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Abstract.

Idealised baroclinic-wave life-cycle experiments are a widely used tool to study fundamental characteristics of mid-latitude

baroclinic instability. A typical life-cycle evolves from an initialised baroclinically unstable jet through an exponential growth

phase of a particular unstable wave mode, followed by wave breaking during the mature phase, and wave-mean flow interaction

driving a jet shift during the decay phase. Many authors distinguish between life-cycles with predominantly anticyclonic (LC1)5

and cyclonic (LC2) wave breaking and the transition between the two flavours is typically controlled via the strength of cyclonic

meridional wind shear in the initial conditions. While baroclinic wave growth has traditionally been triggered via a specified

initial perturbation with fixed zonal wave number, this study extends the concept of baroclinic-wave life-cycles by analysing

the influence of random initial perturbations without any preferred zonal dependency on the life-cycle evolution. We find that

the growth phase shows a robust LC1-LC2 distinction as a function of initialised meridional shear, while a preference for10

LC1-like characteristics is observed during the decay phase for all life-cycles with non-monochromatic initial perturbations. In

particular, the persistent cut-off cyclones that typically form for LC2 initialisations are found to eventually become unstable- the

earlier during the life-cycle the stronger the initial ,
::::
with

:::
the

:::::
onset

::
of

:::::::::
instability

::::::
coming

::::::
sooner

:::
for

:::::
larger

:
noise perturbations.

All non-monochromatic life-cycles result in a poleward jet shift in their final state, regardless of the strength of the initial

shear. Consistently, anticyclonic wave breaking tends to be predominant during the mature and decay phases, even for LC215

initialisations. Equatorward jet shifts associated with cyclonic wave breaking still exist, although purely as a transient interim

state. We show that wave-wave interactions resulting from the initialised random wave spectrum play an important role during

all phases of the life-cycle.

1 Introduction

The large-scale cyclones and anticyclones that dominate mid-latitude weather ultimately arise as a result of baroclinic insta-20

bility driven by the equator-to-pole temperature contrast on a fast rotating planet. Early theoretical insights of the fundamental

process of baroclinic instability were based on linear theory (Charney, 1947; Eady, 1949). A more complete understanding was

achieved by non-linear model experiments that revealed the typical life-cycle of a baroclinically unstable wave: a quasi-linear

growth phase is followed by wave breaking and non-linear decay (Simmons and Hoskins, 1978). Notably these non-linear
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experiments demonstrate the important role of baroclinic wave breaking in the exchange of energy and momentum between25

lower and higher latitudes and show how wave-mean flow interactions during the non-linear decay phase lead to meridional

shifts of the initial jet. Furthermore, the relevance of isolated life-cycles with pronounced wave growth and decay phases for

the atmosphere has been established observationally (e.g., Randel and Stanford, 1985a, b).

Past research has identified two distinct flavoursor paradigms ,
::
or

::::::::::
paradigms,

:
of idealised baroclinic-wave life-cycle evo-

lution, associated with predominantly anticyclonic (LC1) or cyclonic (LC2) wave breaking (Simmons and Hoskins, 1980;30

Thorncroft et al., 1993). Which life-cycle flavour is observed during an experiment depends on the details of the initial con-

ditions and is typically controlled via the strength and direction of the meridional wind shear in the specified initial jet. The

evolution of these two life-cycle flavours distinctly differs in terms of their energy conversions and potential vorticity (PV)

signatures. In addition, LC1 is associated with mostly poleward eddy momentum fluxes and a corresponding poleward jet shift,

while LC2 exhibits mostly equatorward momentum fluxes and hence an equatorward jet shift. Observational studies found35

a systematic poleward propagation of zonal mean flow anomalies associated with wave breaking events (Feldstein, 1998),

suggesting a tendency of the real atmosphere to favour anticyclonic breaking (also see Lee et al., 2007).

Several authors have shown that the flavour of life-cycles in idealised experiments can strongly depend on the initial zonal

wave number k of the perturbation used to trigger the growth of the baroclinic wave (Hartmann and Zuercher, 1998; Orlanski,

2003; Wittman et al., 2007). While higher wave numbers favour LC2 evolution irrespective of the initial basic state, lower wave40

numbers tend to produce LC1 behaviour. For certain intermediate zonal wave numbers (usually k ≈ 6) the life-cycle flavour

strongly depends on the details of the baroclinically unstable initial jet and the specifics of the system. In that sense a transition

between predominantly LC1 and LC2 characteristics can be forced via, e.g., the inclusion of moist processes (Orlanski, 2003),

varying meridional wind shear (Thorncroft et al., 1993) or altered stratospheric conditions (Wittman et al., 2007; Kunz et al.,

2009). Note that a striking commonality of most previous life-cycle studies is the use of a monochromatic initial perturbation45

with a single specified zonal wave number, while the evolution of the real atmosphere generally involves a range of wave

numbers.

The present manuscript aims to extend the existing literature by investigating the evolution of baroclinic-wave life-cycles for

non-monochromatic initial perturbations and the corresponding robustness of typical LC1 and LC2 characteristics. In section 2,

details on the numerical model and the initial conditions are given and the general approach of this study is described. Section 350

then discusses numerical simulations where the initial perturbation is dominated by a single zonal wave number and contains

no or only weak additional noise. Simulations with noise-dominated initial perturbations are described in Section 4. Some main

findings of this study are discussed in section 5 and a summary of our key conclusions is given in section 6.

2 Details on the numerical model and initial conditions

All experiments in this study are performed with the simple dry dynamical core model BOB (Built on Beowulf; see Rivier et al.,55

2002). The model integrates a spectral version of the primitive equations on a sphere with triangular truncation at horizontal

wave number 85. The discrete vertical pressure levels are distributed with constant spacing of ∆z = 250 m up to a height
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of z = 60 km, where z =−H ln(p/p0) is a log-pressure coordinate with scale height H = 7.5 km and reference pressure

p0 = 1000 hPa. We further added a sponge layer consisting of 10 additional model levels between z = 60 km and z = 82

km, equally spaced in pressure. The bottom boundary is given by the pressure surface p= 1000hPa without any orographic60

forcing. The model time step is 5 minutes and all experiments are integrated for 45 days of model time to fully cover the

evolution during the late stages of all life-cycles and to ensure the model reaches a steady final state. Most analyses shown in

this manuscript are based on daily output of instantaneous fields, however, some figures will show 6-hourly output for a more

detailed representation of the dynamical evolution. To ensure numerical stability and energy dissipation via sub-grid-scale

processes, the model includes a sixth order hyper-diffusion, damping the largest resolved wave numbers on a timescale of 2.465

h.

Experiments are initialised with a zonally symmetric state describing a baroclinically unstable jet and a superimposed small

perturbation to trigger the instability (see Appendix for technical details). The zonally symmetric initial state corresponds to

either LC1 or LC2 initial conditions, shown in Fig. 1. Note that these initial states are
:::::::
visually similar1 to the ones used in

Thorncroft et al. (1993) and hence favour predominantly anticyclonic and cyclonic wave breaking, respectively, for initial70

perturbations with a single zonal wave number k = 6. In this study we show that the model behaviour is substantially modified

if the initial perturbation is non-monochromatic (i.e., consists of more than one zonal wave number) and the resulting life-

cycles often deviate strongly from the canonical paradigms. We will therefore use the nomenclature "LC1" and "LC2" to refer

only to the initial state configuration of the corresponding experiment. We further performed
::
A

::
set

:::
of sensitivity experiments

with initial states characterised by varying values of the meridional shear parameter Ûs and found
:::::::::::
(traditionally

::::
used

::
to

::::::
trigger75

::::
LC2,

:::
see

:::
Eq.

::::
A2)

:::::::
showed our results to be overall robust.

Figure 1. Zonal mean zonal wind (shading) and potential temperature (contours, in K) for (a) LC1 and (b) LC2 initial conditions.

1Thorncroft et al. (1993) do not give details on how their initial conditions were constructed.
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The temperature perturbation (following, e.g., Rupp and Birner, 2021) used to trigger the baroclinic instability consists of

two components: a monochromatic wave component with a single zonal wave number k = 6 and magnitude Tw, and a random

noise component of magnitude Tn (see Appedix for details).
:::
The

:::::
noise

::
is

::::::
white,

::::::::
projecting

:::
on

:::::::
average

::::::
equally

:::
on

:::
all

:::::
zonal

::::
wave

::::::::
numbers.

:
Fixed zonal wave number perturbations with k = 6 are a typical choice within life-cycle studies (Thorncroft80

et al., 1993; Magnusdottir and Haynes, 1996; Polvani and Esler, 2007; Kunz et al., 2009; Rupp and Birner, 2021). We further

introduce a noise strength as the ratio η = Tn/Tw, which is the main parameter varied in the present study to systematically

transition from monochromatic initial perturbations with specified zonal wave number (η� 1) to noisy initial perturbations

without any specific zonal dependence (η� 1). Experiments with η > 0 are performed as ensembles of several different noise-

realisations, although
::
we

::::
find the overall large-scale evolution seems

::
of

:::
the

:::
life

::::::
cycles

::
to

::
be insensitive to the particular details85

of the realisation
:::
(see

::::::::::
Supplement

:::
for

::::::
details).

3 Life-cycles with weak initial noise strength (η � 1)

This study aims to investigate how the evolution of baroclinic-wave life-cycles is modified when the initial conditions are

perturbed with random noise, in contrast to the more traditional perturbation with a single specified zonal wave number. To do

so, we follow a perturbation approach with gradually increasing noise strength η from single-wave dominated (η� 1) to noise90

dominated (η� 1) systems and analyse the corresponding changes in certain life-cycle characteristics.

Figure 2 compares the energetics of life-cycles with LC1 and LC2 initial conditions and initial perturbations with either a

single wave number (η = 0) or a specified wave number and weak superimposed initial noise (η = 10−3). During the first 20

days experiments with and without noise show almost identical evolution in terms of eddy kinetic energy (EKE) and mean

kinetic energy (MKE) and generally follow the respective canonical characteristics of LC1 and LC2 simulations (Simmons95

and Hoskins, 1980; Thorncroft et al., 1993). In particular Fig. 2 displays pronounced phases of wave growth (associated with

an increase in EKE) and decay (associated with decrease in EKE) and a corresponding conversion of EKE to MKE during

the later stages of the life-cycle. A common characteristic of the canonical LC2 evolution without initial noise is the elevated

level of final state EKE and the relatively weak increase in MKE during the life-cycle (compared to LC1). A set of sensitivity

experiments with perturbations of varying wave numbers and without noise (not shown) suggests that the difference in initial100

growth rates between LC1 and LC2 experiments is mostly a result of the modified initial state. The growth rate changes

rather gradual
:::::::
gradually

:
with varying initial meridional shear (Ûs) and should not be regarded as a distinctive characteristic

of the life-cycle flavour itself. The level of final state EKE, on the other hand, shows an abrupt change at Ûs ≈ 7 m/s in these

monochromatically perturbed experiments and is therefore typically a useful diagnostic to differentiate between life-cycle

behaviours.105

After about 20 days the experiments with weak initial noise start to diverge from the corresponding monochromatic runs.

Both LC1 and LC2 enter a second phase of wave growth and subsequent decay, hence showing a peak in EKE at about day 22.

However, while this noise-induced EKE peak is relatively weak for LC1 it is very pronounced and even exceeds the primary

peak (day 12) in the LC2 case. Following the noise-induced wave breaking LC2 EKE drops to values lower than in the original
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Figure 2. Evolution of (a) eddy kinetic energy and (b) mean kinetic energy for LC1 and LC2 initialisations, each without (η = 0, dashed)

and with weak (η = 10−3, solid) initial noise. Energies are shown as northern-hemispheric horizontally averaged and vertically integrated

energy densities.

LC2 final state and comparable to LC1 final conditions. The decrease in EKE is associated with a barotropic conversion of EKE110

to MKE at about day 25 and a corresponding increase in MKE2. .
:::::::::::
Additionally,

:::
the

::::::::::::
noise-induced

:::::
wave

:::::::
breaking

::
is

:::::::::
associated

::::
with

:
a
::::::::::::
corresponding

:::::::
decrease

::
of

:::::
mean

:::::::
potential

::::::
energy

::::::
(MPE)

::::
and

:
a
::::::::::
pronounced

::::
peak

::
in

::::
eddy

::::::::
potential

::::::
energy

:::::
(EPE),

:::::::
closing

::
the

::::::
typical

::::
flow

:::
of

:::::
energy

:::::
from

::::
MPE

:::
to

::::
MKE

:::
via

::::
EPE

::::
and

::::
EKE

::::
(not

:::::::
shown).

The introduction of weak initial noise modifies the dynamics of the system in the late stages of the life-cycle, which is also

reflected in corresponding changes of the PV distribution (Fig. 3). Following their typical evolution, LC1 and LC2 experiments115

exhibit phases of pronounced anticyclonic and cyclonic wave breaking, respectively, around the time of the primary maximum

in EKE (cf. Fig. 2, ca. day 8 for LC1 and day 11 for LC2). The breaking and decay phases of the life-cycles are then followed

by periods of quasi-steady "final states", characterised by weak zonal perturbations for LC1 and pronounced isolated cyclonic

vortices for LC2 (Figs. 3b and f). Due to the dominant wave number of the imposed initial perturbation both experiments show

a clear zonal periodicity with wave number 6 during this primary cycle.120

Consistent with the energetics of the systems
:::::::
evolution

::
of

:::
the

::::::
system

::
in

:::::
terms

::
of

:::::
EKE

:::
and

:::::
MKE, an additional noise-induced

cycle of pronounced wave growth and breaking occurs at about day 22 (Figs. 3c and g). However, this time the PV structures

of both LC1 and LC2 experiments display signs of anticyclonic wave breaking with dominant zonal wave number 4. The

2The noise-induced wave breaking is also associated with a corresponding decrease of mean potential energy (MPE) and a pronounced peak in eddy

potential energy (EPE), closing the typical flow of energy from MPE to MKE via EPE and EKE (not shown).
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Figure 3. Potential vorticity on the 350 K isentrope at different days for LC1 (a-d) and LC2 (e-h) initial conditions and weak initial noise

perturbations (η = 10−3). The 7 PVU contour is highlighted as visual aid.
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::::
time

::::::
picked

:::
for

:::::::::
illustration

:::
in

::::
Fig.

::
3c

::::
and

::
g

:::::::::
highlights

:::
the

:::::::::
dominance

:::
of

:::::
wave

::
4.

::::::::
However,

::::
also

:::::
wave

::
2
::::

and
:::::
other

:::::
wave

:::::::
numbers

::::::::
contribute

::
to
:::
the

::::::::::::
noise-induced

::::::::::
anticyclonic

:::::
wave

::::::::
breaking.

:::::
These

:::::
waves

:::::
could

:::
not

::::
have

:::::::::
developed

::
in

:::::::::::::
monochromatic125

::::::::::
experiments

::::
with

::
a

::::::::::
perturbation

::::
with

:::::
pure

::::::
wave-6

:::::::::
symmetry.

::::
The

:
corresponding waves decay rapidly in both cases and a

steady and almost zonally symmetric final state is reached (Figs. 3d and h). It should be noted that despite the lack of obvious

coherent vortices in the LC2 at case day 34 the actual final states of both life-cycles still differ in terms of the details in their

PV distribution and the corresponding meridional PV gradient. While LC1 develops a pronounced surf zone south of the final

state jet (associated with sharp PV gradients near 40◦ and 60◦ latitude), LC2 is characterised by reduced PV values north of130

the final jet. This behaviour is consistent with the evolution and direction of wave breaking during the primary life-cycle and

can be associated with stirring and mixing on the respective side of the jet (equatorward for LC1 and poleward for LC2).

Changes in the PV distribution are also associated with changes in the wind field; in particular, a shift in the meridional

position of the jet over the course of the life-cycle. The 10 km zonal mean zonal wind profiles of the final state for experiments

with no initial noise (Fig. 4) show the typical poleward shift of the jet core for LC1 initial conditions compared to the initial135

state, while LC2 conditions lead to a slight equatorward shift throughout the life-cycle. The cyclonic wave breaking and

associated equatorward eddy momentum fluxes (shown in Fig. 5) during the LC2 life-cycle further lead to negative zonal

winds at about 60◦.

In the case with weak initial noise (Fig. 4b) the final state jet profiles for LC1 and LC2 initialisations are much less distinct

and both show a pronounced poleward shift. In the LC1 situation, the noise-induced wave breaking (cf. Fig. 3) leads to a slight140

additional poleward shift of the jet core and a substantial strengthening of the winds north of about 60◦. Although the LC2 run

exhibits a slightly weaker net-poleward jet shift throughout the life-cycle compared to the LC1 counterpart, the 10 km zonal

wind of the final state is eastward at all latitudes. These changes in the wind profile are consistent with the robustly anticyclonic

wave breaking observed during the noise-induced peak in EKE and corresponding increases in MKE (Figs. 2 and 3).

The introduction of weak noise in the initial conditions leads to substantially less pronounced differences between the final145

states of LC1 and LC2 initialisations compared to the clear dichotomy observed for monochromatic perturbations with a single

zonal wave number. As elaborated above, this change is mainly due the occurrence of a noise-induced phase of anticyclonic

wave breaking following the primary cycle. Recall that the primary cycles of LC1 and LC2 are typically characterised by dis-

tinct anticyclonic and cyclonic wave breaking, respectively, and the direction of wave breaking can be linked to the direction of

meridional eddy momentum fluxes (Thorncroft et al., 1993) and corresponding shifts in the jet. Hence systems with LC2 initial150

conditions and weak initial noise experience a transient phase of equatorward jet shift. Since the noise-induced anticyclonic

cycle for LC2 initial conditions occurs earlier for stronger initial noise perturbations (corresponding to larger values of η if

Tw is fixed), this leads to a direct correlation between the life time of phases with equatorward shifted jet (due to the cyclonic

primary wave breaking) and the strength of the initial noise.

Figure 5a displays the evolution of the hemispheric mean meridional eddy momentum flux [u′v′] for LC2 experiments with155

varying noise strength η. All cases with weak noise (η < 1) show negative momentum flux between days 10 and 14, consistent

with the period of primary cyclonic wave breaking seen in Figs. 2 and 3. A following period with vanishing momentum

flux (associated with the preliminary LC2 final state) leads to a quasi-steady phase with negative accumulated momentum
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Figure 4. Zonal mean zonal wind at 10 km averaged over the final state (days 40-45) for LC1 and LC2 initial conditions without noise (a,

η = 0) and with weak noise (b, η = 10−3). Dashed profiles show the corresponding winds of the initial conditions.

flux (Fig. 5b) and a corresponding equatorward jet shift. However, as mentioned before, this phase is of transient nature and

becomes systematically shorter for stronger initial noise. Figure 5c shows directly how the time of emergence of a poleward jet160

shift (corresponding to positive accumulated momentum flux) converges towards the time of maximum equatorward shift of the

jet as η→ 1 and hence initial perturbations become noise-dominated.
:::::
Since

:::
the

:::::::::::
noise-induced

::::::::::
anticyclonic

:::::
cycle

:::
for

::::
LC2

:::::
initial

::::::::
conditions

::::::
occurs

::::::
earlier

:::
for

:::::::
stronger

:::::
initial

:::::
noise

:::::::::::
perturbations

:::::::::::::
(corresponding

::
to

:::::
larger

:::::
values

:::
of

:
η
::
if
:::
Tw::

is
::::::
fixed),

:::
this

:::::
leads

::
to

:
a
:::::
direct

:::::::::
correlation

:::::::
between

:::
the

:::
life

::::
time

::
of

::::::
phases

::::
with

:::::::::::
equatorward

::::::
shifted

::
jet

::::
(due

::
to

:::
the

:::::::
cyclonic

:::::::
primary

:::::
wave

::::::::
breaking)

:::
and

:::
the

:::::::
strength

::
of

:::
the

:::::
initial

:::::
noise.

:
As will be discussed later, initialisations without any preferred zonal wave number show a165

robust evolution characterised by consecutive phases of equatorward and poleward momentum fluxes independent of the initial

state. On the other hand, Fig. 5c suggests that the period with equatorward shifted jet persists arbitrarily long for small enough

η and the jet profile shown in Fig. 4a therefore indeed represents a steady, yet highly unstable, final state of LC2 initialisations.

Next we investigate how the breakdown of this metastable state in LC2 simulations takes place dynamically. In particular we

want to understand to what extent the increased potential for non-linear wave-wave interactions due to the introduction of initial170

noise might explain certain details of the dynamical evolution discussed in this section. Figure 6 shows the evolution of EKE
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Figure 5. Evolution of (a) hemispherically averaged eddy momentum flux and (b) accumulated net eddy momentum flux for LC2 initial

conditions and different values of noise strength η. Panel c: time of most equatorward shifted jet (maximum of the zonal mean zonal wind

profile at 10 km), as well as the time when the corresponding wind maximum is located north of the initial wind maximum (45◦) for the first

time during the experiment. All lines show the mean over three realisations of initial noise.
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for individual wave components with varying zonal wave number k and η = 10−3. Both LC1 and LC2 experiments with weak

initial noise show different stages characterised by different types of wave interaction. During the very early phase the system

is dominated by the linear growth of wave 6 associated with the primary life-cycle. Waves with k 6= 6, however, grow rapidly

with growth rates almost independent of their wave number. Note that the associated growth rates of these waves seem to be175

significantly larger than the growth rates in reference simulations with initial perturbations of only the respective single wave

number and no noise (cf. Fig. S1 in the Supplement). This
:::::::::
quasi-linear

:
accelerated growth suggests a non-linear interaction of

the different wave components and appears to be similar to quasi-linear non-normal growth (e.g., Farrell and Ioannou, 1996)

::::
could

:::::
relate

::
to
::::::::
concepts

::::::
beyond

::::::
normal

:::::::
growth

:::::::::::::::::::::::::::::::
(comp. e.g., Farrell and Ioannou, 1996).

Figure 6. Evolution of EKE for selected wave numbers in experiments with LC1 and LC2 initial conditions and weak initial noise (η = 10−3)

as average over 11 realisations. Sloped dashed lines indicate theoretical EKE growth with growths
:::::
growth rates diagnosed from reference

simulations with initial perturbations of specified
:::::
single wave numbers 3 and 4, respectively. Vertical dotted lines indicate transitions between

stages characterised by different types of wave-wave interaction.

With the onset of the primary wave breaking (about day 8 for LC1 and day 12 for LC2 initialisations) different wave180

components start to behave differently. While waves with wave numbers 5, 3 and 1 experience a substantial reduction in

growth rate, wave numbers 4 and 2 continue to grow at elevated rates. This filtering of zonal wave components is consistent

with non-linear triad interactions of certain wave modes with the dominant mode of the system once it reached maximum EKE.

The continued growth of selected zonal wave modes seen in Fig. 6 eventually leads to a change in dominant wave number of

the system (at about day 22 for both initial states). At this point the EKE of initially dominant wave mode 6 decreases and a185

succession of peaks in corresponding lower wave numbers occurs, starting with modes 4 and 2. This upscale energy cascade

::::::
transfer

:
is especially pronounced in the LC2 setup and consistent with the changes in PV distribution and total EKE related to

a phase of noise-induced wave breaking (see Figs. 2 and 3). In particular, the consecutive occurrence of phases with cyclonic

and anticyclonic wave breaking in the LC2 case is consistent with a shift of the system towards lower wave numbers over time

(e.g., Hartmann and Zuercher, 1998; Orlanski, 2003).190
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4 Life-cycles with strong initial noise (η � 1)

In the previous section we found various changes in the evolution of LC1 and LC2 initialisations when the initial perturbation

contains relatively weak noise but is still dominated by a single specified wave number (η < 1). This section discusses the

extreme case of essentially random initial conditions without any preferred zonal dependence (η� 1).

Figure 7. Evolution of EKE in experiments with LC1 (left column) and LC2 (right column) initial conditions and strong initial noise

(η = 103). The top row shows the total EKE, the bottom row shows EKE for individual wave numbers; both as mean over three different

noise realisations. Energies are shown as northern-hemispheric horizontally averaged and vertically integrated energy densities.

Figure 7 shows the EKE evolution of LC1 and LC2 experiments in this strong-noise regime. The system generally follows the195

typical life-cycle behaviour with distinct wave growth and decay phases and an essentially steady final state. The initial wave

growth is strongest for wave numbers 7 and 8 in both settings (cf. Fig. S1 in the Supplement) with corresponding EKE peaks

at about day 10 and decay phases afterwards. Subsequently lower wave numbers show peaks in EKE suggesting an upscale

energy transfer which reaches wave number 1 about one to two weeks later. Fluctuations in individual wave numbers appear

as isolated maxima in the total EKE evolution (e.g., at day 8 for LC1 experiments). This upscale energy cascade
::::::
transfer is200

consistent with wave-wave interactions that are promoted by noise-induced secondary wave breaking also found in experiments

with weak initial noise (see Fig. 6).

The evolution of the PV structures is overall similar for the two strong-noise setups with LC1 and LC2 initial states (Fig. 8).

Early cyclonic wave breaking dominated by higher wave numbers is followed by anticyclonic breaking at predominantly lower

wave numbers. The transition between these two phases of opposite wave breaking is essentially seamless and consistent with205

our findings in terms of energetics (Fig. 7). Contrasting
::
In

:::::::
contrast

::
to experiments with weak noise, however, the primary wave

breaking is entirely cyclonic in LC1 initialisations with strong noise. Despite the similarities in wave breaking, the final state

PV distribution shows small differences between the LC1 and LC2 cases. While in both settings the final jet and the associated
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Figure 8. Potential vorticity on the 350 K isentrope at different days for LC1 (a-d) and LC2 (e-h) initial conditions and strong initial noise

perturbations (η = 103). The 8 PVU contour is highlighted as visual aid.
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maximum in meridional PV gradient is located at about 60◦ latitude, we find a zone of reduced PV gradients equatorward of

this jet for LC1 initialisations whereas such a "surf zone" (McIntyre and Palmer, 1983) is found poleward of the jet for LC2210

initialisations.

The formation of these surf-zones on the equatorward or poleward flank of the jet suggest a tendency for slightly more

efficient mixing on the corresponding side due to anticyclonic and cyclonic wave breaking in LC1 and LC2 states, respectively,

consistent with the paradigm of monochromatically perturbed baroclinic-wave life-cycles (and found for small initial noise

strengths).215

Figure 9. Evolution of (a) hemispherically averaged eddy momentum flux and (b) accumulated net eddy momentum flux for experiments

with either LC1 or LC2 initial conditions and either no (η = 0) or strong (η = 103) initial noise perturbation. Experiments with noise show

the average over three different realisations.

The consecutive occurrence of phases with cyclonic and anticyclonic wave breaking for experiments with strong initial

noise (η� 1) is also reflected in the corresponding eddy momentum fluxes (Fig. 9). Both LC1 and LC2 experiments show pro-

nounced phases of negative momentum fluxes that subsequently turn positive, resulting in a net-positive momentum flux over

the course of the simulation. In contrast, experiments with monochromatic initial perturbation (η = 0) show a clear distinction

with predominantly single-signed momentum fluxes and oppositely signed net-fluxes for LC1 and LC2 initial states. Figures 7,220

8 and 9 show a pronounced shift of baroclinic-wave life-cycle characteristics towards a robust evolution for both initial states
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when using noisy initial perturbations: a clear net-poleward shift of the jet is observed during the life-cycle, while periods with

equatorward shifted jet are purely transient.

5 Discussion

We found the evolution of baroclinic-wave life-cycles to be strongly modified when the initial conditions contain random noise225

perturbations rather than monochromatic perturbations with a single zonal wave number. In general
:::
Our

:
life-cycles with noisy

initial perturbation (η� 1) show a robust evolution over the course of the life-cycle, with both LC1 and LC2 experiments

experiencing phases of cyclonic and subsequent anticyclonic wave breaking (Fig. 8). Associated with the direction in wave

breaking during the corresponding phases are equatorward and poleward eddy momentum fluxes (Fig. 9), respectively. Hence

the life-cycles typically experience a transient phase with equatorward jet shift, but eventually, a poleward net-shift of the230

jet irrespective of the initial state (Fig. 5). Experiments with different realisations of initial noise perturbations indicate these

findings to be robust.

This dominance of anticyclonic wave breaking and poleward momentum fluxes during all non-monochromatic life-cycles

offers conceptual support for the observed behaviour in the real atmosphere, namely to favour anticyclonic wave breaking and

overall net-poleward jet shifts periods (Feldstein, 1998; Lee et al., 2007; Birner et al., 2013).
:::
This

::
is
:::::::::
consistent

::::
with

::
the

::::::::
heuristic235

::::::::
argument

::
of

:::::
global

:::::::
angular

:::::::::
momentum

:::::::
balance

::::::::
requiring

:::::::::::
equatorward,

::::::::::
anticyclonic

::::
wave

::::::::
breaking

::
to

::::::::
dominate.

::::::::
However,

::::
this

::::
does

:::
not

::
by

:::::
itself

:::::::
preclude

:::::::::
additional

:::::::::::
modifcations

::::
due

::
to

::::::::
poleward

::::::::
breaking,

::
as

::::
long

::
as

:::
the

:::::
latter

::
is

::::::
weaker

::::
than

:::
the

:::::::
former.

:::
The

::::::::
argument

::
of

:::::::
angular

:::::::::
momentum

:::::::
balance

::::::
cannot

::::::
answer

:::
the

:::::::
question

::
of

:::::::
whether

:::
the

::::
total

:::::::
average

::
is

:::::::::
comprised

::
of

:::
the

::::
kind

::
of

::::::::::
quasi-steady

:::::
LC1

:::
and

::::
LC2

:::::
states

:::::::::
described

::
by

:::::::::::::::::::::
Thorncroft et al. (1993)

::::
(with

::::
LC1

:::::::::
anomalies

:::::
being

::::::::
stronger),

:::
or

:::::::
whether

::::
LC2

:::::
exists

::
as

:
a
::::::
purely

::::::::
transitory

:::::::::::
phenomenon

:::
(as

::::::
implied

:::
by

:::
our

:::::::
results).240

The generally reduced sensitivity of the life-cycle evolution to characteristics of the basic state for non-monochromatic

initialisations further has potential implications for other baroclinic-wave life-cycle research. The dependency of life-cycle

flavour on certain characteristics of the system (Shapiro et al., 2001; Wittman et al., 2007) or the dependency of flow behaviour

on the direction of wave breaking (Polvani and Esler, 2007; Wang and Polvani, 2011) could potentially be reduced in cases

with noisy initial states.245

Although the overall evolution of life-cycles with noisy initialisations is robust and insensitive to changes in the initial

conditions (LC1 vs. LC2), certain characteristics stay distinctly different between initialisations. This includes the formation

of "surf-zones" at the equatorward (LC1) or poleward (LC2) flanks of the final jet (Figs.3d and h), associated with overall

favouring of anticyclonic or cyclonic wave breaking during life-cycles (e.g., Fig. 9b). LC1 and LC2 initialisations further show

persistent differences in terms of growth and decay rates of EKE (Fig. 7) for all magnitudes of initial noise. However, it is250

not clear if this should be interpreted as distinct characteristic of two qualitatively different types of life-cycle or a result of a

quantitative change
::::::
Growth

:::
and

::::::
decay

::::
rates

:::::
seem

::
to

::
be

::::::
results

::
of

::::::::::
quantitative

:::::::
changes related to the structure of the respective

basic state (and hence, e.g., changes in wave propagation properties).
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Figures 6 and 7 suggest a substantial importance of non-linear interaction during the life-cycle. In particular, we find an

upscale energy cascade
::::::
transfer

:
via wave-wave interactions that leads to consecutive breaking of successively lower wave255

numbers.
:::::
These

:::::
longer

:::::
waves

::::::
appear

::
to

:::::::::
propagate

::::
more

:::::
easily

::
to

:::
the

:::::::
equator,

:::::::
resulting

::
in

:::::::::::
anticyclonic

:::::::
breaking.

:
In experiments

with relatively weak noise this wave-wave interaction is highly selective, transferring energy from the dominant mode to lower

wave numbers that satisfy the fundamental wave number restrictions for triad-interactions. In the present case the dominant

mode is given by wave number 6, due to the specified initial perturbation, and hence wave mode combinations whose wave

numbers sum up to 6 can efficiently extract energy from wave 6 and experience particularly accelerated growth. As an example,260

mode 6 can exchange energy with modes 2 and 4 via the triad interaction (2,4,6), but can also exchange energy with modes 1

and 5 via (1,5,6). The fact that Fig. 6 suggests asymmetries in the rate that energy is transferred to, e.g., modes 4 and 5 could

be explained via the numeric argument that there potentially is a larger number of combination chains to transfer energy from

the dominant mode 6 to mode 4 than to mode 5. In that sense interactions following the interaction chain (6,6,12), (4,8,12) and

(4,4,8) can effectively transfer energy from mode 6 to mode 4 via modes 8 and 12. We performed sensitivity experiments (not265

shown) forced by noisy initial perturbations with dominant wave number 7 (η ≈ 1) and found a consistent accelerated growth

of waves modes 2 and 5. (In principle, a full analysis of wave-wave interactions would take into account the total horizontal

wave number, however we find the simple treatment in terms of zonal wave numbers only to provide useful insights into the

system’s behaviour in this case.)

6 Summary and conclusions270

Our results show that the evolution of baroclinic-wave life-cycles is strongly modified when the initial state includes random

noise perturbations compared to traditional monochromatic initial perturbations with a single zonal wave number, especially

during the non-linear stages. If the initial noise is weak (η� 1) the early evolution of life-cycles with LC1 and LC2 initial states

is qualitatively distinct and follows the well-known paradigms (Thorncroft et al., 1993). However, a phase of noise-induced

secondary wave growth and decay occurs during the later stages of the life-cycle for both initial configurations, leading to275

substantial changes in energetics (Fig. 2) and PV structure (Fig. 3) of the corresponding final state.

While we find this noise-induced wave breaking to have a relatively weak effect on LC1 experiments, it leads to a com-

plete breakdown of the typical LC2 final state, which is usually characterised by high levels of EKE and associated coherent

cyclonic vortices. For both initial configurations the noise-induced wave breaking is predominantly anticyclonic and corre-

sponds to strong poleward eddy momentum fluxes, resulting in a net-poleward jet shift during the life-cycle for LC1 and LC2280

initialisations for all noise magnitudes. If the initial perturbation is noise dominated (η� 1), periods of equatorward jet shift

occur irrespective of the initial conditions, but are purely of transient nature. Our analysis further shows that an upscale energy

cascade
::::::
transfer via non-linear wave-wave interactions plays an important role in non-monochromatic life-cycles, transferring

energy from synoptic to planetary wave numbers.

The findings presented in this study indicate that the dichotomy of LC1 and LC2 has reduced relevance in non-monochromatic285

conditions; they support that baroclinic mixing of air masses in the mid-latitudes dominantly induces poleward jet shifts.
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Appendix A: Construction of initial state

The initial conditions used in this study are defined via a zonally symmetric zonal wind field U = Uj +Us, consisting of two

individual components: a meridionally and vertically confined jet component Uj defined via Equation A1 and a meridional

wind shear component Us defined via Equation A2:290

Uj = Ûj (z/zj)exp((1− (z/zj)
α

)/α)sin3
[
π sin2 (φ)

]
, (A1)

Us = Ûs
(
exp

[
−(z/zs)

2
])[

exp(−((φ−φj +φs)/∆φs)
2)− exp(−((φ−φj −φs)/∆φs)2)

]
, (A2)

where z =−H ln(p/p0) is a log-pressure coordinate with scale height H = 7.5 km and reference pressure p0 = 1000 hPa

and φ describes latitude. For the jet profile the parameters Uj , zj and α can be used to modify the jet strength, the core height

and the depth of the jet, respectively. For the meridional shear profile the parameters Ûs, zs define the strength of the shear,295

respectively, while φs and ∆φs can be used to control its meridional width. The two initial states used in the present study

only differ in terms of the parameter choice for Ûs, with LC1 corresponding to no shear (Ûs = 0) and LC2 corresponding to

cyclonic shear (Ûs = 10 m/s); see Fig. 1. Sensitivity experiments (not shown) indicate that our results are robust over a range of

different values for Ûs and that an abrupt transition between predominantly LC1 and LC2 characteristics occurs at Ûs ≈ 7 m/s

in monochromatically perturbed experiments. Further, using a barotropic or baroclinic meridional shear profile did not lead to300

major differences in life-cycle behaviour (consistent with the findings of Hartmann, 2000). Note that we confine the jet profile

to the northern hemisphere, i.e., we choose U ≡ 0 for φ < 0 and therefore keep the southern hemisphere initially at rest. Table

A1 lists the physical parameters used to define the different initial conditions used in all experiments.

Table A1. Physical parameters used in the the different model experiments.

Symbol Physical meaning Value

Ûj Jet strength 45 m/s

zj Jet core height 11 km

α Jet depth parameter 3

Ûs Shear strength 0 and 10 m/s

zs Shear depth 9 km

φs Meridional width of the shear 15◦

∆φs Sharpness of the shear 12.5◦

From the initial wind field we compute the meridionally varying part of the initial temperature field following the thermal

wind balance approach used by Polvani and Esler (2007). The meridionally constant part of the (potential) temperature field305

T (z) is chosen to follow a piecewise linear profile with surface temperature T (0) = 288.15 K and vertical gradient specified via

Table A2, motivated by the US standard atmosphere (NOAA, 1976). To improve the numerical stability due to sharp transitions
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in ∂T (z)/∂z at the turning points we applied a 2 km running mean to the temperature profile post construction. Note that our

numerical model (see Sec. 2) uses a surface of constant pressure as lower boundary and hence does not require any balancing

adjustment of the surface pressure field.310

Table A2. Piecewise constant vertical gradients used to define the horizontally constant temperature profile T (z).

Height range [km] Temperature gradient ∂T/∂z [K/km]

0< z < 11 -6.5

11< z < 20 0

20< z < 30 1

30< z < 45 2.8

45< z < 50 0

50< z < 75 -2.8

75< z 0

In all experiments wave growth on the baroclinically unstable initial jet is triggered via a small temperature perturba-

tion T̃ (z,φ,λ) = T̃z(z)T̃φ(φ)
[
T̃w(λ) + T̃n(λ)

]
, where T̃w and T̃n describe two different components of zonal dependency.

T̃w = Tw cos(kλ) describes a wave perturbation in longitude (λ) with a single specified zonal wave number k and amplitude

Tw, while T̃n describes a noise perturbation defined via zonally uncorrelated random noise with underlying uniform proba-

bility distribution spanning [−Tn,Tn], where Tn specifies the noise amplitude. The vertical and meridional structure of the315

perturbation are given via

T̃z = exp[(p− p0)/(p0− ppert)] , (A3)

T̃φ = cosh−2 [2(φ−φpert)] , (A4)

where p0 = 1000 hPa, ppert = 700 hPa and φpert = 45◦.
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