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Abstract. Extreme stratospheric events such as sudden stratospheric warming and strong vortex events associated with an

anomalously weak or strong polar vortex can have downward impacts on surface weather that can last for several weeks to

months. Hence, successful predictions of these stratospheric events would be beneficial for extended range weather predic-

tion. However, the predictability limit of extreme stratospheric events is most often limited to around 2 weeks or less. The

predictability also strongly differs between events, and between event types. The reasons for the observed differences in the5

predictability, however, are not resolved. To better understand the predictability differences between events, we expand the

definitions of extreme stratospheric events to wind deceleration and acceleration events, and conduct a systematic compari-

son of predictability between event types in the European Centre for Medium-Range Weather Forecasts (ECMWF) prediction

system for the sub-seasonal predictions. We find that wind deceleration and acceleration events follow the same predictabil-

ity behaviour, that is, events of stronger magnitude are less predictable in a close to linear relationship, to the same extent10

for both types of events. There are however deviations from this linear behaviour for very extreme events. The difficulties of

the prediction system in predicting extremely strong anomalies can be traced to a poor predictability of extreme wave activity

pulses in the lower stratosphere, which impacts the prediction of deceleration events, and interestingly, also acceleration events.

Improvements in the understanding of the wave amplification that is associated with extremely strong wave activity pulses and

accurately representing these processes in the model is expected to enhance the predictability of stratospheric extreme events15

and, by extension, their impacts on surface weather and climate.

1 Introduction

The stratospheric polar vortex (SPV) is a band of strong westerly winds over the polar region at the height of around 20-50km

during winter. These circumpolar winds result from a strong temperature gradient in the stratosphere between the polar and20

subtropical regions during winter due to reduced solar heating over the polar regions. As westerly flow in the stratosphere

favours upward wave propagation (Charney and Drazin, 1961), planetary-scale waves formed at the troposphere can propagate
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upwards into the stratosphere (e.g. Polvani and Waugh, 2004; Sjoberg and Birner, 2012). Depending on the wave activity and

the state of the vortex, the SPV can undergo periods of weakening or strengthening, thus largely varying in strength during the

wintertime.25

The weakening and strengthening of the SPV can be understood in the framework of wave-mean flow interaction (Mat-

suno, 1970; Holton and Mass, 1976). Before vortex weakening events, anomalously strong wave activity is observed in the

lower stratosphere (Polvani and Waugh, 2004; Hinssen and Ambaum, 2010). The waves can precondition the vortex via wave

breaking (Limpasuvan et al., 2004; Albers and Birner, 2014), shaping the vortex structure to be more favourable for upward

wave propagation. A preconditioned vortex is associated with a region of large and positive refractive index (Matsuno, 1970;30

Simpson et al., 2009; Karoly and Hoskins, 1982). As the refractive index for stationary planetary waves is proportional to the

meridional potential vorticity (PV) gradient, the meridional PV gradient can be used as a proxy for waveguidability (Albers and

Birner, 2014; Jucker and Reichler, 2018). On the contrary, when wave activity is weak and the SPV is relatively undisturbed,

radiative cooling takes place due to the strong latitudinal temperature gradient induced by the lack of insolation during polar

night around the pole. The vortex thus strengthens on radiative timescales (Limpasuvan et al., 2005; Hitchcock and Shepherd,35

2013). Holton and Mass (1976) demonstrated using a simple mechanistic model that when the wave forcing is below a critical

level, the vortex accelerates and approaches a state close to radiative equilibrium.

There exist various definitions to characterise the weak and strong states of the SPV. The most commonly studied events are

sudden stratospheric warmings (SSWs, Baldwin et al. (2021)), characterising the abrupt weakening of the SPV. SSW events

are commonly defined by the reversal of the SPV mean flow from westerly to easterly (Charlton and Polvani, 2007; Butler40

et al., 2017; Palmeiro et al., 2015). In some studies, where the primary focus is on the abrupt dynamical nature of SSW

events, a definition based on wind change is used (Birner and Albers, 2017; de la Cámara et al., 2019). On the contrary, events

where the SPV becomes anomalously strong, with the mean flow accelerating to anomalously strong westerly values beyond

a certain threshold, are characterised as strong vortex events (Tripathi et al., 2015). Due to the rapid nature of wave forcing,

vortex weakening can be abrupt, whereas since vortex strengthening is driven by radiative processes, the strengthening is more45

gradual (Limpasuvan et al., 2005). The more rapid nature and stronger magnitude of vortex weakening than strengthening

can be observed by comparing the magnitude of the identified vortex weakening and strengthening events in studies for SPV

variability (e.g. Baldwin and Dunkerton, 2001; Limpasuvan et al., 2005). The asymmetry is also observed in the wave activity

preceding the events (Polvani and Waugh, 2004) due to the strong relationship between wave forcing and mean flow.

Weak and strong states of the SPV can have a downward impact on surface weather that can last for a few weeks to a few50

months (Baldwin and Dunkerton, 2001). This downward influence can potentially be used to extend the predictability limit of

surface weather from stratospheric origins (Domeisen et al., 2020a). In the stratosphere itself, the deterministic predictability

limit of SSW events is about 10 days (Domeisen et al., 2020b; Taguchi, 2020), and it is found that the predictability of

SSWs differs strongly between events (e.g. Karpechko, 2018). The source of predictability of SSW events is attributed in

some studies to the predictability of wave activity (Stan and Straus, 2009; Karpechko et al., 2018) and tropospheric blocking55

(e.g. Tripathi et al., 2016), as blocking events often precede SSW events (e.g. Martius et al., 2009). It is found in ensemble

forecasting systems that when the forecasts are initialised under strong blocking conditions, ensemble members of the forecasts
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can undergo bifurcation and lead to large uncertainties (Karpechko, 2018; Lee et al., 2019). However, even when successfully

predicting a preceding blocking event, a model may still fail to predict a SSW (Tripathi et al., 2016), suggesting that another

important factor for a successful predictions of SSWs is to accurately predict the initial stratospheric conditions.60

Extreme stratospheric events, e.g. SSW and strong vortex events, are often the main focus of stratospheric predictability

studies (e.g. Domeisen et al., 2020b; Taguchi, 2014, 2020). Strong vortex events are shown to be more predictable than SSW

events (Domeisen et al., 2020b). To our knowledge, the reason for the observed differences in predictability between event

types is, however, not resolved in existing literature, and is often attributed to the different mechanisms driving these events.

The sample size of SSW and strong vortex events in sub-seasonal prediction systems tends to be too small to systematically65

assess their differences in predictability. Thus, in this study, we expand the analysis of the predictability of extreme stratospheric

events to wind deceleration and acceleration events. As SSW events and strong vortex events are periods of strong zonal wind

deceleration and acceleration, respectively, a better understanding of the predictability of wind deceleration and acceleration

events will also contribute to the understanding of the predictability of SSW and strong vortex events. We aim to address

the following questions: 1. If we expand the event definitions to wind deceleration and acceleration events, do we also see a70

difference in predictability between wind deceleration and acceleration events, as for SSW and strong vortex events? 2. If so,

what contributes to the difference in predictability between events? For example, is predictability related to event magnitude

or event mechanisms? 3. What are the dynamical precursors for the predictability of the events? Do those precursors set the

predictability limit of the events?

The paper is structured as follows: Section 2 discusses the data and methods adopted in this study. Section 3.1 illustrates the75

predictability differences between wind acceleration and deceleration events, Section 3.2 discusses the predictability depen-

dence of events on event magnitude, and Section 3.3 explores the predictability dependence on event mechanisms. Finally, we

discuss our results in Section 4.

2 Data and methods

2.1 Datasets80

The hindcasts (retrospective forecasts) of the European Centre for Medium-Range Weather Forecasts (ECMWF) model from

the subseasonal-to-seasonal (S2S) prediction database (Vitart et al., 2017) are used to evaluate the predictability of stratospheric

events in Northern Hemisphere winter, from November to March (NDJFM), in the period of 1998/99-2017/18, which is the full

available hindcast period for the model versions used in this study. The hindcasts are initialised twice a week (every Monday

and Thursday) for the 20 year period alongside the real-time operational forecasts. The hindcasts consist of 11 ensemble85

members.

The model versions CY43R3 and CY45R1, corresponding to hindcasts with model version dates of 2017-07-13 to 2019-

06-10, are used. Similar model configurations are used in both model versions used here, and they both use the ECMWF

ERA-Interim reanalysis (Dee et al., 2011) for initialisation. The different model versions lead to qualitatively similar results in
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terms of prediction skill in their hindcasts (not shown) and are thus both used for the analysis presented here. The hindcasts are90

verified against the ERA-Interim reanalysis.

We evaluate the skill of the hindcasts at various lead times. Lead time is referred to as the time between the event onset date

and the hindcast initialisation date. For example, a lead time of -5 indicates a hindcast initialised 5 days before the event onset.

Hindcasts are divided into 6 lead time groups (LTGs) according to their initialisation dates, each of which represents a 5-day

lead time window. For example, LTG-30 refers to hindcasts with initialisation dates of 30 to 26 days before the event, while95

LTG-5 refers to hindcasts from 5 days to 1 day before the onset date.

2.2 Skill measures

The following metrics are used to assess the predictability of stratospheric events: Mean error, continuous ranked probability

score (CRPS), hit-rate (HR), and ensemble spread. The definitions are stated below.

1. Mean error100

The mean error is the average difference between the hindcast (F ) and the observation (O) (here, reanalysis is used

instead of observations as the verification dataset). The index i denotes the corresponding ensemble member, and N

denotes the ensemble size. For the ECMWF model, N = 11. The perfect score of the mean error is 0.

MeanError =
1
N

N∑

i=1

(Fi−Oi) (1)

2. Continuous ranked probability score (CRPS)105

The CRPS measures the difference between the predicted cumulative distribution function (CDF) (Pf (x)) of a variable x

and the observed CDF (Po(x)). For ensemble forecasts, the predicted CDF is given by the predictions of all the ensemble

members. The perfect score of the CRPS is 0.

CRPS =

∞∫

−∞

(Pf (x)−Po(x))2dx (2)

3. Hit-rate (HR)110

The hit-rate (HR) is defined as the fraction of ensemble members that successfully predict an event, given by dividing

the number of successful members (M ) by the total number of ensemble members (N ). A successful prediction requires

that the model predicts an event of the same magnitude category as identified from reanalysis, i.e. a strong or weak

magnitude event, on the same date as the event in reanalysis. The perfect score of the HR is 1.

HR=M/N (3)115
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4. Ensemble spread

The ensemble spread of the ensemble members in a hindcast is measured as the standard deviation of the ensemble

member predictions around the ensemble mean (F ). If the ensemble members show perfect agreement with each other,

the ensemble spread is 0.

EnsembleSpread=

√√√√
[

1
N

N∑

i=1

(Fi−F )

]2

(4)120

2.3 Definition of stratospheric events

From the daily mean of the zonal mean zonal wind at 60◦ N and 10 hPa (u) from NDJFM 1998/99-2017/18 of ERA-Interim,

we identify zonal wind acceleration and deceleration events. Both acceleration and deceleration events are defined as 10-day

events and are identified using a 10-day moving window. Another event can only be identified 20 days after the start of an event

to prevent identifying the same event. If a stronger deceleration is observed within 20 days of the last identified event, the period125

with stronger wind deceleration is selected instead, replacing the weaker event. The start date of the event is defined as day 0

of the event, i.e. the day when acceleration or deceleration starts in the 10-day window. The magnitude of the identified events

is defined as the wind change over the 10-day event window, i.e. ∆u= u(t= 9)−u(t= 0), where t indicates the lead time.

A 10-day event window is chosen as a result of a systematic comparison of different window widths (not shown). Although

different processes are involved in deceleration and acceleration events, the duration of wind deceleration and acceleration is130

found to be similar (Fig. A1a). The event magnitude capture by a 10-day window also show reasonable values and not wind

fluctuations (Fig. A1b). Therefore, also for comparability between the event types, we use the same event window width of 10

days to identify both wind deceleration and acceleration events.

The identified events are classified into weak and strong magnitude events. Events that have an absolute magnitude above

the respective 60th percentile of the identified acceleration and deceleration events are classified as strong magnitude events,135

and those below are classified as weak magnitude events. The 60th percentiles are 16.94 ms−1 and -24.55 ms−1 for the

acceleration and deceleration events, respectively, in the reanalysis. In the ECMWF model, the 60th percentiles of the identified

events are 16.77 ms−1 and -20.87 ms−1 for the acceleration and deceleration events, respectively. The thresholds used here

are comparable to the thresholds to define strong deceleration events used in other studies (e.g. Birner and Albers, 2017; de la

Cámara et al., 2019).140

For the acceleration and deceleration events identified from reanalysis, we check if they are also associated with extreme

stratospheric events, i.e. SSWs, strong vortex events and vortex recovery events. SSW events are defined using the Charlton

and Polvani (2007) wind reversal criterion. The onset date of an SSW event is identified as the first day that the daily mean

zonal mean zonal winds at 60◦ N 10hPa are negative. The winds have to be westerly for at least 20 consecutive days before the

event and return to westerly for at least 10 days after the event. We classify a deceleration event to be associated with an SSW145

event if an SSW occurs within the 10-day event window. The identified deceleration events can also be associated with early
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Table 1. Identified acceleration and deceleration events from reanalysis. The numbers in the brackets specify the number of events in each

category.

Acceleration event Weak (51) Strong (34) Total (85)

Strong vortex 14 11 25

Vortex recovery 8 11 19

Other acceleration events 29 12 41

Deceleration event Weak (39) Strong (26) Total (65)

SSW 0 10 10

Other deceleration events 39 16 55

final warming (FW) events. Early FW events are defined as in Butler and Domeisen (2021) as those that occur at least 2 days

before the median climatological FW date, which is Apr 12 over the period 1979-2019 in JRA-55 reanalysis. Since we only

identify events up to March, the number of events associated with final warming events is small, and wave forcing still plays

a dominant role in the FW wind reversal. Therefore, we keep the events associated with final warmings in the analysis and do150

not distinguish them from other deceleration events.

A strong vortex event is defined when u exceeds a threshold value. Following Tripathi et al. (2015) and Domeisen et al.

(2020b), the chosen threshold value is 41.2 m/s, which is the 80th percentile of the zonal mean zonal wind averaged from

November to March over the 1980-2012 period in ERA-Interim. We classify an acceleration event to be associated with a

strong vortex event if the wind at any time during the event window is above this threshold. If the wind at 60◦ N, 10 hPa at any155

time during the acceleration event window shows negative wind values, the event is classified as being associated with a vortex

recovery event, which occur after SSW events. Table 1 shows the identified events from the reanalysis and their respective

event types.

2.4 Dynamical indices and significance tests

As mentioned in the Introduction, we can quantify the preconditioning of the vortex background state, which guides waves160

towards the vortex, by the refractive index. As the refractive index is proportional to the meridional PV gradient (qy) divided

by the zonal mean zonal wind, following Jucker and Reichler (2018) and Albers and Birner (2014), we approximate the

refractive index using the meridional PV gradient. Using the formulation of Equation (5) in Simpson et al. (2009), we divide
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the meridional PV gradient in spherical coordinates (qφ) by the radius of Earth (a) to obtain an equation of the meridional PV

gradient in Cartesian coordinates (qy),165

qy =
qφ
a

=
2Ωcos(φ)

a
−
[

(ucosφ)φ
a2cosφ

]

φ

+
f2

Rd

(
pθ

T

up

θp

)

p

(5)

where φ is the latitude, overline denotes the zonal mean, subscripts denote derivatives. As the term associated with Earth’s

rotation (first term in the equation) is small in extratropical and polar latitudes, and as the third term in the equation correlates

well with the second term (not shown), we use the second term in Equation (5), −
[

(ucosφ)φ

a2cosφ

]

φ

, as a proxy for waveguidability,

hereafter referred to as uyy . Other than being a reasonable indicator for the refractive index, uyy is a measure of the sharpness170

the edge of the stratospheric polar vortex, thus also a measure of the strength of the initial vortex state. Similar to Jucker and

Reichler (2018), who used a polar cap averaged meridional PV gradient, we take a latitudinal average of uyy over 55-75◦ N

at 10 hPa. As a measure of upward wave activity in the lower stratosphere, following Polvani and Waugh (2004), we use the

latitudinal average of meridional eddy heat fluxes (v′T ′) over 45-75◦ N at 100 hPa, where v is the meridional wind, T is the

temperature, and prime (′) denotes the departure from the zonal mean.175

We use a one-sample t-test to assess the significance for the mean of a distribution. When comparing the significant difference

between two distributions, we use a Kolmogorov-Smirnov test (KS test). For both tests, we use a confidence level of 95%.

3 Results

3.1 Predictability of stratospheric events in Northern Hemispheric winter

To illustrate the predictability differences between stratospheric events, we compare the skill of the model in predicting differ-180

ent event types as a function of lead time. The magnitude of the events identified in reanalysis (∆u), measured by the wind

difference between day 9 and day 0, predicted by the model hindcasts is compared against the same value in reanalysis for

all lead time groups (Fig. 1). The left y-axis (blue) in Fig. 1 shows the errors in event magnitude for the deceleration and

SSW events (as a subset of deceleration events). The right axis (red), which is flipped, shows the errors in event magnitude

for the acceleration events and strong vortex events (as a subset of acceleration events). Values above the zero line indicate185

an underestimation of the magnitude of both deceleration and acceleration events, while values below zero indicate an over-

estimation. The box plots in Fig. 1 of most LTGs lie above zero, indicating an underestimation of event magnitude for both

acceleration and deceleration events, including strong vortex events and SSWs. The underestimation of the event magnitude

reduces towards smaller LTGs. At LTG-5, the model overestimates around 25% of deceleration and 5% of acceleration events,

respectively, shown by the bottom of the box and whisker crossing the zero line. The underestimation of deceleration event190

magnitude is also seen in Karpechko (2018), where the model shows an initial weakening of the vortex but underestimates the

event magnitude.

Previous studies that assessed the predictability of events using event onset dates have found that SSW events are less

predictable than strong vortex events (e.g. Domeisen et al. (2020b)). This result is confirmed in Fig. 1: The mean errors for SSW
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Figure 1. Mean error in the magnitude (∆u) of deceleration events (blue), SSW events (green), acceleration events (red) and strong vortex

events (purple), for all LTGs. For deceleration (blue) and SSW events (green), refer to the left axis (blue). For acceleration (red) and strong

vortex events (purple), refer to the right axis (red). The box extends from the 25th to the 75th percentiles of the mean error of the events,

with a horizontal line at the median. The whiskers extend from the 5th to the 95th percentiles. Outliers are plotted as grey open circles. The

numbers in brackets correspond to the number of events in total for each event type in reanalysis.

events are larger than for strong vortex events, showing that SSW events are less predictable. Extending the analysis to wind195

deceleration and acceleration events, we also find that deceleration events are associated with larger errors than acceleration

events at all lead times longer than 5 days. At LTG-5, the median of the mean error of deceleration events is lower than for

acceleration events, but the distribution of mean errors (the extent of the box plot) remains larger than for the acceleration

events, indicating that a greater uncertainty in predicting wind deceleration events remains in the model at short lead times.

3.2 Predictability dependence on event magnitude200

To better understand the nature of the stratospheric events, we plot the distribution of the events identified from reanalysis

(transparent bars in Fig. 2, which are the same in all panels). The events identified from reanalysis show an asymmetry in

event magnitude, that is, deceleration events are associated with stronger magnitude than acceleration events. The median

magnitude of reanalysis deceleration and acceleration events is -21.25 ms−1 and 15.32 ms−1, respectively, and -37.22 ms−1

and 15.06 ms−1, respectively, for SSW events and strong vortex events. All SSW events belong to the strong deceleration events205

category, whereas the magnitudes of the strong vortex events are spread more evenly across the weak and strong acceleration

event categories (Table 1). The stronger magnitude of deceleration events as compared to acceleration events is consistent
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with Limpasuvan et al. (2005), i.e. that the daily zonal mean zonal wind anomalies observed for vortex weakening events are

stronger than for vortex strengthening events.
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(b) LTG-20,15
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Figure 2. Distributions of the wind change (∆u) of the acceleration (red) and deceleration (blue) events identified from reanalysis (transparent

bars with grey outline) and from the ensemble members in the hindcasts that are initialised in NH winter at (a) LTG-30,25, (b) LTG-20,15

and (c) LTG-10,5. Numbers in brackets indicate the number of identified events at each lead time. The reanalysis distributions displayed in

all panels are identical and the numbers in brackets refer to the number of acceleration / deceleration events. The histograms are normalised.

As deceleration events have a stronger magnitude than acceleration events and as the identified events span a wide range210

of magnitudes, as a first step, we test if the differences in predictability between events arise from different event magnitudes.

We plot the CRPS of the model in predicting the event magnitude against the observed event magnitude at different lead times

(Fig. 3). The grey diagonal line in each panel indicates when a hindcast exhibits a skill equal to a climatological prediction,

as the CRPS is the difference between the predicted and observed distribution, the CRPS given by validating the predicted

climatological event magnitude against the observed event magnitude will equal to the observed event magnitude itself, which215

will lie on the diagonal line. Thus, points above the diagonal line show a poorer skill than a climatological prediction, and the

points below show a skill that is improved with respect to climatology. The closer the points are to the x-axis, i.e. the line of

CRPS = 0, the more skilful the hindcasts.

For long lead times of around 30 days, the fitted lines lie just below the diagonal line (Fig. 3a), which suggests that the

hindcasts exhibit a predictability that is just slightly better than climatological forecasts at these lead times. The fitted slopes220

then approach the x-axis with decreasing lead time (going from panels (a) to (f)), indicating that, as expected, the model

gains more information from initial conditions and the prediction is improved beyond climatological values. The predictability

behaviour of both acceleration and deceleration events can roughly be approximated by a linear fit, indicating that the stronger

the event magnitude, the less predictable the event. The linear fits corresponding to the deceleration and acceleration events

overlap within the 95% confidence interval (blue and red shading, respectively) at all lead times, suggesting that the acceleration225

and deceleration events show the same predictability behaviour.
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(a) LTG-30

Acceleration m = 0.88 +/- 0.06 r = 0.83
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(b) LTG-25

Acceleration m = 0.78 +/- 0.06 r = 0.82
Deceleration m = 0.74 +/- 0.05 r = 0.90
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(c) LTG-20

Acceleration m = 0.81 +/- 0.07 r = 0.78
Deceleration m = 0.68 +/- 0.04 r = 0.89

0 10 20 30 40 50 60 70
| u| (ms 1)

0

10

20

30

40

50

60

70

C
R

PS
 (m

s
1 )

(d) LTG-15

Acceleration m = 0.56 +/- 0.08 r = 0.60
Deceleration m = 0.56 +/- 0.05 r = 0.82
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(e) LTG-10

Acceleration m = 0.42 +/- 0.07 r = 0.53
Deceleration m = 0.41 +/- 0.05 r = 0.75
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(f) LTG-5

Acceleration m = 0.21 +/- 0.05 r = 0.42
Deceleration m = 0.30 +/- 0.03 r = 0.75

Figure 3. CRPS of event magnitude (∆u) for the identified wind acceleration (red) and deceleration (blue) events plotted against their

absolute event magnitude (|∆u|) from reanalysis for different LTGs. The absolute value of event magnitude (|∆u|) is used for a better

comparison between acceleration and deceleration events. The filled circles represent strong magnitude events and the empty circles represent

weak magnitude events. Linear regression lines are fitted to each of the LTGs, m indicates the slope, including the standard error of the fit.

Pearson correlation coefficients (r) are indicated in the legend for acceleration and deceleration events, respectively, and r is statistically

significant at 95% for all panels. The shaded region shows the 95% confidence interval of the linear fit. Pluses (’+’) indicate events that

correspond to strong vortex events and crosses (’×’) correspond to SSW events. Yellow stars (’*’) denote the 2009 and 2018 split SSW

events.

At short lead times, most of the points lie close to zero CRPS. Some events, however, retain a large CRPS and deviate from

the linear fit in the direction of the diagonal line. For instance, the two extreme SSW events with magnitudes of over 60 ms−1

(marked with yellow stars in Fig. 3). The fact that the CRPS remains larger for the two events at LTG-5 suggests that the model

might not be capturing the precursors or that it might not accurately represent the mechanisms required to predict these events.230

To better illustrate the predictability dependence on event magnitude, we composite the strong and weak magnitude events,

i.e. events with magnitudes above and below the 60th percentile, respectively, and compare their averaged skill at different
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Figure 4. Ensemble spread (dark colour), CRPS (light colour) and hit-rate (grey) for (a) acceleration events (red) and (b) deceleration events

(blue) computed by validating the hindcasts against the reanalysis. Solid lines indicate the mean of the strong magnitude events at different

LTGs and the dotted lines indicate weak magnitude events. The vertical bars indicate the standard errors for each LTG.

lead times (Fig. 4). Overall, as expected from the model capturing more of the required precursors to predict the events, both

acceleration and deceleration events show an increase in hit-rate, and a decrease in ensemble spread and CRPS with decreasing

lead time. Strong magnitude events exhibit poorer skill than weak magnitude events, associated with a lower hit-rate, and235

a larger ensemble spread and CRPS. As large ensemble spread can be observed in ensemble forecasting systems when the

forecast is initialised under e.g. strong blocking conditions (Lee et al., 2019; Karpechko, 2018), this might indicate that strong

magnitude events are associated with strong precursors or forcings that are not as well captured by the model as those for weak

magnitude events. We will discuss the predictability dependence on event mechanism in Section 3.3.

3.3 Predictability dependence on event mechanism240

In the last section, we showed that event magnitude strongly determines the predictability, with strong events being less pre-

dictable, which can be described mostly by a linear behaviour. Some events, however, deviate from this behaviour, which might

be connected the mechanism of the events. In this section, we investigate whether the background state of the SPV and the

drivers to the events can have an influence on the predictability of events. We start this section by linking the predictability of

the events to the related mechanisms through both the influence of the background state of the stratosphere and the drivers in245

terms of the upward wave flux for both the reanalysis and the prediction system.
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Figure 5. Time evolution of daily values of uyy (a, c) and v′T ′ (b, d) for the strong deceleration (blue) (a, b) and acceleration (red) (c,

d) events in reanalysis. The solid line is the mean value of all events and the bold parts of the line indicate lags where the composites are

significantly different from the reanalysis winter climatology (dotted yellow lines) at 95% using a student’s t-test. Weak events are composited

separately and shown in grey. The dotted lines in the corresponding colours indicate the 5th and 95th percentiles of the composite, the shaded

regions indicate the 25th to 75th percentiles. The numbers in the brackets of the legend indicate the number of events in each composite. Lag

is relative to the first day of the identified 10-day events.
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3.3.1 Vortex background state in reanalysis

Before strong deceleration events, uyy is significantly stronger than climatology (Fig. 5a), confirming the existing literature that

preconditioning of the vortex via sharpening of the vortex edge is often observed before weak vortex events (e.g. Limpasuvan

et al., 2004; Jucker and Reichler, 2018). During strong deceleration events (days 0 to 9), uyy reduces to a negative value that250

is significantly weaker than climatology. The vortex recovers at the end of the strong deceleration event and the mean value of

uyy returns to positive values, but is still significantly weaker than climatology up to 40 days after the event onset. For weak

deceleration events, the values of uyy before and after the events are close to climatology, and significant signals are only found

during the event window (day 0 to 9), suggesting that the preconditioning of the vortex background state before event onset

might not be as important for weak deceleration events. For strong acceleration events, increased uyy is found only at around255

25 days before the events and a few days later, uyy decreases to values significantly lower than climatology (Fig. 5c). During

strong acceleration events, uyy increases to a value significantly above climatology and drifts back to climatology after the

event. For weak acceleration events, a few periods of anomalously weak uyy are observed at around day -25, 0, 25.

To further illustrate the relationship between uyy and event magnitude (∆u), we plot ∆u against uyy at day 0 for all events

(Fig. 6a,d). A significant negative correlation is found between uyy and ∆u for deceleration events, that is, the stronger uyy ,260

the stronger the deceleration. For the acceleration events, a weak but significant negative correlation is also found for uyy on

day 0 against ∆u (Fig. 6d). But as the wind change for acceleration events has the opposite sign of deceleration events, the

negative correlation shows that the weaker the uyy, the stronger the wind acceleration.

3.3.2 Wave activity forcing in reanalysis

In addition to the background state, the forcing by drivers is responsible for extreme stratospheric events. In particular, anoma-265

lous wave activity in the lower stratosphere drives the deceleration of the SPV mean flow (Polvani and Waugh, 2004; Hinssen

and Ambaum, 2010). The 10-day event window captures well the onset of wind deceleration (Fig. A2a) and the anomalously

strong wave activity during the event (Fig. 5b). The wave activity starts to increase from day 0, peaks around day 5 and then

decreases to a value that is not significantly different from climatology at the end of the event on day 9. As expected, the wave

activity is much stronger during the strong deceleration events than during the weak deceleration events. We find a significant270

negative correlation when correlating the integrated sum of v′T ′ during the event window (day 0 to 9) with the deceleration

event magnitude (∆u) (Fig. 6c). The stronger the wave activity during the event window, the more the wind decelerates. For

our definition of deceleration events, using a 10-day event window, SSWs occur on average around day 9 of the event win-

dow. Therefore, the peak of v′T ′ during the event window is consistent with our understanding that anomalous wave activity

precedes SSW events (e.g. Butler et al. (2017)). A wave activity lower than climatology is found around 10 days before (day275

-10 to -1) the weak magnitude deceleration events but not the strong magnitude events, suggesting the occurrence of weak

acceleration events before weak deceleration events. Wind acceleration is indeed observed 10 days before the weak decelera-

tion events, and the magnitude of the acceleration is similar to the magnitude of the subsequent deceleration events (Fig. A2a).

Plotting the integrated v′T ′ for days -10 to -1 against ∆u during the event window, we observe a weak negative correlation
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Figure 6. Relationship between the magnitude of the deceleration events (∆u) and (a) uyy at day 0, (b) integrated v′T ′ over day -10 to -1

and (c) integrated v′T ′ over day 0 to 9. (d),(e) and (f) same as (a-c) but for the acceleration events. Filled (empty) circles indicate strong

(weak) magnitude events, ’×’ indicates SSW events and ’+’ indicates strong vortex events. The solid line indicates the fitted linear regression

line and shading indicates the 95% confidence interval. Pearson correlation coefficients (r) are significant at 95% in all panels. Yellow stars

(’*’) in (a-c) denote the 2009 and 2018 split SSW events.

(Fig. 6b), which can be explained by low wave activity preceding the weak deceleration events and slightly increased wave280

activity preceding the strong deceleration events.

Weaker than climatological wave activity v′T ′ is observed during the acceleration event window (Fig. 5d). The wave ac-

tivity is similar for strong and weak acceleration events but slightly lower for the strong acceleration events. Although strong

acceleration events are associated with lower wave activity, there is no significant relationship between the integrated heat flux

and event magnitude (Fig. 5f), indicating that wave activity does not drive the acceleration event magnitude, and low wave285

activity might be more of a threshold criterion for an acceleration event to occur. The passive role of wave activity in wind

acceleration is consistent with our understanding that radiative cooling drives the wind acceleration when the wave activity
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is below a critical level. Interestingly, we observe strong heat flux from around 15 days before the strong acceleration events

(Fig. 5d). The same is observed when we exclude vortex recovery events in the composite (not shown). We find a significant

positive correlation between the integrated v′T ′ for days -10 to -1 and the wind change over the acceleration event window290

(day 0 to 9) (Fig. 6e). We find that deceleration events precede about 74% of the strong acceleration events (not shown). The

deceleration events that happen before the acceleration events can weaken the vortex, preconditioning the background state of

the vortex to be more favourable for the onset of acceleration events, consistent with the weakening of uyy before the onset

of strong acceleration events from around day -10 (Fig. 5c). The alternation between deceleration and acceleration events is

reminiscent of the characteristics of stratospheric vacillations as described in the Holton-Mass model (Holton and Mass, 1976),295

which shows an oscillation of the mean flow of the vortex after an initial wave forcing.

It is interesting to note that the two strongest strong vortex events, the events with a magnitude of around 40 ms−1, are further

away from the linear fit, suggesting that factors other than low wave activity might play a role for these strong magnitude events,

for example, strong ozone depletion (e.g., Haase and Matthes, 2019; Lin et al., 2017).

3.3.3 Representation of dynamical processes in the model300

Deceleration and acceleration events are found to be driven by anomalies in uyy and v′T ′ as described in Section 3.3.1 and

3.3.2 using reanalysis. We now assess the ability of the model to represent these anomalies and relationships. We start by

treating all ensemble members independently and identify deceleration and acceleration events from each separate member at

different lead times.

Overall, the climatology of the model event magnitude is similar to that observed in reanalysis at all lead times (Fig. 2). Using305

a KS test for the model distributions for acceleration and deceleration events, respectively, against the reanalysis distributions,

the model and reanalysis distributions are found to not be significantly different from each other. A similar number of events

is identified at all lead times, but slightly fewer at LTG-20,15. At LTG-30,25, the model shows an overall underestimation

of event magnitude and produces more events with a magnitude close to zero in the model as compared to reanalysis, which

is consistent with the predictions being close to climatology at long lead times (Fig. 3a,b). The number of events with very310

weak magnitude decreases when events are identified at shorter lead times. At all lead times, the model underestimates the

number of extremely strong deceleration events (shown by the difference between the model and reanalysis in the negative

tails of the distributions). The model covers the range of acceleration event magnitude well but underestimates the frequency

of acceleration events with moderate magnitude, i.e. around magnitudes of 20 ms−1 over the 10-day event window.

To assess the ability of the model in representing the event mechanisms, we composite the identified strong magnitude events315

from the model and compare the model evolution of the dynamical variables to the observed evolution in reanalysis (Fig. 7).

The model shows a time evolution of u similar to that from reanalysis. However, as the model underestimates the number of

deceleration events with extremely strong magnitude (Fig. 2), the mean evolution of u for deceleration events at all lead times

in the model stays above zero, while the winds in reanalysis cross the zero wind line (Fig. 7a). The 5th and 95th percentiles

of the model events (shadings) shifted towards more positive u as compared to reanalysis (dotted lines) around the end of320

the event window, indicating that the model does not reach values of u that are as small as observed in reanalysis. The mean
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Figure 7. Temporal evolution of u, uyy , and v′T ′ for (a),(c),(e) the strong deceleration and (b),(d),(f) the strong acceleration events identified

in the model at different LTGs. Solid lines indicate the mean of the event composites and shadings indicate the 5th and 95th percentiles of

the events in the prediction system. Black solid lines and black dotted lines indicate the mean, 5th and 95th percentiles for the reanalysis,

respectively. Yellow dotted lines show the winter climatology in reanalysis. The first and last 5 days in the mean evolution in the model

composite are discarded to account for the different start dates within each LTG.
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evolution of u at LTG-30 (lightest blue) remains above the values for all other LTGs throughout the event window until the end

of the forecast.

The vortex background state is well represented in the model at all lead times for both strong deceleration and acceleration

events. The model shows near identical mean values and variability comparable to the reanalysis for events identified at all lead325

times (Fig. 7c,d). For the wave forcing (Fig. 7e,f), the model events do not show the extremely high values of v′T ′ during strong

deceleration events, or the extremely low values of v′T ′ during strong acceleration events, at all lead times. The 95th percentile

of v′T ′ for the deceleration events in reanalysis is outside of the 95th percentile of the model (colour shadings). Similarly, for

the acceleration events, the 5th percentile of the reanalysis composite is outside that of the model. Before acceleration events,

a peak of v′T ′ is also observed in the model. However, the wave activity in the model for this peak before acceleration events330

peaks at a later time and at a lower magnitude.

Given the strong relationship observed between event magnitude and wave activity for deceleration events in reanalysis

(Fig. 6c), the observed underestimation of strong v′T ′ for deceleration events in the prediction system might explain the

observed underestimation of model deceleration event magnitude in Fig. 7a. As a sensitivity experiment, Fig. 7a and 7e are re-

plotted by excluding the events with magnitude above the 90th percentile from the reanalysis composite of strong deceleration335

events (Fig. A3). It is found that the averaged evolution of u and v′T ′ of the model composite then covers almost the full

variability of the re-computed reanalysis composite, and the evolution of the model composite is near identical to the reanalysis

composite and covers almost the full range of the 5th and 95th percentiles. This suggests that the model has limitations in

producing events that have equivalent event magnitudes of above the 90th percentile of the reanalysis deceleration events, likely

due to not producing the required strong wave activity. The model also does not show as low v′T ′ during strong acceleration340

events (Fig. 7f). Although we see the model can produce acceleration events with an evolution similar to reanalysis (Fig. 7b),

showing a good variability of acceleration event magnitude in the model, the frequency of acceleration events with moderate

event magnitude might still be underestimated (as earlier discussed in Fig. 2). As discussed in Section 3.3.2, v′T ′ might be more

a threshold criterion for acceleration events to occur. Specifically, if the wave activity produced in the model is not low enough

in some occasions, this can contribute to an underestimation in the number of acceleration events with moderate magnitude,345

consistent with Figure 2.

We found that overall the model is able to produce events with a range of magnitude similar to reanalysis and has a good

representation of event mechanisms. The model, however, has limitations in producing extremely strong anomalies in heat

fluxes, thus might be underestimating the number of moderate magnitude acceleration events and the number and magnitude of

extremely strong deceleration events. To elucidate the sources of predictability for the events, we now evaluate the magnitude350

of the anomalies in the precursors, i.e. in uyy and v′T ′, captured by the model when predicting the events identified from

reanalysis (Fig. 8).

At LTG-30,25, the anomalies in the precursors captured by the model are weak, indicated by the predicted distributions for

both acceleration and deceleration events centering around the climatological values (Fig. 8e,i) which is reflected in the fact that

acceleration and deceleration events at these lead times are barely separated (Fig. 8a). This is also consistent with Fig. 3 that the355

points lie close to the diagonal line at long lead times. Nevertheless, the predicted distributions of ∆u are skewed towards the
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Figure 8. Ensemble mean values of ∆u (a-c), uyy at day 0 (e-g) and integrated v′T ′ over day 0 to 9 (i-k) predicted by the model for the events

diagnosed in reanalysis at different lead times. The observed distributions from reanalysis are shown in panels (d),(h) and (l). Deceleration

events are shown in blue and acceleration events in red. The winter climatological values of uyy and integrated v′T ′ from reanalysis are

plotted as yellow dotted lines. The differences of the mean of the distributions from 0 (for ∆u) or from climatology (for uyy and integrated

v′T ′) are shown in the legend. * indicates when the distributions are significantly different from 0 in (a) to (d) and when the distributions

differ from the reanalysis climatological value in (e) to (l) using a t-test. The histograms are normalised and a KS test is used to test the

significant difference between the acceleration and deceleration event distributions. Statistically significant KS statistics (ks) are indicated

by a *.

correct signs of the observed events (e.g. the predicted wind change for deceleration events is skewed towards negative values)

(Fig. 8a). The predicted distributions for the precursors of acceleration and deceleration events are significantly different from

each other, for all lead times, showing that the magnitude of the precursors captured for acceleration and deceleration events

are statistically distinguishable even at long lead times.360
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For shorter lead times, the predicted distributions for acceleration and deceleration become more clearly distinct as the

difference between the predicted deceleration and acceleration distribution increases (indicated by greater distance between

the distribution means and higher KS test score at shorter lead times). However, comparing the predicted distributions to the

observed distribution from reanalysis (the very right column), the model shows a clear underestimation of the very strong

deceleration events (with ∆u stronger than -40 ms−1) and an underestimation in the very high values of integrated v′T ′. The365

frequency of values with around 400 mKs−1 are underestimated and values above 400 mKs−1 are scarcely predicted in the

model (Fig. 8k,l). For acceleration events the distribution of the wind change even includes negative values in the predicted

event magnitude distribution at LTG-10,5 (Fig. 8c), which is not the case in reanalysis (Figure 8d). As a result, the mean of the

predicted ∆u distribution is lower than for reanalysis. The model predicts more acceleration events with ∆u close to 0 ms−1/

10 days and some acceleration events with negative ∆u. The model also shows a lower frequency of v′T ′ than the reanalysis370

(Fig. 8k and 8l).

To quantify the contribution of the predictability of the precursors to the predictability of event magnitude at different lead

times, we plot the CRPS of the event magnitude against the CRPS of the precursors (Fig. 9). A significant correlation is

found between the CRPS of the event magnitude and of the precursors for both acceleration and deceleration events at all

lead times. Consistent with Fig. 8, the model captures the anomalies of the precursors more accurately with decreasing lead375

time. Specifically, as the CRPS in uyy and integrated v′T ′ decreases, the CRPS in ∆u also decreases. On the other hand, the

CRPS of ∆u shows a stronger correlation with the CRPS of integrated v′T ′ than uyy , indicating a stronger contribution of the

predictability of integrated v′T ′ to the predictability of event magnitude, which is consistent with the more direct role of v′T ′

than uyy in forcing the events.

The largest CRPS values in v′T ′ are found for the 2009 and 2018 split SSW events (yellow stars in Fig. 9). These two SSW380

events were associated with very strong wave-2 activity (Ayarzagüena et al., 2011; Domeisen et al., 2018). The large v′T ′ for

these events might be out of the range of v′T ′ that the model can produce, as suggested earlier, or the mechanisms for these

events may not be properly represented in the model.

4 Conclusions

By expanding the stratospheric event definition to wind deceleration and acceleration events using the tendency of the zonal385

mean zonal wind at 60◦ N and 10 hPa, we systematically investigate the predictability of extreme events in the SPV in the

ECMWF S2S hindcasts. We demonstrate that, overall, the ECMWF model represents the variability of the SPV well in terms

of event magnitude and the associated dynamical drivers, and it has a good representation of the dynamical processes that

are observed in reanalysis. The model, however, shows limitations in producing events with extremely strong deceleration

magnitudes. We find that this is associated with the inability of the model to produce extremely strong wave activity in the390

lower stratosphere.

The large number of identified deceleration and acceleration events allows us to robustly compare the differences in the

event mechanisms in both reanalysis and the model, and to understand the differences in the predictability between events.
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Figure 9. Relationship between the CRPS of ∆u with (a-c) the CRPS of uyy on day 0 and with (d-f) the CRPS of integrated v′T ′ over days

0 to 9 for the acceleration (red) and deceleration events (blue) identified from reanalysis. The solid line and the shading correspond to the

fitted slope and 95% confidence interval of the fit. The Pearson correlation coefficients (r) indicate the correlation in the scatter plots and are

statistically significant in all panels at the 95% level. Yellow stars (’*’) denote the 2009 and 2018 split SSW events.

Consistent with our understanding of the mechanisms of wind deceleration and acceleration events in the framework of wave-

mean flow interaction, we find that deceleration and acceleration events are associated with the same anomalies but of opposite395

signs, namely a strengthened waveguide, in terms of the second meridional derivative of the zonal wind (uyy), and higher wave

activity for deceleration events, measured by the 100 hPa eddy heat flux (v′T ′), and vice versa for acceleration events. The

predicted distributions of the acceleration and deceleration events become more distinct at shorter lead times and the respective

characteristics of the distributions become better represented. For example, the long tails of deceleration events towards strong

events become better represented, although the model continues to underestimate these long tails, even at short lead times.400

A large part of the predictability differences between events can be explained by the different event magnitudes. When

we express the predictability of deceleration and acceleration events in terms of event magnitude, we found that they both

show a predictability dependence on event magnitude; that is, events of stronger magnitude are less predictable. We explain
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the observed predictability dependence from two perspectives: 1) In a statistical sense, strong magnitude events lie within the

tails of the climatological distribution and are penalised more heavily than weak magnitude events, and 2) from a dynamical405

perspective, strong magnitude events are associated with strong anomalies in v′T ′ and uyy. The strong precursor anomalies

are often less predictable in the model and thus can lead to large uncertainties in event magnitude. The same predictability

behaviour with respect to event magnitude for deceleration and acceleration events thus suggests that the observed predictability

difference between the event types can to a large extent be explained by the difference in event magnitude between the event

types, i.e. the fact that wind deceleration events are associated with greater magnitudes than wind acceleration events, and that410

SSW events are stronger in magnitude than strong vortex events. We also show that the predictability of the v′T ′ and uyy can

explain most of the predictability of the events, with v′T ′ contributing a larger part of the predictability as compared to uyy .

The predictability limit of these dynamical precursors might, therefore, set the predictability limit of events.

For a few events, large errors in the prediction remain even at short lead times, for example, the split SSW events in 2009 and

2018, which are the events with the two strongest event magnitudes of all deceleration and acceleration events investigated in415

this study. The two split events are reported to be associated with anomalously strong wave-2 wave activity (Harada et al., 2010)

and are also reported to be more unpredictable than other SSW events (Rao et al., 2018). The large errors associated with certain

events even at short lead time suggest that these events might be associated with mechanisms different than weaker magnitude

events. For example, internal stratospheric dynamics might play a more important role (e.g. Plumb, 1981; Matthewman and

Esler, 2011; Domeisen et al., 2018), which might not be well represented in the model.420

Further work is needed to understand the potential reasons as to why the model shows limitation in producing extremely

strong wave activity. One might want to investigate whether the wave amplification mechanisms are different in the 2009

and 2018 split SSW events than other deceleration events, and to see whether the mechanisms associated with the two events

are well represented in the model. A better representation of the wave amplification mechanisms and extremely strong wave

activity in the model can potentially enhance the predictability of stratospheric events, and by extension their impacts on surface425

weather and climate.

Appendix A

To choose a suitable event window width for identifying acceleration and deceleration events, we study the variability of

the SPV through the tendency in the zonal mean zonal wind at 60◦ N, 10 hPa in reanalysis. We identify periods that show

consecutive days of wind acceleration and deceleration by counting the number of consecutive days that the daily wind change430

is of the same sign. If the wind changes sign on one day, that day is counted as a new period of wind change. The number of

days in the identified wind change period is defined as the duration.

The duration distribution for wind acceleration and deceleration is qualitatively similar to each other, both following an

exponential distribution (Fig. A1a). The magnitude is given by the wind change over the duration of a given identified period.

The duration and event magnitude shows a near relationship (Fig. A1b).435
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Figure A1. Periods of wind acceleration (red) and deceleration (blue) in reanalysis. (a) Duration, (b) the relationship between the magnitude

and duration of the wind acceleration and deceleration periods. For acceleration periods (red), refer to the red axis on the left. For deceleration

periods (blue), refer to the blue axis on the right. The solid lines mark the linear fit to the scatter plots and the shading marks the 95%

confidence interval of the fit. The histograms are normalised.
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