximum intensity (e.g., Rotunno and Emanuel, 1987; Bryan and Rotunno, 2009a; Hakim, 2011; Rousseau-Rizzi and 

Emanuel, 2019). We acknowledge that some three-dimensional effects, such as vortex Rossby waves, are known to be 

important to TC intensity (e.g., Wang, 2002; Gentry and Lackmann, 2010; Persing et al., 2013). There is no reason to believe 

that these factors would vary substantially in direct response to changes in the environmental temperature profile, but they 195 

could vary with storm intensity. Thus, the response of axisymmetric vortices to changes in the thermodynamic profile is 

deemed sufficient to test our hypotheses, but fully 3-dimensional simulations are needed to investigate this limitation.  The 

axisymmetric domain in our simulations features 4 km grid length, a model top of 25 km (59 vertical levels), and a radial 

domain length of 768 km. The horizontal mixing length in this version of CM1 is a linear function of surface pressure, 

varying from 100 m at 1015 hPa to 1000 m at 900 hPa (Bryan, 2012). 200 

 

We initialize CM1 (version r19.10) with the Dunion (2011) “moist tropical” sounding, derived from western North Atlantic 

rawinsonde data from 1995 to 2002 (Fig. 1a). The model is initialized with a weak vortex (~12 ms-1 maximum azimuthal 

velocity in gradient thermal wind balance) like that in the control simulation of Rotunno and Emanuel (1987). A potentially 

important difference between our experimental design and that of Rotunno and Emanuel (1987) is that our initial conditions 205 

are not in a state of radiative-convective equilibrium. This is to assess the influence of temperature profile differences more 

directly during the TC intensification stage, although we acknowledge that the TC begins to modify the environment 

immediately, and we have not eliminated this change in our simulations. Our present-day simulations feature an SST of 

28°C, close to the value obtained by lowering the 1000-hPa air temperature in the Dunion moist-tropical sounding 

adiabatically to the surface (~1015 hPa). Bryan and Rotunno (2009b, p. 3046) discuss their use of 28 °C SST in the control 210 
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simulation of Bryan and Rotunno (2009a), citing Cione et al. (2000) for observational support for air-sea temperature 

differences.   

 

We ran the simulations for 8 days, which allowed the idealized TCs to intensify to a maximum and then equilibrate to a 

quasi-steady-state intensity. We recognize that much longer integrations have been used in several equilibrium studies (e.g., 215 

Hakim, 2011; Ramsay, 2013), but TC modification of the environment in longer integrations would limit our ability to detect 

environmental influences. Given our goal of examining TC responses to changes in the environmental temperature profile, 

we focus on the equilibrium state rather than the peak core strength (Rousseau-Rizzi et al., 2021), though we present both. 

Owing to the sensitivity of simulated TC intensity to various model parameterization choices, we ran an ensemble of 21 

simulations for each environmental profile, varying the turbulence, radiation, sea surface and microphysical 220 

parameterizations (Tables 1, and A1). Despite temporal variability, the ensemble mean intensity appears close to the 

analytical value predicted by the Emanuel (1988) maximum potential intensity (E-PI, Table 2); we recognize that 

considerable uncertainty also exists in the E-PI values owing to various choices that go into that calculation. 

 
Table 1: CM1 model physics ensemble namelist choices for the surface model (sfcmodel), ocean model (oceanmodel), surface 225 
exchange coefficients (isftcflx), atmospheric radiation (radopt), relaxation term that mimics atmospheric radiation (rterm), and 

explicit moisture scheme (ptype); see Table A1 for specific settings for each of the 21 ensemble members. 

parameter description 

sfcmodel CM1 (1), “WRF” (2), “revised WRF” (3), GFDL (4), MYNN (6) 

oceanmodel constant SST (1), ocean mixed layer model (2) 

isftcflx Donelan (1), or Donelan/Garratt for Cd and Ce (2) 

radopt simple (0, with rterm = 1), NASA (1), or RRTMG (2) 

ptype Morrison (5) or Thompson (3) 

 

 
Table 2:  Ensemble experiments and maximum intensity (i.e., Pmin); values are for time-filtered time series.  For three right 230 
columns, numbers in parentheses represents standard deviation. A Butterworth low-pass time filter was applied to remove high-

frequency fluctuations. Equilibrium period is for simulation hours 150 to 193; “complex” denotes the 13-member ensemble subset 

with complex radiation parameterization. Settings for the Emanuel potential intensity (E-PI) calculation, based on the pyPI 

software package (Gilford, 2021), include dissipative heating (Bister and Emanuel, 1998), an enthalpy-drag coefficient ratio of 0.9, 

and a wind reduction coefficient of 0.9. 235 
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Experiment SST E-PI Simulation Pmin 

(full ensemble) 

Simulation Pmin 

(complex)  

Equilibrium Pmin 

(complex) 

Present-day 301.2 K 

(28.0 °C) 

923.4 hPa 

(74.7 ms-1) 

917.8 hPa 

(10.8 hPa) 

913.3 hPa 

(8.7 hPa) 

 

920.5 hPa 

(10.9 hPa) 

 

Mid-Century 301.8 K 

(28.6 °C) 

920.1 hPa 

(75.7 ms-1) 

913.7 hPa 

(12.0 hPa) 

912.1 hPa 

(9.8 hPa) 

917.2 hPa 

(13.7 hPa) 

 

End of 

Century 

302.4 K 

(29.2 °C) 

917.1 hPa 

(76.4 ms-1) 

907.0 hPa 

(10.3 hPa) 

906.0 hPa 

(8.5 hPa) 

913.3 hPa 

(10.5 hPa) 

 

No upper 

warming max 

302.4 K 

(29.2 °C) 

916.4 hPa 

(76.4 ms-1) 

909.0 hPa 

(11.6 hPa) 

906.8 hPa 

(10.5 hPa) 

911.0 hPa 

(13.7 hPa) 

 

No stratos. 

cooling 

302.4 K 

(29.2 °C) 

917.1 hPa 

(76.4 ms-1) 

909.5 hPa 

(12.0 hPa) 

906.5 hPa 

(8.8 hPa) 

916.2 hPa 

(13.3 hPa) 

 

GCM  

RCP 8.5 

304.5 K 

(31.3 °C) 

910.9 hPa 

(77.5 ms-1) 

903.5 hPa 

(12.8 hPa) 

901.0 hPa 

(10.2 hPa) 

908.1 hPa 

(12.9 hPa) 

 

 

To explore the sensitivity of simulated TC intensity to changes in the environmental thermodynamic profile, we ran five 

additional 21-member ensemble experiments (Table 2). These were primarily designed to explore TC intensity response to 

extrapolated observational trends based on RAOBCORE data discussed in Sect. 2.1 and presented in Sect. 3.1. The “mid-

century” experiment corresponds to conditions approximately in the year 2050 if current trends are extrapolated, and the 240 

“end-of-century” experiment applies changes extrapolated over a century-long period.  Two additional experiments allow us 

to isolate the sensitivity of TC intensity to specific changes observed in tropical temperature profiles. The “no upper 

warming maximum” ensemble is based on a temperature change profile that is nearly constant with height in the troposphere 

(Fig. 1b), and the “no stratospheric cooling” simulations explore TC response to a temperature change profile that eliminates 

lower stratospheric cooling (Fig. 1b). Recognizing the limitations in extrapolation of current observational trends, we ran an 245 
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additional ensemble experiment based on a multi-model mean of IPCC AR5 GCM change profiles, for end-of-century 

conditions under the RCP8.5 scenario (see Jung and Lackmann, 2019, their Table 2). 

 

Based on the thermodynamic and Carnot efficiency considerations mentioned in Sect. 1 and the E-PI calculations shown in 

Table 2, we predict a priori that the present-day simulation would produce the weakest ensemble-mean TC, followed in 250 

order of increasing intensity by the mid-century and end-of-century simulations. We further expect that simulations omitting 

the tropical upper warming maximum would be slightly stronger than the default end-of-century ensemble, and that the 

ensemble removing stratospheric cooling would be slightly weaker in intensity relative to the default end-of-century run. We 

expect the GCM-based ensemble to yield the strongest storm, given significantly greater warming. Of course, the numerical 

simulations are not constrained to agree with these theoretically motivated predictions. 255 

 

To further test our hypotheses relating changes in TC intensity to environmental temperature changes, we computed 

thermodynamic efficiency following Emanuel (1987; 1988) and Gilford (2021). Given the availability of high-resolution 

numerical simulations, we also computed the simulated TC outflow temperature directly, defined as the temperature of air 

with outward radial flow exceeding 1.0 ms-1 and cloud ice mixing ratio exceeding 10-5 kgkg-1. Experimentation with these 260 

threshold values demonstrates that this setting works well to represent the temperature of the cirrostratus outflow layer, 

though the ensemble average values obtained were not highly sensitive to changes in the radial velocity or cloud ice mixing 

ratio thresholds (not shown). In our analysis of derived outflow temperatures, we noted substantial differences between 

simulations conducted with “complex” versus “simple” representation of radiation and have stratified the results 

accordingly. 265 
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Figure 1: (a) Dunion (2011) Moist Tropical sounding; (b) Temperature change profiles extrapolated from hurricane-season 
tropical trends in the RAOBCORE database; (c) Corresponding tropical temperature change profile derived from an average of 
21 CMIP5 GCMs under the RCP8.5 emission scenario.  Note the differences in vertical axis ranges between the panels. 270 

3 Results 

3.1 Historical temperature and tropical cyclone observations 

To begin exploring whether observed temperature profile changes are sufficient to explain observed trends in the TC 

intensity distribution, we start with an analysis of historical data. Historical summertime tropical temperature profile trends 

are compared across RAOBCORE, ERA5 and ERA-I in Fig. 2a. The known upper tropospheric warming maximum and 275 

lower stratospheric cooling are present across all three datasets but vary significantly in magnitude and vertical structure. As 

expected, ERA-I and RAOBCORE trend profiles agree well with each other (since ERA-I assimilates RAOBCORE data) 

with peak warming located at the 300 hPa level. The ERA5 exhibits 30 % weaker peak warming than RAOBCORE and 

locates peak warming higher in altitude, at 175 hPa. Cooling rates in the lower stratosphere are strongest in ERA5, 

reportedly due to the assimilation of radiosonde data adjusted by the RICH method (Haimberger et al., 2012; Hersbach et al., 280 

2020). Simmons et al. (2014) suggest that the weaker cooling trend in ERA‐I may be related to a cold bias in the lower 

stratosphere which persisted through the early 2000s and then was corrected through a new assimilation of radio occultation 

data.  
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Figure 2: Historical tropical temperature profiles averaged over 0° to 20°N for Aug-Sept-Oct and -20°S to 0° for Dec-Jan-Feb 285 
using RAOBCORE, ERA5 and ERA-I shown as a) the linear trend over the period 1981 to2017 (K per decade), and b) departures 
of decadal averages from the 1981 to 2017 average (K) for ERA5 and ERA-I only. Decadal averages are calculated over the 
periods 1981 to 1989, 1990 to 1999, 2000 to 2009, and 2010 to 2017. c) as in a) for ERA5 and including trends for proximal 
environments for tropical storms (ADT-HURSAT LMI less than 33 ms-1) and for hurricane strength TCs (ADT-HURSAT LMI 
greater or equal to 33 ms-1). Proximal environments are defined as averages within a 0.5° radius of the LMI locations two days 290 
before the TC arrives at the location using ERA5. Shading and dashed lines in a) and c) indicate plus/minus twice the standard 
error of the trend lines, approximating the 95 % confidence interval. 
 

We next examine whether the trend is stable across the decades, or whether the change concentrates in a particular decade. 

The rate of change in the temperature profile is roughly constant across the four decades throughout the troposphere (Fig. 295 

2b). But decadal changes in the lower stratosphere are less stable, reflecting the known step changes in temperature linked to 

volcanic eruptions (Ramaswamy et al., 2006).  

 

Figure 2c shows that temperature trends proximal to strong TCs are significantly different from trends for the tropics as a 

whole. Proximal is defined here as an average within 0.5° of the LMI locations (according to ADT-HURSAT) two days 300 

before a TC arrives at the location. The sample sizes are 2174 tropical storm environments and 1774 hurricane environments. 

Strong TC environments have warmed significantly faster than the tropical mean environment below the 850-hPa level, 

warming twice as fast. The peak warming in the upper troposphere is correspondingly stronger and located at a higher level. 

The middle troposphere warms more slowly, but not significantly so. Trends also differ between proximal environments for 

tropical storms and hurricane strength storms, but not significantly so. Tropical storm environments also do not trend 305 

significantly differently from the tropical mean environment. 

 

Our purpose here is not to comment on which temperature dataset produces the most accurate trends, but rather to document 

that the choice of temperature dataset matters for the magnitude and structure of the temperature trend. We also update 

previous work (Emanuel et al., 2013; Vecchi et al., 2013) that compared across reanalysis datasets by including the more 310 

recent ERA5 combined with ERA5.1. By extension, analysed relationships between TC intensity trends and temperature 

profile trends may also vary by choice of temperature dataset. Later in this section we make links between temperature 

trends and TC intensity trends. This requires a temperature dataset with globally uniform coverage. We choose the ERA5 

dataset for this purpose given its higher spatial resolution and newer data assimilation procedures compared to ERA-I. We 

next turn our attention to the changing TC intensity distribution. 315 

 

At the same time as the global tropical temperature profile has changed, so too has the distribution of global TC intensity. 

Figure 3a,b shows TC intensity distributions by historical decade in both the IBTrACS and ADT-HURSAT datasets. First, 

we first notice the different shaped distributions between IBTrACS and ADT-HURSDAT. Kossin et al. (2020) explain that 

cirrus-obscured TC eyes can cause underestimation of lifetime maximum intensity (LMI) at around 33 ms-1. It’s likely that 320 

https://doi.org/10.5194/wcd-2021-83
Preprint. Discussion started: 4 January 2022
c© Author(s) 2022. CC BY 4.0 License.



13 
 

this dataset therefore over-reports LMI values less than 33 ms-1, with higher LMI only reported if the algorithm locks onto a 

clearing eye signature as TCs intensify. ADT-HURSAT therefore sacrifices storm-level accuracy for improved long-term 

statistics. 

 
Figure 3: a,b) Distributions of global TC LMI (lifetime maximum 1-minute sustained wind speed at 10 m above the surface, ms-1) 325 
for the period 1981 to 2017 split by historical decade using IBTrACS and ADT-HURSAT. The exact years for each decadal period 
are 1981 to 1989, 1990 to 1999, 2000 to 2009, and 2010 to 2017. Kernel density is estimated using Gaussian smoothing kernels with 
a standard deviation of 5 ms-1. Panel b) provides a close-up view of the portion of panel a) outlined by the grey dashed line. 
 

The well-established bi-modal distribution is present in both datasets, and both reproduce the known result of an increasing 330 

proportion of the strongest storms over time (e.g., Elsner et al., 2008; Kossin et al., 2020). We also reproduce the stronger 

trends in IBTrACS than ADT-HURSAT. For the proportion of major hurricanes (category 3 and higher on the Saffir-

Simpson scale), Kossin et al. (2020) find the increase in ADT-HURSAT is about half that in IBTrACS and suggest that half 

the trend in IBTrACS is attributable to changes in observing systems. When considering the proportion of category 4 and 5 

storms, we find even larger discrepancies. In IBTrACS, the proportion of category 4 and 5 storms increases from 11.3 % in 335 

the 1980s to 20.9 % in the 2010s; a factor 1.85 increase. For ADT-HURSAT, the proportion increases from 14.1 % in the 

1980s to 17.7 % in the 2010s; a factor of only 1.26, and a rate approximately 3 times lower than in IBTrACS. Our finding 

here is consistent with the greater impact of observing system change for the strongest storms (Kossin et al., 2020). 

Interestingly, we also find that IBTrACS produces more than half the change between the first two decades (1980s to the 

1990s), whereas ADT-HURSDAT produces more than half the change between the final two decades (2000s to the 2010s). 340 
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Our purpose in reproducing and expanding upon known trends and discrepancies among datasets is to show that the choice 

of TC dataset matters for intensity trend magnitudes. The choice may be particularly important for trend analyses that subset 

trends by TC intensity.  

 

We now begin to explore statistical linkages between the changing TC intensity and temperature profiles. We use quantile 345 

regression models to explore how the strength of the statistical relationship between LMI and environmental temperature 

varies by storm intensity, following the approach used in Elsner et al. (2008) and Kossin et al. (2013). Our quantile 

regression models specify how the LMI quantile changes with variation in temperature. This allows us to identify whether 

relationships with the temperature profile differ between strong and weak storms. We later compare these assessments to 

those derived from our numerical simulations. 350 

 

We start by quantifying temporal trends in LMI to link back to existing work and provide a starting point from which to 

explore trends with respect to temperature. When considering all TCs (Fig. 4a), only those exceeding hurricane strength (>33 

ms-1) show intensification, but trends are not significantly different from zero. Kossin et al. (2020) report that quantile 

regression can be highly sensitive to the range of the data. When considering only hurricane strength storms (Fig. 4b) we 355 

found that intensification is significantly different from zero, peaking at 3 ms-1 per decade for a hurricane quantile of 0.4. 

These results reproduce those of Kossin et al. (2020). 

 

We next explore how these trends in LMI quantiles compare to trends in the theoretical maximum potential intensity, to 

determine how strong vs. weak storms have kept pace with trends in their PI. The theoretical maximum potential intensity is 360 

calculated using E-PI (Emanuel, 1988) on thermodynamic profiles from ERA5 data proximal to individual TCs at the time of 

LMI. The linear trend in mean E-PI is 1.2 ms-1 per decade for locations of all TCs and 0.9 ms-1 per decade for locations of 

hurricane strength TCs only. Given that tropical storm strength TCs show no temporal trend, they have not kept pace with 

their rising E-PI. But hurricane strength storms exhibit super-E-PI trends and have therefore closed the gap between realized 

and maximum potential intensity. 365 
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Figure 4: Trends in global LMI quantiles using ADT-HURSAT over the period 1981 to 2017. a) temporal trends for all TCs, b) 

temporal trends for hurricane strength (>33 ms-1) TCs only, c) trends with SST for all TCs, d) trends with temperature at the 300 

hPa level (T300) for all TCs, and e) trends with temperature at 50 hPa (T50) for all TCs. Quantiles vary between 0.025 and 0.0975 370 
with interval 0.05. The 95 % confidence interval (grey shading) is calculated from bootstrapping with 200 replications. The grey 

vertical dashed lines are reference lines indicating hurricane category 1 intensity. The slope of the E-PI trend line is shown in 

horizontal red dashed lines in a) and b). E-PI is calculated using LMI-proximal data. The second x-axis along the top of each panel 

shows the LMI values corresponding to the LMI quantiles. In b) the second x-axis starts at 33 ms-1 (by definition) and remains at 

33 ms-1 until the 0.2 quantile. R code is adapted from Elsner and Jagger (2013) available at https://rpubs.com/jelsner/5342. 375 

 

Figures 4c,d,e show relationships between LMI quantiles over all TCs and SST, temperature at the 300 hPa level (T300) and 

temperature at the 50 hPa level (T50). As before for the calculation of E-PI, representative environmental temperatures are 
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obtained using LMI proximal values. In general, we find large and statistically significant relationships. Intensity has 

increased significantly with warming SSTs almost universally across LMI quantiles, but with a markedly different response 380 

between hurricane strength storms and weaker storms. Tropical storm strength quantiles have increased by approximately 

0.6 ms-1 per K, whereas the rate rises rapidly with LMI quantiles above hurricane category 1 strength, reaching a maximum 

of 2.6 ms-1 per K at the highest quantiles. This is markedly different behaviour from the temporal trends where the higher 

rates are located at the middle quantiles. We also note the dip in the trend at quantiles close to about 33 ms-1. These may not 

be reliable because it coincides with the intensity at which the ADT-HURSAT determinations can be influenced by cirrus-385 

obscured eyes.  

 

The response of LMI quantiles to T300 is qualitatively similar to the response to SST but trends plateau for the highest 

quantiles. This similarity may be expected given the strong correlation between proximal SST and proximal T300 (R = 

0.78). The reduced rates of change for the highest quantiles may also be expected given the larger change in upper 390 

tropospheric temperature per unit change in SST. As before for SST, hurricane strength TCs exhibit markedly different 

behaviour to weaker storms: They intensify with T300 warming at approximately twice the rate of weaker storms.  

 

The response of LMI quantiles to T50 temperature (Fig. 4c) shows increasing intensity with cooling across most LMI 

quantiles but is statistically significant for tropical storm strength storms only. We therefore do not find a significant 395 

relationship between trends in hurricane intensity and lower stratosphere temperature. This is consistent with the GCM study 

by Vecchi et al. (2013) but inconsistent with idealized simulations by Ramsay (2013). 

 

In summary, our analysis of historical records finds that hurricane strength storms exhibit markedly different behaviour to 

weaker storms in environments of changing temperature profile. Hurricane strength storm intensity increases at twice the 400 

rate or more compared to weaker storms within environments of sea surface temperature warming. Hurricane strength storm 

intensity also increases at twice the rate compared to that of weaker storms in environments of upper tropospheric warming. 

Despite upper warming having a limited correlation with TC intensity, this result is perhaps unsurprising given the strong 

correlation between SST and T300 (not shown). The response of hurricane strength storms within environments of lower 

stratospheric cooling was mixed and did not reach statistical significance.  405 

3.2 Idealized model experiments 

Towards the goal of isolating and quantifying the effects of temperature profile changes on TC intensity, we turn to idealized 

simulations which are free from other changes.  If the results of these simulations agree with expectation, we can be more 

confident in attributing observed TC intensity trends to temperature profile changes, which are perhaps more reliably 

projected by GCMs.  On the other hand, if the idealized simulations indicate TC intensity trends that differ markedly from 410 
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observations, then we can be more confident that other environmental changes are dominant in driving the observed changes. 

As discussed in Sect. 2.2, numerical simulations were conducted with the CM1 model in an axisymmetric TC configuration.  

 

The 21-member control (present climate) ensemble features an initial period of slightly weakening TC intensity, followed by 

steady vortex intensification between simulation hours 12 and 90 (Fig. 5).  Considerable ensemble spread develops by hour 415 

50, with central pressure values ranging from less than 900 hPa to nearly 960 hPa at hour 100. The simulated ensemble mean 

TC minimum sea level pressure attained a minimum (maximum intensity) around hour 130, followed by slight weakening 

and quasi-steady ensemble mean intensity until the end of the simulation. Simulations using a simple Newtonian cooling 

radiation parameterization generally resulted in weaker TCs (blue lines in Fig. 5), motivating use of an ensemble subset 

consisting of the 13 members using more complex radiation parameterizations. The complex-radiation subset features 420 

reduced ensemble spread, and a lower ensemble-mean central pressure (Table 2). The intensification phase of TCs in the 

complex radiation members consistently begins earlier in the simulation relative to the simple-radiation subset; for instance, 

the time required for Pmin to reach 960 hPa is nearly 24 hours faster for the complex radiation members (Fig. 5). We 

evaluate both the maximum “core” ensemble mean intensity and the steady period at the end of the simulations, consistent 

with “equilibrium intensity” in the nomenclature of Rousseau-Rizzi et al. (2021).  The core intensity corresponds to the LMI.  425 

 
Figure 5: CM1 time series of axisymmetric TC minimum central pressure (Pa) for the default present-day ensemble based on the 
Dunion moist tropical sounding, split by members with complex- and simple radiation. 
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For the additional experiments, time series of ensemble-mean maximum near-surface wind speed and minimum central 430 

pressure sort out precisely as expected based on theoretical predictions: The present-day simulation features the weakest 

ensemble-mean TC, while the end-of-century simulations are all stronger, with the mid-century ensemble falling between 

(Fig. 6, Table 2). This overall trend matches the E-PI calculations in a relative sense (Table 2). One notable difference is the 

removal of the stratospheric cooling, which had no impact on E-PI but weakened the simulated storm slightly. The GCM-

modified end-of-century environment yields the greatest intensity, with filtered ensemble-mean Pmin values approaching 900 435 

hPa in the complex-radiation ensemble subset (Fig. 6a).  This is consistent with the fact that future changes under the CMIP5 

RCP8.5 scenario exceed that due to extrapolation of current observed trends (compare purple and red curves in Fig. 6a, and 

abscissa values in Figs. 1b,c). In all of the simulations, the ensemble mean Pmin values were lower than the E-PI calculations, 

though this difference was reduced for the equilibrium period Pmin values. Note that there is uncertainty in the E-PI 

calculation owing to several choices in parameter settings, as is the case with the CM1 model. 440 

 

Each ensemble experiment exhibits considerable variability, and the ensemble standard deviations are generally larger than 

the differences in ensemble mean between the experiments (Fig. 6b, Table 2). That the relative ranking of the experimental 

ensemble mean intensity matches expectation from theory is notable, but the large ensemble variability provides context 

regarding statistical robustness, or lack thereof. While we refrain from a dichotomous declaration of “statistically 445 

significant” or not (e.g., Amrhein et al., 2019; Wasserstein et al., 2019), we recognize that the differences between the 

experiments are “small” in this sense.  Inspection of the individual ensemble experiments demonstrates that the relative 

intensity of the different ensemble members exhibits considerable consistency, motivating use of a Wilcoxon signed-rank 

test (Wilcoxon 1945), appropriate for paired samples (Fig. 6b).  Except for the mid-century experiment, small p-values 

relative to the present-day simulation provide more confidence in the significance of the results relative to what comparison 450 

to the overall ensemble mean suggests (top labels in Fig. 6b). Comparison of the end-of-century with the no-upper-warming 

ensemble yields a signed-rank p-value of 0.13 and compared with the no-stratospheric-cooling ensemble value of 0.29 (not 

shown). 

 

 455 
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Figure 6: (a) Time series of CM1 ensemble mean minimum sea level pressure (Pa) for present-day simulations with complex 
radiation parameterization; experiments as indicated in legend at upper right.  Ensemble mean time series have been smoothed 
with a Butterworth filter to remove high-frequency fluctuations. (b) Box plot showing distribution of average equilibrium period 
minimum central pressure over the 13 complex radiation ensemble members.  Mean values are shown as green triangles, p-values 460 
from a Wilcoxon paired rank-sum test shown at top for each experiment versus present-climate. 
 

While the smoothed, ensemble mean changes are highly consistent with theoretical expectations, neither the changes 

predicted by E-PI theory nor those resulting from the numerical simulations are dramatic in terms of Pmin. For extrapolations 

of current RAOBCORE trends, the end-of-century ensemble mean is characterized by Pmin values that are approximately 10 465 

hPa lower than for the present-day ensemble.  That is not to say that these intensity increases are insignificant, however. 

Changes in the GCM-modified environment under the RCP8.5 scenario exhibit the strongest changes in ensemble-mean Pmin, 

approximately 12 hPa lower. The strengthening seen in the extrapolated RAOBCORE experiments is consistent with that 

reported for a 2 K change by Knutson et al. (2020), while the GCM experiment change, accompanied by an SST warming in 

excess of 3 K, is somewhat less than what would be anticipated from the Knutson et al. (2020) review.  470 

 

The consistency between the CM1 simulation results and the theoretical E-PI intensity calculations suggests that 

interpretation of the simulated TC responses to environmental change is consistent with the concept of a Carnot heat engine 

(e.g., Emanuel, 1988; 1991).  Because we use Pmin to measure storm intensity, we are not concerned with supergradient wind 

speeds as analysed by Hakim (2011) and Smith et al. (2008).  Our hypothesis in this analysis is that in the quiescent (un-475 

sheared) axisymmetric CM1 environment, the TC response to changes in the environmental temperature profile will be 

consistent with PI theory and the concept of thermodynamic engines. These idealized simulations provide an estimate of the 

expected effect of such changes on TC characteristics, allowing us to relate the simulation responses back to the 

observational TC statistics presented in Sect. 3.1. 

 480 
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We compute the temperature of cloudy, outflowing air in the upper troposphere for each ensemble member in each 

experiment, and use this information in conjunction with SST to compute the thermodynamic efficiency (see Sect. 2.2) 

according to Eq. (1):  

𝐸𝑓𝑓 = !!"	$	%!"#
%!"#

 .            (1) 

The outflow temperature is remarkably similar between the different experiments (Table 3). While the warmest outflow is in 485 

the GCM-modified experiment, as expected, this does not reach statistical significance. The similarity in outflow 

temperatures is consistent with the Fixed Anvil Temperature (FAT) hypothesis (Hartmann and Larson, 2002). The FAT 

hypothesis argues that the environmental cooling rate is largely governed by temperature. This follows from the saturation 

vapor pressure dependence on temperature via the Clausius-Clapeyron relation. The temperature at which cooling rates 

rapidly decrease with height (and therefore also the temperature of the outflow) should remain approximately constant. 490 

Surface warming therefore raises the altitude of the outflow but has less effect on outflow temperature. In agreement, we 

find the average pressure altitude of the outflow exhibits considerable difference among the experiments, with the present 

day ensemble showing the lowest outflow altitude, and the GCM experiment the highest (~190 hPa, Table 3). Although the 

differences are small relative to the ensemble standard deviation, the no stratospheric cooling and no upper warming 

maximum experiments exhibit the expected changes in outflow pressure.  Interestingly, the average outflow pressure 495 

generally reflects an altitude above the upper warming maximum, especially for the stronger TCs in the GCM ensemble.  

 
Table 3:  Ensemble mean outflow temperature, pressure, and thermodynamic efficiency computations for the 13-member 
complex-radiation ensemble subset; radial wind threshold of 1.0 ms-1 and cloud ice threshold of 10-5 kgkg-1.  Ensemble standard 
deviation (SD) is shown for outflow temperature and pressure. Values apply to the “equilibrium” time window of the simulations, 500 
hours 150 to 192. 

Experiment Efficiency SST (K)  T outflow / SD (K) P outflow / SD (hPa) 

Present-day 0.3429 301.15 224.25 / 2.73 216.88 / 14.89 

Mid-Century 0.3459 301.77 224.22 / 3.31 211.92 / 17.42 

End of Century 0.3486 302.39 224.22 / 3.45 207.34 / 17.40 

No upper warming max 0.3495 302.39 224.08 / 3.11 205.87 / 15.70 

No stratos. cooling 0.3465 302.39 224.57 / 3.20 208.05 / 17.03 

GCM RCP 8.5 0.3535 304.46 224.95 / 3.02 190.59 / 15.11 
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For the GCM experiment, the slightly warmer outflow temperature is more than compensated by the increased SST, 

resulting in the greatest thermodynamic efficiency among the experiments. The GCM experiment also produces the lowest 

Pmin (Table 2). In fact, the numerical simulation experiments ranked by intensity match exactly the ranking in 505 

thermodynamic efficiency (Tables 2 and 3). The differences in thermodynamic efficiency between the ensemble members 

are small in magnitude, but the consistency between these changes and the relative Pmin are consistent with expectation, 

lending confidence to this interpretation. 

4 Concluding Discussion 

In a quiescent environment, theory indicates that TC intensities should exhibit considerable sensitivity to changes in the 510 

temperature profile, from the sea-surface up into the lower stratosphere (Emanuel, 1991; Kieu and Zhang, 2018; Tao et al., 

2020). In this paper, we explored whether observed temperature profile changes are sufficient to explain observed trends in 

the TC intensity distribution. To do so we worked to isolate and quantify the response of TC intensity to observed trends in 

environmental temperature using a combination of historical data analysis and idealized numerical modelling. By 

establishing the linkage between temperature profile changes and TC intensity, we aimed to strengthen understanding and 515 

improve interpretation of observed and emerging trends in the TC intensity distribution. 

 

Our historical data analysis focused on global scales spanning four decades to emphasise the scales where thermodynamic 

change is large and circulation change is minimized. Tropical storm strength intensities show no temporal trend and have 

therefore not kept pace with rising PI. Hurricane strength storms, however, exhibit significant temporal trends that reach 520 

super-PI rates for some intensity quantiles. Storms at these quantiles have therefore closed the gap between realized and 

maximum potential intensity. This is consistent with our finding that hurricane environments have warmed faster at lower 

and upper levels than the tropical mean environment.  

 

In changing our frame of reference from time to temperature, we again found markedly different sensitivities between 525 

tropical storms and hurricane strength storms. Hurricane strength storms intensified at up to four times the rate of tropical 

storms per unit increase in surface and upper tropospheric temperature. The response of storms within environments of lower 

stratospheric cooling was mixed and did not reach statistical significance. The differing trend magnitudes among commonly 

used historical temperature and TC intensity datasets challenges our ability to understand relationships using historical data 

alone.  530 

 

We then turned to idealized modelling to further isolate, quantify, and understand the effects of temperature profile changes 

on TC intensity, and to interpret the empirical statistics. Idealised TC simulations responded in the expected sense to various 

imposed changes in the temperature profile and agree with TCs operating as heat engines. The imposed historic warming 
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trend has faster warming aloft than at the surface, thereby reducing the temperature difference. TC efficiency would 535 

therefore be expected to decline, yet our simulations show the opposite: increased TC efficiency. Analysis of TC outflow 

found little change in the outflow temperature but a rising mean pressure outflow altitude that is located above the altitude of 

peak upper tropospheric warming. The near constancy of outflow temperatures suggests the increase in thermodynamic 

efficiency is being driven largely by surface warming. While the FAT hypothesis appears to explain our findings well, 

further work is needed to understand, at a process level, the extent of applicability of the FAT hypothesis for TCs. The FAT 540 

hypothesis for tropical convection has support from observational analysis (Xu et al., 2007) and convection-resolving 

idealized numerical simulations (Kuang and Hartmann, 2007). Some additional supporting evidence for a FAT for TCs is 

provided by idealized cloud resolving modelling (Khairoutdinov and Emanuel, 2013) and by analysis of TC cloud top 

temperatures in ADT-HURSAT data (Kossin, 2015). However, detecting trends in TC cloud top temperatures is complicated 

by a poleward trend in the latitude of LMI (Kossin, 2015). 545 

 

Increasing TC efficiency with warming may also explain the fastest temporal trends in intensity for the middle LMI 

quantiles. With warming, increasing efficiency closes the gap with E-PI. The strongest storms, however, were already close 

to their E-PI, and weaker storms are more strongly limited by other environmental factors such as shear or dry air. 

Techniques to simulate weaker storms within the idealized modelling framework are needed to test this hypothesis.  550 

 

The magnitude of the simulated changes, even for extrapolated trends, is relatively small compared to observed trends in TC 

characteristics.  This suggests that temperature profile changes contributed to some of the observed TC intensity change, but 

that other environmental factors dominated as the root causes, including, for example, changes in vertical wind shear, 

humidity, incipient disturbances, or in the large-scale circulation. Removal of the tropical upper-tropospheric warming 555 

maximum resulted in modest changes in core or equilibrium TC intensity in the idealized simulations. The consistency 

between the sense of the idealized simulation changes with theory and observation is consistent with the concept of a TC as a 

heat engine. Computations of thermodynamic efficiency in the idealized experiments were also consistent with initial 

hypotheses, and with the sense of changes in TC strength and intensification rate. 

 560 

Omission of the observed lower stratospheric cooling exerted relatively little influence on TC intensity in our simulations, 

consistent with our observational analysis. This is consistent with the GCM study by Vecchi et al. (2013). However, the 

simulated equilibrium TC intensity with omission of stratospheric cooling did weaken, as expected, albeit slightly (Table 2). 

Axisymmetric simulations out to radiative convective equilibrium by Ramsay (2013) showed stronger vortex intensity with 

stronger imposed lower stratospheric cooling rates. This was despite much of the outflow confined to the upper troposphere. 565 

We agree with Ramsay (2013) and Ferrara et al. (2017) that it is challenging to reconcile contrasting results across different 

models with different parameter settings and analysis procedures, and across studies using limited historical datasets. 
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We hypothesized that observed tropical temperature profile changes also exert predictable influences on trends in the 

intensification rate of TCs. A preliminary analysis of observations finds historical trends in intensification characteristics 570 

(not shown). Specifically, the average onset time of rapid intensification now occurs significantly sooner (by 16 h) after the 

first reported track point than in the first half of our period of record (not shown). Emanuel (2017) notes that sooner rapid 

intensification has important implications for watches, warnings, and predictability. Our idealized modelling setup did not 

allow us to pursue intensification due to possible contamination from model initialization and potentially important missing 

processes in the 2d dynamics. Suitable modelling frameworks need to be developed to test this hypothesis. 575 

 

The differing trends in TC environments compared to the tropical mean environment has implications for climate change 

studies that use the Pseudo Global Warming (PGW) method. PGW typically applies a long time-average change from GCMs 

to reanalysis conditions and uses those high-resolution conditions to drive regional model simulations of historical and future 

weather events (e.g., Lackmann, 2015; Gutmann et al., 2018). TCs may respond differently to environmental change more 580 

representative of that taking place locally within TC environments. 

 

Extrapolated observational temperature trends resulted in weaker TC intensity trends relative to change profiles based on an 

ensemble of CMIP5 GCMs under the RCP 8.5 emission scenario.  Future extensions of this work could omit the GCM-based 

tropical upper warming maximum or stratospheric cooling to determine whether a more substantial change results relative to 585 

these exercises with the extrapolated observations. Use of CMIP6 trends would also be useful.  Future work could also start 

from a different base sounding, other than the Dunion (2011) moist tropical sounding.  It’s possible that different magnitude 

sensitivities between the historical data analysis and the idealized simulations could be due, in part, to our use of this single 

profile that allows all simulated storms to reach the highest observed intensities. Base soundings representative of the 

observed tropical storm and hurricane strength storm environments may yield more nuanced sensitivity to temperature 590 

profile change, given permitted variations in outflow altitude. Future work should also include tests with fully 3-D TC 

simulations; such simulations would allow examination of changes in intensification rate and timing. Finally, more 

comprehensive physical process studies are needed to interpret the empirical and idealized modelling findings reported here 

and work towards untangling the factors driving observed intensity changes.  

 595 

Appendix A 
Table A1: Description of namelist settings for axisymmetric CM1 ensemble simulations. 

member sfcmodel oceanmodel isftcflx radopt rterm ptype 

1 1 1 1 0 1 5 

2 2 2 2 0 1 5 
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3 2 1 1 0 1 5 

4 2 1 2 0 1 5 

5 3 2 2 0 1 5 

6 3 1 1 0 1 5 

7 3 1 2 0 1 5 

8 3 2 2 2 0 3 

9 4 1 1 0 1 5 

10 1 1 1 1 0 5 

11 2 2 2 1 0 5 

12 2 1 1 1 0 5 

13 2 1 2 1 0 5 

14 6 1 1 1 0 5 

15 3 1 1 1 0 5 

16 6 1 2 1 0 3 

17 4 1 1 1 0 3 

18 2 2 2 2 0 3 

19 6 1 1 2 0 3 

20 4 1 1 2 0 3 

21 1 1 1 1 0 5 
 

Code Availability 

The pyPI Python software package, developed by Daniel Gilford, is available from 600 

https://zenodo.org/badge/latestdoi/247725622 
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Code and Data Availability 

The ECMWF reanalysis datasets are available at (https://apps.ecmwf.int/datasets/). The results contain modified Copernicus 

Climate Change Service information 2020. Neither the European Commission nor ECMWF is responsible for any use that 

may be made of the Copernicus information or data it contains. IBTrACS data are available from NOAA 605 

(https://www.ncdc.noaa.gov/ibtracs/). ADT-HURSAT data are available in the supporting information of Kossin et al. 

(2020). RAOBCORE data are available at https://www.univie.ac.at/theoret-met/research/raobcore/. CMIP5 model output 

was obtained from the Program for Climate Model Diagnosis and Intercomparison (PCMDI). The pyPI software used for the 

E-PI calculations are available from Gilford (2021). R code for the quantile regression modelling presented in Fig. 4 is 

available at from Elsner and Jagger (2013). The CM1 axisymmetric TC model is available from 610 

https://www2.mmm.ucar.edu/people/bryan/cm1/ 
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