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Abstract. The ongoing global, yet spatially inhomogeneous warming prompts the inspection of decadal variability in the extra-

tropical upper-tropospheric circulation properties. This study provides observational evidence in this regard by utilizing reanal-

ysis data to unveil past trends in the probability distribution of Rossby wave packet (RWP) amplitude (E), phase (Φ), and phase

speed (cp) that may creep behind interannual variability. First, a comparison between the NE Pacific and N Atlantic regions

indicates that the 300 hPa E probability distribution exhibits a seasonally- and regionally-varying decadal variability. No ap-5

parent discrepancy arises between different reanalysis datasets, except from the JJA season where the historical ones
:::
two

:::::
tested

:::::::
historical

:::::::::
reanalyses

:
systematically underestimate E

::::::::
compared

::
to

:::
the

::::
three

:::::
tested

::::::::::
modern-era

:::::::::
reanalyses. Further exploiting the

local in space and time character of the employed diagnostics in ERA5 reveals that, while many areas experience pronounced

RWP property variations at interannual and/or decadal time scales, patterns of robust
:::::::::
statistically

:::::::::
significant

:
trends in the 1979–

2019 period do emerge. Notably, the Northern Hemisphere E field exhibits positive trends in N Pacific, NE Atlantic, and S Asia10

in DJF, whereas negative trends are found in a substantial portion of the extratropics in JJA. In terms of cp, distinct patterns

characterize MAM, with positive trends in parts of N Atlantic and most of Europe and negative trends to the north of these

regions and parts of N Pacific. The Southern Hemisphere features a poleward shift in the band of climatologically-maximum E

values in DJF, widespread positive E trends in MAM, and positive cp trends in large parts of the extratropics in DJF and MAM.

Assessing the decadal variability of RWP phase reveals zonally-extended patterns of alternating trends in the trough-ridge oc-15

currence ratio for MAM in the Northern Hemisphere and JJA in both hemispheres. Furthermore, no covariance is observed

between area-averaged daily-mean E and cp at decadal time scales, as revealed by the E–cp bivariate
:::::::::
probability

:
distribution

trends for the different regions and seasons. Finally, it is shown that many parts of N Pacific and N America experience a shift to

increasing occurrence of large-amplitude and/or quasi-stationary RWPs in DJF during 1999–2019, thus reflecting the temporal

variation in trends that characterizes ;
::

a
:::::::::::
manifestation

:::
of

:::
the

::::::::::
pronounced

::::::::::::::::::
interannual-to-decadal

:::::::::
variability

::::
that

:::::::::::
characterizes20

::
the

::
E
::::
and

::
cp:::::::

seasonal
:::::::::::
distributions

::
in

::::
some

:
areas and seasonsthat feature pronounced variability at interannual-to-decadal time

scales. .
:::::::
Overall,

:::::
these

::::::
results

::::::::
illuminate

::::
key

::::::
aspects

::
of

:::
the

:::::::
decadal

::::::::
variability

::::
and

:::::
trends

::
in

:::::
RWP

:::::::::
amplitude,

:::::
phase,

::::
and

:::::
phase

:::::
speed

:::
and

:::::
incite

::::::
further

:::::::::::
investigations

:::
on

::::
their

::::::
causes

:::
and

::::::::::
implications

:::
in

:
a
::::::
rapidly

::::::::
changing

:::::::
climate.
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1 Introduction

The extratropical upper-tropospheric circulation exhibits a substantial and impactful variability across a wide range of spa-25

tiotemporal scales. Variations in the properties of the synoptic-scale jet and wave features constitute prominent manifestations

of this variability. Facilitated by the increasing data availability in recent decades, several studies have explored the causes

and effects of such variations at daily (Teubler and Riemer, 2021), weekly (Madonna et al., 2017), seasonal (Hoskins and

Hodges, 2019), interannual (Souders et al., 2014), and decadal (Simpson et al., 2014) time scales. Monitoring the interannual

and decadal evolution of the atmospheric flow is particularly topical due to the ongoing global warming. The spatially inhomo-30

geneous temperature change in past and future decades is expected to affect and be affected by the anyway naturally-varying

circulation in an uncertain manner, thus reducing the confidence in regional climate projections (Shepherd, 2014). To that end,

a crucial aspect to investigate is
:
it
::
is
::::::
crucial

::
to

:::::::::
investigate

:
the past decadal variability of extratropical large-scale (Rossby) wave

properties, given their recurrent presence in the upper-tropospheric flow and their documented role on weather extremes (Wirth

and Eichhorn, 2014; O’Brien and Reeder, 2017; Fragkoulidis et al., 2018; Röthlisberger et al., 2019; Grazzini et al., 2021; Ali35

et al., 2021) and teleconnections (Simmons et al., 1983; Feldstein and Dayan, 2008; Harnik et al., 2016; Branstator and Teng,

2017; Wolf et al., 2018).

Motivated by the above, previous empirical studies have addressed questions on whether and to what extent trends have

emerged in the amplitude and phase speed of Rossby waves as a response to global warming. To that end, a variety of measures

has been employed on reanalysis data, since waves in the upper-tropospheric flow manifest in various fields and forms. This40

fact — together with incompatibilities on the time series and areas under consideration — has led to discrepancies between the

conclusions of these studies, such that no consensus so far emerges
:::
has

:::::::
emerged

::
so

:::
far. A selection of key outcomes

:
in
::::::::
previous

::::::
studies is hereafter presented. Di Capua and Coumou (2016) provided evidence that the meandering of the 500 hPa geopotential

height field
:
(a
::::::::

measure
::
of

:::
the

:::::::::
isohypses’

:::::::::
waviness)

:
over Eurasia exhibits negative trends in summer (July–September) and

pronounced positive trends in autumn (October–December) between 1979 and 2015. They also found positive trends in the45

amplitude
:::::::::
meandering

:
of quasi-stationary waves over N America year-round and more clearly in summer. Similarly, Vavrus

et al. (2017) focused on the N American region and showed that the meandering of the 500 hPa geopotential height field

exhibits generally positive trends in both summer and winter between 1980 and 2014. Based on the 500 hPa geopotential field,

Blackport and Screen (2020) utilized a metric rooted in the Huang and Nakamura (2016) local wave activity to examine the

autumn and winter “waviness "
:::::::
waviness

:
of the Northern Hemisphere circulation from 1979 to 2018 and reported no trendin50

this regard. Souders et al. (2014) used the 300 hPa streamline-following envelope of meridional wind and found no trend
::
in

::
the

:::::::::::
annual-mean

:::::
RWP

:::::::
activity

::::::
volume

:::::
(size

::::::::
multiplied

:::
by

:::
the

:::::::::
amplitude

::
of

::::::
RWPs)

:
between 1979 and 2010 for the Northern

Hemisphere as a whole or sectors of it, but a positive trend for the annual Southern HemisphereRossby wave amplitude
:::::::
Southern

::::::::::
Hemisphere. On a similar note, Karami (2019) used the 250 hPa envelope of meridional wind and reported no trend in any

sector or season of the Northern Hemisphere between 1980 and 2013. Coumou et al. (2015) applied spectral analysis on the55

Northern Hemisphere summer 500 hPa meridional wind field and found robust reductions in the amplitude of several synoptic-

scale wavenumbers, but no clear trend in the phase speed between 1979 and 2013 in the midlatitudes (35°N–70°N). Finally,
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Riboldi et al. (2020) assessed the Northern Hemisphere phase speed in summer and winter based on a spectral analysis of the

250 hPa meridional wind field and found no trend in the midlatitudes (35°N–75°N) between 1979 and 2018, although robust

negative trends emerged for shorter periods within
:::::::
windows

::::::
within

:::
this

:::::::
40-year

:::::
period.60

The evolution of Rossby waves in the real atmosphere is influenced by a multitude of concomitant processes and phenomena,

such that they typically materialize as eastward-propagating Rossby wave packets (RWPs) of highly-dynamic and spatially-

varying properties rather than sinusoidal features (Wirth et al., 2018). In recognition of that, the present study aims to illuminate

aspects of decadal variability in the extratropical upper-tropospheric circulation and provide further observational evidence in

this regard by utilizing local — in both space and time — diagnostics of RWP properties. Following Fragkoulidis and Wirth65

(2020), the analytic signal of meridional wind is employed for the diagnosis of RWP amplitude, phase, and phase speed. The

advantage of this approach is that it exposes the spatiotemporal evolution of RWPs, thus allowing — among other things

— the analysis of local in space probability distributions of their properties. The RWP amplitude provides an estimate of

the magnitude of jet meandering at synoptic scales, as this is reflected in the zonal succession of northerlies and southerlies

in the upper-tropospheric wind field. The RWP phase can be used for the identification of troughs and ridges along the jet,70

while the RWP phase speed reflects the rate of change of their position in the zonal direction. These diagnostics are employed

on reanalysis data of the upper-tropospheric wind field in order to assess the decadal variability of RWP amplitude, phase,

and phase speed and report on possible trends in these regards
::::::::
properties. Going beyond the seasonal means, the long-term

variability of the entire seasonal distribution of these properties is also considered, with a focus on the occurrence of large-

amplitude and/or quasi-stationary wave packets.75

The remainder of this article is organized as follows. The employed data and methods are presented in Sect. 2. Section 3

contains the analyses toward the aforementioned objectives. Specifically, Sect. 3.1 explores the decadal variability of the RWP

amplitude probability distribution in specific regions of the Northern Hemisphere midlatitudes. Section 3.2 presents Northern

and Southern Hemisphere maps of decadal trends in RWP amplitude, phase, and phase speed. Sections 3.3 and 3.4 assess trends

in the bivariate probability density function of RWP amplitude and phase speed and trends in the
::::::::
frequency

::
of

:
occurrence of80

large-amplitude and/or quasi-stationary RWPs in the Northern Hemisphere. Finally, Sect. 4 provides a summary of the main

findings and concluding remarks regarding their implications, sensitivity, and agreement — or lack thereof — with previous

studies. Additional analyses and technical information are included in the Supplement.

2 Data and Methods

2.1 Data85

The study primarily uses ECMWF’s ERA5 reanalysis (Hersbach et al., 2020) meridional wind field, v, for the period 1979–

2019; retrieved at 2°×2°horizontal resolution and 6-hourly temporal resolution (daily at 0000, 0600, 1200, and 1800 UTC).

Although the presented analyses refer to 300 hPa, adjacent isobaric levels are also employed in order to test the sensitivity in

this respect. For the years 2000–2006, ERA5.1 is used instead of ERA5, thus accounting for a technical error in the ERA5

production that also affects the upper-tropospheric wind field (Simmons et al., 2020). In order to test the sensitivity of the90
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results to the dataset of choice, the corresponding fields from NASA’s MERRA-2 (Gelaro et al., 2017) and JMA’s JRA-55

(Kobayashi et al., 2015) datasets for the periods 1980–2019 and 1979–2019, respectively, are also employed. Furthermore,

ECMWF’s historical reanalysis datasets ERA-20C (Poli et al., 2016) and CERA-20C (member #1; Laloyaux et al., 2018)

are utilized for an assessment of RWP amplitude variability across a longer time frame, i.e., 1900–2010 and 1901–2010,

respectively (Sect. 3.1).95

2.2 Diagnosis of local Rossby wave packet amplitude and phase

The diagnosis of RWP properties is based on the 300 hPa meridional wind anomaly field, v′, computed as the deviation of v

from its corresponding climatological mean value over the period 1979–2019. To that end, the climatological annual cycle of

the mean v at each grid point and each available time in the day (0000, 0600, 1200, and 1800 UTC) is smoothed by a Fourier

series expansion and restriction to frequencies 0–4 year−1. The v′ field is then spatially filtered following Fragkoulidis and100

Wirth (2020) (hereinafter referred to as FW20). First, the discrete Fourier transform of v′ at each latitude circle is filtered

by an adjustable Tukey window (Harris, 1978) with soft limits at zonal wavelengths 2000–10000 km. Subsequently, possible

emerged discontinuities in the meridional direction are minimized by convolving v′ across longitude with a Hann window of

14°length1.

The aforementioned steps effectively smooth the v′ field and direct the attention to transient synoptic-scale features of the105

upper-tropospheric flow. Diagnosing the local in space and time amplitude and phase of wave packets formed by these features

is thus facilitated. The procedure toward this end follows the FW20 methodology which is outlined hereunder.

A sinusoidal wave of amplitude E0 and angular wavenumber k0 formed along a v′ latitude circle is given by:

v′(x) = E0 cos (k0x) (1)

Using Euler’s formula, v′(x) may be expressed as the sum of two equal-amplitude complex exponentials of opposite wavenum-110

ber (spatial frequency):

v′(x) =
E0

2
(eik0x + e−ik0x) (2)

This expression reflects that — as with any real-valued function — the Fourier transform of v′(x) is conjugate symmetric,

so either half of the spectrum is redundant. Discarding the negative part (k =−k0) and doubling the positive part (k = k0) of

the spectrum leads to the information-preserving complex-valued “analytic" representation or analytic signal of v′(x) (Gabor,115

1946):

Av′(x) = E0 e
ik0x (3)

The real part, Re[Av′(x)], is equal to v′(x), while its imaginary part, Im[Av′(x)], is equal to the Hilbert transform of v′(x)

(Cohen, 1995). Being a complex-valued function, Av′(x) may be expressed in polar form as:

Av′(x) = E(x) eiΦ(x) , (4)120

1More information on the methodology and effect of the two spatial filtering steps can be found in Sect. 2.3
::

the
:::::::::
Supplemental

:::::::
Material of

Fragkoulidis (2019)
::::
FW20.
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where E(x) denotes the modulus of Av′(x):

E(x) = |Av′(x)| , (5)

and the angle Φ(x) denotes the argument (or phase) of Av′(x) within the interval (−π,π]
::::::
(−π,π]

:::::::
interval2:

Φ(x) =Arg[Av′(x)] = atan2 {Im [Av′(x)] , Re [Av′(x)]} (6)

Consequently, transforming (2) to (3) with no loss of information and comparing to (4) reveals that the local amplitude (E0)125

and phase (k0x) of this sinusoidal wave correspond to the modulus and argument of its analytic signal, respectively.

The procedure followed in this trivial example can be generalized to real-world wave signals, where meridional wind

(anomaly) along latitude circles exhibits zonally-varying amplitude and wavenumber. To that end, the sequence v′ along a

latitude circle is decomposed into a series of complex sinusoids of different amplitude and wavenumber by means of a discrete

Fourier transform:130

v̂′[m] =

L−1∑
ℓ=0

v′[ℓ] e−2imπℓ/L , (7)

where ℓ is the longitude index, m is the angular wavenumber, and L is the size of v′[ℓ]. The analytic signal of v′[ℓ] is then

computed by setting the power of its negative frequency components to zero and doubling the positive ones:

Av′ [ℓ] =
1

L

L−1∑
m=0

Âv′ [m] e2imπℓ/L , (8)

with:135

Âv′ [m] =


v̂′[m], for m= 0, L/2 ,

2v̂′[m], for 1≤m≤ L/2− 1 ,

0, for L/2+1≤m≤ L− 1 .

(9)

Subsequently, the local amplitude (E[ℓ]) and phase (Φ[ℓ]) of v′[ℓ] are computed using (5) and (6), respectively. As a final step,

E[ℓ] is restricted to wavelengths above 4,000 km using the aforementioned Tukey window filtering method.

Repeating the above for every latitude circle of the v′ field results in the two-dimensional RWP amplitude (E) and phase

(Φ) fields. Figure 1 shows the upper-tropospheric flow on 22 September 2018 0000 UTC with a view to illustrating
:
to

::::::::
illustrate140

the outcome of these diagnostics. The filtered 300 hPa v′ field at this instant is characterized by pronounced northerlies and

southerlies organized into two main wave packets in the North Pacific and North Atlantic regions (Fig. 1a). The correspond-

ing E field marks these areas of enhanced amplitude, while the Φ field designates the ridge–trough succession in the flow

(Figs. 1b,c).

2
::
The

::::::
principal

::::
value

::
of

::
the

:::::::
argument

:
is
:::::::

computed
::::
using

::
the

:::::
atan2

::::::
function

::::::::::
(two-argument

:::::
variant

:
of
:::

the
:::::::::
arctangent)

::::
since

:
it
::::::
accounts

::
for

:::::
angles

::
in

::
all

:::
four

:::::::
quadrants.
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Figure 1. Upper-tropospheric flow diagnostics based on the ERA5 300 hPa meridional wind anomaly (v′) field on 22 September 2018

0000 UTC: (a) spatially-filtered v′, (b) amplitude (E), (c) phase (Φ), (d) phase index (ridges: +1, troughs: -1), and (e) zonal phase speed (cp).

Opaque colours in panels (c) and (d) indicate the areas where RWP objects are detected.

2.3 Detection and amplitude of Rossby wave packet troughs and ridges145

The information about the local amplitude and phase in the v′ field is further exploited toward
::
in

:
a novel method for the

detection of trough and ridge features. At first, a phase index field is constructed based on the instantaneous Φ field as follows.

Phase values between 0 and π are found in the longitudinal ranges between local maxima in southerlies and northerlies (i.e.,

purple and green colours in Fig. 1c, respectively), which correspond to ridges in the Northern and troughs in the Southern

Hemisphere. Conversely, phase values between −π and 0 correspond to troughs in the Northern and ridges in the Southern150

Hemisphere. Based on this distinction, grid points within ridges in both hemispheres are assigned a phase index of +1, while

6



grid points within troughs in both hemispheres are assigned a phase index of −1. The resulting phase index field for the

example of Fig. 1 is shown in panel d.

The investigation of flow features evolving within the atmospheric continuum requires the introduction of one or more

thresholds to define and spatially delimit them. In order to define trough and ridge features in this study, discernible RWP155

structures are identified in the flow based on a local amplitude threshold of 15ms−1
::
15

:::::
ms−1

:
as per FW20. Opaque colours

in Figs. 1c,d indicate the grid points that satisfy this condition (i.e., E ≥ 15ms−1
:::::::::::
E ≥ 15ms−1 for the given grid point and

its adjacent grid points in longitude, latitude, and time) on this particular instant and thus comprise RWP objects. Troughs and

ridges are herein defined as these areas within the RWP objects that have a phase index value of −1 and +1, respectively

(Fig. 1d).160

2.4 Diagnosis of local Rossby wave packet phase speed

When it comes to the temporal evolution of the upper-tropospheric midlatitude flow, another important property of RWPs

emerges. In particular, the typically eastward motion of troughs and ridges reflects the fact that the v′ phase field varies in

both space and time, thus giving rise to the concept of local RWP phase speed. In general, the phase function for a zonally-

propagating wave of angular wavenumber k(x,t) and angular frequency ω(x,t) is given by:165

Φ(x,t) = k(x,t) x−ω(x,t) t+Φ0(x) , (10)

where Φ0 is the phase at x= 0 and t= 0. The local in space and time zonal phase speed is thus given by:

cp =
ω

k
(11)

with: ω =−∂Φ

∂t
, (12)

and: k =
∂Φ

∂x
=

1

acosϕ

∂Φ

∂λ
(13)170

where λ denotes longitude (λ= 2πℓ/L, with 0< λ≤ 2π), ϕ denotes latitude, and a denotes the Earth’s radius. Given the Φ

field at every latitude, longitude, and time, ω and k are computed at those grid points that comprise RWP objects (FW20). As

is evident from Fig. 1e, the resulting cp field in this example is neither erratic nor uniform within the individual RWP objects; it

exhibits gradual variation at synoptic scales. Overall, the example of Fig. 1 manifests
:::::::
indicates

:
that the upper-tropospheric wind

field is generally characterized by transient synoptic-scale waves, with troughs and ridges forming RWPs of spatiotemporally-175

varying amplitude and phase, the investigation of which requires local in space and time diagnostics.

2.5 Magnitude and monotonicity of decadal trends

The linear trends in the annual time series of various metrics associated with the aforementioned
:::::
above

:::::::::
introduced

:
RWP prop-

erties are evaluated by the Theil-Sen estimator (Sen, 1968), i.e., the median slope of lines connecting any two data points.

This approach reduces the sensitivity of the trend magnitude to outliers compared to the least squares method, which is rather180

crucial for time series like those assessed in this study that can be characterized by pronounced interannual variability. Prior to
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evaluating the trend magnitude, the time series of every grid point are standardized. This allows the assessment and interpreta-

tion of the trends with respect to the local climatology (i.e., the 1979–2019 mean of a given field and season) and interannual

variability (approximated by the standard deviation of a given field’s seasonal mean) .

Assuming that the analyzed time series consist of independent random variables, the statistical significance of the detected185

trends over time is assessed via the non-parametric Mann-Kendall test for the null hypothesis that there is no “monotonic" trend

(Gilbert, 1987; Serinaldi and Kilsby, 2016). A “monotonic" positive (negative) trend herein denotes that the variable under

consideration gradually increases (decreases) with time, such that the decadal trend outweighs the year-to-year variations and
:
,

::::
thus, the null hypothesis can be rejected at the given significance level. The seasonal means of consecutive years are expected

— and indeed found — to be largely independent (i.e., the lag-1 autocorrelation is close to zero) for all examined fields in190

this study (not shown). Consequently, prewhitening the annual time series of every grid point leads to minor changes in the

statistical significance patterns of the resulting trends.

3 Results

3.1 Decadal variability in the Rossby wave packet amplitude probability distribution over NE Pacific and N Atlantic

To start with, the interannual and decadal variability of RWP amplitude (E) in specific regions of the Northern Hemisphere195

midlatitudes are explored. In this regard
:::::
doing

::
so, the sensitivity to the chosen dataset is also assessed by employing an ensemble

of three modern-era and two historical reanalyses. Although all these datasets are produced using a fixed model version and

data assimilation system, the modern-era ones employ observations from a dynamic array of remote and in situ measurement

techniques while the historical ones are restricted to conventional surface observations (mainly pressure and marine wind).

This stems from a difference in the scope
::::::
purpose

:
of these datasets. Modern-era reanalyses primarily aim at reconstructing200

the best possible state of the atmosphere at any given time, while historical reanalyses primarily aim to reduce the artificial

low-frequency variability of meteorological variables induced by the ever-changing instrumentation.

Figure 3 shows the annual time series of DJF and JJA seasonal-mean E at 300 hPa in the NE Pacific and N Atlantic regions(
:
,

::::
while

:::
the

::::::::::::
corresponding

::::::::
analyses

::
for

:::
the

:::::
other

::::
four

::::::
regions

::
of

:
Fig. 2

::
are

:::::::
included

::
in
:::
the

::::::::::
Supplement

:::::
(Figs.

:::
S1

:::
and

:::
S2). Locally

weighted scatterplot smoothing (LOWESS) curves (Cleveland, 1979) are constructed by time series regression (using a tricube205

weight function) to the (10/N)% nearest data points, where N is the total amount of years available in each reanalysis dataset,

i.e., 41 for ERA5 and JRA-55, 40 for MERRA-2, 111 for ERA-20C, and 110 for CERA-20C. These smoothed curves aim to

capture the decadal variability in E that creeps behind interannual variability (thin solid lines in Fig. 3).

The two studied regions exhibit distinct from each other
::::::::::
qualitatively

::::::::
different E variability

::::::::
variations

:
in DJF (Fig. 3a,b).

In particular, NE Pacific is associated with a more pronounced interannual as well as decadal variability than N Atlantic,210

therefore multi-decadal trends may be harder to identify and more sensitive to the chosen time window. The NE Pacific year-

to-year variability weakens in JJA, so the two regions become less distinct from each other in this respect
:::::
season. When it comes

to the decadal variability, the two regions appear to experience a steady negative E trend in JJA during the past four decades,

while the situation is less clear in DJF. Between 1920 and 1980, there is a
:::::::::
pronounced

:
positive E trend in N Atlantic for both
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seasons and in NE Pacific for JJA. The NE Pacific in DJF is unique in this regard
::::::
exhibits

::::::
unique

:::::::::
variability

::
in

::::
DJF as well, as215

it features a distinctive double maximum between 1940 and 1980.
::::::::::
Interestingly,

::
a

::::::
positive

::
E
:::::

trend
:::::::
between

:::::
1920

:::
and

:::::
1980

::
is

:::
also

::::::::
observed

::
in

::::
both

:::::::
seasons

::
of

:::
the

::::
other

::::
four

:::::::
regions

:::::::
outlined

::
in

:::
Fig.

::
2
:::::
(Figs.

:::
S1

:::
and

::::
S2).

Figure 2. The rectangles outline six regions in the Northern Hemisphere midlatitudes where dedicated analyses are performed in parts of

this study. The six regions extend from 40°N to 60°N in latitude and are restricted to the 140°E–180°, 170°W–130°W, 120°W–80°W, 60°W–

20°W, 10°W–30°E, and 60°E–100°E longitudinal ranges for NW Pacific (yellow), NE Pacific (blue), N America (green), N Atlantic (black),

Europe (brown), and Central Asia (cyan), respectively.

Figure 3. (a) LOWESS time series of DJF-mean E at 300 hPa over NE Pacific based on the CERA-20C (red), ERA-20C (purple), JRA-55

(yellow), MERRA-2 (blue), and ERA5 (black) reanalysis. The thin red and black lines correspond to the original DJF-mean time series in

CERA-20C and ERA5, respectively. (b) Same as (a), but for the N Atlantic region. (c,d) Same as (a,b), but for the JJA season.
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The
:::::::::
Comparing

:::
the

::::::::::::
seasonal-mean

::
E

::::::::
evolution

::
in

:::
the

:::::::
different

:::::::
datasets

::::::
reveals

:::
that

:::
the

:
three modern-era reanalysis datasets

::::::::
reanalyses

:
are in close agreement with each other. The magnitude of seasonal-mean E is systematically slightly higher in

MERRA-2 than ERA5, while that of JRA-55 falls in between the two most of the time. During the past four decades, an220

agreement between modern-era and historical reanalysis datasets is evident for DJF. Interestingly, this is not the case in JJA

where the historical ones
::::::::
reanalyses

:
appear to systematically underestimate E by about 1

:
ms−1 compared to the modern-era

ones
::::::::
reanalyses. This suggests that the summer upper-tropospheric circulation

:
in

:::
the

::::::::
evaluated

::::::::
historical

:::::::::
reanalyses is not well

constrained by the available surface observations in these two storm-track regions. This problem in historical reanalyses is more

pronounced in the Southern Hemisphere extratropics (not shown). There are also distinct differences between the two historical225

reanalysesin the first half of the 20th century. .
:
Although the more advanced CERA-20C provides a more realistic picture than

ERA-20C (Laloyaux et al., 2018), exploring both showcases the changes in the E annual time series that can be expected in

data-sparse periods when upgrading the model version and data assimilation system.
:
A

:::::::::
secondary

:::::
factor

::
to

:::::::
consider

::::
here

::
is

:::
the

:::::
spread

:::::::
between

::::::::
different

::::::::::
CERA-20C

::::::::
members.

::::
This

::::::
spread,

::::::::
however,

::::
only

:::::::
appears

::::::::::
pronounced

::
in

:::
NE

::::::
Pacific

::::::
during

:::
the

::::
first

:::
two

:::::::
decades

::
of

:::
the

::::
20th

::::::
century

:::
as

:::::::
indicated

:::
by

::::
Fig.

:::
S3.230

In line with the apparent correlation in seasonal-mean E between all examined reanalysis datasets during the past four

decades (Fig. 3), the analyses that follow
::::
focus

::
on

::::
this

::::::
period

:::
and

:
are found to be insensitive to the dataset of choice. Conse-

quently, the remainder of this study only involves the ERA5 dataset.

Apart from the central tendency (represented in Fig. 3 by the seasonal mean), it is also important to investigate the decadal

variability of the entire E probability distribution. Figure 4 shows the daily-mean E probability density functions (PDFs) for235

NE Pacific and N Atlantic in DJF and JJA. Instead of individual years, the different PDFs correspond to rolling five-year periods

colour-coded from blue to red corresponding to 1979–1983 and 2015–2019, respectively. This is done in order to get smoother

PDFs and emphasize the decadal variability. The PDF of each five-year period is constructed based on a (non-parametric)

kernel density estimation using Gaussian kernels, the bandwidth of which is selected based on Scott’s rule of thumb (Scott,

1992).240

A gradual shift toward higher E values is observed in NE Pacific for DJF, which is mostly evident in the lower and near-

average values of the distribution (Fig. 4a). Conversely, a uniform shift toward lower E values is observed for the narrower

distribution of JJA (Fig. 4c). In the N Atlantic region, there are no equally apparent uniform shifts in the distribution as in

the case of NE Pacific. Specifically, no part of the DJF distribution appears to exhibit clearly visible shifts (Fig. 4b), whereas

a decreasing occurrence in RWPs of above-average E (i.e., RWPs with E values that clearly exceed the climatological PDF245

maximum) is evident in JJA (Fig. 4d).

Figure 5 shows the decadal trends (based on the Theil-Sen estimator) and the corresponding 90% confidence interval for

9 percentiles of the five-year E probability distributions in the two regions and seasons. It illustrates the fact that all parts

of the NE Pacific distribution exhibit positive trends in DJF and negative trends in JJA, with some variation between the

percentiles that indicates changes in the distribution shape. As suggested by the visual inspection of Figs. 4b,d, the N Atlantic250

is characterized by lower in magnitudetrends
:::::
trends

::
of

:::::
lower

:::::::::
magnitude. Although the negative trends in JJA are near-uniform,

DJF features an increase in the lower E values and a decrease in the above-average ones such that a narrowing of the distribution
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arises. The generally larger confidence intervals in the percentile trends of NE Pacific compared to those of N Atlantic reflect

the aforementioned pronounced interannual and decadal variability of the former region.

Figure 4. (a) Climatological (1979–2019) PDF of the DJF daily-mean E at 300 hPa over NE Pacific based on ERA5 (black line). The

coloured lines depict the corresponding PDFs of successive 5-year periods, as indicated in the legend to the right. (b) Same as (a), but for the

N Atlantic region. (c,d) Same as (a,b), but for the JJA season.

11



Figure 5. (a) 1979–2019 linear trends (Theil-Sen estimator; connected dots) in 9 percentiles of the DJF (green) and JJA (orange) NE Pacific

5-year PDFs (Fig. 4a,c) of daily-mean E at 300 hPa in ERA5. The shading indicates the 90% confidence interval. (b) Same as (a), but for

the N Atlantic region.

3.2 Decadal trends in Rossby wave packet properties255

Overall, Figs. 3–5 showcase the need to explore the upper-tropospheric circulation variability using local in space diagnostics

of its
:::::::::
diagnostics

::
of

:::::
local

::::
RWP

:
properties for each season separately. In this subsection, the diagnostics presented in Sect. 2

are utilized to produce maps of 1979–2019 linear trends in seasonal-mean RWP amplitude (E), phase (Φ), and phase speed

(cp) at 300 hPa for the Northern and Southern Hemisphere extratropics (Figs. 6–8). Given that the annual time series for

each grid point are standardized, the decadal trends are given in units of standard deviations (σ) per decade (Sect. 2.5). The260

Mann-Kendall test in
::::::
assesses

:::
at each grid point assesses the null hypothesis that the corresponding trend is not monotonic

at the α=0.1 significance level. Finally, overlaid in the maps are the respective multi-year seasonal means, which are more

thoroughly discussed in FW20.

3.2.1 Amplitude

Figure 6 shows the 1979–2019 trends in standardized seasonal-mean E at 300 hPa for the Northern and Southern Hemisphere265

extratropics, as well as the respective climatological-mean E. Evidently, several regions undergo monotonic trends in this

regard
:::
field

:
(indicated by red hatching), while a pronounced regional and seasonal variability — as hinted in Sect. 3.1 —

thereof emerges.

The Northern Hemisphere winter season features mostly positive E trends in the midlatitudes with statistically significant

values in N Pacific, NE Atlantic, and S Asia, whereas monotonic negative E trends are found at higher latitudes including NE270

Canada, Greenland, and Siberia (Fig. 6a). A widespread negative E trend is evident for the summer season with several regions

in the midlatitudes exhibiting statistically significant values (Fig. 6c). Opposite trends characterize large parts of the N Pacific
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and N Atlantic regions in MAM, with positive and negative values, respectively (Fig. 6b). Finally, negative trends emerge in

areas of N America, N Atlantic, and Eurasia in SON, but only a few parts of these regions exhibit monotonic trends (Fig. 6d).

In the Southern Hemisphere summer season (DJF), a poleward shift in the fairly zonal band of climatologically-maximum275

E values is apparent (Fig. 6a). Namely, there is a weakening in its subtropical edge and a strengthening in its poleward edge

and other areas of the Antarctic. Positive trends in middle and high latitudes span a large area in MAM (Fig. 6b), while less

uniform signals emerge in JJA and SON (Fig. 6c,d).

Figure 6. Maps of 1979–2019 linear trends (Theil-Sen estimator; colour shading) in the standardized seasonal-mean E at 300 hPa for (a)

DJF, (b) MAM, (c) JJA, and (d) SON in ERA5. Red hatching indicates areas where the trend monotonicity is statistically significant at the

0.10 significance level. Black contours correspond to the climatological-mean (1979–2019) E field of the respective season.

3.2.2 Phase

Whether a region undergoes a decadal trend in RWP amplitude or not, it is essential to examine the possibility of trends in280

RWP phase as well. Even in areas where E exhibits no monotonic trend, a change in the trough-ridge occurrence ratio over

time may signify changes in the local weather and climate. To that end, the seasonal-mean RWP phase index is computed based

on those time instances that feature an RWP object (Sect. 2.3). This metric can take any value between −1 and +1, indicating

whether and by how much troughs or ridges prevail in the given location and season. It is above zero when ridges occur more

often than troughs and below zero in the opposite case.285

Figure 7 shows the 1979–2019 trends in the standardized seasonal-mean RWP phase index at 300 hPa, as well as the

climatological-mean phase index. The latter is based on the full phase field of v rather than the RWP v′ field, such that it
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reflects the climatological tendency toward positive or negative phase values associated with stationary waves. Since the
:::
The

seasonal-mean RWP phase index at low latitudes remains undefined for seasons when no RWP object is detected, the trend is

not assessed at grid points where
:::::
which

::
is

:
a
:::::::
common

::::::::::
occurrence

::
at

:::
low

::::::::
latitudes.

:::::
When

:::
the

:::::
phase

:::::
index

::
is

::::::::
undefined

:::
for

:
more290

than 25% of the seasons (i.e., 11 or more out of the total 41 seasons)fall in this category (masked areas in Figs,
:::
the

:::::
trend

::
is

:::
not

::::::::
computed

:::
and

:::
the

::::
grid

:::::
point

:
is
:::::::
masked

:::::
(grey

::::::
shading

::
in
::::
Fig. 7,8,10).

The analysis reveals that monotonic trends do emerge for certain regions and seasons. Statistically significant positive trends

are found in DJF over the Arctic Ocean region that corresponds to the left exit of the N Atlantic jet stream and RWP track,

indicating that the frequency of ridges is increasing
:::::::::
occurrence

:::
of

:::::
ridges

::::::::
increases

:
relative to that of troughs (Fig. 7a). A295

larger part of the midlatitudes experiences statistically significant trends in MAM (Fig. 7b). Specifically, a positive trend is

found over most of Europe with negative trends upstream (N Atlantic) and downstream (Western Asia). A dipole trend pattern

characterizes the Arctic ocean; probably associated with the increasing occurrence of a cross-polar wind pattern, rather than

two separate processes. Finally, negative trends are found over the Sea of Japan with an equally large region of positive trends

downstream over the N Pacific.300

Prominent patterns emerge in JJA with statistically significant trends of alternating signs extending from N America to

Central Asia (Fig. 7c). Negative trends are found in Eastern N America, NE Atlantic, and Central Asia, while positive trends

are found in the regions in between as well as in Greenland. When it comes to SON, positive trends are found in Eastern

Europe and negative in Central Asia (Fig. 7d). Further to the north, negative and positive trends are found to the west and east

of Greenland, respectively.305

Statistically significant RWP phase trends in the Southern Hemisphere are mostly found in the central and southern sides

of the RWP tracks. The most prominent trend pattern emerges in JJA with a succession of positive and negative values in the

40°S–80°S latitude band (Fig. 7c). This “wave train" formation in the RWP phase trend pattern, which is also observed in the

Northern Hemisphere, is not coincidental. If a process or interaction of processes leads to a gradual (i.e., acting on decadal time

scales) increase in the frequency of
:::::::::
occurrence

::
of

:
troughs or ridges over a particular area, transient RWPs develop upstream310

and, primarily, downstream accordingly, such that a zonally-extended phase index trend pattern of alternating signs emerges.

Given that the aforementioned trends apply to the phase index of RWP objects, their interpretation should also consider

trends in the RWP frequency, which generally follows the E trends (not shown). A positive RWP phase index trend may not

correspond to an increase in the
::::::::
frequency

::
of

:
occurrence of ridges, if it coincides with a negative trend in RWP frequency.

One scenario in this case is that the reduction in troughs is larger than the reduction in ridges, such that the ratio of ridges over315

troughs increases.
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Figure 7. Same as Fig. 6, but for the phase index of RWP objects at 300 hPa.
::::::
Positive

::::::::
(negative)

::::
trends

:::::
denote

::::
that

::
the

::::::::
frequency

:
of
:::::::::
occurrence

:
of
:::::

ridges
::::::::

increases
::::::::
(decreases)

::::::
relative

::
to

:::
that

::
of

:::::::
troughs. The black contours correspond to the multi-year mean phase index based on the

filtered v at 300 hPa. Masked grid points are indicated by grey shading.

3.2.3 Phase speed

The possibility of decadal trends in the zonal propagation speed of RWPs (i.e., cp) is next explored. As in the case of the RWP

phase index, the seasonal-mean cp is computed based on those time instances that feature an RWP object. Although no uniform

slow-down or acceleration of upper-tropospheric troughs and ridges emerges in the Northern Hemisphere, certain regions in320

certain seasons do experience statistically significant trends in this regard
::
cp:::::

trends
:
(Fig. 8).

The most notable pattern of monotonic trends in the Northern Hemisphere occurs in MAM (Fig. 8b). The cp trend in N Pacific

is generally negative, with statistically significant values over the Philippine and East China Seas; regions that also experience

monotonic positive E trends (Fig. 6b).
:::::::::
Monotonic

:::::::
negative

::::::
trends

::::
also

::::::::::
characterize

:::::::::
Greenland

:::
and

::::
the

:::::
Arctic

::::::
Ocean

::::::
region

::
to

:::
the

::::
north

:::
of

:::::::
Europe. In contrast, the rest of the midlatitudes feature positive cp trends, with statistically significant values325

over most of Europe and parts of N Atlantic and Western Russia. Finally, a band of monotonic negative trends characterizes

Greenland and the Arctic Ocean region to the north of Europe.

No large-scale organized formation
:::::
pattern

:
of statistically significant trends emerges in the other seasons, except for the

negative values in Siberia in DJF and N Atlantic in JJA (Figs. 8a,c).

In contrast to the Northern Hemisphere, the Southern Hemisphere extratropics exhibit a widespread tendency toward a
:::::
higher330

cp increase. Statistically
::::::
values.

::::::::
Moreover,

::::::::::
statistically

:
significant positive trends cover large parts of the S Atlantic Ocean in

DJF and MAM, the Indian Ocean in DJF, and the S Pacific Ocean in MAM and JJA.
:::::::
Although

:::::::::
exploring

:::
the

::::::
relation

:::
of

:::
the
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:::::::::::::
aforementioned

:::::
trends

::
to

::::::
trends

::
of

:::::
other

:::::::::
circulation

::::::::
properties

::
is
:::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
study,

:::
the

::::::::::::
corresponding

::::::
trends

::
in

:::::
ERA5

:::::
zonal

::::
wind

:::
(u)

::
at
::::
300

:::
hPa

:::
are

::::::::
provided

::
in

:::
the

::::::::::
Supplement

:::
for

::::::::
reference

::::
(Fig.

::::
S5).

Figure 8. Same as Fig. 6, but for cp at 300 hPa. Masked
::
As

::::
with

::
the

:::::
RWP

::::
phase

:::::
index,

:
grid points

::::
where

:::
the

::
cp::

is
:::::::
undefined

:::
for

::::
more

::::
than

:::
25%

::
of

:::
the

::::::
seasons are indicated by

::::::
masked

:
(grey shading

:
).

3.3 Joint variability in Rossby wave packet amplitude and phase speed335

As indicated in Sect. 3.1, seasonal probability distributions of local RWP properties may exhibit uniform shifts and/or changes

in their shape. Therefore, the aforementioned seasonal-mean trend maps are not necessarily indicative of changes in e.g. the

distribution tails of the associated fields. To that end, this subsection explores the 1979–2019 decadal trends in the entire E

and cp seasonal distributions for the six regions outlined in Fig. 2. Moreover, the distributions of these two properties are not

investigated in isolation, but jointly. This allows the inspection of possible shifts in the bivariate E–cp :::::::::
probability

:
distribution340

toward a certain regime. For example, it is worth knowing whether the negative E trend over a region concerns the fast wave

packets, the quasi-stationary ones, or much of the cp domain. Similarly, one can focus on a specific E regime, e.g., large-

amplitude RWPs, and assess the associated cp trend.

In contrast to the analysis of Fig. 4, averaging the daily-mean E and cp over a region only accounts for grid points where

an RWP object is detected
:::
that

:::
are

::::::::
occupied

::
by

:::::
RWP

::::::
objects

::::
and

::
cp::

is
::::::::
available (i.e., where E ≥ 15ms−1

:::::::::::
E ≥ 15ms−1; see345

Sect. 2.3)and, thus, cp is defined. Furthermore, days when a RWP object covers less than 10% of the region (i.e., 23 out of

231 grid points)
::::
total

::::::
region

::::
area are omitted from the E and cp time series. Based on the resulting time series, Fig. 9 shows

the climatological-mean and decadal trend of the daily-mean E and cp bivariate PDF over the aforementioned regions in the
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four seasons. The underlying PDFs of the entire data sample (i.e., climatological probability distribution) and the data of each

season separately are derived from two-dimensional Gaussian kernel density estimations with bandwidths based on Scott’s350

rule of thumb. The resulting two-dimensional PDFs reflect the density of the data points in the E–cp domain and have units of

(ms−1)−2 (probability per unit of space). The probability density annual time series for each point in the E–cp domain is then

standardized and its decadal trend magnitude and monotonicity are evaluated as described in Sect. 2.5.

The distribution shifts emerging in Fig. 9 reflect to some extent the individual decadal trends of seasonal-mean E and cp

shown in Figs. 6 and 8. In a simple scenario, the bivariate PDF shift in a region where the seasonal means of both E and cp355

exhibit a positive trend will indicate an increase in the occurrence of high-E high-cp RWPs and a decrease in the low-E low-cp

ones. A hypothetical increase of RWPs with above-average E and average cp and RWPs with above-average cp and average E

could also result in positive E and cp trends. In light of the above, hereafter
:::::::
Hereafter

:
highlighted are apparent trend patterns

in the PDFs that cannot be inferred from the seasonal-mean trends of the individual fields.

The
::::::
Starting

::::
with

::::
DJF,

:::
the

::::::::
observed

:
positive E trend in DJF over the two N Pacific regions

::::
(Fig.

:::
6a)

:
is associated with an360

increase in RWPs of high E and above-average cp (Figs. 9a,b). The positive E trend over Europe is associated with an increase

in high-E average-cp RWPs and a decrease in RWPs of low E and high or low cp (Fig. 9e). Although the changes are generally

not statistically significant
::::::
Finally, the negative cp trend in C Asia

::::
(Fig.

:::
8a) involves RWPs of any E. ,

::::::::
although

:::
the

:::::::
changes

::
are

::::::::
generally

:::
not

::::::::::
statistically

:::::::::
significant

::::
(Fig.

::::
9f).

The negative and positive MAM cp trends in NE Pacific and N America , respectively, are mostly associated with corresponding365

changes in
:::::::
(negative

::::
and

:::::::
positive,

:::::::::::
respectively;

::::
Fig.

:::
8b)

:::::::::
primarily

::::::
involve

:
the cp distribution of

:::::
RWPs

:::::
with

:
near-average

ERWPs. In addition, the positive cp trend over Europe is associated with a decrease in
::::
shift

::::
from

:
high-E low-cp RWPs and

an increase in above-average
::::::
toward

:::::
high-cp occurrences for RWPs of non-extreme amplitudes

:::::
RWPs

:::
of

::::::
weaker

:::::::::
amplitude

(Fig. 9k). Finally, the positive cp trend in C Asia is instead primarily associated with an increase in low-E high-cp RWPs

(Fig. 9l).370

The
::
In

::::
JJA,

:::
the

:
NW Pacific region experiences an increase in RWPs of below-average E and cp RWPs in JJA, with a

decreasing occurrence of RWPs of all other regimes (Fig. 9m). On the other hand, NE Pacific experiences a shift from RWPs

with high E and low or average cp to low-E low-cp RWPs (Fig. 9n). No change is observed for N America, while the E

reduction over N Atlantic and Eurasia appears to favor RWPs of above-average cp; a shift that is more prominent over Europe

(Fig. 9o–r).375

Fewer statistically significant changes in the E–cp distribution occur in SON compared to the other seasons (Fig. 9s–x).

RWPs of low cp and above-average E over NE Pacific occur more frequently at the expense of low-E high-cp RWPs. Despite

the generally negative trends in both seasonal-mean E and cp over Eurasia (Figs. 6d and 8d), Europe exhibits a shift toward

RWPs of lower cp whereas C Asia exhibits a reduction in high-cp RWPs and an increase in the average-cp ones (i.e., a narrowing

of the cp distribution for most E regimes).380

Another key aspect emerging from the 24 investigated probability distributions is that there is no consistent underlying

relation between the E and cp trends, that is, there is no covariance between the two properties at decadal time scales. For

example
:::::
When

:::::::::
considering

:::
all

:::::::
regions, a gradual shift toward higher

::
or

:::::
lower

:
RWP amplitudes is not necessarily associated
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with a shift toward lower or higher RWP phase speeds. Related to that, as the shape of the climatological
:::
For

::::::::
example,

:::::
while

:::::
MAM

::
in

:::::::
Europe

::::
(Fig.

::::
9k),

:::
JJA

::
in
::::

NE
::::::
Pacific

::::
(Fig.

::::
9n),

:::
and

::::
JJA

::
in

:::::::
Europe

::::
(Fig.

:::
9q)

:::
are

:::
all

:::::::::::
characterized

:::
by

:::::::
negative

:
E –cp385

spectra implies
:::::
trends, there is weak covariance between the two properties at daily time scales as well, when all RWPs are

considered (see also section 8 in the Supplement of FW20). a
:::::
clear

::::::
positive

:::
cp ::::

trend
::
in

:::
the

::::
first

::::
case,

:
a
:::::::
slightly

:::::::
negative

::
cp:::::

trend

::
in

:::
the

:::::::
second

::::
case,

:::
and

:::
no

:::::::
apparent

:::
cp ::::

trend
::
in

:::
the

::::
third

:::::
case.
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Figure 9. (a–f) Climatological (1979–2019) bivariate PDF of the DJF daily-mean E and cp at 300 hPa (10−3(ms−1)−2; black contours)

over (a) NW Pacific, (b) NE Pacific, (c) N America, (d) N Atlantic, (e) Europe, and (f) Central Asia in ERA5. Colour shading corresponds

to the 1979–2019 linear trend (Theil-Sen estimator) in the seasonal E–cp probability density. Red hatching indicates areas where the trend

monotonicity is statistically significant at the 0.10 significance level. (g–l), (m–r), (s–x) Same as (a–f), but for MAM, JJA, and SON, respec-

tively.

3.4 Temporal variation of trends in mean and extreme RWP properties

As shown in Sect. 3.1, NE Pacific experiences pronounced decadal variability in the seasonal-mean E field in DJF (Fig. 3).390

This suggests that when considering shorter periods within 1979–2019, the respective trends in RWP properties may exhibit
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significant temporal variation in some regions and seasons. The objectives of this section are, first, to underline and illustrate

this aspect and, secondly, to report on the associated variability in the
::::::::
frequency

::
of

:
occurrence of RWP amplitude and phase

speed extremes.

Figure 10 provides an example of pronounced temporal variation in seasonal-mean E and cp trends by separating the395

Northern Hemisphere DJF analysis into the two equally-long periods of 1979–1999 and 1999–2019. Evidently, many areas are

characterized by E and cp trends of different sign in these two periods. A big part of the 15–40°N latitude band — including

N Pacific, the Mediterranean, and Asia — shifts from weakly negative (during 1979–1999) to positive and often monotonic

(during 1999–2019) E trends. Furthermore, areas to the north of 60°N experience an apparent change from monotonic negative

to weak E trends. Between 40°N and 60°N, the E trends remain mostly positive throughout the 41-year period. When it comes400

to cp, a positive trend during 1979–1999 characterizes most of the Northern Hemisphere extratropics, albeit with infrequent

monotonicity. In contrast, monotonic negative trends are found over parts of Asia, N Pacific and N America during the 1999–

2019 period. In particular, an unusual period of five consecutive winters between 1998 and 2002 with relatively high cp values

over NE Pacific (Fig. S2
::
S4) appears crucial for the noticeable trend change in this area and suggests that the scarcity of

monotonic cp trends in the 1979–2019 period (Fig. 8a) is caused by variability at both interannual and longer time scales.405

The last part of this study focuses on the tails of the E and cp seasonal distributions, exclusively, and assesses trends in

the
::::::::
frequency

::
of
:

occurrence of high-E and low-cp extremes. This is motivated by the documented role of these two RWP

properties on hot and cold extremes throughout the year (Sect. 1). High-E extremes are defined as days when the daily-mean

RWP amplitude exceeds the climatological 90th percentile of the given grid point and year day. Similarly, low-cp extremes are

defined as days when the daily-mean RWP phase speed does not exceed the climatological 10th percentile. The potentially more410

alarming situations when RWPs are both large-amplitude and quasi-stationary constitute a subset of the E–cp distribution that

merits particular attention. To that end, compound extremes are defined as days when the daily-mean RWP amplitude exceeds

the climatological 70th percentile and the daily-mean RWP phase speed does not exceed the climatological 30th percentile.

The computation of the aforementioned climatological percentiles for each day of the year is described in Appendix A.

The Northern Hemisphere DJF trends in high-E, low-cp, and compound extremes during the 1979–1999 and 1999–2019415

periods are shown in Fig. 11. The count of extremes is regarded as 0 (i.e., it is not undefined) for seasons with no detected

RWP object, which is typical for low-latitude grid points. Overall, the analysis demonstrates that the aforementioned temporal

variation of trends in seasonal-mean E and cp is also reflected in the justifiably spottier and less robust
:::::::::
statistically

:::::::::
significant

trend patterns of their extremes. The 1979–1999 positive high-E extreme trends between 40°N and 60°N and negative trends

to the north and south of this band are succeeded by generally positive trends during 1999–2019; more prominently over N420

Pacific, China, northwestern N America, and the Mediterranean. In the case of low-cp and compound extremes, a large part of

the N Pacific and N America regions experiences weak to no trends in 1979–1999, but shifts to positive and often monotonic

trends in 1999–2019. Given that midlatitude grid points experience on average around 5 high-E, 5 low-cp, and 4 compound

extremes per winter3, monotonic positive trends of 0.2 extremes per year may be hardly perceptible to society, albeit rather

substantial in the course of 20 years. For reference, the analysis for the other seasons as well as the 1979–2019 trends for all425

3This number varies between grid points depending on how often E exceeds 15ms−1
::
15

::::
ms−1

:
(Appendix A).
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three types of extremes are provided in the Supplement (Figs. S3–S8
:::::::
S6–S11).

:::
The

::::::
results

::
of

::::
this

:::::::::
subsection

::::::::::
demonstrate

::::
that

:::::::::::::::
temporally-varying

::::::
trends

::::::
emerge

::::::
within

::::::::::
1979–2019

::
in

:::
the

::
E

:::
and

:::
cp :::::::

seasonal
:::::::::::
distributions

::
of

:::::
some

::::::
regions

::::
and

::::::
seasons

::::
and

:::::
shows

::::
how

:::
this

:::::::
reflects

::
on

:::
the

:::::::::
occurrence

::
of

::::::::::::::
large-amplitude

:::::
and/or

:::::::::::::
quasi-stationary

::::::
RWPs.

:

Figure 10. Maps of 1979–1999 linear trends (Theil-Sen estimator; colour shading) in the standardized seasonal-mean (a) E and (c) cp

at 300 hPa for DJF in ERA5. (b),(d) Same as (a),(c), but for 1999–2019. Red hatching indicates areas where the trend monotonicity is

statistically significant at the 0.10 significance level. Black contours correspond to the multi-year mean fields of the respective period.

Masked grid points are indicated by grey shading.

Figure 11. Maps of 1979–1999 linear trends (Theil-Sen estimator; colour shading) in the number (a) high-E extremes, (c) low-cp extremes,

and (e) compound high-E/low-cp extremes at 300 hPa for DJF in ERA5. (b),(d),(f) Same as (a),(c),(e), but for 1999–2019. Red hatching

indicates areas where the trend monotonicity is statistically significant at the 0.10 significance level.
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4 Summary and concluding remarks

This study assessed the decadal variability of the extratropical upper-tropospheric circulation by utilizing reanalysis data and430

diagnostics of local in space and time RWP amplitude (E), phase (Φ), and phase speed (cp) at 300 hPa. The main outcomes

are hereafter summarized.

– The analysis of area-averaged seasonal-mean E time series during the 1900–2019 DJF and JJA seasons showed that

NE Pacific exhibits a more pronounced interannual and decadal variability than N Atlantic, while both regions feature

less interannual variability in JJA. The examined modern-era (ERA5, JRA-55, and MERRA-2) and historical (ERA-20C435

and CERA-20C) reanalysis datasets were found to be in close agreement with each other regarding the seasonal-mean

E value , except for
:
in
:::::

DJF,
:::
but

:::
not

::
in

:
JJA where the historical ones systematically underestimate E. Focusing on the

1979–2019 period in ERA5, the decadal evolution of the daily-mean E probability distribution indicated seasonally- and

regionally-varying trends in its mean and shape.

– The decadal variability of mean RWP properties in the entire Northern and Southern Hemisphere extratropics was then440

explored and some notable patterns of monotonic trends are highlighted here. A substantial part of the N Pacific, NE

Atlantic, and S Asia undergoes positive E trends in DJF, whereas an E decrease is found in areas at higher latitudes in

DJF and much of the Northern Hemisphere extratropics in JJA. The Southern Hemisphere extratropics are characterized

by a poleward shift in the band of climatologically-maximum E values in DJF and widespread positive E trends in

MAM. Zonally-extended trend patterns of alternating signs emerge in the trough-ridge occurrence ratio for MAM in the445

Northern Hemisphere and JJA in both hemispheres. When it comes to cp, MAM features positive trends over parts of N

Atlantic and most of Europe, as well as negative trends to the north of these regions and much of N Pacific. Furthermore,

high-latitude areas of the N Atlantic experience negative cp trends in JJA, while positive trends cover large parts of the

Southern Hemisphere in DJF and MAM.

– An assessment of bivariate E–cp probability distribution changes demonstrated that the aforementioned Northern Hemi-450

sphere trends are associated with inconsistent — between seasons and regions — shifts in the E–cp domain, thus sug-

gesting a lack of covariance between E and cp at decadal time scales.

– As illustrated for the Northern Hemisphere E and cp fields in DJF, interannual and/or decadal variability prevail in many

areas that do not exhibit monotonic trends in the 1979–2019 period. Associated with that, it was found that sizable

portions of the N Pacific and N America regions experience positive trends in the
::::::::
frequency

:::
of occurrence of large-455

amplitude and/or quasi-stationary RWPs in DJF during 1999–2019.

The presented analyses do not change qualitatively when performed at the 250 hPa or 350 hPa levels instead of 300 hPa.

::::::
Setting

:::
the

::::
RWP

::::::
object

:::::::::::
identification

::::::::
threshold

::
to

:::
10

:::::
ms−1

::
or
:::

20
:::::
ms−1

:::::
leads

::
to

:::
no

:::::::::
substantial

::::::
change

::
in

:::
the

:::::::::::::
seasonal-mean

:::::
phase

:::
and

:::::
phase

:::::
speed

::::::
trends

:::::
(Figs.

::
7

:::
and

:::
8). In addition, as indicated by Fig. 3, the results remain largely unchanged when

employing the JRA-55 or MERRA-2 datasets instead of ERA5. One exception here is that JRA-55 features widespread mono-460

tonic positive E trends in the Southern Hemisphere high latitudes (i.e., to the south of 60°S) in all seasons between 1979
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and 2019, thus differing substantially from ERA5 (Fig. 6) and MERRA-2. The spatial variation in the E and cp trends that

could be unveiled through the use of local in space diagnostics (Figs. 6 and 8) implies that the analyses of sections 3.1 and

3.3 are sensitive to the size and location of the rectangles for some regions and seasons (Fig. 2). Accounting also for the

pronounced temporal variation in the trends of some regions (Sect. 3.4), it becomes evident that trends in such properties465

of the upper-tropospheric flow should be interpreted with caution when focusing on specific areas and/or short time periods.

Finally, information
:::::::::
Information

:
regarding the advantages and limitations of the employed RWP diagnostics are provided in

FW20. It is worth noting, that these diagnostics account for flow configuration of locally
:::::::::::
configurations

::::
that

::::::
locally

::::::::
resemble

:::::
almost

:::::
plane

::::::
waves

::
of discernible zonal wavenumber and angular frequency. This means that they are not supposed to capture

accurately the decay stage of RWPs, where
::::::::
accurately

:::::::
capture wave-breakingoccurs

:
,
:::::
where

:::
the

:::::::::
emergence

:::
of

:::::::::
filamentary

::::
and470

:::::
cutoff

::::::::
structures

::::::
implies

:::
the

:::::
wave

::::::
decay.

:::::
Since

::::
both

::
E

:::
and

:::
cp :::::::

typically
::::::::
decrease

::
in

::::
these

:::::::::
situations,

:::
the

::::::::
presented

::::::
trends

::::
may

:::
also

:::::::::
encompass

:::
an

:::::
effect

::::
from

:::::::
possible

::::::
trends

::
in

:::
the

::::::::::::
wave-breaking

:::::::::
occurrence.

Due to the inherent variability in the RWP properties,
:::::
Owing

::
to
:

differences in the employed diagnostic methods , and

incompatibilities on the time periods and areas under consideration, a direct comparison with previous studies mentioned in

Sect. 1 is barely possible. However, the reported widespread E decrease in the Northern Hemisphere JJA season (Fig. 6c)475

is consistent with the Coumou et al. (2015) spectral analysis on the midlatitude 500 hPa meridional wind field. In addition,

although positive and negative cp trends do emerge in some areas of the Northern Hemisphere in DJF and JJA, there is no

overall consistent trend in the midlatitudes, in agreement with the results of Riboldi et al. (2020).

The reported trends in RWP properties are most likely influenced by both externally and internally generated variability

(Shepherd, 2014; Deser et al., 2016), though weighing the individual contributions was beyond the scope of this study. More-480

over, the observed trend patterns in this study suggest that any future trends in the extratropical upper-tropospheric circulation

— especially in the Northern Hemisphere — will not necessarily be zonally symmetric or meridionally homogeneous (see also,

Simpson et al., 2014). In an effort to expose inhomegeneities in this regard
::::
such

::::::::::::::
inhomegeneities, the employed methodology

allowed the assessment of decadal variability and trends in RWPs without obscuring their highly-dynamic and spatially-varying

properties at weather time scales. Such a weather-informed approach
::::
This

::::::::
approach facilitates the investigation and interpre-485

tation of circulation-related mechanisms that influence regional climate and future projections of extreme events
::::::::
occurring

::
at

::::::
weather

::::
time

::::::
scales.

Questions regarding the causes and implications of robust
:::::::::
statistically

:::::::::
significant

:
trends reported in this study naturally

arise. Why has the RWP amplitude been decreasing
:::::
during

::::::::::
1979–2019 in much of the Northern Hemisphere extratropics in

summer and how much has this contained, if at all, the observed positive trend
:::
past

::::::::
increase in warm extremes?

::::
What

::::::
drives490

::
the

:::::::
positive

:::::
RWP

:::::::::
amplitude

::::::
trends

::::::
during

:::::::::
1920–1980

:::
in

:::
the

::::::::
Northern

::::::::::
Hemisphere

:::::::::::
midlatitudes,

:::
as

::::::::
observed

::
in

:::
the

::::::
tested

:::::::
historical

::::::::::
reanalyses?

:
Do trends in the phase of Rossby waves (e.g., the negative trend over NE Atlantic in JJA) have an effect

in temperature trends and the occurrence of weather extremes? What is the relation of trends in RWP properties to trends in

the zonal windcomponent (Fig. S1)
:::::
zonal

::::
wind? Such investigations require and deserve dedicated studies.
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Code and data availability. The reanalysis data used in this study have been freely available online (Sect. 2.1) and accessed as described in495

Sect. 9 of the Supplement. Processed data and code employed in the presented analyses can be provided by the author upon request.

Sample availability. The Supplement related to this article is available online at: TBD

Appendix A: Climatological annual cycle of E and cp percentiles

The climatological annual cycles of the RWP amplitude and phase speed percentiles for a specific grid point and day of the

year are computed as follows. Due to the small number of available years, each day of the year is represented by a probability500

distribution that comprises all daily-mean E or cp values in the 21-day windows centered around it in every year. This results

in a sample size of up to 861 data points (21 values from each of the 41 available years). Days when an RWP object is not

identified in the given grid point are not included in the distribution, so its size decreases accordingly. The climatological n-th

percentile is computed based on this distribution, which means that in the case of E the minimum value in the distribution is

15ms−1
::
15

:::::
ms−1. The climatological annual cycle of the n-th percentile is then constructed by repeating the above for every505

day of the year and it is subsequently smoothed by restriction to frequencies 0–4 year−1 (as in the case of the climatological

mean; Sect. 2.2).
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