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Abstract. The relative impact of individual and combined uncertainties of cloud condensation nuclei (CCN) concentration
and the shape parameter of the cloud drop size distribution (CDSD) in the presence of initial and boundary condition uncer-
tainty (IBC) on convection forecasts is quantified using the eperatienal-convection-permitting model ICON-D2. We performed
180-member ensemble simulations for five real case studies representing different synoptic forcing situations over Germany
and inspeetinspected the precipitation variability on different spatial and temporal scales. Durmg weak synoptic control, the
relative impact of combined microphysical i i ipttati teh
WWWWOM -third of the variability caused by operational
IBC perturbations—The-uncertainty. The effect of combined mlcrophyswal perturbatlons exeeed-exceeds the impact of indi-
vidual CCN or CDSD perturbations —Hi

in-preetpitationand is twice as large during weak control. The combination of IBC and microphysical perturbations—affeet
uncertainty affects the extremes of daily spatially averaged rainfall of individual members by extending the tails of the forecast

distribution by 5% in weakly forced conditions. The responses are relatively insensitive in strong forcing situations. Visual in-
spection and objective analysis of the spatial variability of hourly rainfall rates reveal that IBC and microphysical pertarbations
uncertainties alter the spatial variability of precipitation forecasts differently. Microphysical perturbations slightly shift convec-
tive cells but affect precipitation intensities while IBC perturbations scramble the location of convection during weak control.
Cloud and rain water content is-are more sensitive to microphysical peﬁwbaﬁeﬂ&fhawfeapﬁaﬂeﬂ%u%shghﬂfw
W@iless dependent on th
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1 Introduction

Weather forecasts are subject to various-many sources of uncertainty. The uncertainties originate fromthe-chaotic-nature-of-the

atmospherie-flow, among others, the unknown true state of the atmosphere and-an-imperfectrepresentation-as well as imperfect
representations and approximations of physical processes governing-atmospheric-phenomena-in numerical weather prediction
(NWP) models. To-aceount-for-theinherentuneertainties;ensemble- The chaotic nature of the atmosphere can amplify inherent

uncertainties leading to reduced forecast accuracy and limited predictability.

implemented-atmany national-weatherserviees-allow us to estimate the forecast uncertainty. In regional, convective-scale EPS
there are essentially three key sources of uncertainty. First, initial condition uncertainty is usually implemented by means
of variational or ensemble data assimilation systems [Bannister, 2017; Schraff et al., 2016]. The—regional EPS—are—driven

by-eoarser{(globab-Secondly, lateral boundary condition uncertainty necessary to avoid underdispersion of the ensemble is
mostly provided by coarser ensemble forecasts at thetateral-boundaries—Anothererucial componentinensemble NWP-system

regular time intervals throughout the forecast horizon. And thirdly, there is the incomplete description of physical processes
and the insufficient representation of the subgrid-scale variabitity-variability in NWP models also known as model error.

One of the crucial benefits of convective-scale models is the possibility to explicitly describe (deep) moist convection and
thus to be able to omit an error-prone parametrisation scheme for deep convection that is a known model error source. Other
important physical processes that are not resolved in models with kilometre-scale grid spacings and need to be accurately
represented to forecast convective precipitation comprise boundary-layer turbulence, cloud microphysics and its interaction
with aerosols [Clark et al., 2016]. In the present study, we inspect the relative impact of a cloud microphysical uncertainty in
combination with different aerosol concentrations both implemented in a full convective-scale EPS framework including initial
and lateral boundary condition (IBC) uncertainty.

Microphysical processes are essential to ferming-form precipitation. Due to their inherent small spatial and temporal scale
these processes are not only difficult to observe, but also to understand and te-represent in NWP models. Moreover, many

microphysical processes are insufficiently constrained by observations. The impact of parameter perturbations in microphysics

parametrisation-parametrisations has been studied extensively with mostly deterministic-ideat-and-real-case-experiments-single

deterministic idealized [e.g. Grant and Heever, 2015; Glassmeier and Lohmann, 2018; Heikenfeld et al., 2019; Chua and Ming, 2020;
Wellmann et al., 2020] or realistic [e.g. Bryan and Morrison, 2012; Barthlott and Hoose, 2018; Schneider et al., 2019; Baur et al., 2022]
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simulations using a variety of NWP models and schemes. However, because of the large variability between schemes and cases,

results from different systems are difficult to generalise.

The impact of aerosols on microphysical processes in the formation of convective clouds and precipitation remains highly
uncertain. The amount of aerosol in the atmosphere is one of the important factors influencing cloud formation. In general,
more aerosol particles, which act as cloud condensation nuclei (CCN), activate condensation and increase the cloud water
content while reducing the average size of cloud droplets. Smaller cloud droplet sizes and more narrow cloud droplet size dis-
tributions (CDSD) inhibit the generation and growth of raindrops primarily caused by the collision-coalescence process, thus
prolonging the lifetime of clouds [Albrecht, 1989]. A smaller droplet size shows a negative impact on precipitation in many
cases, but the impact of CCN perturbations on precipitation is not always straightforward, as an increase in CCN provides more
cloud water. Systematic responses of varied CCN concentration on precipitation are reported in numerous studies with a large

variety depending on the used model and chosen case [Table 1 in Tao and Li, 2016]. For example, Fan et al. [2009] shows

negative-impaets-and-its-show a negative impact and the dependence on wind conditions in idealised large-eddy simulations
using a bin microphysics schemein-idealised-large-eddy—simulations, while Wang [2005] and Baur et al. [2022] show posi-

tive ones attributed to convection enhancement and the suppression of rain evaporation, respectively, using two-moment bulk
microphysics schemes with a grid spacing around 2 km. Keil et al. [2019] evaluate the impact of CCN uncertainties on precipi-
tation and find that the spread of CCN-perturbed ensemble forecasts is greater than the impact due to soil moisture. This effect
is more pronounced wnder-during atmospheric conditions when the syneptie-seale-synoptic-scale forcing is weak.

In current operational NWP systems grid-scale microphysical processes are mostly approximated by eesteffictent-cost-efficient
one-moment bulk microphysics schemes due to the limitation of computational resources. In these parametrisations only the
hydrometeor mass is prognostic. In two-moment microphysics schemes, that are eurrently-mosthy-widely used in research, the
number eoneentrations-concentration of hydrometeors can also be predicted. It is therefore possible to calculate mean particle
radii at each model grid point and estimate more realistic CDSD. The shape of the CDSD is controlled by v, the pre-defined
shape parameter. The width of the CDSD is not well constrained by observations and previous observational studies revealed a
large range of the shape parameter between 0-14 [see e.g. Fab-Table 1 in Igel and van den Heever, 2017a]. Thus the shape of
the CDSD constitutes a potentially relevant source of microphysical uncertainty to be included in ensemble systems. In general,
the broader the CDSD the more efficient the collision-coalescence process, since hydrometeor particles of various sizes are
present in the atmosphere. Hence the shape parameter perturbation of the CDSD affects the cloud lifetime and raindrop growth
as well. The importance of CDSD on precipitation forecasts has been evaluated by means of idealised simulations [e.g. Igel
and van den Heever, 2017b]. Recently, Barthlott et al. [2022] showed that narrowing of the CDSD can produce almost as large
a variation in precipitation as a CCN increase from maritime to polluted conditions in realistic simulations.

The ultimate impact of various uncertainties described above varies greatly depending on the prevailing flow conditions. A
successful approach to classify convective precipitation regimes is to focus on the strength and type of forcing that is driving
convection. An objective measure for such a classification constitutes the convective adjustment time scale 7. that provides a

time scale over which CAPE (Convective Available Potential Energy) is consumed by precipitation. In strong synoptic forcing
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situations, when ascending motions caused by the synoptic scale flow lead to precipitation and the continuously produced
CAPE is consumed immediately, the regime is in a kind of equilibrium, in which 7. attains small values. On the other hand, in a
weak synoptic forcing situation, CAPE accumulates until local phenomena that can initiate convection occur and precipitation
shows an intermittent character. In this situation, 7, can temporarily increase, especially before the initiation of convective
precipitation in the afternoon. The strength of the synoptic control is found to influence the predictability and the impact of
different types of perturbations on precipitation [Flack et al., 2016, 2018; Keil et al., 2019; Weyn and Durran, 2019].
The goal of the present study is to estimate the relative 1mp0rtance of eertain-mierophysical-uncertainties—in—view-of-the
in-microphysical uncertainties on precipitation in the
presence of IBC uncertainties conditional on different synoptic control across central Europe. The microphysical perturba-
tions comprise different-CEN-coneentrations-and-shape-parameters-of-CDSDthree different aerosol concentrations and three
different shape parameters governing the cloud droplet size distribution (CDSD). We conduct reatease-ensembleexperiments
&wmam@&mwﬂmmwﬂm for five days in August 2020 in-different
during different weather conditions. Specifically, the

following research questions are addressed in this study:

— Hew-large-is-the-What is the relative impact of individual and combined microphysical uncertainties on convective

precipitation forecasts at different spatial and temporal scales?
— How weather regime dependent is that impact?

— What is the impact on convective clouds and does the impact on cloud content translate into a comparable impact on

precipitation?

In the remainder of the paper we present the numerical model and the experimental design that allows for the examination
of the relative impact based on different subsampling approaches (Sect.2). Following the description and classification of the
weather situations in Sect.3 we present results of precipitation forecasts and different spatiotemporal scales in the next Section.
This is complemented by a brief discussion of the relative impact on cloud and rain water. Before concluding with a summary.
in Sect.5 we present aggregated results encompassing five cases.

2 Model and Experimental design

2.1 Model description

The numerical simulations are performed with the ¥€ON-D2-ICON (ICOsahedral Non-hydrostatic, version 2.6.2.2) model

that-eevers—in its limited-area mode ICON-D2 covering central Europe (see Fig. —2jyand-is—operationatytsed—at—the-2).
The ICON-D2-EPS is the operational ensemble NWP system at Deutscher Wetterdienst (DWD) since February 2024+-2021

[D. Reinert et al., 2021]. We use an almost equivalent configuration with a few exceptions described below. ICON-D2 employs
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an icosahedral-triangular Arakawa-C grid with a grid spacing of 2 km (542040 grid points) and 65 vertically discretised lay-
ers from the ground to 22 km above mean sea level. Its dynamical core is based on the non-hydrostatic equations for fully
compressible fluids as governing equations (see Zd [2015] for the details). Different from the operational configuration, the

two-moment bulk microphysics scheme [Seifert and Beheng, 2006] is used to be able to investigate the impact of number densi-

ties and the size distributions of cloud water droplets —The JCON-D2-set-up-is-identical-to-Barthlott-et-al120221[by perturbing
the CCN concentration and shape of CDSD, respectively, as in Barthlott et al., 2022]. Note that the operationally used param-
eter perturbations in ICON-D2-EPS are turned off here to purely focus on the microphysicalperturbationsrepresenting-impact

2.2 Perturbation Experimental design

To investigate the influence of uncertainties of CCN density—concentration and the shape of the CDSD HCON-D2-EPS

expertments—with180-members—in—total for-each—ease;—eonsisting-of-in_the presence of characteristic IBC uncertainty, we
perform numerical experiments using 20 different IBC, 3-three different CCN concentrations, and 3-three different shape pa-
rameters of CDSD are-performed-(see-experimental-designin-yielding in total a 180 member ICON-D2 ensemble (Fig. 1a).
various uncertainties. To focus on the combined impact of the microphysical perturbations, for instance, we can inspect 20
microphysical sub-ensembles consisting of 9 members each sharing the same IBC but different combinations of CCN and
CDSD parameters (MP sub-ensemble). To focus on the impact of the IBC uncertainties, we have 9 IBC sub-ensembles available

consisting of 20 members each (IBC sub-ensemble).
The initial conditions of the IBC uncertainty are provided by pre-operational analyses produced by ICON-D2-KENDA

(Kilometer-scale ENsemble Data Assimilation [Schraff et al., 2016]). In August 2020 conventional measurements like ra-
diosonde, aircraft, and ground-based observations were assimilated in I[CON-D2-KENDA using the Local Ensemble Transform
Kalman Filter [LETKF; Hunt et al., 2007]. ICON-D2-KENDA produces 40-member ensemble analyses, while the first 20 anal-
yses are used as initial conditions for }CON-D2-EPS-ICON-D2 ensemble forecasts (as in operations at DWD) with 24-hour
24-hour lead time due to limited computational resources. Lateral boundary conditions are based on ensemble ICON global
and EU-nest simulations initialised 3 hours before the initial time of the FEON-D2-EPS-ICON-D2 ensemble experiments. The
initial conditions for the global and EU-nest simulations are the operational analyses provided by DWD with a grid spacing
of 40 km for the global domain and 20 km for the nested EU domain. Different from our {CON-DB2-EPS-ICON-D2 ensemble
simulations the one-moment microphysics scheme and the convection parametrisation for deep and mid-level convection are
active in the ICON global and EU-nest. The lateral boundary conditions are updated hourly using data of the EU-nest forecasts
at the-lead times from 3 to 27 hours.

To examine the microphysical uncertainty we perturb the width of the cloud droplet size distribution (CDSD) and the
amount of aerosol in the atmosphere by altering the CCN concentration. In the Seifert and Beheng [2006] scheme, CCN

activation rates are calculated using a lookup table of activation rates empirically estimated by Segal and Khain [2006]. To

take insoluble CCN into account, certain portions of CCN are not activated depending on their particle sizes [Seifert and Ko,



160

165

170

2 x20 IBC b) 102
( |)= lluted © v
ollute: V2
o) nuOp i
x20 T
g 100F
ontinental o
. nu8c E
= 10-1}
a
x20
10724
Maritime 0
) nuOm nu8m
1075 10 20 30 40 50
Broader Cloud DSD Narrower Cloud DSIL D (um)

Figure 1. (a) Design of microphysically perturbed ensemble experiments. The colours used throughout the article indicate the nine different
20-member IBC sub-ensembles sharing the same combination of CCN and CDSD parameters. (b) Cloud drop size distribution with different
shape parameter v at fixed cloud water content (QC' =1g m~?) and cloud droplet number concentration (Q NC' = 300 cm ™). D denotes

the diameter of the droplets.

2012]. Consistent with Barthlott et al. [2022] we vary CCN concentrations between pristine conditions and extremely polluted
conditions. We employ three CCN concentrations: maritime (Ncy = 100 cm™3), continental (Ngy = 1700 cm ™3 ), and
polluted (N¢n = 3200 cm~3). The *maritime’ emulate clean, pristine conditions that have quite small numbers of CCN like
over the sea. The ’continental’ is the default setting that mimics the observed CCN concentrations for the European continental
regions [Hande et al., 2016]. The ’polluted’ represents extremely polluted situations caused by, for example, massive wildfires
and considerable anthropogenic emissions. Greups-of-ensemble-members<ealted-The different CCN sub-ensembles )-that share
the same CCN concentration are named with suffixes m(aritime), c(ontinental) and p(olluted), as shown in Fig. 1a.

The size distribution of hydrometeors is approximated using the following generalised gamma distribution
f(z) = Az" exp (—Az") (1

where A is dependent on the number density of hydrometeor particles and A is a coefficient dependent on the average particle
mass. The coefficients v and p are parameters that are pre-defined and fixed throughout a simulation. For example, with
w= %, V= —%, we can obtain the so-called Marshall-Palmer distribution of raindrops. In this study we control the widths of
the particle size distributions by varying the shape parameter v (for details see Barthlott et al. [2022]). With increasing v the
CDSD becomes narrower and more skewed as shown in Fig. 1b, which means the number densities-concentrations of particles
close to the mean size increase. In this study v is varied between 0, 2 and 8 to cover a wide spectrum of the possible shape

parameter values (as in Wellmann et al. [2020]; Barthlott et al. [2022]; Baur et al. [2022]). Note that the default setting is the

broadest CDSD v = 0. Since the parameters describing the CCN concentration and the shape of CDSD are kept temporally and
spatially constant throughout the simulation, they rather represent model error due to the incomplete description of physical
rocesses than suberid-scale variability.
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Figure 2. Daily accumulated precipitation on (a) a strenghy-weakly forced day (4711 August 2020) and (b) a weakly-strongly forced day
(H-17 August 2020). Ensemble mean daily totals of the IBC sub-ensemble with-nube-microphysiesnulc are shown. The black rectangles
indicate the ICON-D2 simulation domain, the red rectangles depict the German domain used for evaluation, and the blue rectangle depicts
the central-western German domain used to inspect the spatial variability of rainfall patterns in Fig. 5. {e;é)-The time series of area-averaged
hourly sub-ensemble-mean-precipitation (green) and the convective adjustment time scale 7. (red) complemented by the radar observed data
(black) illustrate the different characteristics of both days in panels (c,d).

3 Weather situation and ease-deseriptionclassification of cases

Two typical cases are selected for an in-depth investigation of the relative importance of the different uncertainties condi-

tional te-syneptie-eontrol—on synoptic control. On 11 August 2020, the precipitation texture shows a spotty distribution over

southern Germany characteristic of convective precipitation in weak forcing situations (Fig. 2a). In a weak potential equivalent

temperature gradient across central Europe (not shown) local trigger mechanisms (like convergence lines in the boundary layer
caused by orography) initiate localised intense convection. The diurnal cycle illustrates the typical development of convective
recipitation starting with little precipitation in the morning and peak precipitation in the afternoon (green line in Fig. 2¢). The
daily maximum value of 7, peaks at about 20 hours (red line in Fig. 2¢), exceeding the 6 hour threshold used in previous work

The 17 August 2020 represents a strong forcing situation associated with a weak low pressure system located over France that

moved eastward towards Germany (not shown). The cyclonic flow favoured large-scale ascent initiating convection, especially

over the western part of Germany, resulting in widespread precipitation (Fig. 2ab). There was rainfall from the start of the
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Table 1. List of case studies for which 180-member H€ON-B2-EPSICON-D2 ensemble experiments were performed, indicating the date, the
type of synoptic forcing, the daily maximum convective adjustment time-scale (7.), and tetal-daily precipitation {FP)-of IBC sub-ensemble
mean of control (TP%—?@F&#&MP{&H@GW and the IBC-sub-ensemble-one with maximum and minimum daily precipitation and its
respeetive-microphysical eembinatiorconfiguration, respectively.

Date Forcing 7. [h] Mean precipitation [mm/d]

control maximum minimum

11 August 2020 weak 20 2.67 2.95 (nu8m)  2.42 (nu8p)
12 August 2020 weak 1.58 1.73 (nu8m)  1.45 (nu8p)
13 August 2020  strong 3.72 3.90 (nu8m)  3.60 (nu2p)
5.72 6.00 (nu8m) 5.51 (nu8p)
3.79 4.07 (nuOm)  3.51 (nu8p)

17 August 2020 strong
18 August 2020 weak

AN D W

forecast, and the heaviest rainfall occurred at night followed by a gradual reduction of precipitation until noon (green in
Fig. 2ed). In the afternoon, there was a secondary peak of convective precipitation between 11 and 18 UTC. The daily maximum
Tc 1s less about-than 2 hours on 17 August 2020 (Table 1, and red line in Fig. 2a-and-Table—td). Such low values indicate that

CAPE was immediately consumed by a continuous triggering of convection caused by synoptically forced ascending motion

characteristic in a so-called equilibrium regime.

The comparison of the precipitation time series with area-averaged radar observations indicates the realism and fidelity

of the ICON-DB2-EPS-ICON-D2 ensemble forecasts (Fig. 2¢,d). Characteristic values of the remaining three cases and their

classification are presented in Table 1.

4 Results

O gctared a a acp c d a Witn—otroad a RSP o—arca-av agea—ana 41o4

aceumutated preeipitation {total precipitation; TP)-foreeastof the To assess the relative contributions of the various uncertainties
we extract different sub-ensembles from the large 180-member ensemblefortwo-cases. First we focus on the-individual-absolute

amounts-and-their-difference-with-respeetto-a-9-member MP sub-ensembles in which each of the sub-ensemble mean-spanned
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area-averaged24-hour-mean—values—of thenine IBC-members has different combinations of CCN and CDSD parameters

but identical IBC to examine the relative contribution of the combined microphysical (MP) perturbations on precipitation.
@Mwb -ensembles %hamgfhe—&m&mwfephyswa%

edwith nine members each. Likewise,

there are nine 20-member IBC sub-ensembles, with one fixed combination of MP perturbations but 20 different IBC. This
different subsampling perspective allows drawing conclusions on the relative impact of IBC uncertainty. Lastly, there are three
60-member CCN and CDSD sub-ensembles, respectively, that inform on their individual contribution.

4.1 Demain-averaged-daily-Daily area-averaged precipitation

The-total-preeipitation-of-allindividual-To estimate the impact of the combined microphysical uncertainty we first focus on
9-member microphysics (MP) sub-ensembles subsampled from the entire 180-member ensemble. The 24-hour accumulated

area-averaged precipitation forecast of all 180 ensemble members is displa

mierophysies-shown in Fig. 3 for a synoptically weak and a strong forcing case to contrast the flow-dependent behaviour. Eve
dot represents the precipitation difference of a single ICON-D2 forecast to its sub-ensemble meanvalues-sharing-the-sameIBC-

. Since there are 20 different MP sub-ensembles composed
of nine microphysically perturbed members (colour coded as in Flg %Hkﬁfsmgﬁﬁn&ﬂadepaade%eﬁhﬁmhﬁg

{pinkish-1a) the 180 dots illustrate the overall variability. Apparently the impact of microphysical uncertainty is larger durin
weakly forced conditions, and there is surprisingly high variability between the different MP sub-ensembles, in particular
during weak control. The largest and smallest range of precipitation differences amounts to 48% (+23% to -25%) and 11%

+7% to -4%), respectively (compare members 8 and 9 in Fig. 3)—
\)WDunng strong synoptic control the daily—rainfall-su S

bu%beﬁ%%avmg%heﬂmewe%@l?s&dlfferences amount to 16% (+9% to -7%) and 4% (+2% to -2%), respectivel (com are

member 2 and 18 in Fig.
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Figure 3. Seatterplot-of-total preeipitation(TP)-andrelative Relative difference of FP-daily area-averaged precipitation [in %] regarding-the
with respect to combined microphysies-microphysical (MP) sub-ensemble mean-means sharing the same initial and lateral boundary condi-
tions (IBC) for the (a) strong-weak and (b) weak-strong forcing case. The nine-ecoloured-dots-columns below indicate absolute precipitation
values of the members-belonging-to-the HBE-20 different MP sub-ensemble with-the-same-microphysies-means. The nine colours indicate all
combinations of microphysical configurations (as in Fig. 1a), and eonnected-dots-with-thin-dashed-lines-indicate-the members-belongingto
20-mierophysies-sub-ensembles-with-identical HBE—Fhe-coloured lines show mean-average relative differences of IBE-sub-ensembles—The
dashed-ellipse-highlights-membert7-discussed-in-the-textthem.
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to-very-Furthermore, it is possible to assess the different microphysical impact on precipitation. The average precipitation
differences caused by MP perturbations are displayed by coloured lines in Fig. 3, for instance, experiment nu8m (narrow.
CDSD and maritime CCN content, dark blue) exhibits the largest precipitation deviations in both regimes. More generally,
experiments with maritime aerosol load (low CCN content, blue) show an increase in precipitation, while the experiments
with high CCN concentrations (polluted, red) show a decrease. Increasing the CCN concentration from maritime (nu8m) to
polluted conditions with b i-Hig i ipitati -narrow CDSD
shape (nu8p) amplifies average precipitation differences to +11% to-and -14% fer-in the weak forcing case, respectively (+5%

to -4% fer-in the strong forcing case). Shape-parameters-A comparison between the lines having the same colours but different
darkness shows that the shape parameter of CDSD also exhibit-exhibits a systematic impact in the weak forcing situation

. light red (nuOp) and dark red (nu8p) line in Fig. 3a), whereas a CDSD’s impact is hardly seen in the strong forcing

situation. Narrower CDSD distributions give less precipitation, particularly during polluted conditions (nu8p, dark red). The

larger sensitivity to CDSD during weak synoptic control and a systematic decrease of precipitation with increasing shape

parameter is consistent with Barthlott et al. [2022]. During strong synoptic control the average relative difference is governed
by the CCN concentration (Fig. 3b).

The governing role of IBC perturbations
on precipitation is evident when comparing the sub-ensemble mean precipitation amounts of the 20 different MP sub-ensembles.
During weak control the variability ranges between 1.9 and 3.6 mm/d, whereas it ranges between 5.0 and 6.6 mm/d durin

strong synoptic control (lower panels in Fig. 3bjap

ies-), This variability is purely caused by IBC
uncertainty driving the 20 different MP sub-ensemblesittustrate-. The similar amplitude of the variability (1.7 vs 1.6 mm/d)
suggests a larger impact of IBC uncertainty during weak control when the absolute rainfall values are roughly only half as
large. There is no systematic relationship between the precipitation amount and the amplitude of relative differences during.
both regimes. That means the microphysical impact is not constrained by daily precipitation amounts.

Interestingly, a closer inspection reveals that different IBC can completely reshuffle the rank of the individual members
in a specific MP sub-ensemble. For instance, experiments with modest aerosol content but different shapes of the CDSD
show extremes for member 11 during weak control (nuSc (dark green) shows the largest negative and nu2c (medium green)
shows the largest positive impact, Fig. 3a) This non-systematic and highly varying response of precipitation to _perturbed
microphysical parameters of individual ICON-D2 experiments points towards a strong sensitivity to IBC. This finding illustrates

the necessity to be cautious when interpreting results based on a deterministic approach only to evaluate uncertainty.

11
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Next, we further compress the data to directl
compare and quantify the relative contribution of the various sources of uncertainty is-summarised-using-boxplotsinFig—4-

the weather regime. The resulting relative daily area-averaged precipitation differences of various subsampling strategies are
displayed in Fig. 4 i i i fes—, We again calculated the
deviations with respect to a sub-ensemble (g identi ifere
mmmmmmmm@w%mmm

by orange box and whisker diagrams depicting the medians, interquartile ranges, Sth and 95th percentiles and outliers.

First, it becomes evident that the magnitude of the impact of the various uncertainties largely depends on the synoptic

control. The

of +15%—The-IBC sub-ensembles show a maximum-remarkable range of +38% to -30% in daily precipitation sums during

the weak forcing situation (filled orange dots of IBC in Fig. 4). Although their medians and interquartile ranges have some
variability among the different microphysics configurations, no systematic dependence is found and the variability between
the 9-nine IBC sub-ensembles is statistically insignificant. A corresponding behaviour is found for the strong forcing case with
smaller amplitudes between +15% and -12% (open orange dots in Fig. 4).

Secondly, the eombined-synergistic effect of microphysical perturbations (grey dets-and-boxes—colour in Fig. 4) show-a
maximum-relative-impaect-of ranges between +22% te-and -25% for the weak forcing case, and £10% for the strong forcing
case. Note that the relative difference of the 20 different MP sub-ensembles (with nine members each), previously discussed in
detail (Fig. 3), are collapsed into one column here.

The individual microphysical perturbations consequently result in three sub-ensembles (with 60 member each) denoted
CCN and CDSD sub-ensemble, respectively. Interestingly, the impact of individual CCN perturbations show-shows a clear
dependence on the CDSD shape, and vice versa. CCN’s impact is smallest (=10%) with a broad distribution (shape parameter
v = 0), and increases to a range of +22% to-and -20% with narrower distributions (increase of shape parameter). The impact
of CDSD perturbations also increases with an increase of the CCN concentration. This steady increase of impact is also found
in the CCN concentrations during strong forcing, while the shape of CDSD shows a small sensitivity only. Precipitation reacts

more sensitive to microphysical perturbations during weak eentrol—synoptic control. In this situation the interquartile range of
the combined MP sub-ensemble (grey box) becomes smaller than those of the CCN sub-ensembles with fixed shape parameters
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Figure 4. Box and whisker diagramme showing the relative differences of daily area-averaged precipitation of individual ICON-D2 members
belonging to various (sub-)ensembles. The perturbations (x labels in colour) and different fixed configurations (grey x labels) are indicated.

180 is the abbreviation of the entire ensemble, IBC, MP, CCN and CDSD for the different sub-ensembles. The bars, boxes, whiskers and dots

show medians, interquartile ranges, Sth and 95th percentiles and outliers, respectively. Filled boxes represent weak control (11 August) and
open boxes strong synoptic control (17 August).

(cyan boxes for fixed v = 2 and 8) corresponding to a narrower CDSD. Thus adding CDSD perturbations to CNN uncertainty.
renders the probability density function of the relative impact sharper and leads to an extension of the tails of the distribution
(grey dots of MP sub-ensemble).

Finally, the 180-member ensemble including IBC and microphysical uncertainty shows the largest variability during weak
control. Conditional on the weather regime the extremes in daily precipitation of individual members deviate from the ensemble
mean by +50% to -40% with an interquartile range of £15%. Interestingly the interquartile range as well as the 5th and 95th
percentiles of the 180-member ensemble are similar to pure IBC uncertainty (cmp. black and orange box and whiskers. Again,
microphysical uncertainty particularly affects the tails of the distribution (that are 10% of the members represented as dots in

In summary, IBC uncertainties dominate the impact on tetal-precipitation, while the-eembined-microphysical uncertainties

play a secondary role. CCN has a larger impact than CDSD. CeHeetive-Combined perturbations of CCN and CDSD enhance

each other and show larger extremes in rainfat-totals-precipitation than individual CCN and CDSD perturbations. However;

corresponding-to-a-narrewer-CDSD—-While the interquartile range of the 180-member ensemble and the individual IBC sub-
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ensembles is similar(between—+10%-and—15%);-the-extremes-in-the180-member-, the extreme members in the full ensemble
surpass the IBC variability by +15% and -10%. Thus, the combination of IBC and microphysical uncertainty affects the

magnitude of the extremes while keeping the interquartile range fairly unaffected.
4.2 Spatial variability based on hourly rainrates

To address the question of how IBC and microphysical uncertainties affect convective precipitation on different spatiotemporal
scales we now move from area averages to the kilometre scale and from daily to hourly accumulations. The fractions skill
score [FSS; Roberts and Lean, 2008] and its variant believable scale [Dey et al., 2014; Bachmann et al., 2020] are used to
objectively assess differences in spatial variability caused by different sources of uncertainty. But first we apply subjective
visual inspection on selected precipitation fields to illustrate differences.

In Fig. 5 a snapshot of hourly precipitation over central western Germany at+6-UFC-(blue box in Fig. 2a) for the weak
forcing case (11 August) at 16 UTC exemplifies the different impact of IBC and microphysical perturbations. This day is
chosen because of the stronger impact of the perturbations during weak synoptic control, and 16 UTC represents the time
of maximum afternoon precipitation within the diurnal cycle of convective precipitation (see Fig. 2bc), and the displayed
subdomain clearly depicts the typical popcorn-type precipitation structure. In Fig. 5 the transient character of individual cells
is juxtaposed for four different experiments: three of them share the identical IBC (panels a, b and ¢), CCN concentration anet
shape-parameters-of €DSD(panels a, b and d) and shape parameter of CDSD (panels a, ¢ and d), respectively.

At first glance, it becomes evident that the microphysical perturbations result in a similar rainfall distribution (Fig. 5a, b, c),
whereas the member driven with different IBC shows a considerably different rainfall field (Fig. 5d). The direct comparison
of the location of intense precipitation caused by the different perturbations relative to the 99th percentile of simulation au8p
nu8p_(black contours in Fig. 5) shows that convective cells of simulations au0p-nulp (broad CDSD, polluted) and ru8m
nu8m (narrow CDSD, maritime) are either at the same location or in the-close vicinity. Some weak rain cells (Yike-in-the
e.g. southeast of Luxemburg, red circle in Fig. 5a) are intensified by decreasing CCN and shape parameters of CDSD, thus
in agreement with the spatiotemporal integrated rainfall signal discussed in the previous section. Positions of strong rain cells
are shifted by the CCN perturbation at a scale of 20-30 kilometres, whereas an increase of the shape parameter of CDSD

hardly shows a clear differenee

impact. The visual inspection of many scenes of hourly rainfall caused by
convective cells confirms the systematic behaviour of microphysical perturbations with stronger precipitation in-with low CCN
concentration and broad CDSD eenditiens-shapes (not shown).

To briefly summarise the visual inspection, we can state ;—that-in—a—elean-CEN-environment;, CDSD-—perturbations—de

kitometres—Howeverin-that in polluted CCN conditions s-both CCN and CDSD perturbations have-an-impaet-on-impact the
spatial variability at almost the same scale. While microphysical perturbations keep the general spatial structure, IBC per-
turbations largely alter the position of convective cells. Thus microphysical perturbations primarily impact the precipitation

amount by changing their precipitation intensity rather than by feedback on dynamical fields and triggering new cells. Visual
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Figure 5. Snapshot of hourly precipitation at 16 UTC for the weak forcing case (11 August). Member 2 of IBC sub-ensembles (a) ruSpnu8p,
(b) aBpnulp, (c) au8m—nudm and (d) member 1 of au8p-nulp in the central western part of Germany (see blue box in Fig. 2). Black
contours indicate grid points that have a larger value than the 99th percentile value in the au8p-nu8p sub-ensemble of member 2. The red

circle in (a) indicates single convective cells discussed in the text.
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inspection of rainfall patterns of the strong forcing case results in similar findings: minor shifts of rain cells in microphysics
sub-ensembles and a smaller impact of CDSD perturbations (not shown).

To quantify the spatial (dis-)agreement of hourly precipitation fields in the various simulations we employ the FSS, a spatial
score that shows the similarity between two binary fields (denoted A and B, two distinct sub-ensemble members in our case),

within a predefined neighbourhood scale. The definition of the FSS is given b

. X(fa—fB)?
PSS =l AT *

where and represent the fraction of rainy erid points in fields A and B, respectively, at which the precipitation amount

is above a certain threshold value. The second term on the right-hand side is the ratio of the mean squared error (MSE) of the

fraction fields A and B to the maximum possible MSE [Roberts and Lean, 2008]. If the number of grid points with a value of
1 within a certain neighbourhood of each-a grid point is equal between two fields, the FSS is 1.0, which means the compared

two fields are identical. FSS becomes smalt-smaller as the difference between two fields gets larger, and it becomes 0.0 when
only one of the fields has values and the other has a complete miss in the respective neighbourhood. In this study, we use the
99th percentile of hourly precipitation as the threshold to generate a binary field to take into account the strong diurnal cycle of

rainfall intensity and to keep the number of grid points used for FSS calculation constant;-and-the-, The 99th percentile seems

agood-threshold-te-well-eaptare-positions-of conveetive-eeres-is useful to capture the position of convective cells (see contours
in Fig. 5). The neighbeurheod-size-is-varied-FSS is calculated over Germany with neighbourhood sizes varying from 2.2 km
(1 grid point) to 563.2 km (256 grid points)and-ESS-is-caleulated-over-Germany. Since FSS is a score calculated between two

fields, we need to carefully consider how to compute an ensemble FSS. Following Dey et al. [2014], we calculate the FSS for
all combinations of ensemble members belonging to a sub-ensemble. For instance, FSSs for an IBC sub-ensemble (with 20
different IBC) can be calculated 20 * 19 / 2 = 190 times. Since there are 9 IBC sub-ensembles in this study, the number of
overall FSSs that shows the impact of IBC perturbations is 190 * 9 = 1710. Accordingly, the numbers of FSSs for combined
microphysics, CCN, and CDSD sub-ensembles are 7260720, 180, and 180, respectively. Mean values of the FSSs are shown
in Figs. 6 and 7 to objectively represent the spatial variability given by various kinds of uncertainties.

In addition, we use the believable scale [Dey et al., 2014; Bachmann et al., 2020] to characterise a typical length scale that
estimates the spatial difference between two fields. The believable scale is defined as the neighbourhood size when the FSS
exceeds a threshold defined by F'SS > 0.5 + f—z‘) . Where fy is the fraction of grid points considered in the FSS calculation
(the 99th percentile threshold gives fy = 0.01). Since the FSS is applied on precipitation fields above the 99th percentile
values, the believable scale can be considered in this study as a scale showing how large a mismatch of intense convective

cells is. N
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Figure 6. Ensemble mean FSS values of hourly precipitation calculated across scales ranging from 2 to 560 km aeress-in_the German
domain for the weak forcing case 11 August. The IBC sub-ensembles’ mean FSS is depicted in panel (a), and the combined microphysics
sub-ensembles’ mean FSS in panel (b). The black lines show believable scales of mean FSS. The red lines (right axis) show the time series

of mean 99th percentile value of hourly precipitation.

Time-space diagrams of the ensemble mean FSSs given by (a)IBC-and-(b)-combined-microphysical-perturbationsfor-the
weak—foreing-ease-IBC and combined microphysical uncertainty are depicted in Fig. 6 for the weak forcing case. Low FSS

values represent large spatial deviations between the location of intense convection, hence a larger spatial variability. The
variability due to the IBC perturbations is considerably larger than the one forced by combined microphysical perturbations.
However, and typical for days under-with weak control, convective precipitation only forms in the late morning (see e.g. time
series in Fig. 2b-c and red line depicting the 99th percentile of hourly precipitation in Fig. 6). The value of the 99th percentile
of hourly precipitation amounts to 1 mm/h enty-at 12 UTC and precipitation is mostly negligible before. Interestingly, at the
onset of convective precipitation at 12 UTC the believable scale exhibits a dip and the spatial variability decreases to slightly
less than 100 km and thereafter continuously increases throughout the convective period until the evening. The reduction of the
vartability-represents-that-location-of conveetive-precipitation-spatial variability in the afternoon, representing co-locations of
convective cells, is constrained by steady, non-perturbed factors forcing the dynamical fields involved in cloud and precipitation
formation like orography. After 22 UTC the hourly precipitation rates amount again to less than 1 mm/h and the corresponding
believable scale exceeds 200 km as before the onset of convection in-the-night-and-at night and in the morning. In contrast, the
spatial disagreement caused by combined microphysical perturbations is smaller and the mean believable scale amounts to only
16 km at the peak of precipitation at 16 UTC (Fig. 6b). Apparently, the impact of microphysical perturbations on precipitation
acting on many pathways needs time and starts at a much lower spatial scale than IBC perturbations.

At first sight, individual perturbations of CCN and CDSD show a similar growth of FSS as the combined microphysical
perturbations (Fig. 6b and Fig. 7). Close inspection reveals +-that the believable scale of precipitation caused by CCN pertur-

17



410

415

420

425

430

(a) CDSD (b) CCN (c) WN

=
o
~

=
o
4

Spatial window size [km]
99th percentile precipitation [mm]

0 6 12 18 24 0 6 12 18 24 0 6 12 18
time [UTC] time [UTC] time [UTC]

Figure 7. As Fig. 6, but for the (a) CDSD, (b) CCN and (c) WNoise sub-ensembles.

bations (black line in Fig. 7b) starts to increase at the onset of the precipitation -(at 12 UTC), one hour before that of the
CDSD perturbations (Fig. 7a). The CDSD believable scale grows more slowly and is always smaller (roughly 50%) than that
of combined microphysical perturbations. Since changes in CCN have a direct influence on the cloud condensation process,
while the shape parameter of CDSD affects ensuing microphysical processes, this time shift is plausible. Interestingly, the CCN

perturbed believable scale reaches 40 km after 22 hours, the same length scale as the believable scale of the combined micro-

physical perturbations. In contrast to the impact on precipitation amount, combining two kinds-ef-mierophysical-perturbations
sources of microphysical uncertainty does not increase the spatial variability.

The uncertainty of CCN concentrations has a larger impact than shape-parameters-the shape parameter of CDSD on the
spatial variability of intense precipitation cells. Now we can ask if this behaviour is by chance and if this finding holds for other
thresholds or percentiles, respectively. For this reason we performed additional white noise (WNoise) ensemble simulations
with 20 different IBC but only for the ’default’ nube-eonfiguration-microphysics configuration (nu(c) to examine whether
the spatial variability caused, for instance, by microphysical perturbations differs from the impact of random, tiny differences
in the temperature field. Following the method of Selz and Craig [2015] the virtual potential temperature field is perturbed
by a non-biased Gaussian noise with a standard deviation of 0.01 K at all grid points of the entire model atmosphere at an
initial time. The comparison of the microphysically perturbed ensemble with a pure white noise (WNoise) experiment shows
a similar onset and increase of spatial variability (Fig. 7c). The spatial variability caused by CCN and CDSD perturbations
is, however, larger than the effect of the WNoise perturbations. At 16 UTC, the mean FSS of WNoise simulations is close
to 1 at scales larger than 80 km, and the believable scale is about 5 km. Thus the effect of microphysical uncertainty on the
spatial precipitation fields is systematically exceeding the effect of tiny errors at the initial time in the WNoise experiment.
Less intense precipitation cells detected by the 95th percentile threshold indicate a similar albeit slightly smaller variability
due to IBC and microphysical perturbations (not shown). Using a 90th percentile threshold on hourly precipitation results in
values lower than 0.1 mm at all forecast hours and gives no extra information.

To further elucidate the combined microphysical perturbations and the interdependence of one perturbation (say CCN)

when the other (CDSD) is kept constant in the presence of IBC uncertainty, time series of all believable scales calculated
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between every combination of ensemble members are illustrated in Fig. 8. The bold lines in Fig. 8a clearly reveal that CDSD
perturbations result in a-spatial variability at different length scales depending on a certain fixed CCN concentration during
weak synoptic control. In clean air conditions (maritime aerosol content, dark blue lines in Fig. 8a), the mean believable scale
attains 10 km roughly 3 hours after the onset of the believable scale’s growth. At 22 UTC, towards the end of the diurnal
cycle, the value increases to 15 km. On the other hand, for polluted conditions (dark red and green lines), the mean believable
scales reach-attain larger values, 15 km at 16 UTC and 30 to 40 km at 22 UTC. The mean length scale of disagreement
given by the CDSD perturbations in polluted conditions (high CCN concentrations) is twice as large as in clean conditions
(low CCN concentrations). Note, however, that there is big variability among the-pairs of ensemble members, hence the IBC
dependence is larger than the impact of the background CCN condition. A similar systematic dependence can be found for the
CCN perturbations’ impact with different fixed CDSD shape parameters. The mean believable scale with the broadest CDSD
(lightest grey lines in Fig. 8b) reaches 10 km at 16 UTC and 50 km after 22 hours lead time. With the narrowest CDSD (black
lines), the mean believable scale of CCN perturbations is 20 km at 16 UTC and increases to 100 km later. Interestingly, the
mean believable scale with the narrowest CDSD is by a factor of 2 larger than the broadest CDSD. This relationship is similar
to that found in spatially averaged precipitation amounts, namely polluted CCN and narrow CDSD conditions lead to larger
variability (Fig. 4).

In strong synoptic control, the situation is slightly different (Fig. 8c,d). The believable scales only start to grow from 7 UTC
onwards, and the mean values finally reach a neighbourhood size of 30 km at 22 hours lead time. This monotonic pattern of
the perturbation growth is the-same-as-similar to the weak forcing case. However, the mean believable scale for clean CCN
conditions is larger than for the weak forcing case at 22 UTC (dark blue bold lines in Fig. 8a and c). There is no systematic
difference in the mean believable scale caused by CDSD perturbations in the presence of various, yet fixed CCN concentrations
(Fig. 8c). On the other hand, given narrower CDSD, the CCN perturbations cause a slightly larger spatial variability (Fig. 8d).
Nevertheless, a difference between the broadest and narrowest CDSD is less pronounced in comparison to the weak forcing
case (10-15 km difference in strong control versus 30 km in weak control at 22 UTC). It is interesting to note that the impact
of the microphysical perturbations on the spatial precipitation pattern only starts to appear in FSS after 7 hours lead time,

although there is continuous rainfall since forecast initialization during the strong forcing case. Fhus-In the first hours of the

simulation spin-up effects and the adjustment to the driving coarser-scale model are still at work, which dampens the impact of
the microphysical uncertainties [see, e.g., Barthlott et al., 2022]. Thus, microphysical perturbations need a muech-longer spin-

up time than IBC perturbations to modulate dynamical fields eventually resulting in precipitation at different locations (see
Fig. 8c,d).

4.3 Impaeton-ecloud-andrain-water-eontent

Note that there is a difference between the believable scale of a “'mean FSS’ (e.g. black line in Fig. 6) that represents a
scale of (dis-)agreement given, say, an ensemble mean FSS value and the mean over many believable scale values of paired

member-to-member comparisons (Fig. 8). The ensemble mean FSS is useful for an intercomparison of the average impact
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Figure 9. Box and swarm plots for 24h-mean (a) domain-averaged total column cloud water content, (b) cloud fraction, and (c) domain-
averaged total column eloud-rain water content over Germany for the weak forcing case. The boxplots and dots illustrate the same data set, but
the dots represent individual IBC sub-ensemble members. The colours are based on the various combination of microphysical eenfigarations

erturbations shown in Fig. 1a. Boxplots show medians, interquartile ranges --as well as maximum and minimum values, respectively.

iven by different perturbations in general, whereas the mean of member-to-member believable scales (Fig. 8) provide a scale
of actual (dis-)agreement of certain scenes, for example, the precipitation patterns shown in Fig. 5.

4.3 Relative impact on cloud and rain water content

assessment centred on the relative impact on precipitation, we now_turn to important precursors in the complex process
chain to form precipitation and inspect the contribution of the uncertainties on the cloud and rain water content within a
full convective-scale EPS framework. Since we find similar systematic responses in both weather situations, we show results
for the weakly forced case only. In Fig. 9 we depict the variability caused by IBC uncertainty on clouds and rain water. The
24h-mean of hourly values is computed for the nine different IBC sub-ensembles to examine the relative impact.
Distributiens-of-The vertically mtegrated cloud water content (TQC) averaged-over-Germany-are-displayedinFig9a—TQEC
increases significantly with in higher CCN concentration

and CDSD shape (Fig. 9a). The medians of the different-microphystessub-ensembles-ensembles with different microphysics
uncertainty vary by more than 400% s-with FQE(TQC is amounting to 0.01 kg m~? in sub-ensemble-nubm-experiment nuQm

and 0.044 kg m~? in sub-ensemble-nu8p). The comparison of sub-ensembles sharing identical CDSD shape parameters shows
an increase of TQC by up to 300% when increasing CCN concentrations from maritime to polluted conditions (compare
stb-ensembles-aubm-and-aubp-experiments nu0m and nuQp in Fig. 9a). Similarly, the change from the broadest to the nar-
rowest CDSD enhances TQC by roughly 150%. These values are much-more than an order of magnitude larger compared to
the impact of microphysical perturbations on precipitation (compare to orange IBC sub-ensembles in Fig. 4). An important
implication frem-seen in Fig. 9a is that IBC perturbations cannot eover-the-vartability-due-te-encompass the variability caused

by microphysical uncertainties on cloud forecasts, which manifests by marginal erre-(or no) overlap of the distributions which

have different CCN and CDSD configurations (differently colour-coded in Fig. 9).
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increases with higher CCN and shape parameters (Fig-9.9b), in agreement with TQC-Compared-to-the-pristine-sky-sub-ensemble
higher CCN or/and CDSD parameters by 35%in-nusm-, 62% and 91% in-nusp-simulationtelative to experiment nu0m. Com-
pared to TQC, a change of CDSD shape parameters shows enty-minor-differences-of-an only minor effect on cloud fraction in
continental and polluted CCN conditions (e.g. nu8e-and-nu8p-nuSc and nudp in Fig. 9b)-presumably-due-to-the-atmospherie
eondition-tike humidity, which-gives-upper-bounds-of, This is presumably caused by ambient atmospheric conditions as, e.g.,

humidity sets an upper bound for total cloud cover. Hence variability-of CCN-concentrations-and-CDSD-shapes-microphysical
uncertainty (CCN and CDSD perturbations) becomes less important and IBC uncertainty, which predominantly triggers con-
vection and determines the upper bound of cloud coverage, governs the variability of spatial cloud distributions.
Vertieatly-Finally, the vertically integrated rain water content (TQR) averaged over Germany shows a systematic but opposite
response compared to TQC (Fig. 9¢). TQR decreases with increasing CCN and shape parameter of CDSD and adumbrates
parallels the systematic impact found for precipitation. Compared to TQC the variability caused by microphysical perturbations

becomes smaller, for instance, the TQR medians-of sub-ensemble-nudmmedian of experiment nu0m amounts to 0.033 kg m 2,

and au8pnu8p to 0.014 kg m 2, indicating an-in a decrease by roughl

58%.

The steady decreasing systematic impact of the microphysical pertarbations-uncertainty on cloud content, rain water content
and eventually precipitation hints towards some kind of buffering effects or compensating processes that reduce the large,
positive impact on clouds and eventually even turn it into a negative impact with respect to the rain production. Reeent-works
Companion work by Barthlott et al. [2022] and Baur et al. [2022] shed light on those processes. One major process is the
reduction of warm rain processes. The suppression of collisional growth of cloud droplets in polluted CCN conditions leads—te

less-production-of raincomponentsreduces the formation of rain drops, and small droplets become more likely to evaporate.

Moreover, cloud optical properties are influenced as well through changes of-in the droplet effective radius. That, in turn, can

affect the radiative energy supply that triggers sueeceeding-new convection.

4.4 Systematie-assessment-Quantification of therelative impact based on five days

Finally we repeat the analysis and use 180-member ICON-DB2-EPS-ICON-D2 ensemble experiments performed for five days
in August 2020-2020 to confirm the previous findings. The classification into distinct weather situations with different synoptic

control en-cloud-and-preeipitation—results in three weakly and two strongly forced days (see Table 1). The regime-dependent
regime-dependent relative impact of the various perturbations is computed as follows: first, the abseluterelative difference of

every individual member to its corresponding sub-ensemble mean is calculated, secendly;-its-relative-difference-is-ealenlated
v-separately for every day (as in Sect. 4.1 and
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Figure 10. Relative differences of ful+80-the 180-member ensemble (black), the averaged IBC sub-ensembles (orange) and averaged
combined microphysical perturbations-sub-ensembles (grey) aggregated over five days in August 2626-2020 conditional on synoptic control.
Relative differences on-totat-cotumn-eloud-watereontent(TQE)of precipitation, total column rain water content (TQR) and total precipitation
column cloud water content (FPTQC) are displayed using filled boxes for weak forcing situations. Boxplots show bootstrapped medians,

interquartile ranges as well as the 5th and 95th percentiles, respectively. For details see text.

shownrdisplayed in Fig. 4). FhirdbySecondly, the median, the interquartile range and the 5th and 95th percentiles are computed
by aggregating the days for each synoptic forcing separately (i.e. 360-samplesforstrongforeing-and-540-for-weak-540 samples
for weak, and 360 for strong forcing). Finally, the samples are bootstrapped 100 times with replacement to get statisticatly
robust results, and the mean of the 100 medians, interquartile ranges and percentile values are finally depicted in Fig. 10. This
procedure takes into account the different mean values of distinct sub-ensembles on different days (see Table 1) and guarantees
allows a fair comparison.

Firstin-the-In the full 180-member ensemble with-including IBC and combined microphysical uncertainties the 90% confi-

dence interval (given by the 5th and 95th percentiles) of total- precipitation-of single-expertments-deviates-precipitation deviates
for individual experiments from the ensemble mean by +41% to -32%, with an interquartile range between +15% to -18%

during weak forcing. The impact-of IBCperturbations—on-the-90%confidenee—interval-corresponding impact of pure IBC
perturbations shows a range of +36% to -29% in-daily—sums-during weak forcing (orange boxes of IBC subensemble in

Fig. 10). The variability is smaller and amounts to +23% during strong forcing. The medians have a slightly negative bias for
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the weak forcing cases because its precipitation distribution is slightly positive-skewed, i. e. the mean is larger than the median.
That might be an artefact of the given sample size.

of precipitation (grey bars for in Fig. 10a) show a relative impact of +12% to -13% fer-the-in weak forcing cases, and +6%
for-the-during strong forcing cases. Thus precipitation amounts are twice as sensitive to microphysical perturbations during
weak control. While the interquartile range of the full 180-member ensemble and the individual IBC sub-ensembles is similar
(between +16% and -18%), the 95th percentile of the 180-member ensemble representing the highest amounts of individual
members surpasses those of the IBC sub-ensemble by 5% for weak forcing situations.

The same methodology is applied en-to convective clouds represented by fhefla#ryeaveraged vertlcally integrated eloud-rain
water content (FQE-TQR in Fig. 10). i i

verMicrophysical perturbations
show a larger impact than IBC perturbations. The relative impact of microphysical perturbations on rain water ranges between
+34% and -30% for strong forcing, and between +57% and -35% for weak forcing. Forecast variability is again increased
by +31% when taking the microphysical uncertainties into account. The relative impact of IBC perturbations on TOR ranges
between +17% and -16% for strong forcing, and between +31% and -25% for weak forcing.

Finally, the impact on vertically integrated cloud water content (TQC in Fig. 10) shows less dependence on synoptic control

—mierophysieal-perturbations—show-targer-than those on rain water or precipitation. Microphysical perturbations show large
amplitudes on cloudsthan-en—preeipitation, and their impact exceeds the impact of IBC uncertainty. The relative impact of

mierophysieal-MP perturbations on TQC ranges between +66% and -60% for strong forcing, and between +80% and -62% for
weak forcing. Forecast variability is increased by +47% when taking the microphysical uncertainties into account. The vari-
ability of CCN and CDSD plays a larger role in narrower CDSD or higher CCN conditions (not shown), similar to the impact
on precipitation —ikewisediscussed in Fig. 4. Likewise, the pure IBC impact on TQC is in line with that on precipitation, as
the variability of TQC 90% confidence interval ranges +37% to -33% for the weak forcing cases, and +14% to -13% for the

strong forcing cases.

Overall, microphysical uncertainty plays a more important role in the prediction of cloud and rain water content than IBC

uncertainty, but the impact is buffered during warm rain processes. The buffering effect that counteracts te-microphysical

perturbations discussed in Sect. 4.3 is-thus-elearty-can thus be quantified. The microphysical impact on the 95th percentile value
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amounts to +79% for TQC, 57% for TQR and 12% for FPprecipitation. Conversely, the role of IBC uncertainty systematically
increases from TQC, over TQR to precipitation. For instance, the interquartile range of the impact lies between +14% to -13%

for TQC, +17% to -16% for TQR and £23% for FP-precipitation during strong synoptic control.

5 Summary and concluding remarks

The relative importance of microphysical uncertainties on cloud and precipitation forecasts implemented-in-the-eperational
HEON-D2-EPS-in a full convective-scale EPS framework is assessed on different spatlal and temporal scales for-fivereal-eases

conditional on synoptic control in central Europe.

allows—the-caleulation—of-theparticle-size—distribution—In the present study we perturb two microphysical parameters that
are poorly constrained by observations. Those constitute the cloud condensation nuclei (CCN) concentration —eurrenthy
net-considered-in—operational-ensembleforecasting;—and the shape parameter of the cloud drop size distribution (CDSD),
eurrently kept-eonstantboth_currently not perturbed in operational ICON-D2 ensemble forecasts. An examination of the
synergistic effect of these microphysical perturbations necessitates the use of the two-moment bulk microphysics scheme

of Seifert and Beheng [2006] that predicts next to the mass concentration of different hydrometeors their number density and
thus allows the calculation of the particle size distribution. Their individual and combined relative impact is estimated in the

presence of initial and boundary condition uncertainty (IBC) available from operational ensemble forecasting at Deutscher
Wetterdienst. Nine different set-ups of such combined microphysical perturbations run with 20 different IBC add up to &

180-member ensem

various uncertainties is quantified by selecting different sub-ensembles that are sharing a common uncertainty.
%E%lmmmmpw of the different-perturbations-on-preeipitation-ean—be
various uncertainties on precipitation cruciall
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depends on the synoptic controland-, It is larger during weakly forced situations. The impaet-of-pureIBC-perturbations-on-the
IBC uncertainty accounts for most of the precipitation variability. The 90% confidence interval (that is given by the 5th and
95th percentile) of FP-ofsingle-daily area-averaged precipitation of individual ICON-D2 experiments ranges between +38%
and -32% during weak forcing and =25%23% during strong forcing —(Fig. 10). Combined microphysical perturbations show a
relative impact of-on the 90% confidence interval of precipitation between +12% to-and -13% for-the-weak-foreingeasesduring
weak forcing, and +6% for-the-strongforeing-easesduring strong synoptic control. Thus precipitation amounts are twice as
sensitive to microphysical perturbations during weak control. The joint effect of IBC and microphysical uncertainty extends
the tails of the forecast distribution by 5% in weakly forced conditions. Individual ICON-D2 members exceed the ensemble
mean precipitation by 50%. However, the interquartile range of the full ensemble only marginally deviates from the pure IBC
sub-ensembles (Fig. 4).

The in-depth analysis of the weakly forced case further points towards a synergistic effect of CCN and CDSD pertur-
bations, that show a large sensitivity to the other background (fixed) microphysics choice. That stems from the systematic

behaviour of the responses to different microphysics conditions.

weak-—econtrol-CCN-and-CDSD-perturbations-Both microphysical perturbations have a systematic impact on the intensity and

location of individual convective cells identified in the present study with hourly rain rates, and its spatial variability amounts to

O(10km) quantified with FSS believable scales. In contrast, IBC perturbations scramble the precipitation pattern during weak
control and result in twice the location uncertainty. Puring-weak-eentrol-This suggests that microphysical perturbations have

systematic effects whereas IBC perturbations are likely to have stochastic effects. CCN perturbations cause a larger impact on
spatial variability of precipitation forecasts than CDSD. Individual perturbations of CCN and CDSD have larger impacts when

the other configuration is the narrower CDSD or polluted CCN condition, respectively.
Different-frem-the-Clouds react differently on the various uncertainties. The combined microphysical perturbations largel
. 10). Different

from their impact on precipitation, the increase of CCN concentration and shape parameter of CDSD has a large positive

integrated cloud water content (TQC in Fi

impact on the production of cloud water-eentent-andfoerms-and rain water content forming horizontally larger clouds. Fhe

weather regime independent. Thus the considerable impact on cloud variables does not directly translate into precipitation

amounts. This implies-that-suggests that there are some microphysical processes or feedbacks-are-compensatingfor-the-impaet
feedback mechanisms involved that compensate and ultimately reverse the impact of microphysical perturbations on clouds and
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precipitation. The systematic behaviour of cloud variables is consistent with previous studies {Seifert-et-al;2012: Tgel-and-van-denHeever;-
[Seifert and Ko, 2012; Igel and van den Heever, 2017b; Wellmann et al., 2020, Zhang et al., 2021], and further discussion about

the detailed processes seen from the deterministic perspective can be found in Barthlott et al. [2022] and Baur et al. [2022].

640
at the ground with averages of 24 hourly snapshot scenes of vertically integrated cloud and rain water to facilitate a comparison
of the respective contribution.
Importantly, a close inspection of the impact of microphysical uncertainties in the presence of different IBC on precipitation
645 indicates a stron ig. 3). This illustrates the necessity to be cautious when interpretin

results based on a deterministic approach only to evaluate impact of uncertainty, The use of a full ensemble modelling
framework including various key sources of uncertainty as done in this study is essential to assess their relative importance.
This issue becomes even more relevant when inspecting smaller spatial and temporal scales. Another major conclusion is the
necessity to take the atmospheric state into account when guantifying the contribution of various uncertainties. Given that
650 roughly 20 to 40% of the days with summertime precipitation in central Europe are classified as being weakly controlled
Kiihnlein et al., 2014; Zimmer et al., 2011
results independent of the synoptic control. A limitation of this study is the limited dataset covering five days in August 2020
only. More robust results require a larger database containing more cases that comprise different synoptic conditions. Based
on the five cases we cannot draw general conclusions. However, we believe that the findings are robust enough to provide a

655  scientific basis for future research.

the considerable impact during these conditions is usually veiled when inspectin

Our results suggest that the consideration of CCN and CDSD uncertainties increases precipitation variability and can con-

tribute to the reduction of the long-standing issue of underdispersion of near surface variables in conveetiveseale-convective-scale
EPS forecasts [see references in e.g., Keil et al., 2019] and thus ultimately benefit the improvement of NWP ensemble fore-
casting. It is beyond this study to assess to what extent the microphysical perturbations contribute to a better probabilistic
660 forecasting skill compared to observation. Given the increasing importance of satellite observations used in conveetiveseale
convective-scale data assimilation the systematic impact of microphysical uncertainties will attract interest in future. Micro-
physical uncertainties strongly influence forecasts of cloud coverage and droplet sizes, both representing important ingredients
used in satellite forward operators to compute synthetic reflectances [e.g. Scheck et al., 2020] to be used in data assimilation

algorithms.

665 Code and data availability. The ICON codes and data of the initial and lateral boundary conditions are available upon request with permis-

sion from the Deutscher Wetterdienst (DWD).
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