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Abstract. Heavy pPrecipitation (HP) is a challenging phenomenon with high impact on human lives and infrastructures and 

thus a better modelling of its characteristics can improve its understanding and simulation at climatedecadal time scales. The 

achievement of Convection Permitting Modelling (CPM) resolutions (Δx < 4 km) ∆𝑥 < 4𝑘𝑚 ) has brought relevant 

advancements in itsthe representation of HP.   . . However, further research is needed on how specifically the very high 15 

resolution and switching-off of the convection parametrization affects the representation of processes related to HPheavy 

precipitation.However, further research is needed not all implications of reaching CPM are known especially for model 

variables beyond affecting precipitation.    In this study, we evaluate reanalysis drivendecadal simulations forof the greater 

Alpine area overin the period 2000-2015 and assess the differences in representing heavy precipitation and other model 

variables in a CPM setup with a grid-size of 3 km and a Regional Climate Model (RCM) setup at 25 km resolution with the 20 

using the COSMO-CLM model. We validate our simulations against high-resolution observations (EOBS, HYRAS, MSWEP, 

and UWYO). The results indicate that CPM represents higher precipitation intensities, better rank correlation, better hit rates 

for extremes detection, and an improved representation of heavy precipitation amount and structure for selected events 

compared to RCM. However, CPM overestimates grid point precipitation rates, which is in agreement with findings in past 

literature. The study and presents a revisited version of the Precipitation Severity Index (PSI) for severe event detection, which.   25 

is a useful method to detect severe events and is flexible to prioritize long lasting events and episodes affecting typically drier 

areas. Furthermore, we use Principal Component Analysis (PCA) to obtain the main modes of heavy precipitation variance 

and the associated synoptic Weather Types (WTs). The results indicate that CPM (3 km) represents higher precipitation 

intensities, better rank correlation, better hit rates for extremes detection, and an improved representation of heavy precipitation 

amount and structure for selected events HPEs compared to RCM (25 km). However, CPM overestimates grid point 30 

precipitation rates n agreement with past literature. The new implementation of the PSI is a useful solution to detect severe 

events, flexible to prioritize long lasted events and episodes affecting typically drier areas. The PCA showed that four WTs 

suffice to explain the synoptic situations associated with heavy precipitation in winter, mainly duedue to stationary fronts and 
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zonal flow regimes. Whereas in summer, 5 WTs are needed to classify the majorityinduce bring of heavy precipitation events. 

They are, associated with upper-level elongated troughs over western Europe, sometimes evolving into cut-off lows, or by 35 

winter-like situations of strong zonal circulation.    Relevant Pprecipitation differences up to 200 mm d-1 exist during specific 

events between CPM and RCM, up to 200 mm d-1 as shown by composite plots derived from the principal components of 

heavy precipitation. The results indicate that CPM represents higher precipitation intensities, better rank correlation, better hit 

rates for extremes detection, and an improved representation of heavy precipitation amount and structure for selected events 

compared to RCM. However, CPM overestimates grid point precipitation rates, which is in agreementagrees with findings in 40 

past literature. Both Either RCM orand CPM can simulate more precipitation than their counterpartshow these large differences 

however, CPM systematically simulates represents more precipitation at the mountain tops. However, in other regions the 

RCMs may show higherlarge intensities in other regions, as well. Integrated Water Vapour and Equivalent Potential 

Temperature at 850 hPa are systematically larger in RCM compared to CPM in heavy precipitation situations (up to 2 mm and 

3 K respectively), due to a wetter mid-level conditions and an intensified emission of latent heat flux over the Sea. At the 45 

ground level, CPM emits larger more latent heat flux than RCM over land (15 W m-2), bringing however during summer this 

only occurs north of the Alps. The consequence is that CPM simulates more larger specific humidity north of the Alps (1 g kg-

1) and hence largerhighermore CAPE values (100 J Kkg-1). , whereas RCM, on the contrary simulates a wetter surface level 

over Italy and the Mediterranean Sea. Surface temperatures in RCM are up to 2 °C higher in RCM than in CPM, . . Regarding 

surface temperature RCM simulates up to 2 °C more than CPMespecially north of the Alps. This causes , also emitting larger 50 

outbound long wave radiation to be larger in RCM compared to CPM over those areas (10 W m-2).Our analysis emphasizes 

the improvements of CPM for heavy precipitation modelling and highlights the differences against RCM that should be 

considered when using or simulating decadal data withCOSMO-CLM climate simulations with COSMO-CLM.shows the 

added value of CPM and highlights the large differences against RCM that should be considered when using decadal 

simulations.      55 

1 Introduction 

 

Heavy Pprecipitation Eevents (HPEs) cause tremendous damages and casualties in central Europe (Alfieri et al., 2016; 

Khodayar et al., 2021; Ranasinghe et al., 2021). In a warming climate, the occurrence and intensity of such events is projected 

to increase as assessed in Chapter 8 of the Intergovernmental Panel on Climate Change (IPCC) and previous publications 60 

(Douville et al., 2021; Pichelli et al., 2021), due to the intensification of the hydrological cycle (Rajcack and Schär, 2013; Ban 

et al., 2018). Such events may occur both during winter and summer fostered by Deep Moist Convection (DMC), a large 

vertical transport of precipitating air masses (Emanuel; 1994). In Wwinter, heavy precipitation typically occurs under strong 

synoptic forcing (Keil et al., 2020), caused by the large-scale advection of positive vorticity in cold upper-level layers (Holton, 

2013). The associated synoptic patterns have been studied in past literature (e.g., Knippertz et al., 2003; Werner and 65 
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Gerstengarbe, 2010; Stucki et al., 2012) referring a strong influence of northerly cut-off geopotential lows and elongated 

troughs as well as of the Atlantic zonal flow. In summer, DMC is often triggered by favourable local and mesoscale conditions 

close to the surface, including a warm and moist low-level and a triggering mechanism (Doswell, 1996). When these conditions 

coincide with the arrival of a mesoscale low-pressure system, highly damaging precipitation is likely to occur. 

Understanding heavy precipitation processes, their variability and trends at the decadal time scales is needed to provide better 70 

prevention and adaptation strategies. Considering modelling approaches, dynamical downscaling with Rregional Cclimate 

Mmodels (RCM) has proven to be an important toola valuable tool towards this end (e.g., Jacob et al.,2013). Recently, the 

development of Convection-Permitting Models (CPMs) led to a step forward (Coppola et al., 2018; Prein et al., 2020; Lucas-

Picher et al., 2021), since) since a parametrized description of deep convection is no longer needed.    An explicit representation 

of convection is often applied for horizontal grid spacings lower    than ca. 5 km. Also improved is the representation of the 75 

model’s land type, use and elevation (Prein et al., 2015; Heim et al., 2020). These advancements led to improvements in 

representing the daily precipitation’s diurnal cycle (Kendon et al., 2012; Berthou et al., 2018; Ban et al., 2021); its structure, 

intensity, frequency, and duration (Berthou et al., 2019; Berg et al., 2019); its sub-hourly rates (Meredith et al., 2020); and 

orographic triggering (Ban et al., 2018). These improvements are consistent over the main modelling regions worldwide. 

However, not all problems are solved, since CPMs have also shown relevant wet biases, inducing an overestimation of extreme 80 

intensities (Kendon et al., 2012). CPM uncertainties arise from shortcomings in the physical parameterizations, the coupling 

of the numerics and the physics-dynamics, deficiencies in the representation of the initial conditions and the lack of sufficient 

high-resolution observations for validation (Lucas-Picher et al., 2021).  

Particularly relevant for the improvement of heavy precipitation in CPM is the better representation of DMC processes, 

especially when convection is triggered close to the surface (Bui et al., 2018). In fact, several studies have shown that CPMs 85 

induce stronger updraughts that leads to stronger convection (Meredith et al., 2015a; Meredith et al., 2015b). This is also 

observed in Numerical Weather Prediction (NWP) simulations (Barthlott and Hoose, 2015; Panosetti et al., 2018). When 

convection occurs over an area of complex orography, the finer representation of the mountains in CPM increases the triggering 

of convection (Langhans et al., 2012; Vanden Broucke et al., 2018; Heim et al., 2018; Vergara-Temprado et al., 2020), leading 

to a better agreement with radar observations (Purr et al., 2019). Regarding other model variables, previous papers argued that 90 

CPM improve the simulation of surface temperature (Ban et al., 2014; Prein et al., 2015; Hackenbruch et al., 2016), due to a 

better representation of the orography, as well as the cloud coverage (Lucas-Picher et al., 2021). Regarding the soil-moisture-

precipitation feedback, past work has shown that RCM tends to show a positive sign (Hohenegger et al., 2009; Leutwyler et 

al., 2021) whereas CPM can show both negative and positive signs at the sub-continental and continental spatial scales, 

respectively. The reason is that wetter soils induce more frequent precipitation at RCMs but more intense events in CPM with, 95 

however, a weak impact no frequency (Leutwyler et al., 2021). CPM seem to better agree with observations as previous 

observations showed a negative sign of the feedback due to an increased sensible heat flux over drier soils, and mesoscale 

variability in soil moisture which intensifies afternoon convection (Taylor et al., 2012). Moisture biases also affect the 
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development of heavy precipitation where a wet bias was found for established RCM models (Lin et al., 2018; Li et al., 2020), 

as well as in CPM simulations (Risanto et al., 2019; Bastin et al., 2019; Caldas-Alvarez and Khodayar, 2020; Li et al., 2020). 100 

However, how both RCM and CPM deal with the moisture wet bias still is an open question. Regarding atmospheric instability 

Li et al., (2020), found larger Convective Available Potential Energy (CAPE) during the afternoon in CPM, which was 

correctly converted to larger precipitation at the Tibetan Plateau. Finally, the scale dependency of other variables of interest 

for convective development such as Equivalent Potential Temperature at 850 hPa (𝜃𝑒
850), has been seldom investigated. 

The model evaluated in this paper is the COnsortium for Small scale Modelling in Climate Mode (COSMO-CLM; Schättler 105 

et al., 2016, Rockel et al. 2008) which is especially suitable for studying differences between RCM and CPM due its flexibility 

for configuration in convection parametrized and convection permitting resolutions. COSMO-CLM is a well-established    

regional climate model used by several research and applied-science institutions in Europe (Sørland et al., 2021) and hence 

there is interest in knowing quantifying its skill in simulating how it simulates heavy precipitation andits associated processes 

in a CPM set-up.  110 

One established technique to work with large data sets, such as decadal climate simulations is Principal Component Analysis 

(PCA). PCA is a powerful method to reduce the dimensionality of a set (Joliffe, 2022) and to extract the principal underlying 

features. One of its applications is the derivation of the leading spatial patterns of atmospheric fields during specific situations, 

e.g., heavy precipitation (Knippertz 2003, Seregina et al., 2020). Provided PCA, also calculates the correlation between the 

days of the set and the derived spatial pattens, it can be used to construct composite maps of relevant model variables associated 115 

with the respective spatial patterns of a specific model variable, e.g., precipitation. Although PCA has been used for these 

applications in the past, to our knowledge, it has not yet been applied to study model differences between RCM and CPM. In 

this work we will derive composites of relevant model variables and study differences between both modelling set-ups. 

The aim of this work is to evaluate reanalysis-driven RCM (25 km) and CPM (3 km) decadal long simulations of the greater 

Alpine area in the period 2000-2015 and assess their differences in representing heavy precipitation and associated 120 

environments. This paper is organized as follows: in Sect. 2 we introduce the dataset and methods employed; in Sect. 3 we 

present the main synoptic weather types bringing heavy precipitation; in Sect. 4 we evaluate heavy precipitation intensity and 

occurrence in the climate decadal simulations; in Sect. 5 we validate precipitation, humidity, and temperature fields of selected 

heavy precipitation events; in Sect. 6 we introduce the spatial patterns of precipitation derived from PCA, In Sect. 7 we present 

the differences of model variable composites and in Sect. 8 we show provide our conclusions. 125 

2.1 Observational datasets 

We use observations from different sourcesvarious sources for validation and comparison of the climate simulations (Tab. 1). 

We employ the Ensembles OBSservations (EOBS) gridded precipitation and relative humidity at the surface (ℎ𝑢𝑟𝑠) products 

at 25 km resolution (EOBS-25km), which are provided by the European Climate Assessment & Dataset (ECAD) centre at 
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0.25° (ca. 25 km) of spatial resolution for the period 1950-2020. We use v.22.0e (Dec 2020) employing a 100-member 130 

ensemble created through stochastic simulations based on interpolated station data from national institutions including 

9000nine thousand rain gauges (Cornes et al., 2018). EOBS-25km has been widely used in previous literature for validation 

purposes (e.g., Tramblay et al., 2019; Bandhauer et al., 2021) and has been shown to have low median absolute biases with 

respect to other regional European precipitation products such as CARPATCLIM or Spain02 (Cornes et al., 2018).  

The HYdrologische RASterdatensaetze (HYRAS) gridded precipitation dataset, provided by the German Weather Service 135 

(DWD) is available at 1 km (ca. 0.01°), 5 km (ca. 0.05°) and daily resolution. HYRAS covers Germany and neighbouring 

catchments in parts of Switzerland, Austria, the Netherlands, France, Belgium, and Poland (Fig.1). The version v2 covers the 

period 1951-2015 and was derived using multiple linear regression and inverse distance weighting interpolation of 6200 rain 

gauges considering the orography (Rauthe et al., 2013, Razafimaharo et al., 2020). HYRAS-5km has a remarkable very high 

quality and its high-resolution enables a good representation of local scale features, outperforming the coarse resolution of 140 

EOBS-25km (Hu et al., 2020). However, it is only available over Germany and nearby catchments.  

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) is a gridded precipitation product provided by GloH2O 

(http://www.gloh2o.org/) at 0.1° (ca. 11 km) spatial resolution and 3-hourly temporal resolution for the period 1979-2020 with 

global coverage. We use version v.2.2.0. which was obtained through weighted interpolation of different observations to a 

common grid. It merges data from rain Gauge observations from Climate Prediction Center (CPC) unified and Global 145 

Precipitation Climatology Centre (GPCC), satellite observations from the CPC MORPHing product (CMORPH), Global 

Satellite Mapping Precipitation Moving Vector with Kalman (GSMaP-MVK) and Tropical Rainfall Measuring Mission Multi-

Satellite Precipitation Analysis (TMPA) 3B42, as well as two reanalyses’ datasets ERA-interim and Japanese Reanalyses JRA-

55 (Beck et a., 2019). MSWEP has a higher median correlation (up to 0.67) against stations, compared to CMORPH (0.44) 

and TMPA-3B42 (0.59) (Beck et al., 2017). We use the MSWEP product to profit from its high accuracy, shown in previous 150 

studies, globally (Beck et al., 2017, 2019; Xiang et al., 2021) as well as in specific geographies (Du et al., 2022; Peña-Guerrero 

et al., 2022). MSWEP has the advantage of covering sea surfaces and is adequate for precipitation event evaluation because it 

includes gauge data from CPC and GPCC. 

The radiosonde data archived by the University of Wyoming (UWYO) are used to validate the RCM and CPM humidity and 

temperature profiles. The stations are located close to large European cities, with an average distance of 250 km between 155 

stations. The temporal resolution ranges between 6 h, 12 h and 24 h and the provided information includes height, atmospheric 

pressure, temperature, and dew point temperature on ca. 30 levels. The UWYO soundings have often been used as reference 

for validation studies (e.g., Ciesileski et al., 2014; Yang et al., 2020).  
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2.2 Setup of the COSMO-CLM, RCM and CPM simulations 

We use COSMO-CLM, a non-hydrostatic model using the fully compressible atmospheric equations (Schättler et al., 2016), 160 

incorporating sub-grid turbulence, convection and grid scale clouds and precipitation parameterizations. COSMO-CLM uses 

a soil model called TERRA-ML (Doms et al., 2011) to parametrize the mass and heat exchanges between the surface and the 

atmosphere (Rockel et al., 2008). 

In this work, we systematically compare reanalysis driven regional climate simulations with a typical RCM resolution (25 km; 

hereafter named RCM) and at convection permitting resolution (~ 3 km, named CPM). All simulations were performed with 165 

the version COSMO-CLM5 and use a setup specifically optimized for these resolutions.  

The RCM simulation covers the period 1961-2018 (Tab.2), has a grid spacing of 0.22° (ca. 25 km), a 3-hourly output, and was 

performed within the scope of the MiKliP project (Feldmann et al., 2019). This simulation was performed for the Euro-

CORDEX domain (Jacob et al., 2014) and thus covers the European continent and vast areas of the North Atlantic and the 

Mediterranean (Fig.1). The RCM simulation is forced by ERA-interim (Dee et al., 2011) for the period investigated in this 170 

manuscript (2000-2015). The setup is the recommended for COSMO-CLM5 for typical RCM resolutions (10-50 km). The 

most relevant model settings are summarized in Tab. 2 and in Sørland et al., 2021.  

The CPM simulation uses a COSMO-CLM5 subversion with a few bug-fixes and additional output variables but no changes 

in the numerics or formulation of the physics. The setup has been optimized for convection permitting scales and is used in 

the CORDEX Flagship Pilot Study on Convection (Coppola et al., 2018) and the simulation has been evaluated in Ban et al. 175 

(2021). This means that there are differences in the specific tuning parameters, where the main difference is the switching of 

the deep-convection parametrization (Tiedtke; 1989; Baldauf et al.; 2011; cf. Tab. 2). The simulation is performed by 

downscaling the RCM simulation described above over the grater Alpine area (ALP-3 domain, with a 3km (0.0275°) resolution 

for the period 2000 – 2015. 

Another convection-permitting simulation – here called KLIWA-2.8km (cf. Tab. 2) – is used auxiliary just in Sect. 4 (Fig. 6) 180 

to extend the period for the comparison of the historical events. The grid spacing of this simulation is 2.8km (0.025°) and 

covers a smaller modelling domain over southern Germany and the Alps (cf. Fig. 1) for the period 1971-2000. It is forced by 

ERA40 re-analysis (Uppala et al., 2005) in a three-step nesting approach (Hundhausen et al., 2022). This simulation uses a 

slightly older subversion missing a few bug fixes. The main differences to CPM can be found in Tab. 2. 

Two areas are investigated in our study. The first, denominated southern Germany (SGer, Fig.1) encompasses the northern 185 

Alps, and southern Germany up to North-Rhein-Westphalia and Saxony. This area is selected to fulfil the requirements of the 

modelling and observational data sets (availability, coverage, time span). The second area, CPM (Fig. 1), covers the greater 

Alpine domain including the northern Mediterranean basin and is used for comparison of the model performance RCM vs. 

CPM. 
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2.3 Analytical methods 190 

2.3.1 The Precipitation Severity Index (PSI) 

We re-adapted the PSI, an index previously used    to detect heavy precipitation events (Piper et al., 2016) and severe 

windstorms (Leckebusch et al., 2008; Pinto et al., 2012) to include precipitation persistence. By doing so we can consider three 

different, but intertwined aspects of heavy precipitation: grid-point intensity, spatial extent of affected area and temporal 

persistence. It is re-defined as follows: 195 

𝑃𝑆𝐼𝑇 =
1

(1+𝑑)∙𝐴
∑ ∑ ∑

𝑅𝑅𝑖𝑗𝑡

𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗

∙ (∆𝑥)2 ∙ ∏ 𝐼 (𝑅𝑅𝑖𝑗𝜏, 𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
)𝑇

𝜏=𝑡
𝑇
𝑡=𝑇−𝑑

𝑀
𝑗=1

𝑁
𝑖=1                                                                                                             

[1] 

                                                         0 𝑖𝑓 𝑅𝑅𝑖𝑗𝜏 ≤ 𝑅𝑅80𝑖𝑗
 

𝐼 (𝑅𝑅𝑖𝑗𝜏 , 𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
)= 

                                                         1 𝑖𝑓 𝑅𝑅𝑖𝑗𝜏 > 𝑅𝑅80𝑖𝑗
 200 

 

The PSI values at a certain time step T (𝑃𝑆𝐼𝑇) are obtained from the ratio between grid point daily precipitation (𝑅𝑅𝑖𝑗𝑡) and a 

user-defined threshold. In this paper we set this threshold to be the 80-percentile (𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
) all-day to neglect grid points whose 

precipitation is lower than the set threshold one for day T (𝑅𝑅𝑖𝑗𝜏 ≤ 𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
). This is done by means of the function 

𝐼 (𝑅𝑅𝑖𝑗𝜏 , 𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
). We consider the spatial extent by summing the ratios over the spatial extent (𝑁𝑥𝑀) of the study region 205 

along the directions 𝑖 and j. The ratios are multiplied by the area of one grid cell (∆𝑥)2. The precipitation persistence is 

considered in the calculation through the sum over time (𝑡). The ratios at each grid point for day T and the previous 𝑑 days 

(𝑑 = 2 in our case) are added for the PSI calculation, provided precipitation was continuous and larger than 𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
 at that 

same grid point 𝑖, 𝑗. . . The daily PSI value is normalized to the area of the simulation domain 𝐴 = 𝑁 ∙ 𝑀 ∙ (∆𝑥)2 multiplied by 

(1 + 𝑑) to consider the addition of grid points with persistent precipitation. Prior to the PSI calculation, we include a correction 210 

for latitude stretching of the grid as 𝑠𝑞𝑟𝑡(𝑐𝑜𝑠(𝑙𝑎𝑡)) following (North et al., 1982). 

To assess the performance of the PSI, we calculate Spearman’s rank correlations between the PSI and a simpler field sum 

index (𝑓𝑙𝑑𝑠𝑢𝑚 ). We use daily precipitation data from HYRAS-5km between 01-Jan-1971 and 31-Dec-2015 over the 

investigation area SGer (Fig. 1). We testevaluate different combinations of the PSI parameters 𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
 and 𝑑 (Eq. 1). Fig. 2 

shows the rank correlations against 𝑓𝑙𝑑𝑠𝑢𝑚 and the three top-ranked events of each implementation and the daily precipitation 215 

of the 22-Oct-1986 event.  . .    

We find a high rank correlation between the PSI and 𝑓𝑙𝑑𝑠𝑢𝑚 for low values of 𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
 and 𝑑. For instance, when we set 

𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
 as the percentile-80 of the 1971-2015 period and 𝑑 = 0 (equivalent to considering no persistent precipitation) the 
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rank correlation is 0.97, indicative of a very similar functionality between the PSI and 𝑓𝑙𝑑𝑠𝑢𝑚 (Fig. 2a). For instance, in this 

configuration the third event in the ranking differs between the PSI (20-Dec-1993) and 𝑓𝑙𝑑𝑠𝑢𝑚 (20-Nov-2015). The reason 220 

behind is that the 20-Dec-1993   event occurred over a flat area, unfrequently affected by heavy precipitation (Fig. S1 in the 

Supplementary Material; SM). The PSI prefers ranks this event to 20-Nov-2015 (affecting mainly complexcomplex terrain) 

because the threshold set to the 80-percentile is lower over flat terrain and thus easier to surpass over flat terrain (Fig. S1).  

As we increase 𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
 and 𝑑 , the rank correlation decreases, implying a different ranking of the events (Fig. 2a). For 

example, a percentile-95 for 𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
 and 𝑑 = 2 brings a rank correlation of 0.86 which favours the detection of events with 225 

larger grid-point intensity and temporal persistence. For illustration, the 22-Oct-1986 event (Fig. 2b, c, d) is ranked as the most 

severe event in the period in this configuration due to precipitation totals between 50 mm d-1 and 150 mm d-1 impacting for 

three consecutive days the same areas, e.g., the Colmar region or the Marburg-Siegen area (see Fig.2, b, c, and d). The 

remainder events can be seen in the SM. 

To conclude, the advantage of the PSI with respect to a simpler field sum index is its capability to detect rarer and more 230 

persistent events. Rarer events can be found because the threshold 𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
 guarantees the selection of events where either 

heavy precipitation falls over climatologically drier areas or where extreme intensities take place over typically wet areas (e.g., 

complex terrain). For its part 𝑑 = 2 favours the detection of events where heavy precipitation occurred continuously on the 

same grid point up to a maximum of wo days. That said, a low percentile threshold ( 𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
) or 𝑑 = 0  will bring a 

functionality no different to 𝑓𝑙𝑑𝑠𝑢𝑚. This makes the PSI a flexible solution that can be tailored to the user´s needs. Finally, 235 

the PSI is also flexible to set the threshold 𝑅𝑅𝑝𝑒𝑟𝑐𝑖𝑗
 to a fixed amount, e.g., 120 mm d-1, to ensure that only grid points above 

that threshold will be included in the calculation. This is a possible configurationconfiguration that could be used in future 

studies.    

2.3.2 Principal Component Analysis 

Principal Component Analysis (PCA) is a method to reduce the dimensionality of a data set, by transforming it to a new 240 

coordinate system of variables called Principal Components (PCs; Joliffe, 2002). The functions that allow the transformation 

from the original set to the PCs space are called Empirical Orthogonal Functions (EOFs). The transformation is performed in 

such a way that the explained variance is concentrated in a small number of components the new variables. By construction, 

the leading EOF1 has the largest explained variance, followed by EOF2, and so on. In this paper, we investigate the PCs and 

EOFs of 500 hPa geopotential height fields (Sect. 3) and daily precipitation (Sect. 6). Similarly to Ulbrich et al., (1999), we 245 

obtain EOFs representing the spatial patterns of the target variable, that account for the main modes of variance. On the other 

hand, the PCs are time series which provide the information of the correlation of each EOF to a specific day in the series. 
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Given that the explained variance is now concentrated in a small number of variables, it is important to discern how many 

EOFs should be retained. With this aim, we use a method of parallel analysis based on the randomization of eigenvalues named 

the random-λ rule (Peres-Neto, 2005). The procedure is as follows, 1) a random data array is created with the same dimensions 250 

as the data array under study, 2) PCA is applied on the random array, 3) steps 1 and 2 are repeated up to 1000 times, retaining 

the eigenvalues showing a significance over 95 % (alpha= 0.05). 4). If the original eigenvalues exceed the critical values from 

the random data, then we reject the null-hypothesis (Peres-Neto, 2005). The random-λ rule is more suitable than other methods 

of parallel analysis such as the N-rule (Preisendorfer and Mobley, 1988) since it does not assume a normal distribution for the 

array of random values and thus works better for variables such as precipitation. 255 

2.3.3 Validation metric Fractions Skill Score 

The Fractions Skill Score (FSS) provides an estimation of the model’s skill in representing the fraction of surface affected (or 

not) by heavy precipitation (Skok and Roberts, 2016). A perfect forecast has thus an FSS of 1. A simulation with no skill has 

an FSS of 0. In this work, we set a threshold of 40 mm d-1 to define structures affected by heavy precipitation. The threshold 

is in the range of values implemented by Roberts and Lean (2008) for simulations of spring convective rain over southern 260 

England. We select this threshold to be able to identify clear precipitation structures otherwise masked by the choice of a too 

large or too low threshold analogously to Caldas-Alvarez et al., (2021). Equation 2 defines the FSS following Roberts and 

Lean (2008). 

𝐹𝑆𝑆 = 1 −
1

𝑀
∑ (𝑓𝑚𝑜𝑑−𝑓𝑜𝑏𝑠)2𝑀

𝑖=1
1

𝑀
(∑ 𝑓𝑚𝑜𝑑

2𝑀
𝑖=1 +∑ 𝑓𝑜𝑏𝑠

2𝑀
𝑖=1 )

                           [2] 

The fractions of surface affected by heavy precipitation are represented by 𝑓𝑜𝑏𝑠 and 𝑓𝑚𝑜𝑑, for the observations and the model, 265 

respectively. Both are calculated as the number of grid points affected by precipitation over the defined threshold (40 mm d-1) 

divided by the total number of grid points of a domain. FSS is computed as the ratio of the sums of fraction differences for M 

sub-boxes within the investigation domain. These M sub boxes are defined as sub-domains around M grid points with N near 

neighbours. N in our case is 12twelve since most of the events we validate have shown a skill larger than the target skill defined 

as 𝐹𝑆𝑆𝑡𝑎𝑟𝑔𝑒𝑡 = 0.5 + 𝑓𝑜𝑏𝑠 2⁄  for 𝑁 = 12. For detailed explanation, refer to Roberts and Lean (2008), Skok et al., (2016), and 270 

Caldas-Alvarez et al., (2021).  

3 Synoptic weather types 

We obtain the predominant large-scale situations associated with heavy precipitation applying PCA. We analyse the EOFs of 

geopotential height at 500 hPa, based on the RCM simulation, for the period 1971-2015. We select dates of heavy precipitation 

in the 98-percentile of severity (PSI) in the HYRAS-5km “all-day” data set over the investigation region SGer (Fig. 1). Figures 275 

3 and 4 provide, respectively, the dominating weather types of heavy precipitation for summer (MAMJJA) and winter 
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(SONDJF). The comparison against the CPM is not shown here since only negligible differences exist with respect to RCM, 

sinceM. This is because the boundary conditions from the forcing reanalyses (ERA) strongly determine the large-scale features 

under play (Prein et al., 2015). 

In winter, four synoptic patterns of 500 hPa geopotential height suffice to explain the majority of HP eventsnatural variability, 280 

following the random-λ rule with a 95% significance in the t-test (Peres-Neto et al., 2005). They account for 74% of thee heavy 

precipitation episodes. The first mode, representing 29 % of the events, is characterized by wave trains of low pressure 

associated with northerly incursions of polar air (Fig. 3). The synoptical situation is analogue to the Stationary Fronts (STF) 

category proposed by Stucki et al., (2012). In this situation, heavy precipitation over the Alps is associated with strong upper 

levelupper-levelupper-level lifting over northern Italy and large southwesterlysouth-westerly advection of moisture from the 285 

Mediterranean. Historical cases belonging to this category, as identified by the PCA, are the second phase of the 23-31 October 

storms in 1998 (Fuchs et al., 1998) or the late November events in 2015 (Tab. 3, https://www.wetter.de/cms/so-war-das-wetter-

im-november-2015-2566771.html), for instance. The second mode, accounting for 22 % of the events, shows strong north-

south gradients of the 500 hPa height and fast zonal circulations (Fig. 3). This synoptic pattern has been identified as a Zonal 

Flow (ZOW; Stucki et al., 2012) or as a narrow and elongated streamer (Massacand et al., 1998). The zonal circulation favours 290 

moisture advection from the Atlantic and can produce large precipitation in non-convective environments (Stucki et al., 2012). 

The 29 December 2001 event belongs to this precipitation mode, for instance. The third and four modes account for 12 % and 

11 % of precipitation episodes, respectively and show similarities with the 500 hPa geopotential heights of the second mode 

(Fig. 3). However, the third synoptic pattern shows a weaker Azores high, favouring the advection of Atlantic moisture with a 

southwesterlysouth-westerly component. The fourth mode, for its part, shows a weaker polar low, which favours the 295 

development of anti-cyclonic circulation (Fig. 3).   .  

In summer, five synoptic patterns of 500 hPa geopotential height are discernible from random noise (Peres-Neto et al., 2005), 

accounting for 77 % of the events. The first mode, corresponding to 27% of the considered dates, shows an extended upper-

level trough from the British Isles down to southern France (Fig. 4). This configuration shows elements of an Elongated Cut-

Off (ECO) and of CAnarian Troughs (CAT; Stucki et al., (2012). In such situations upper-level lifting occurs east of the trough 300 

together with southerly moisture advection either from the southwest or the southeast, respectively. Such situation occurred 

for instance during the first stages of the large central European flooding of early June 2013 (Kelemen et al., 2016). If a 

blocking situation occurs, for instance Omega blocking, the persistence of precipitation is enhanced and can lead to recurrent 

events (Kautz et al., 2021) at the eastern flank of the ECO or CAT . The second summer precipitation mode (Fig. 4), accounting 

for 19% of the events, presents a similar pattern to the third and four modes of winter precipitation (Fig. 3) with the 305 

characteristic strong zonal flow from the Atlantic. Examples of this synoptic configuration are the March 1988 events flooding 

the Rhein river (southern western Germany; Prellberg and Fell, 1989) or the 15 June 2007 events affecting southern Germany 

(https://www.wetteronline.de/extremwetter/schwere-gewitter-und-starkregen-schaeden-durch-tief-quintus-2007-06-15-tq). 

The third precipitation mode, explaining 12 % of the analysed days (Fig. 4), shows similarly to the first mode, an ECO, 

https://www.wetteronline.de/extremwetter/schwere-gewitter-und-starkregen-schaeden-durch-tief-quintus-2007-06-15-tq
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however, with an eastward shifting of the Azores ridge and the possibility of evolving to a Pivoting Cut-Off Low (PCO; Stucki 310 

et al., 2012). If the PCO finally realizes and reaches the Mediterranean it is accompanied by a cyclonic flow, which advects 

brining   moisture towards Central Europe, which originatesing inat the Balkan region. This has been demonstrated to be the 

case for the second phase of the June 2013 flooding (Kelemen et al., 2016). The fourth summer precipitation mode (Fig. 4), 

accounts for 11% of the considered episodes and represents situations of northeasterlynorth-easterly development of the upper-

level trough. The low pressure evolves into a CAT situation inducing a southwesterlysouth-westerly moist inflow to the Alpine 315 

region (Stucki et al., 2012). The 08 July 2004 floods in Baden-Wuerttemberg (southwestern Germany; 

http://contourmap.internet-box.ch/app/okerbernhard/presse2.htm) are a good example of such situation. The fifth precipitation 

mode, 8 % of the events, shows an STF pattern, similarly to the first winter precipitation mode (Fig. 3). Such a configuration 

was present during the Rhein-Necker flooding (western Germany) in June 2005 

(https://www.rnz.de/nachrichten/metropolregion_artikel,-unwetter-folgen-in-mannheim-besonders-viele-gebaeudeschaeden-320 

durch-regen-_arid,482078.html). 

4 Evaluation of heavy precipitation 

After identifying the synoptic situations responsible for heavy precipitation, we evaluate the RCM and CPM simulations 

between 2000 and 2015 (Tab. 2) in terms of probability, intensity, and detection capability against observations.  

Figure 5 shows empirical Probability Distribution Functions (PDFs) of daily precipitation between 1971 and 2015 over SGer 325 

(Fig. 1). All datasets represent similar probabilities for precipitation intensities between 0 mm d-1 and 50 mm d-1. The upper 

box in Fig. 5 shows a zoom-in for the lower intensities. Beyond 50 mm d-1 CPM (red) starts to diverge from RCM (blue) and 

the observations (HYRAS-5km in black and EOBS-25km in grey). CPM (red) can represent daily grid point intensity up to 

280 mm d-1, whereas RCM (blue) can only attain 150 mm d-1. HYRAS-5km, for its part, reaches a maximum grid point 

intensity of 215 mm d-1 and E-OBS-25km reaches 180 mm d-1. This shows that the    Figure 5 hence demonstrates that the 330 

coarser resolution data sets represent lower precipitation intensities and that . Finally, the differences in probability for 

intensities above 50 mm-d1 are to be noted. In this regard CPM shows the largest probabilities of representing heavy 

precipitation intensities (>120 mm d-1).  

The ability of CPM to represent larger precipitation rates agrees with previous literature (Ban et al., 2014; Prein et al., 2015; 

Fosser et al., 2014), which has been related to the enhanced intensities over orographic terrain (Langhans et al., 2012; Vanden 335 

Broucke et al., 2018; Ban et al., 2021). The comparison against HYRAS-5km (black), shows a good agreement by RCM and 

CPM for values between 1 mm d-1 and 50 mm d-1. However, CPM (red) overestimates heavy precipitation for grid point 

maxima. This is a well-known deficit of CPM (Kendon et al., 2012; Berthou et al., 2018).   despite its many advantages e.g., 

improvements in the representation of the diurnal cycle (Kendon et al., 2012; Lin et al., 2018), or   better event representation 

(Chan et al., 2012; Ban et al., 2018). It should also be noted that even for grid resolutions down to 1 km the updrafts might not 340 
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me simulated with the right intensity, which can help explain the overestimation of precipitation at these high resolutions 

(Vergara-Temprado et al., 2020). It is also worth noting that Also, the comparison against observations canmust be done 

carefully as heavy rain measurements might   suffer from under catchment problemsviewpoint, which can be responsible of as 

the misplacement of the heavy large precipitation can lead to strong losseslocal reductions, reaching even 58 % in the worst 

scenarios (Vergara-Temprado et al., 2020). Furthermore, problems associated with the gridding of precipitation observations 345 

and the fact that rain-gauges in the Alpine region tend to be located at the valleys, add uncertainty to the estimation of 

precipitation. and any validation of model data.  

To further assess the performance of COSMO-CLM in representing precipitation extremes we analyse the detection capability 

of RCM (blue circles) and CPM (red dots) by means of a dot diagram, showing the 500 most severe events detected with the 

PSI in the period 1971-2015 over SGer in (Fig. 6). The CPM dataset is extended to 1971 with the aid of the KLIWA-2.8km 350 

simulation that has a similar horizontal resolution (2.8 km) and is obtained using the same model (CCLM). However, several 

inconsistencies exist between CPM and KLIWA-2.8 (refer to Sect. 2.2 for further details). We use HYRAS-5km (black circles 

and EOBS-25km (grey squares) as reference.  

CPM (red dots) showed a higher spearman’s rank correlation (0.48) than RCM (blue circles; 0.41) as shown in the legend of 

Fig. 6. Likewise, CPM outperforms RCM with regards to The same applies to hit rate (number of hits divided by number of 355 

occurrences) with values of 47.2 % for CPM and 45.88 % for RCM (not shown). The improvement shown by CPM with 

respect to RCM shows the added value of high-resolution in detecting heavy precipitation events in a climatology. The rank 

correlations of both resolutions remain below 0.5 given the difficulty of exactly represent the same 500 events in a 44-year 

climatology representing 3% of all considered days. Figure 6 also allows observing shows relevant periods of heavy 

precipitation clustering, e.g., spring-summer of 1971, winter 1989, the years 2000 to 2002 and autumn 2013. Regarding Finally, 360 

EOBS-25km (grey squares), it has a rank correlation of 0.94 against HYRAS-5m indicating a good accuracy for this product. 

Finally, the detection of cases in winter and summer in all dataset’s points at the PSI as a suitable method for extremes detection 

in all seasons.  

5 Event scale evaluation 

In the previous section, we assessed an overestimation of grid-point heavy precipitation for the convection-permitting 365 

simulation CPM, but a good performancea reliable performance in detecting severe precipitation events in a 44-year 

climatology. Here we evaluate the performance of CPM at the event scale validating eight chosen events. We focus on the 

period 2000-2015 and the investigation area CPM (Fig. 1). 

Table 3 shows eight selected events selected using the PSI, which were also included in the derivation of the synoptic weather 

types in Sect. 3. Table 3 includes provides information about the duration of the events, the observed total precipitation, 370 

maximum grid point intensities, percentage of affected area (, i.e., percentage of grid points with precipitation over the 80th 
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percentile),, severity (PSI), and associated Weather Types (WT). We subjectively shortlisted the events to consider not only 

those events with of large severity (PSI) and but also to have a sufficient winter and summer cases, which led including to the 

consideration of two events with daily totals below 120 mm d-1, i.e.,namely 03-Nov-2002 and 08-Jul-2014. The events showed 

a large severity (PSI) and were afterwards short listed subjectively to include both winter and summer events. Therefore, some 375 

of them, e.g., 03-Nov-2002 or 08-Jul-2014, did not show heavy daily precipitation values but are however interesting for 

evaluating the model performance.  

5.1 Precipitation 

We focus evaluate the model performance focusing on two aspects of heavy precipitation, (1) amount, calculated as aggregated 

precipitation in time and space, and (2) structure, validated by means of the FSS metric (Sect. 2.3.3). For both metrics, we use 380 

MSWEP-11km (Tab. 1) as the observational reference, after coarse-graining all compared datasets to a common grid of 25 

km. MSWEP-11km is used provided its large accuracy due to the inclusion of rRain gGauges (Beck et al., 2017) and since 

precipitation occurs to a large extent over the Mediterranean Sea, where HYRAS-5km and EOBS-25km have no coverage. 

Table 4 shows the relative differences in precipitation amount aggregated in space and time between the model and 

observations as 𝑅𝑅𝑟𝑒𝑙.𝑑𝑖𝑓𝑓 = (𝑀𝑂𝐷 − 𝑂𝐵𝑆)/𝑂𝐵𝑆 in percent. CPM performed better than RCM in six out of the eight selected 385 

cases for precipitation amount. The largest improvement occurred for the 31-May-2013 event, which corresponds to the 

synoptic pattern S1 associated with the occurrence of ECOs and the advection of southwesterlysouth-westerly moisture (Fig. 

4). Using CPM brought generally largerlarger precipitation rates, in agreement with the findings of Sect. 4, allowing for better 

scores of aggregated precipitationprecipitationss.  

Regarding FSSstructure, CPM performed well in, in general terms, for 7 out of 8 events with FSS reaching values over 0.7. 390 

RCM, for its part, performed well for 5 out of 8 events (Tab. 4). The 31-May-2013 event is again an example of good 

performance by CPM, where the FSS scores reached 0.87 in CPM (0.26 in RCM). The main reason for this improvement was 

the ability of CPM to represent larger precipitation structures over the Alps in a better agreement with MSWEP-11km. The 

spatial distributions of precipitation by RCM, CPM and HYRAS-5kmMSWEP-11km are shown in Fig. S2 of the SM.  

Only the event 08-Aug-2007 showed a bad performancea deficient performance by CPM, both for precipitation amount and 395 

structure. This event occurred under a S1 synoptic situation associated with an elongated troughs or cut-off lows (Fig. 4). The 

reason behind   the bad performance in this case in CPM is the large underestimation of precipitation in CPM, which also 

hampers the structure representation. 

Overall, these results showed that CPM outperforms RCM brings added value in the representation of precipitation amount 

and structure compared to RCM. The advantage of CPM relies on the better location of orographic precipitation and the 400 

increased larger precipitation intensities. brought by the more intense updrafts and larger number of cells triggered.  
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5.2 Humidity and temperature 

In addition to precipitation errors, temperature and humidity biases could affect our interpretation of the model differences 

between RCM and CPM. To reduce uncertainty, Here we validate specific humidity (ℎ𝑢𝑠) and temperature (𝑡𝑎) profiles from 

RCM and CPM against radiosondes from the University of Wyoming (UWYO) and surface relative humidity (ℎ𝑢𝑟𝑠) against 405 

EOBS-25km for the eight selected events (cf. Tab. 3).  

Figure 7 shows the temporal Mean Bias (MB; thick line), the standard deviation of the differences (shaded area), and the Root 

Mean Square Errors (RMSE; dashed line) of specific humidity (Fig. 7a) and temperature (Fig.7b). The model output is 

interpolated to the location of eleven sounding stations, which were selected to have sufficient availability and fulfil the 

condition of a surface height difference not larger than 50 m.   where only a height difference lower than 50 m between the 410 

station height and the model´s orography is allowed. This requirement is introduced to avoid including large humidity and 

temperature biases from differences in surface topography between the model and the observations. We include all available 

soundings during the duration of the eight events (Tab. 3) in the calculation, with a temporal resolution between 6 h and 12 h.  

Humidity is slightly overestimated by RCM throughout the whole profile and by CPM above 800 hPa (Fig. 7a). The 

overestimation by both models reaches 0.2 g kg-1 at 700 hPa. Below 800 hPa, CPM, reduces the mean bias reaching -0.1 g kg-415 

1-1, indicating a generally drier planetary boundary layer. RMSE values are very similarsimilar for both simulations being close 

to 1.5 g kg-1 below 700 hPa. These results are promising for COSMO-CLM since neither RCM orand CPM show small biases 

even if they do not have an active data assimilation scheme and whence the model is exclusively constrained by the boundary 

conditions of the forcing data (ERA-interim).  

Regarding temperature (Fig. 7b), COSMO-CLM shows a warm bias, reaching 0.5°C at the 925 hPa layer for both resolutions. 420 

RMSE (Fig. 7b, dashed line) is very similarremarkably similar between both simulations, above 2 °C, with a slight 

improvement by CPM (red).  

The humidity (Fig. 7.c) and temperature (Fig. 7.d) profiles show a wetter mid-troposphere (between 700 hPa and 925 hPa) in 

RCM than in CPM and a very similara similar temperature profile between both simulations with a good agreement against 

observations. CPM simulates slightly better the vertical humidity profile than RCM with a steeper humidity-height gradient. 425 

This was also observed in earlier studies with COSMO and COSMO-CLM (Caldas-Alvarez and Khodayar, 2020; Caldas-

Alvarez et al., 2021). COSMO-CLM compensates the modelling errors   simulating a wetter lower troposphere in RCM to 

help activate the deep convection parameterization scheme (Tiedtke, 1989). Being of the low-level control type, the Tiedtke 

deep convection scheme requires a sufficient moisture amount below the cloud base to initiate convection (Doms et al., 2011). 

By doing so RCM simulates precipitation totals of the same order as CPM that relies more upon the intensification of vertical 430 

wind speeds than humidification to simulate convective precipitation. Furthermore, the higherlarger humidity in the mid-

troposphere helps reduce the simulated dry-air entrainment increasing the total simulated precipitation. Both simulations show 

a reliable performance considering the decadal timescales  
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Provided the observations available below 925 hPa in the UWYO soundings were scarce, we employ the gridded EOBS-25km 

dataset (Tab. 1) to investigate the COSMO-CLM biases at the surface (Fig. 8). We represent the spatial distribution of temporal 435 

mean bias (colour shading) and the temporally-spatially averaged mean bias and RMSE of daily surface relative humidity. We 

calculate relative humidity biases for this validation, given no surface specific humidity gridded observations with sufficient 

accuracy were available for our region and period of investigation. 

COSMO-CLM underestimates surface relative humidity for both RCM (Fig. 8a) and CPM (Fig. 8b), w. Which is consistent 

with the well-known dry and hot bias of CPMs, provided our selected events occur mostly in summer. This is especially so at 440 

the Po Valley (Italy) and the southern Italian Peninsula. However, CPM (Fig. 8b), slightly improves the surface relative 

humidity deficit at locations north of the Alps, e.g., northwesternnorth-western France, the Czech Republic and western 

Austria. These corrections in the northwesternnorth-western part of the simulation domain, reduce the temporal and spatial 

MB by 3%. However, provided the larger spatial variability of this variable in CPM, due to the better orography representation, 

the RMSE is worsened by 5 %. 445 

The profile and surface humidity and temperature validation has shown that: a) COSMO-CLM performs well in simulating 

the humidity and temperature lapse-rates, albeit small biases up to 0.2 g kg-1 in humidity and 0.5 °C (warm bias) in temperature 

exist; b) CPM simulates slightly better the vertical humidity profile with a steeper gradient than   RCM; c) CPM reduces the 

positive surface relative humidity   bias over locations north of the Alps, e.g., western France, the Czech Republic and eastern 

Austria. 450 

6 Main modes of heavy precipitation variability in RCM and CPM  

To understand how differentlywhere RCM and CPM represent the main spatial patterns of heavy precipitation differently, we 

use PCA (Sect. 2.3.2) on events detected in HYRAS-5km in the period 2000-2015. We do this to observe differences in the 

spatial distributions of heavy precipitation during the most frequent precipitation modes and reduce the dimensionality of the 

data set. We combine the severe events into one set and apply PCA to obtain the EOFs and their corresponding spatial 455 

distributions. We do this separately for winter (SONDJF) and summer (MAMJJA) events for both RCM and CPM, using days 

above the percentile-90 of daily PSI values. In total, 290 events per season are considered to derive the EOF maps shown in 

Fig. 9 and in Fig. S3 in the SM. We do this to reduce the dimensionality of the set to the principal components. For this analysis, 

we focus exclusively on precipitation EOFs with a similar structure between RCM and CPM, dismissing the remainder EOFs. 

This is done to ensure we compare model differences in similarly simulated meteorological situations.  460 

Figure 9 shows the four leading EOF maps for Wwinter events (panels a, c, e, and g) and the three leading modes in Ssummer 

(panels b, d, and f) as simulated by CPM. The corresponding figures for RCM can be found in the SM (Fig. S3). Only CPM is 

shown here due to the large similarity in the spatial distributions of these EOFs with RCM. The PCA determines that the 

precipitaitonprecipitation EOFs start to remainder EOFs differ substantially between substantially between RCM and CPM 



16 

 

after t. The leading four winter EOFs in winter and the third in summer. The four leading EOFs in winter explain 48% of the 465 

variability for RCM and 47% for CPM, being the first mode the most frequent one (22% of cases). For summer events the 

three leading modes of precipitation stand for 37 % of the situations in RCM and 33 % in CPM).  

The visual inspection of the first EOF for Wwinter events (Fig. 9a) shows that this the mode associated with orographic 

precipitation over the Alps and the northern Apennines in the Genoa region. EOF-2 (Fig. 9c) for its part shows precipitation 

either affecting continental Europe, north of the Alps (negative mode; brown) or affecting the Mediterranean, including the 470 

Italian and Balkan peninsulas with a marked orographic signal (positive mode; green). EOF-3 (Fig. 9e) combines precipitation 

over northern Europe with Mediterranean precipitation in its positive mode (green). The negative mode (brown) affects the 

southern Mediterranean basin between Italy and France as well as the southern and Maritime Alps. Finally, EOF-4 (Fig. 9g) 

finally shows a positive mode associated with precipitation over the Gulf of Lyons, the Balearic SeaSea, and the Pyrenes 

(green), and a negative mode affecting northeastern Italy (brown). Both The latter situations of heavy precipitation in the 475 

Mediterranean have been studied in detail in the HyMeX project (Khodayar et al., 2021).  

The first EOF for summer events (Fig. 9b) is associated with orographic precipitation over the Alpine region, similarly to 

winter EOF-1, albeit affecting parts of northern Europe, where convection can trigger more easily during the summer months. 

EOF-2 (Fig. 9d) shows a similar pattern to winter EOF-4 (Fig. 9g) and sSummer EOF-3 (Fig. 9f) shows a pattern similar to 

Wwinter EOF-2 (Fig. 9c). 480 

To summarize, Our analysis shows that RCM and CPM simulate similarly the main precipitation modes up to the fourth 

principal component in Wwinter and the third in Ssummer. These precipitation modes account for 47 % of the precipitation 

variability in Wwinter and 37 % in Ssummer, implying that the remainder precipitaitonprecipitation variance shows remarkable 

differences between RCM and CPM. a large part of the precipitation differences belongs to the secondary modes of 

precipitation 485 

7 Model differences between RCM and CPM using composites  

To further analyse model differences between RCM and CPM, we derive composites of model variables from each EOF in 

Fig. 9. We focus on model variables influencing the simulation of heavy precipitation e.g., Integrated Water Vapour (IWV), 

Convective Available Potential Energy (CAPE), soil-atmosphere heat fluxes, etc. To derive the composites, we select the days 

where daily precipitation showed the largest resemblance to the positive and negative modes of the precipitation EOFs. In 490 

other words, we select the days showing the largest positive (negative) correlations to the positive and negative modes of each 

precipitation EOF. This is done separately for RCM and CPM selecting the days with positive and negative correlations larger 

than one standard deviation of the whole setfull set. This leads to composites of ca. 30 days per positive and negative mode. 

We then average in time the spatial distribution of the selected days and obtain maps of the differences between RCM and 

CPM as in Fig. 10. For heavy precipitation differences, we work with composites of the days assigned to each EOF, whereas 495 
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for the other model variables we use the day prior to heavy precipitation. This done to study the model differences in the pre-

conditioning of the event. 

7.1 Heavy precipitation 

The composites show relevant differences in precipitation amount (up to 8.5 mm h-1 i.e., 204 mm d-1) between RCM and CPM 

throughout the complete greater Alpine domain, irrespective of the simulation and meteorological situation. Spatially averaged, 500 

both RCM and CPM can represent larger precipitation than their counterpart, however, in summer, CPM represents larger 

precipitation at the mountain tops e.g., the Alps, the Apennines. This holds for all analysed EOFs and both positive and negative 

correlations of the principal components. For illustration, Fig. 10a shows the composite differences of the negative principal 

components of EOF-2 in Wwinter. Differences up to 6 mm h-1 are located east of the Spanish coast (RCM, blue) over the 

Apennines (Italy) and over the eastern and the Dinaric Alps (CPM, red). Spatially averaged, RCM simulates larger precipitation 505 

(0.21 mm h-1) for this EOF. Fig. 10b shows the positive principal components of EOF-3 in summer, where again, CPM 

simulates larger precipitation than RCM over the Apennines (Italy), the Dinaric Alps (Balkans), and to a lower extent over the 

western Alps (Switzerland) and the Central Massive (France). All remainder composites are included in the SM.  

These results highlight that RCM and CPM can simulate comparable precipitation amounts in the timely averages of daily 

precipitation (for the investigated EOFs). Regarding the larger precipitation amounts simulated by CPM over the mountain 510 

ranges, a plausible explanation is the intensification of vertical winds observed in previous studies comparing horizontal 

resolutions (e.g., Langhans et al., 2012; Barthlott and Hoose, 2015; Vergara-Temprado et al., 2020). Another explanation is 

provided by Vergara-Temprado et al., (2020) addressing that the “increase in precipitation with resolution could be happening 

as smaller grid boxes are easier to reach saturation”. However, the presented analysis does not allow splitting the contributions 

from resolution increase from other factors, e.g., changes in the physics or physical parameterizations (see Sect. 2.2).  515 

7.2 Integrated Water Vapour (IWV) and Equivalent Potential Temperature at 850hPa (𝜽𝒆
𝟖𝟓𝟎) 

Two variables typically regarded as precursors of heavy precipitation are IWV and 𝜃𝑒
850 (Doswell et al., 1996; Stucki et al., 

2016). The differences of the composites show larger IWV in RCM compared to CPM throughout the whole greater Alpine 

region in . This applies to all analysed EOFs and their respective positive and negative components. The IWV differences can 

be as large as 2 mm and take place especially over the Mediterranean Sea and the Po Valley. Regarding 𝜃𝑒
850, shows differences 520 

up to 4 K more   we observe larger values in RCM compared to CPM that can be as large as 4 K. Atmospheric water vapour 

is the main precursor of the 𝜃𝑒
850  differences as RCM tends isto be wetter than CPM in the 850 hPa level (Fig. 7). For 

illustration Fig. 11 shows the composite differences of IWV (colour shading) and 𝜃𝑒
850 (contours) for the same principal 

components as Fig. 10. The composites show IWV differences up to 1 mm over the Mediterranean Sea and up to 2 K for 𝜃𝑒
850 

(Fig. 11a). Likewise, the negative principal components of EOF-3 show IWV differences up to 3 mm over France and 3 K 525 

differences in 𝜃𝑒
850 by RCM (blue; Fig. 11b). The remainder composites can be found in the SM.  
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7.3 Soil-Atmosphere interactions 

Regarding variables The composite analysis allows us to study differences between RCM and CPM for variables such as 

surface heat fluxes, surface humidity and temperature, Convective Available Potential Energy (CAPE) and Outgoing 

Longwave Radiation (OLWR), w. We find that CPM simulates larger outbound latent heat emissions than RCM over landland, 530 

but that RCM represents larger latent heat fluxes than CPM over the Sea (up to 15 W m-2). These differences cause CPM to 

simulate larger near-surface specific humidity than RCM over land from northern Europe down to the Alpine barrier. South 

of the Alps and over the Mediterranean Sea, the opposite occursoccurs, and RCM simulates generally a wetter near-surface 

conditions with differences up to 1 g kg-1. An example of these model responses is illustrated in Fig. 12 (panels a and c) for 

the positive principal components of Ssummer EOF-2 (Fig. 9.d). Provided the larger surface specific humidity simulated in 535 

CPM, north of the Alps, CAPE is also larger with respectcompared to RCM due to itsthe relationship between close-to-ground 

moisture and this variable (Fig. 12.e). 

Likewise Analog to the latent heat fluxes, sensible heat fluxes shows relevant differences, with RCM emitting up to 20 W m-

2 more than CPM over land, especially in Ssummer (Fig. 12.b). This causes surface temperature to be generally largerlarger in 

RCM than in CPM (up to 1.3 ºC), although exceptions exist as is the case of the composites of sSummer EOF-2 shown in Fig. 540 

9d. Finally, the temperature differences close to the surface influence OLWR, whereby RCM emits larger OLWR than CPM 

for most of the analysed modes and their corresponding composites Fig. 12.f is however an exception with CPM emitting 

larger OWLR. All composite plots can be found in the SM. 

In general, Tthe previous results applyhold for both for Ssummer and Wwinter events. AalthoughHowever during Wwinter, 

CPM emits morelarger latent heat flux than RCM over all land areas during winter. Also, it is worth noting that the surface 545 

temperature differences are weaker in the southern part of the domain, e.g., over Italy and the Po Valley where CPM can some 

shoeven show higherlarger surface temperature   in CPM. This agrees with previous findings assessed in Sangelantoni et al., 

(2022) where an ensemble of CPMs showed amplified drier-warmer conditions during heat waves with respect to an RCM 

ensemble. We should also mention that tThese signals cannot be attributed to severe precipitation regimes exclusively as they 

were present in the seasonal means for IWV, surface temperature and humidity, and outbound latent and sensible heat flux 550 

(see Figs. S16 and S17 in the SM). FinallyFinally, we would like to emphasize that our analytical approach does not allow us 

to relate the soil-atmosphere differences between RCM and CPM with the observed precipitation differences of Sect. 7.1.  

The surface conditions play a relevant role for convection initiation, specially under weakly forced environments (Keil et al., 

2020) and are thus worth investigating.  

In the pre-conditioning of winter events, CPM simulates larger outbound latent heat fluxes than RCM over land (by about 15 555 

W m-2), but the opposite occurs over the Mediterranean. Over large water bodies, RCM simulates about 30 W m-2 more than 

CPM. This holds for all composites derived from the EOFs presented in Sect. 6 (Fig. 9). For illustration, Fig. 12a shows the 
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composite differences of the negative principal components of EOF-3 (Fig. 9e). CPM exceeds RCM in 15 W m-2 over land, 

but RCM shows ca. 15 Wm-2 more latent heat emissions than RCM. The remainder composites can be found in the SM.  

Sensible heat fluxes have shown no clear differences between RCM and CPM over the Mediterranean Sea. Over land, during 560 

Winter, we cannot assert the magnitude of these differences since the soil temperatures are too low to show any net outbound 

heat emissions. Figure 12b illustrates these results where differences over the sea are close to zero and green colours denote 

no positive outbound heat emissions over land. Inbound directed fluxes are dismissed to avoid confusion with the interpretation 

of the signs in the difference plots.    

Specific humidity and temperature at the surface are influenced by differences in the simulation of latent heat fluxes in RCM 565 

(Figs. 12c and 12d). Provided the larger outbound latent heat flux over land in CPM, the regions north of the Italian Peninsula 

show generally larger surface specific humidity in CPM than in RCM (by about 1 g kg-1). On the contrary, close to the Sea 

surface RCM is wetter than CPM in all analysed EOFs (by about 1 g kg-1). Over Italy, the surface specific humidity differences 

are also larger in RCM influenced by the sea southerly winds, which inflow maritime air masses. Regarding temperature, RCM 

simulates a warmer surface level (land and sea) of variable magnitude between 1 and 2 °C. This applies for all composites 570 

except one. This signal is also present in the seasonal means already and cannot be considered exclusive of heavy precipitation 

situations (Fig. S16 of the SM).  

Differences in surface humidity representation influence the representation of CAPE, however, for winter events the RCM vs 

CPM show no systematic differences due to the low CAPE values. This can be seen in Fig. 12e and the remaining composite 

plots in the SM.  575 

Finally, the higher temperatures over land and sea in RCM induce larger outbound long wave surface radiation than 

CPM, by ca. 10 W m-2 (Fig. 12f). This, like surface temperate, applies to all analysed composites except one. 

Regarding Summer events, CPM again shows larger emissions of latent heat flux over land than RCM (ca. 15 W m-2) but now 

these differences are limited to the Alps and northern Europe (Fig. 13a). For its part, RCM again shows larger latent heat 

emission over the Sea but also throughout the Italian peninsula up to the Po Valley. This is the case for all summer composites 580 

except one (see SM).  

Sensible heat fluxes during summer events are larger in RCM than in CPM over land and Sea up to 20 W m-2, although these 

differences tend to be smaller on coastal areas and the Po valley (Fig. 13b). 

The previous results must be interpreted with caution. First, the north-south signal of latent heat flux differences is already 

present in the seasonal means (see Fig. S16 in the SM), and hence cannot be understood as characteristic of heavy precipitation 585 

situations exclusively. Second, the partition between latent and sensible heat fluxes is governed, although not exclusively, by 

the water content in the upper soil layers. Unfortunately, the RCM and CPM simulations used in this study bear a different 

integration of volumetric water soil and cannot be compared. Finally, because we obtain composites from the days prior to 
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heavy precipitation, our results could be affected by earlier precipitation. In other words, if the events were preceded by some 

precipitation in either RCM or CPM, the upper soil levels will inevitably show a soil wetter than its counterpart.  590 

For surface specific humidity RCM represents larger values than CPM over the Mediterranean as well as the Po Valley and 

the Italian peninsula (ca. 1.2 g kg-1). Over northern Europe CPM tends to simulate larger specific humidity. Figure 13c shows 

the CPM (red) and RCM (blue) specific humidity differences over northern Europe and the Mediterranean region respectively.  

Regarding temperature, RCM represents ca. 1.3 °C more than CPM especially north of the Alps throughout the whole domain. 

Over the Mediterranean Sea and the Po Valley these differences are weaker or even favourable for CPM (EOF-2). This is 595 

shown in Fig. 13d.  

The lower temperature in RCM over the Po Valley agrees with previous findings assessed in Sangelantoni et al., (2022). The 

authors of this study, comparing an ensemble of CPM and RCM simulations, observed that CPM amplifies the drier-warmer 

conditions during heat waves with respect to the RCM ensemble. Furthermore, they assessed that “latent heat flux modulation 

tends to characterize not only HW events but also the whole summer season. Although our composites do not show such a 600 

clear excess by CPM over the Po Valley, they show a tendency that warmer conditions can be simulated by CPM over this 

area.  

Regarding CAPE, CPM shows larger values over land than RCM, whereas RCM simulates larger CAPE over the Sea (Fig. 

13e). A plausible explanation are the surface specific humidity differences assessed before that can influence the instability of 

the lowest air masses, used in the same calculation. Finally, the outbound long wave radiation, similarly to   Winter events, 605 

shows larger values by RCM, compared to CPM (Fig. 13f).  

8 Conclusions 

The recent advancements in Convection Permitting Modelling (CPM; horizontal resolution below ca. 4 km) have been of 

pivotal relevance for the understanding and simulatingon of heavy precipitation, at decadal time scales. These events with high 

impact, are projected to be more intense and frequent in a warming climate. Therefore, despite the improvements already 610 

assessed,   for the simulation of heavy precipitation. further research is needed to understand the implications of reaching CPM 

in the simulation of for model variables that affect the precipitation formation processes. In this study we evaluated reanalysis-

drivendecadal COSMO-CLM simulations forof the greater Alpine region overin the 2000-2015 period and assessed the 

differences between a Regional Climate Model (RCM), set-up (grid-sizeof 25 km), and a CPM set-up (grid-size of 3 km). The 

main results are presented below: 615 

• CPM represents larger precipitation intensities, a better rank correlation, better hit rates for extremes detection, and a 

better representation of precipitation amount and structure for selected heavy epsiodesepisodes than RCM. However, 
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CPM overestimates the heaviest intensities compared to observations, (also observed in Kendon et al., 2012, and 

Berthou et al., 2018).  

 620 

• The new implementation of the Precipitation Severity Index (PSI), including a persistence parameter, proved useful 

for event detection in decadal datasets. Its main advantages are its flexibility to account for precipitation persistence 

and to allow for definition of an intensity threshold. Including these two parameters favours the ranking of longer 

lasted and rarer events whereas setting them to zero leads to a normal spatial averaging of daily precipitation. 

 625 

• Principal component analysis showed that winter heavy precipitation events during 1971-2015 in the greater Alpine 

area occur either under stationary front situations with polar low pressure descending to the mid-latitudes or under 

strong north-south gradients of the 500 hPa geopotential height with a zonal flow. Four principal weather types suffice 

to explain most of the natural variability of winter cases. Ssummer events are associated to either frontal convection 

on the western sector of elongated upper-level troughs and evolved cut-off lows, or due to winter-like synoptic 630 

patterns of stationary fronts over central Europe or strong zonal flows. Five PCs are enough to explain the natural 

variability of summer cases.  

 

• Principal component analysis revealed that the leading modes of the analysed heavy precipitation events start to differ 

substantially betweenbetween RCM and CPM after the fourth leading mode in winter (47% of cases) and the third 635 

leading mode in summer (33 % of cases). This implies that more than half of severe precipitation events are 

represented differently in RCM and CPM and thus the choice of modelling approach is crucial, especially for summer 

cases. Composite maps derived from the leading modes showed that either RCM or CPM can represent daily 

precipitation differences as large as 200 m d-1, although CPM tends to simulate larger precipitation than RCM over 

the mountains.  640 

 

• RCM represents larger Integrated Water Vapour than CPM, especially over the Mediterranean Sea and the Italian 

Peninsula in the pre-conditioning of summer events (up to 2 mm). The larger moisture in RCM comes from an 

intensified latent heat flux emission over the Sea and the Italian peninsula (especially in Ssummer) and a wetter lower 

free troposphere throughout the whole yearfull year. This was validated for 8 selected reprecipitation events against 645 

radiosondes. As a result, Equivalent Potential Temperature at the 850 hPa level was also systematically larger in RCM 

than in CPM (up to 3 K).  

• At the ground level, CPM simulates larger latent heat flux over land than RCM (up to 15 W m-2) on the day prior to 

severe precipitation. This occurs both for summer and winter composites although in summer this effect is constrained 

to areas north of the Alps. Over the Sea, the opposite occurs, and RCM simulates larger heat fluxes compared to CPM 650 
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(30 W m-2). The consequence is a wetter surface level (1 g kg-1 specific humidity) and larger CAPE (140 J Kg-1) in 

CPM north of the Alps (1 g kg-1), and but a wetter surface level in RCM over the Mediterranean Sea and Italy, possibly 

transportedassociated with by the the southerly Mediterranean winds. In turn, RCM simulates larger sensible heat 

fluxes over land which leads to a generally hotter surface level than in CPM (by about 1.5 °C). Although theseThese 

differences are weaker to the south of the Po Valley. Finally, the higher temperatures over land in RCM bring larger 655 

emissions of outbound long wave radiation compared to CPM (9 W m-2). 

 

• For Winter events, latent heat fluxes in CPM were larger over land than in RCM (up to 15 W m-2) on the day prior to 

severe precipitation. Over the Sea, the opposite occurs, and RCM simulates larger heat fluxes compared to CPM (30 

W m-2 more). The consequence is a wetter surface level in CPM over land areas north of the Alps compared to RCM 660 

(1 g kg-1). However, RCM simulates more specific humidity over the Sea and Italy, possibly due to the effect of the 

southerly winds. Regarding differences in surface temperature, RCM showed for most of the analysed EOFs a warmer 

surface level (by about 1.5 °C). This, in turn, brought larger emissions of outbound long wave radiation in RCM 

compared to CPM, up to 9 W m-2.  

 665 

• For Summer events, CPM simulates larger latent heat fluxes over land than RCM, although restricted to locations 

north of the Alps in this season. Surface sensible heat fluxes, on the contrary, are larger over land in RCM than in 

CPM (up to 20 W m-2 more), although these differences are weaker over the Po Valley. The consequence is that CPM 

simulates larger surface specific humidity north of the Alps whereas RCM simulates larger specific humidity over 

the Mediterranean and Italy. The different partition of heat fluxes leads to a higher surface temperature in RCM than 670 

in CPM over the Alps and northern Europe. Over the Po valley and Italy these differences are weaker or even 

favourable to CPM. Finally, the larger specific humidity north of the Alps in CPM leads to larger CAPE over land, 

whereas outbound long wave radiation is larger in RCM, linked to the warmer surface level in this set-up. 

It is worth mentioning that for variables such as surface specific humidity and temperature, or surface heat fluxes, the signal 

of the differences between RCM and CPM was already present in the seasonal means (Fig. S16 and S17). This implies that 675 

they are not exclusive of heavy precipitation situations but that could be present in other weather regimes. For instance, the 

fact that CPM represents larger temperature at the Po Valley in the summer means adds on the findings by Sangelantoni et al., 

(2022) where an amplification of heat waves over the same area was found in a CPM ensemble.   .  

Our study has some limitations that need to be briefly addressed. First, we only assess one regional climate model and hence 

our results cannot be generalized to other RCMs. Second, as is common in heavy precipitation studies the under-catchment 680 

problem might be present in the observations used for validation (Groisman and Legates 1994; Golubev, 1986; Goodison et 

al., 1997; Vergarara-Temprado et al., 2020). Finally, we would like to point out that our study compares two different 

https://journals.ametsoc.org/view/journals/hydr/16/6/jhm-d-14-0216_1.xml#bib12
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simulations where the differences observed are due to the use of a different horizontal resolution (25km vs 3km) but also to 

the different fine-tuning of the settings and the different boundary data.  

Notwithstanding these limitations, our study provides evidence of the added value of CPM and of the remarkable differences 685 

existing between RCM and CPM. These systematic differences must be considered when using one set-up or the other in 

decadal simulations. This is relevant for future research in the field but also for third-partiesthird parties interested in using 

climate information at decadal time scales. Examples of endeavours where high-resolution climate data are bringing added 

value are, for instance, the downscaling of climate change projections (Pichelli et al., 2021), the development of decision-

relevant strategies for Climate Change adaptation (BMBF-RegiKlim) or their use in forestry or hydrology applications. 690 
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9 Figures and tables 

 

Figure 1. a) Simulation, and observation domains for RCM (25km; blue), CPM (3 km; red), KLIWA-2.8km (magenta); HYRAS-695 
5km (green), and EOBS-25km (black). The two investigation domains of this study are Southern Germany (SGer; dashed box), and 

the CPM domain. 
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a) 

 𝑓𝑙𝑑𝑠𝑢𝑚 PSI (𝑅𝑅80𝑖𝑗
, 𝑑=0) PSI (𝑅𝑅80𝑖𝑗

, 𝑑=2) PSI (𝑅𝑅95𝑖𝑗
, 𝑑=2) 

Rank Corr. 1.00 0.97 0.96 0.86 

1 07-Aug-1978 07-Aug-1978 22-Oct-1986 22-Oct-1986 

2 14-Feb-1990 14-Feb-1990 15-Feb-1990 14-Feb-1990 

3 20-Nov-2015 20-Dec-1993 14-Feb-1990 20-Dec-1993 
 

b) 

 

c) 

 

d) 

 

Figure 2. (a) Rank correlations between 𝒇𝒍𝒅𝒔𝒖𝒎 and different configurations of the PSI daily values in the period 1971-2015 over 710 
SGer obtained with HYRAS-5km. The top three events of the period are shown for each index. (b), (c), and (d) show spatial 

distributions of daily precipitation measured by HYRAS-km on the 20, 21 and 22 October 1986. 
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Figure 3. Synoptic weather patterns based on Principal Component Analyses for the 98-percentile most severe precipitation cases 715 
in winter (SONDJF) of the 1971-2015 period, detected with the PSI. The spatial distributions show 500 hPa geopotential height in 

geopotential decametres (gpdm) obtained from RCM. The analysis has been performed with the SynoptReg R package (M. Lemus-

Canovas et al., 2019).  
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 720 

Figure 4. As Fig. 3 for summer extreme precipitation days (MAMJJA).  
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Figure 5. Empirical Probability Distribution Functions (PDF) of daily precipitation over SGer in the period 2000-2015 from HYRAS-

5km (black), EOBS-25km (grey), RCM (blue), CPM (red). The lowest precipitation rates are shown in the upper-right corner 725 
subpanel. 
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Figure 6. Dot diagram of the period 1971-2015, showing the 500 most severe precipitation events, detected using the PSI for HYRAS-

5km (black circles), EOBS-25km (grey squares), RCM (blue circles), and CPM (red dots). The CPM data set is extended from Jan-

1971 to Dec-1999 using KLIWA-2.8km (Sect. 2.2).  . . The spearman’s rank correlation of the data sets is shown in the legend where 730 
HYRAS-5km taken as the reference.  
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Figure 7. (a, b) Mean bias (solid line), standard deviation of the differences (shaded areas) and RMSE (dashed lines). (c, d) Humidity 

and temperature profiles of RCM, CPM, and the observations. Radiosondes obtained from the UWYO soundings at Nimes (France); 

Oppin, Meiningen, Idar-Oberstein, Stuttgart, Kümmersbruck and Munich (Germany); Praha (Czech Republic); Milano, S. Pietro, 735 
and Pratica di Mare (Italy). The model information is interpolated to the station location.  . .    
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Figure 8. Spatial distributions of the surface specific humidity Mean Bias (MB), obtained as differences between (a) RCM and EOBS-740 
25km and (b) between CPM and EOBS-25km. All datasets have been coarse-grained to a 25 km resolution common grid. The 

spatially averaged MB and Root Mean Squared Error (RMSE) is shown in text.  
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 745 

Figure 9. Empirical Orthogonal Functions of precipitation for SONDJF (a, c, e, g) and MAMJJA (b, d, f) events in CPM. The EOFs 

are obtained using the 290 most severe heavy precipitation events in each season (90-percentile).  
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Figure 10. Composite precipitation differences between RCM (blue, positive) and CPM (red, negative). a) composites derived using 

the heavy precipitation days with the largest negative correlation with Wwinter (SONDJF) EOF-2 (Fig. 9c). b) composites derived 750 
using the heavy precipitation days with the largest negative correlation with Ssummer (MAMJJA) EOF-3 (Fig. 9f) 

 

 

 

 755 

Figure 11. As Fig. 10 but for composite Integrated Water Vapour (IWV) and 𝜽𝒆
𝟖𝟓𝟎 differences between RCM (blue, positive) and 

CPM (red, negative). The IWV differences are shown in a colour shading and the 𝜽𝒆
𝟖𝟓𝟎 differences as contours. a) extended Wwinter 

(SONDJF), negative correlation of EOF-2 (Fig. 9c), b) extended sSummer (MAMJJA), positive correlation of EOF-3 (Fig. 9f).  . .  
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 760 

Figure 12. Composite precipitation differences between RCM (blue, positive) and CPM (red, negative). All composites correspond 

to the positive principal components of EOF-2 in summer (MAMJJA) events. (a) Surface outbound latent heat flux, (b) Surface 

outbound sSensible hHeat flux, (c) Surface specific humidity, (d) Surface Temperature, (e) CAPE, (f) Surface outbound long wave 

radiation. Green colours in Latent and Sensible heat fluxes denote inbound directed fluxes and are thus not shown. 

 765 
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Figure 13. As Fig. 12 but for the negative principal components of EOF-3 for winter (SONDFJ) events. 

 

 770 
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Table 1. Description of observational data sets used for validation. The observational data types used to create the different products 775 
are Radar (R), Gauges (G), Satellites (S), and Reanalysis (R).  

Name Vers. Res. Per. Observations Provider Reference Cover. 

EOBS-25km v20.0e 
25 km, 

daily 

1950-

2020 

Rain Gauges (G), surf. rel. 

humidity (hurs) 
ECAD 

Cornes et al., 

(2018) 
Europe 

HYRAS-5km v2 
5 km, 

daily 

1951-

2015 
Rain Gauges (G) 

DWD & 

BfG 

Rauthe et al., 

(2013), 

Razafimaharo et 

al. (2020) 

Germany 

MSWEP-11km v2.2.0 
11 km, 

3-hly 

1979-

2020 

CPC (G), GPCC (G), 

CMORPH (S), TMPA-

3B42RT (S), GSMaP (S), 

ERA-Interim (R), JRA-55 (R) 

GloH2O 
Beck et al., 

(2017) 
Global 

UWYO - 
Stat., 

12 hly 

2000-

2015 
Radiosondes 

Wyoming 

Univers. 

http://weather.u

wyo.edu/upperai

r/sounding.html 

Global 

 

Table 2. Reanalysis-driven COSMO-CLM decadal simulations. 

Name Res. Param. Schemes Lev. Forcing Period Project 

RCM(1) 
25 km, 

3-hly 

Version. cosmo5.0_clm9. 

Shallow and deep convection (Tiedtke, 1989) 
40 

ERA-40 1961-1979 
Miklip-II 

ERA-int 1980-2018 

CPM(2) 
3 km, 

1-hly 

Version cosmo5.0_clm14. 

Shallow convection (Tiedtke, 1989). 

Lake param. (FLAKE; Mironov et al., 2010). 

50 ERA-int 2000-2015 FPS-Convection 

KLIWA-

2.8km(3) 

2.8 km, 

1-hly 

Version cosmo5.0_clm3 

Only shallow convection parametrized, no lake 
49 ERA-40 1971-1999 KLIWA 

1 Domain covers from the Atlantic the eastern Mediterranean from the Maghreb area to Island and Scandinavia. 
2 Domain covers France, northern Italy, Switzerland, the Czech Republic, southern GermanyGermany, and the Mediterranean. 780 
3 Simulations provided by the KLIWA project (www.kliwa.de: Hundhausen et al., 2022). Domain covers southern Germany, Switzerland, 

and the eastern Czech Republic.  

 

Table 3. Selected heavy precipitation events by means of the PSI between 2000-2015 including the PSI values, total precipitation, 

maximum grid point precipitation and coverage (percentage of area affected by precipitation over the 80th percentile) are obtained 785 
from HYRAS-5km.  

Event Event days Total. Precip. [mm] Max. prec. [mmd-1] Coverage [%] PSI WT 

15-Jul-2001 12-16 Jul 81098 141 83 2.22 S2 

03-Nov-2002 2-5 Nov 80592 52 96 2.55 W4 

13-Jan-2004 11-15 Jan 97706 103 97 3.62 W4 

22-Aug-2005 19-23 Aug 106852 177 80 2.31 S4 

08-Aug-2007 07-09 Aug 85473 95 89 2.79 S1 

31-May-2013 31 May-02 Jun 77958 99 94 3.24 S1 

08-Jul-2014 06-13 Jul 155621 83 99 3.21 S1 

20-Nov-2015 19-21 Nov 102747 109 82 2.83 W1 
 

http://www.kliwa.de/
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Table 4. Relative differences of spatially and temporally aggregated precipitation (𝑹𝑹𝒓𝒆𝒍.𝒅𝒊𝒇𝒇.) between the model and observations 

for the duration of each event (see Tab. 3), calculated as (𝑹𝑹𝒎𝒐𝒅 − 𝑹𝑹𝒐𝒃𝒔) 𝑹𝑹𝒐𝒃𝒔⁄ . The negative signs imply an underestimation of 

precipitation in the model. FSS is the Fractions Skill Score between the model and the observations (Sect. 2.3.3). MSWEP-11km is 790 
used as reference. The best scores are shown for FSS values closer to 1. 

 𝑅𝑅𝑟𝑒𝑙.𝑑𝑖𝑓𝑓. [%] 𝐹𝑆𝑆 

Event RCM CPM RCM CPM 

15-Jul-2001 -40  -34 0.63 0.78 

03-Nov-2002 -16 -11 0.81 0.82 

13-Jan-2004 -7 -1 0.97 0.97 

22-Aug-2005 -28 -26 0.88 0.83 

08-Aug-2007 -52 -66 0.63 0.33 

31-May-2013 -44 -5 0.26 0.87 

08-Jul-2014 -6 -21 0.96 0.9 

20-Nov-2015 -18 -17 0.92 0.93 
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10 Code availability 

The COSMO-CLM is available for member of the CLM community and the documentation is accessible at, http://www.cosmo-795 

model.org/content/model/documentation/core/default.htm (last accessed, 11-Aug-2021). 

11 Data availability 

The EOBS-25km dataset is accessible after registration at https://www.ecad.eu/download/ensembles/download.php#version 

(last accessed, 17-Dec-2021). The HYRAS-5km data set is publicly accessible at the Climate Data Centre (CDC) of the 

German Weather Service (DWD) at https://opendata.dwd.de/climate_environment/CDC (last accessed, 17-Dec-2021). 800 

MSWEP-11km, has been provided by the Climate Prediction Centre, after agreement of use. The soundings from UWYO are 

publicly accessible at http://weather.uwyo.edu/upperair/sounding.html (last accessed, 17-Dec-2021). Further information 

about the XCES tool can be found in (https://www.xces.dkrz.de/) 
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