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phaseA variety of statistical tools have been used in climate science to gain a better understanding of the climate system’s
variability on various temporal and spatial scales. However, the i i ex+ i te i

these tools are mostly linear.
stationary or both. In this study, we use a recently developed nonlinear and nonstationary multivariate timeseries analysis tool —

multivariate empirical mode decomposition (MEMD )—te-revisit-quast-periodie-variabiity-within ENSO. MEMD is a powerful
tool for objectively identifying (intrinsic) timescales of variability within a given system—We-apply-it-spatio-temporal system
without any timescale pre-selection. Additionally, a red noise significance test is developed to robustly extract guasi-periodic
modes of variability. We apply these tools to reanalysis and observational data as-wel-as-to-climate-model-outpat-Nor€CPM1)-
Observational/reanalysis-data—reveal-of the tropical Pacific. This reveals a quasi-periodic variability in the tropical Pacific

on timescales ~2-4-5-years—We-thentest-different-coneeptual-o ator-mode omtiteratare—and-find-that ~2-4-5-yea

most prominent quasi-periodic modes of variability in the Earth’s-s climate system. The approach successfully confirms the well

known out-of-phase relationship of tropical Pacific mean thermocline depth with sea-surface-temperature in the eastern tropical
Pacific (recharge-discharge and-simph i i i

process). Furthermore, we find a co-variability between zonal wind stress in the western tropical Pacific and the tropical Pacific
mean thermocline depth. which only occurs on the quasi-periodic timescale. MEMD coupled with a red noise test can therefore
successfully extract (nonstationary) quasi-periodic variability from the spatio-temporal data, and could be used in the future
for identifying potential (new) relationships between different variables in the climate system.

1 Introduction
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Seeond;-asENSO-isa-or spatial scales (Broomhead et al.,

some methods, such as (M)SSA, require specification of a window over which

1987,

—patterns of variability are important as they can
2018, 2020; L’

Heureux et al., 2020). Statistical tools

The following are typical statistical tools used for exploring the
atterns of variability on different temporal and/explain-prediction-skil-onlonger-timeseales—

Hasselmann, 1988; Penland and Sardeshmukh, 1995; Ghil et al.,
: Fourier transform (FFT), wavelet transform, principal component analysis (PCA), (multi-channel) singular spectrum analysis
((MDSSA). principal oscillation patterns (POPs), linear inverse model (LIM) or even nonlinear Laplacian spectral analysis.
However, these methods do not necessarily have a multivariate extension, and/or are either stationary, linear or both, Additionally,

quasi-periodic event(e-gs-Wangetal; 20412
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Paetfie(e-g-Wangetal5 2047 -signals are sought, making them somewhat subjective. These can be drawbacks when studyin
complex, inherently nonlinear, and nonstationary systems, such as the climate system.

have-beenpropesed-(e-g Wang 2048, see-also-seetion22)-()-Multivariate empirical mode decomposition (MEMD) addresses
these drawbacks as it is an analysis tool that is entirely data adaptive, and is designed to extract nonlinear and nonstationa
signals. MEMD is a generalisation of the empirical mode decomposition (EMD; Huang et al., 1998) to multivariate datasets

of more than two timeseries (Rehman and Mandic, 2010). EMD is a 1-D timeseries analysis tool that is based on Hilbert
transform and takes advantage of the instantaneous frequency, allowing a ‘local’ extraction of modes of variability. Each

mode that the EMD extracts consists of two elements: (1) typical timescale of the mode, i.e., average instantaneous frequenc

2}y-2) the timeseries of the mode. Beyond this

MEMD extracts timescales common to_all input timeseries (i.e., synchronises signals) and provides modes (patterns) of

variability according to these timescales.

—Despite their appeal, MEMD and EMD have hardly been used in climate research. EMD and its 1-D extension Ensemble EMD

EEMD; Wu and Huang 2009) have been used for smoothing, filtering, extracting trends, variability, and testing for red noise

distribution of climate data (e.g., Duffy, 2004; Wu et al., 2007; Franzke, 2009; Lee and Ouarda, 2011;

ian et al., 2011; Franzke and Woo!



95 . MEMD has only been used for an idealised analysis of atmosphere-ocean coupling strength (Alberti et al., 2021). Moreover:.
neither MEMD or EMD have been used for extracting quasi-periodic modes of climate variability.

challenge in applying MEMD in climate analysis is that no statistical null hypothesis test for red-noise has been developed.
100 When applied to climate data, MEMD can reveal many modes that are consistent with red (or white) noise. In particular,
sea surface temperature (SST) exhibit a red spectrum, because it represents the ‘integral’ response of the ocean to stochastic

CLINT3

higher-frequency atmospheric (e.g., “weather”, “white noise”) variability (e.g., Hasselmann, 1976; Frankignoul and Hasselmann, 1977

. However, there are also patterns of quasi-periodic variability (e.g., 1

105

repeating every 2-8 years) that
110 reflect more complex climate dynamics. To identify such quasi-periodic variability in the climate system, any analysis would
first require a significance test that could distinguish this variability from the red noise. In other words, we seek spectral peaks
(modes of variability) that pass the red-noise threshold (Gilman et al. 1963; Madden and Julian 1971; Bretherton et al. 1999,

see also section 4, Appendix B2).
‘Fhe-main-aim-of this-studyis—to-explore-intrinsie-In_this study, we combine the MEMD method with a red noise test
115 Q%wMWuam -periodic V&H&bﬂrtfﬂ#ﬂ%@pﬁ&k&ﬁﬁ«:—é&ﬁdﬁﬁ&%@%@ff&ﬁ&%ﬂ%&ﬂ%

vartability(usingreanalysismodes of variability. Thus, MEMD becomes well-suited for analysing nonlinear and nonstationa
climate data. It also has the advantage of objectively detecting intrinsic timescales without pre-selecting or/ebservational

120
t-pertodie—ti and filtering for a frequency band (as in, e.g., Jin1997a;-Wang200+a)—To-achieve-this;
maﬁyd#fefeﬂt—meﬂ%ed&have%eefﬂheéﬂﬁfhe—paﬁwﬁg and without any periodic signal or basis of functions specifications
me o . o _— . .
125

Fourier transform and wavelet analysis). Since
MEMD and (especially) its combination with a red noise test is a new tool in climate science, we test it on a known example of
uasi-periodic variability. Namely, we analyse the tropical Pacific atmosphere-ocean variability to extract the El Nifio Southern



Oscillation (ENSO). In the future, this tool may be used in other spatio-temporal applications, where quasi-periodic variabilit

130 has not yet been identified.

3

135
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other-proeesses(see-seetions?>-and-7)-ENSO is a quasi-periodic phenomenon occurring on (interannual) timescales of 2-8
.g., Philander, 1990; Wang and Fiedler, 2006; Timmermann et al., 2018). ENSO events are characterized by warmin
phase). These events are typically characterised by ocean-atmosphere interaction, whereby atmospheric changes in winds can

lead to changes in the distribution of warm and cold waters in the ocean that in turn impact the atmosphere. ENSO exhibits
Stein et al., 2010; Dommenget et al., 2013)

140

significant non-linearities, with marked skewness and phase locking to the seasonal cycle (e.g.

145 ., Crespo et al., 2022; Fedorov and Philander, 2000). This complex coupled dynamics is different

. It is also non-stationary (e.

from red noise and is therefore the focus of the present study.

The manuscript is structured as follows. Section 2?

B-providefurther—detailson—methodolegy2 provides description of data used; section 3 describes the EMD and MEMD
implementation (Appendix A provides further details); section S-explores-the-physical-mechanisms—(and-conceptual-osetlator

150 medels)4 provides description of the red noise test (Appendix B provides further details); sections 5, 6 identify modes

of variability in the tropical Pacific and explore the physical mechanisms relevant on different timescaleswith-a—foecus—on

arc pat—are—qua OS atory,—S¢€ Ooh ompares Hate Ot aata—with anarySesrooservations—ana

predictability-of-the-quasi-oscillatory-mode(see-also-Appendix-C)-—._Conclusions are given in section 7.

2 Dataand-Metheds

155 2.1 Data

Tn—this-—study—we-We focus on the v we-intrinsic
variability of the tropical Pacific and analyse monthly mean data of four-different-variables-three different variables relevant
for atmosphere-ocean exchange: sea surface temperature (SST) from HadISST observational dataset (Rayner et al., 2003),
surface zonal wind stress (7,,) and thermocline depth (i.e., the depth of the 20°C isotherm) both from SODA?2 ocean-reanalysis
160 dataset (Carton and Giese, 2008). These three variables are used to asses the ENSO dynamics as these quantities typically

play a leading role in the onset and decay of ENSO events, and are typically used in the oscillator models that explain ENSO
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dynamics s see section 6 and, e.g., Wan

cific (110°E - 65°W, 25°S - 25°N) over the period 1871-2010 for which all datasets are available. Note that surface wind

2018). The data are analysed in the tropical Pa-

stress and the ocean subsurface data reconstructions in the 19" and early 20" century are less reliable than in the late 20th

20t 20°" century due to sparser data coverage, thus the results presented here are only as accurate as these reconstructions can be

(Wlttenberg, 2004; Crespo et al., 2022). We use the early record data here a&fh&éﬁfﬂpleﬂafedie&eﬂﬁedehﬁeéﬂsee&eﬂﬂ

recent-decades-are-consistent-with-previous-studies{see-below)-to show the nonstationarity/nonlinearity of the tropical Pacific

variability over the last ~140 years. The identification of the two main quasi-oscillatory modes (section 5) is also not affected

by the inclusion of this data.
The MEMD analysis (deseribed-belowsection 3) is performed on all fields simultaneously with SST at the highest resolution

(1° in latitude and longitude), whereas thermocline depth and 7, (both 9° resolution in longitude, 5° resolution in latitude)
have much lower resolution. This gives greater weight to SST data in the analysis, and less towards the other variables, such
that the mode does not change significantly by adding other variables in the analysis (i.e., results below for the SSTs-SST are
similar whether we use SSTs-SST alone or together with other fields). This is-because-herechoice is made because we are
primarily interested in the quasi-periodic behaviour in SS¥s;—siree-SSFs-SST, since SST are used for defining ENSO (e.g.,
in Nifio3 region)—SSTsregion—see Table 1). SST are also typically smoother than other fields—this-, This is especially true
for wind stress, which is strongly affected by the “noisy” atmospheric variability. This ensures that modes that emerge from
MEMD analysis are representative of quasi-periodic Varlablhty in SSTs-SST (and thus ENSO) while the rest of the variables

are “enslaved” to SST variability.

a-speeifie-timesealeThe other variables are added to the MEMD input data to describe the climate dynamics involved in the
uasi-periodic SST variability, e.g., ENSO (section 6). Note that MEMD can be sensitive to input data, thus we must carefully

consider the input data structure (relevant to a specific study).

While-the-SSTsWhile the SST, thermocline depth and 7, play an important role in the ENSO dynamics, it is specific

regions (see Table 1) that are-m

have historically been analysed in more detail, for example, in conceptual oscillator models (e.g., Jin, 1997a; Wang, 2018).
The timeseries in the specific regions are thus used to assess if MEMD modes on ENSO timescales are consistent with physics

described by conceptual oscillator models (section 6). Additionall

, analysing such timeseries helps a simpler visualisation of

temporal evolution of different variables. Thus, we average 7, over Niflo4 and Nifio5 regions separately, thermocline depth

over Nifio6 region (off-equatorial thermocline depth) and over the tropical Pacific (Pacific mean), and SSTs-SST over Nifio3

region (again, see Table 1; see also Fig. 3 in Wang et al. 1999). Note that regional averages (Table 1) are computed after the
MEMD analysis is performed (for details see section 3).
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Table 1. Tropical Pacific regions used for computing timeseries (see text for details). The right-most column lists the variables that are

Region H Latitude Range | Longitude Range H variable
Nifio3 5°S-5°N 150°W - 90°W SST
Nifno4 5°S-5°N 160°E - 150°W zonal wind stress
Nifio5 5°S-5°N 120°E - 140°E zonal wind stress
Nifo6 8°N - 16°N 140°E - 160°E thermocline depth
Pacific mean 5°S -5°N 120°E - 90°W thermocline depth

Before performing the analysis, we detrend the data and remove its seasonal cycle, which is done the following way (cf.,
de la Cdmara et al., 2019). First, we calculate 30-year means centered on every 10" year for each individual month. This yields
one value for each individual month every 10 years. Then ;-we interpolate between these values (of every 10" year) to obtain
yearly time series, again for each individual month. This yields a smooth seasonal cycle that includes a trend and seasonal cycle
for every month in the record. Detrended and deseasonalized data are then computed as the difference between the original
monthly timeseries and the smooth trend/seasonal cycle. We do this at every grid point and for every variable separately.

This is done to avoid domination of the seasonal cycle or trend in the statistical analysis below, even though the methed
presented-below-MEMD can generally extract nonlinear trends by itself. Note that this means that we cannot assess the impact
of long-term variability or seasonal cycle on ENSO variability in this study, but the latter may still be present indirectlyas—it

helps-phase-tocking-of ENSO-, as ENSO is phase-locked to the seasonal cycle (e.g., Stein et al., 2010; Wengel et al., 2018).

21 Multivariate) Empirieal Mode D i

3 (Multivariate) Empirical Mode Decomposition

3.1 MEMD description

We employ MEMD to objectively identify intrinsic modes of variability in nonlinear and nonstationary spatio-temporal data.
To understand MEMD, it is easier to first consider the simpler implementation of the 1-D version, Empirical Mode Decompo-

fe%ﬁme—ﬁ}tefmg«af—ﬂaeeﬂe-dimeﬂ%}eﬂ&k as outlined by Huang et al. (1998):
(i) Local minima and maxima of the input (1- D) timeseries fh&&ﬁfﬂfﬁe}ybda&ﬁd&pfwe—ﬂeﬂ}mear—aﬂd—ﬂeﬂ%aﬁeﬂ&fy
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230 in Fig. 1) are identified.

(ii) Envelopes are created by interpolating between the-subsequent maxima (upper envelope, shown as grey dotted line in
Fig. 1) and between subsequent minima (lower envelope);<ii)-then-we-obtain-an-average-envelope-from-the-, represented
by grey dashed line in Fig. 1).

(i) An average envelope is obtained by taking the mean of the upper and lower envelope-and-subtractitfrom-the-timeseries
235 data(iii)-the subtracted-data(t-e-envelopes (depicted by the red solid line in Fig. 1).

(iv) The average envelope is subtracted from the original timeseries data.

(v) The subtracted data, i.e., the original data minus the average envelope)-beeome-, represent the first mode of variability

with-the-signal-of the-highestfrequeney-and typically correspond to the highest-frequency signal in the dataset;whereas
. However, the average envelope can be analysed-fi + at-steps-(further analysed.

240 (vi) Steps (i)-(ith-fer-v) are repeated on the average envelope until only a trend
atteast-2-or residual component remains. This occurs when we can no longer find at least two extrema in the datasetean
no-longer-be-satisfied—The-, which is a condition that needs to be satisfied by EMD’s modes of variability.

The resulting modes of variability (i.e., timeseries)obtained-through-this-proeess-are-called-the output of the EMD analysis)
represented by their respective timeseries, are known as intrinsic mode functions (IMFs);-and-their-instantaneous-timeseale-,

245 The timescale of each IMF is characterised by the time-lapse between two subsequent extrematand-EME s-mean-timeseale-is
an-average-over-the-instantaneous-values)—Each-IMF-alse-, and the mean timescale of an IMF represents the average over all

time-lapses within its timeseries.
Additionally, each IMF has to satisfy two criteria: (a) the number of extrema and the number of zero-crossings differs at

most by one; and (b) the mean value of the envelope of the IMF is zero. Note that the procedure from (i) to (iv) does not
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Figure 1. Schematic for obtaining average envelope during EMD process. Black line shows a simple input signal that is a sum of two sine
waves (a low frequency and a high frequency wave). Grey dotted and grey dashed lines show upper and lower envelope, respectively. Red
we obtain the high frequency signal (¢.g.. the first mode of EMD).

250 necessarily satisfy (a)-(b) immediately, thus an additional sifting process (typically iterative) is used that requires a stopping
criteria to ensure physical meaning of the IMFs. The stopping criteria can be based on the standard deviation of each IMF, on
the maximum number of iterations, etc., which set tolerance and confidence limits for the IMF (for details see Huang et al.,

1998; Rilling et al., 2003; Huang et al., 2003).

The-MEMDB-method-Ultimately, this process extracts modes of variability that consist of (1) typical timescale of the mode
255 and (2) its timeseries. The modes are automatically ordered from highest/shortest (mode 1) to lowest/longest (last mode
frequency/period. Note that modes that emerge are largely independent with only small correlations between them.

MEMD (Rehman and Mandic, 2010) is a generalisation of the EMD to multivariate datasets of more than two timeseries

(for bivariate and trivariate data separate methods exist; Rilling et al. 2007; Rehman and Mandic 2010). The method solves

a similar problem as in (i)-(iv)-but-vi) but the mean envelope is computed as (Rehman and Mandic, 2010) “an integral of
260 all the envelopes along multiple directions in an N-dimensional space” (i.e., on an N-Sphere;—which-). This is much more

complex, but the basic idea remains similar to the 1-D method, and the method retains similar stopping criteria for the sift-

ing process. For further details on and visualisations of the method the reader is referred to Rehman-andMandie(2610)-

Rehman and Mandic (2010); Alberti et al. (2021).
The MEMD ultimately extracts timescales common to all input timeseries (i.e., synchronises signals; Rehman and Mandic 2010

and provides multivariate IMFs (i.e., the outputs of MEMD method) describing those timescales. The timescales of IMFs are

265




then consistent across the input timeseries — to visualise this, see supplementary Figs. S6-S10, Tables S1-S2, and section S.3
for an idealised example.
As with all statistical methods, it is important to be aware of the drawbacks associated with the (M)EMD (e.g., Stallone et al., 2020)

M)EMD can encounter issues at the edges of the timeseries, which can result

. Similar to other timeseries-filtering methods,

270 in “travelling waves” and thus unrealistic peaks in the timeseries (e.g., Stallone et al., 2020). Another common challenge with
(M)EMD is the mixing of modes (see below) where a single genuine mode may be split into multiple modes if inappropriate
parameters are chosen (e.g.. Huang et al., 1999, 2003; Stallone et al., 2020). However, this issue can also arise when there is
1o clear timescale-separation. To address these challenges. it is crucial to test the physical relevance of the modes of variability
identified using (M)EMD and to ensure convergence and stability of the modes through different parameter sweeps that are

275 related to the stopping criteria (see section 3.2). Note that different parameter sweeps may be relevant for different applications.

3.2 MEMD parameter swee

The code for the method-MEMD is freely available on Github (https://github.com/mariogrune/MEMD-Python-; similarly for

the EMD discussed above: https://github.com/laszukdawid/PyEMD), and the user ultimately only decides about the stopping

280 criteria;—which-are-hereset-to-thetr—, These are set to the “fix_h” parameter, following Huang et al. (2003) who suggest that

limiting iterations yields better-behaved IMFs than other stopping criteria. Here;-we-We limit the number of iterations to 15

(parameter “n_iter” is 15), though other values were tested and a range for “n_iter” around +0-30-5-30 yielded similar results,
suggesting some convergence for the significant modes of variability —(see below).

Note that at higher/lower frequencies we find mode-mixing in our MEMD analysis where timescales are not clear (here,

285 this occurs on timescales shorter than about 8 months J);-espeeialty-and longer than about 700 months), and also with larger

number of iterations. These modes are not detected as different from red-noise (see sections 4, 3 for more details). However,

the significant modes of variability on interannual timescales that are of interest here are largely unaffected by this —(section

290

295

10



3.3 Obtaining modes of variability via MEMD

300

305

310

315

320 As-mentionedin-Seet—22-we-use-mentioned in section 2, we use 3-D data relevant for ENSO dynamics, i.e., Af{t4-Cwith+

as-time-A(L;, L,, L,) (with L, length of time dimension, L, length of latitude dimension, L. length of longitude dimension,
yas-tatitade—w-as-longitude-A as the selected variable(s)/field(s); bold letters represent matriees)~two- or three-dimensional

arrays) as basis for the MEMD analysis—We-first-, which is done the following way.

(i) First, we remove the smooth trend/seasonal cycle (described above; see also de la Camara et al., 2019) from A to get a

325 temporal anomaly, A’. Sinee-here-

(i1)) We divide data by their standard deviations (o; done separately for each variable and at each grid point).

(iii) Since we use more than one variable (i.e., SSFsSST, surface wind stress, thermocline depth) in the analysis, we concate-

.) (with subscripts 1,2,... representing spatial dimensions of the differ-

11
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i bos atenating themT]

(iv) Then, we reduce the dimensionality by computing spatial patterns (empirical orthogonal functions, EOFs) and their

timeseries (principal components, PCs) via singular value decomposition (SVD). We-

(v) Finally, we only retain the first 20 PCs that explain the majority of the variance in the field A’. The PCs are then
ultimately-used as 1nput data for the MEMD algorithm a&desefrbee%ﬂh%ppeﬂdﬁeA—ﬁéefaﬂ—fPhe—medeﬁfh&Eemefge

(for further details of the whole procedure see Appendix A)fe%eaeh—}MF—Here—we—tdenﬂﬁy—Z%

MEMD analysis identifies 21 IMFs that are ordered by frequency from the highest (IMF1) to tewest-(HMF22the lowest

(IMF21) with the last 22ﬂ215lt mode typically representing a trend, which in our case was already removed (see above).
Namely, we find 21 potential intrinsic timescales within the tropical Pacific, i.e., common to all input PCs. This means that we
obtain 21 IMFs for each PC-timeseries, i.e., PC,,, (L with s IMF-number and m PC-number, where
have corresponding EOF patterns, we can then reconstruct spatio-temporal patterns of variability for each field (i.e., SST, wind
(s") IMF separately, we can perform this reconstruction for each IMF across all 20 PCS/EOFs, ie..

IMFP*!!(Ly, Ly, Ly) = > IMF,(PCpy (L) )EOF,, (L, Ly). (1)

Please recall that input data for MEMD analysis were divided by o, thus for variability of a field in its original units we need

to multiply spatio-temporal IMFs by ¢.
To compute an index, such as eastern Pacific SST (Nifo3), we can average over a x-y-latitude-longitude region (Table 1)

from spatio-temporal IMFs (Eq. 1) to obtain timeseries of, e.g., eastern Pacific SST (Nifio3) for each IMF separately (—
see supplementary Figs. S7-SH-for-timeseries-S6-S10 for timeseries of different variables from Table 1, and Table S1 for
their timescalesy. This yields the-HBViHs—of-an-index-an index for each IMF (e.g., IMF (SST (Nifio3)) with s IMF-number

corresponding to an equivalent index computed from input data (A’). The latter is approximately the same as the sum of

indices computed from all IMFs, e.g., SST(Nifio3)( /L,

4 Statistical significance test for climate

Once we have computed the IMFsfrom-the-input-data, we need to test if they are statistically significant. The importance of
each IMF can be assessed by computing variance explained of each IMF relative to the input field (e.g., retaining those IMFs

that explain more than 0.1% variance) or through other significance tests (e.g., white noise test; Appendix B1; Wu and Huang,

2004).

12
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The red noise test can be performed in different ways (see also section 5.1): (i) we can choose an index of interest and

erform a red noise th

Hmesea}e&ef—ﬁgmﬁe&m—medeﬁdeﬂﬂﬁed—\%test on its IMFs (see below; Fig. ii) we can use PC1’s IMFs (more objective;
5);

2

; (ii1) we can test for quasi-periodic variability at each grid point (section 5.1, Fig. or other. Thus, significance of

modes is only relevant for the index/region used in the red noise test calculation.

eriodic variability using SST timeseries that are relevant for (eastern Pacific) ENSO

Here, we first test for potential quasi-

i.e., eastern Pacific SST (Nifio3) from input data and corresponding eastern Pacific SST (Nifio3) from spatio-temporal
IMFs (as described in section 3; IMF(SST (Nino3)
IMF) by obtaining average squared amplitude of each (s*") IMF (E,), i.e., Es = [IMF,(4)]?)/L; (with L, length of the

timeseries, j each timestep). Average timescale (7) of each IMF is computed from instantaneous frequency using Hilbert
transform (see text around Eq. B4 in Appendix B1), which yields similar results to computing time lapse between two extrema
in the timeseries. [ is then plotted against 7 (here we use their logarithmic values) to yield the power spectrum plot (blue
dots in Fig. 2).

The shape of the red noise fit (red solid line in Fig. 2

speetrum-(via Fourier transform)-analysis-), or rather red noise spectrum for every s* IMF, can be computed from the lag-one
eastern Pacific SST (Nifio3)) as (cf., Gilman et al. 1963; Kolotkov, D. Y. et al. 2016; for

. Then, we compute power spectrum for each timescale/period (i.e., each

autocorrelation of the input data (e.

9

full derivation and further discussion see Appendix B)

1—72

E;ed(us) = (vsas — Vs /Bs). 2)

1—2rcos2nv, + 12

Ec? i3 a theoretical estimate of the (mean) energy of the red noise of s IMFE, v = 1/t is frequency, ¢ is time, r is lag-1

and subscript s represents

auto-correlation of input data of eastern Pacific SST (Nifio3

the 5'" IMF of frequency v, (ordered from highest to lowest frequency).

spatio-temporal IMFs (E,; Eq. (B9); see also, e.g., Madden and Julian 1971; Bretherton et al. 1999). The 95% confidence
p-value of 0.05. The number of degrees of freedom for s IMF is computed as DoF, = F Ly (1 — 1) /(L +1?) (for further
details see Appendix B2)— see also Bretherton et al, 1999; Wu and Huang 2004; Kolotkov, D. Y. et al, 2016). Note that the
same procedure (as described above) can be applied to any other timeseries/IMFs.

13
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MEMD Nino3 and red noise test
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Figure 2. Red noise significance test for spatio-temporal IMFs (from MEMD) via SST averaged over the Nifio3 region (for details see text
and Appendices A,B). Each blue dot represents average squared amplitude (Z7; Eq. B1) and average period (Z5: in months; for periods
of IMFs see Table S1) of each IMF that we have identified within our timeseries/data. Average period is computed from instantaneous
frequency obtained via Hilbert transform (see text under Bq. B4). For visualisation purposes we obtain a natural logarithm of both average

x-axis) of each IMF and plot them as a scatter plot (blue dots). Note

squared amplitude (lo

that the logarithms of periods (log (1)) are ordered from shortest period (highest frequency; IMF1; left-most blue dot) to longest period

the theoretical red spectrum fit (Egs. 2, B7-B9), red dotted line represents the

trend; IME21; right-most blue dot). Red solid line represents
one-tailed 95" percentile confidence level (via y>-test). For further descriptions of the figure see text.

5 Tropical Pacific modes of variabilit

As MEMD in conjunction with a red-noise test has not been applied in climate science before, we perform extensive analysis of
the method itself (in addition to analysis of ENSO dynamics - see below). Then, we compare it to the basic band-pass filterin

order Butterworth filter) and to Fourier transform analysis
to ensure consistency with other methods. Please recall that while other spectral methods often require prior knowledge about
the spatial/temporal patterns of interest in order to construct appropriate indices, the MEMD method allows for the objective
extraction of significant patterns and modes of variability from data without pre-existing knowledge (see also below and
Appendices A, B).

5.1 Significant modes of variabilit
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We identify two significant modes of variability (eMFI2-and-IMF13)-in-the ENSO-region-have-in the eastern Pacific: the
11" IMF (IMF11) and 12 IMF (IMF12) (pointed out with blue arrows in Fig. 2) with average timescales of about22-and
34-menths<{te5~23 and ~39 months (~2-3 years; see also Table S1), respectively;-and-are-therefore-. Their timescales fall
405 well within the the typical ENSO timescale range (2-8 years)-Stieh-, as can be identified via a typical power spectrum analysis
(Appendix B2, Fig. B3). These timescales (with their uncertainty ranges; see below) are consistent with beth-QBand-previously

identified quasi-biennial (QB, ~2 years) and low-frequency/quasi-quadrennial (LF/QQENSO-(e-gJtang-et-al;1995Jajeay-etal 2048
—We-find-thatthe-, ~4 years) ENSO modes (e.g., Jiang et al., 1995; Allan, 2000; Kim et al., 2003; Keenlyside et al., 2007; Bejarano and Jin

410 The quasi- perlodlc mode of variability with 34-39 months average period (IMF13)-is-much-elearer(than-IMF12) is more

. This can be seen in different ways. First, considering the Nifio3 index (i.e., eastern

with-34-menths—timeseale IME13)is-provided-inFiglies well above the threshold (Fig. 2). Second, considering the PC1’s
. S2), only IMF12 is found to be significant, despite

415 IMFs (i.e., before we do spatio-temporal reconstruction of IMF-data; Fi

the generally good agreement between the Nifio3 index and PC1 of the tropical Pacific SST (e.g., Ashok et al., 2007). Finall

we can perform a red noise test on each grid point of the tropical Pacific (similarly as for specific timeseries shown above
and plot spatial structure of SST together with the significance test (section 6, Figs. 5, which-shows-thatitindeedresembles

spatio-temporal IMF12 : . . o _ L i ienificant-are significant
Nevertheless, even though IME11 is marginally statistically significant, the MEMD analysis suggests that there may be two
quasi-periodic modes of interannual SST variability in the tropical Pacific region. This agrees with previous results that have
we also find that the two modes of variability are well separated (in terms of timescale) from the other modes and from each
other, as shown by Fig. 2. This ensures no mode-mixing on the quasi-periodic timescales.
On longer timescales, we do not find any behaviour that would be discernible from red noise, suggesting that the lower-
+{e.g Allan, 2000; Jajcay et al., 2018,
430 is better represented by red nmse&nd—hke%e%&pfedtet&la}eﬂaaﬁ—QBveHeSﬁeer&Hya%F#QQ—ENS&

frequency range of ENSO (timescales longer than ~4.5 years)

. Recall, however, that any potential oscillatory behaviour
435 on timescales longer than 30-years was removed via detrending. Similarly, we do not find any quasi-periodic modes of
variability on shorter timescales. Also, on these longer (> 700 months) and shorter (< 8 months) timescales we find some
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445

450

455

460

465

mode mixing. This is ¢
WWWWWWM@M
Tz thermocline depth) into MEMD algorithm, where each variable can have different timescales represented. For example,
wind stress can be much noisier than SST (or different parts of the tropical Pacific have different variabilities) and can thus
lead to identification of several high frequency modes of variability, resulting in mode-mixing (see somewhat overlapping blue
dots in Fig. 2).

6 Variabil rd es-of ENSO

5.1 Timeseries of significant modes of variabilit

In-the-previous—seetion-Above we have established that the Nifio3 index in the tropical Pacific exhibits two quasi-periodic
modes of variability with average periods ~2-3 years (via MEMD analysis;note-thatfrom-hereon-we-only-consider-theresults
%ﬂﬁ%%%%%%%)ﬂww@m@tlmeserws of the two IMFs (IMF12Z-and-IMF13)-are-shown-in
IMF11 and IMF12) and compare

—

them with a band pass (+7-52-5-16-53 months) filtered Nifio3 index (blacksetid-tine)—
Fig. 3shows-thatthe-).
The period/frequency of the two modes is not constant (i.e., varies in time;-see-below);-thus-). Thus, we also specify a range

of periods/frequencies for the two modes. The mean periods of B¥F1+243-IMF11,12 with their ‘uncertainty’ ranges (in square
brackets) are: 22-23 [+7-3216, 33] MFI2IMF11), and 34-39 [25;-52:529, 53] MF13IMF12) months. These ranges are de-
fined based on the 6.7¢" and 93.3"¢ percentiles of BMF12IME3IMF1 1,IMF12’s instantaneous period/frequency values, which
roughly correspond to £1.5¢0 (instantaneous periods). Fig. S1 (supplement) shows power spectra of IMEI2-and IMEL3IMF1 1
and IMF12, which visualise the range of periods the two modes have. Nete-Recall that instantaneous period/frequency can
be obtained via Hilbert transform (see Eq. (B4) in Appendix B1). This range was chosen as it yielded-the-bestresults;but
captures most of the variability in a given mode. Additionall
(e.g., band-pass filtering), although other (reasonable) percentile ranges give qualitatively similar results. We then use these
period/frequency ranges to perform a band-pass-band-pass filter (via 5" order Butterworth filter) of the Nifio3 index that is
consistent with the individual modes (e.g., 25-52:5-29-53 months band of IMF13-IMF12 is used to construct band-pass filtered

Nifio3 index composites in Fig. 6b; more below);-as-well-as-. We also use a band-pass filter of Nifio3 index consistent with the

this range yields a good agreement with other methods

sum of the two modes where the band-pass range encompasses periods of both significant modes, i.e., +7-52:5-16-53 months
(e.g., used to construct black solid line in Fig. 3).

Timeseries of the sum of IMFs (black dashed line) and band passed index (black solid line) in-Fig-—3-largely-agree—largely
agree (i.e., their correlation is 6:96-—However-alse-0.95; Fig. 3). Also, the individual modes show very good agreement with
the band-passed index with correlations of 6-:69-HF+20.68 (IMF11) and 0.83 (BMF+3IMF12), which can be increased further
if we consider only the specific IMF’s timescale range (specified above) when band-passing the Nifio3 index. This merely

confirms that MEMD results are consistent with other filtering methods.

16



470

475

480

Index timeseries and the significant IMFs

1870 1880 1890 1900 1910

1920 1930 1940 1950 1960

Year

Figure 3. Timeseries (1871-2010) of Nifio3 index from IMF11 (red dotted line) and IMF12 (red dashed line) obtained via MEMD. The sum

of the two IMF indices (black dashed line) and band-pass filtered (16-53 months) Nifio3 index (black solid line) are also shown.

Additionally, timeseries of Nifio3 index extracted from EIMF12:13-IMF11,12 (Fig. 3) are largely consistent with the modes
identified in Jiang et al. (1995) (their Fig. 9a), who used MSSA analysis, and with Wang and Ren (2020) (their Fig. 3), who
used EEMD on Nifio3.4 index. BIMFI3-IMF12 is also similar to Froyland et al. (2021) 4-year mode (their Fig. 10), who used
an operator-theoretic approach. Alse;-the-The average periods of the ‘significant’ modes of variability MF12:13IMF11,12) in
this study are typically lower than in other studies, however please recall that we have used much longer timeseries and that
the timeseries of IMFs are nonstationary. Thus, within the overlapping time periods (e.g., recent decades), the timescale (and
corresponding timeseries) is generally consistent across different studies. These similarities provide further confidence in the
results presented-belowfrom the MEMD. Note that these studies have focused on different ENSO timescales and associated dif-
ferent spatial patterns during QB and LF/QQ ENSO events;-but-have-notconsidered-the-, However, IMFs are nonstationary and

can thus capture changing patterns over time (section 5.2). Also, previous studies have not necessarily considered relationships

between different variables that are relevant for the ENSO dynamics (section 6) and related conceptual oscillator models that
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Overall, MEMD is consistent with other filtering methods (i.e., it acts like an effective band-pass filter) and can thus be
used for further analysis of ENSO dynamics and its nonstationarity to determine if IMEs hold any physical significance. If
IMESs have physical meaning, the information inferred from them can be valuable for enhancing climate models, long-term

485  predictions, understanding teleconnections, and exploring the underlying physics and variability of specific fields of interest,
such as ENSO. In the following sections we address some of these aspects.

5.2 Nonstationarity of ENSO

The period-ranges provided above (see also Fig. S1) suggest that there is some overlap between the period/frequency bands of
IMF11, IMF12, which is a result of nonlinear and nonstationary evolution of the modes (period is not constant as seen in Fig.

490 3). Indeed, there is a low (yet statistically significant) correlation between the two modes (~06-270.28). Thus, in some time-
windows the two IMFs can describe the variability of a similar timescale (e.g., similar time-temporal evolution in Fig. 3 around
years +962-3-1923-7, +9831951-1955, 1997), but in other time-windows they describe variability on different timescales. De-
spite changing periods, the two IMFs everati-pass the red noise threshold in the Nifio3 region and are therefore still considered
significant and thus quasi-periodic (AppendixB2sections 4, 5.1).

495 Fig-—3-also-shews-thatin-In some decades the band-pass-filtered Nifio3 index (black solid line) is more consistent with the
lower frequency BMF13-IMF12 (red dashed line; approx. 1870-1917, +938-1956,-1968-2000) and in other periods with the
higher frequency IMF+2-IMF11 (red dotted line; approx. $94+7-1938:49560-1968:-1917-1968, 2000-2010) —This-is-tikely-(Fig.
3). This is consistent with the interdecadal shifts in the frequency of ENSO (Hu et al., 2017, 2020) that have occurred around
years 1970 (from higher frequency to lower frequency) and 2000 (from lower frequency to higher frequency);-and-. Similar

500 behaviour can also be seen earlier in the recordinFig—3-—. We can also see interdecadal changes in amplitude-of-the amplitude
of the ENSO modes, i.e., middle panel (perieds-period 1920-1965) in Fig. 3 compared with top and bottom panels (periods
1870-1920, 1965-2010). This is somewhat consistent with Crespo et al. (2022), who found reduced amplitude of ENSO during
1901-1931 and 1935-1965 periods relative to post-1970 period.

Similarly, IMFs can capture different propagation directions of SST anomalies (Fig. 4). Previous studies have highlighted that

505 SST anomaly propagation changed from westward to stationary or eastward around 1970 (Fedorov and Philander, 2000, 2001; Wang and A
. Indeed, the two IMFs show westward propagation of SST anomalies prior to 1970. However, after 1970 it is slightly more

complex. SST anomaly propagation becomes stationary or eastward in IMF11 (except for a period just before 1990; Fig. 4a)

but IMF12 (Fig. 4b

reflected in the sum of the two modes (Fig. 4c), which generally shows variability in propagation of SST anomalies post-1970.

510 Furthermore, some of the characteristics of SST anomaly propagation from the sum of IME11 and IMF12 carry over to 1-year
low-passed SST anomalies (e.g., in the 1960s, 1980s; Fig. 4d).

ENSO events have also been characterised as east Pacific (EP) or central Pacific (CP) depending on the longitude where

Kao and Yu, 2009; Singh and Delcroix, 2013; Zhang et al., 2019). The two IMFs are less able

to reproduce this feature of ENSO diversity (Fig. 4). Most EP events are captured by IMF11,12. However, some CP events (e.g.

early 1990s; Fi Fig. 4a,

still indicates either stationary or westward propagation with some rare (eastward) exceptions. This is then

SST anomalies maximise (e.

3

515 . 4d) are not captured by quasi-periodic modes of variabilit b.c). This suggests that other processes are
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2007). Similarly, some persistent La Nifla events (e.g.

. 4d) are not necessarily captured by the quasi-

likely causing them, such as sub-ENSO variability (Keenlyside et al.,
mid 1970s, mid-1980s and around year 2000; Fi
alone (potentially related to ENSO asymmetry; e.g., Choi et al. 2013; An et al. 2020). These results could also reflect that some

aspects of ENSO nonlinearity are not represented by these two IMFs (e.g., Dommenget et al. 2013).

520 Note that the magnitude of ENSO ultimately depends on all underlying modes of variability in the tropical Pacific (not just

eriodic modes of variabilit

on the IMFs discussed here) — as also seen in Fig. 4. In fact, we find ~5 modes (i.e., IMFs +1-15-10-14 here) with timescales
ranging from ~1 to ~+2-11 years (assessed via 6.7t" and 93.37¢ percentiles as above) that can reproduce the majority of ENSO
variability (not shown), but the rest of these modes (i.e., BVHEH-14:+5-IMF10,13,14 here) are consistent with red noise (Fig 2).

NARAARIRAR A A

Fig—3alsoshows-Figs. 3, 4 also show that weak Nifio3 events have either small amplitudes (e.g., 1933-71930-40) of both
525 IMFs or opposite amplitudes (e.g., 199811 ~whereas-1985-87). However, strong Nifio3 events generally show a constructive
interference or mode-combination (e.g., 1997, a super-El Nifio event), which is consistent with, e.g., Slawinska and Giannakis

(2017); Jajcay et al. (2018); Wang and Ren (2020); Froyland et al. (2021).

3 A 0

used-as-an-effective-band-passfilter-methedThis section has clearly demonstrated that MEMD together with a red noise test
530 is suitable for identifying nonstation uasi-periodic multivariate signals. This is supported-by-a-good-agreement-between

A npend 2 . B h h S R

2 clear

advantage of MEMD over other multivariate signal processing methods (e.g., PCA, MSSA). Below we now turn to ENSO
535 dynamics to show that IMFs are also physical.

6 ENSO dynamics

The dynamics of ENSO typically involves positive (e.g., Bjerknes) and negative feedbacks between the atmosphere and ocean.
The Bjerknes feedback (Bjerknes, 1969) refers to any decrease (increase) of trade winds that leads to reduced (enhanced) ocean
upwelling (downwelling) and thus warming (cooling) in the eastern tropical Pacific leading to reduced (enhanced) zonal SST-
540 and pressure-gradients, which in turn reinforce the initial increase (decrease) of the trade winds. The most prominent and also
the simplest negative feedback in the tropical Pacific involves recharge/discharge of ocean heat content via Sverdrup transport

e.g., Jin, 1997a, b; Burgers et al., 2005). Other negative feedbacks involve propagation and reflection of ocean Rossby and
Suarez and Schopf, 1988; Battisti and Hirst, 1989; 1997; Weisberg and Wang, 1997; Wang et al., 1999; W

Kelvin waves (e. Picaut et al.,

2

2

where the latter can also be wind-forced. These processes generally involve changes in the thermocline depth, surface wind

545  stress, and SST anomalies.
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570

575

6.1 uasi-oscillatory timescale
6.2 Observational evidence

ENSO-evolution-As ENSO dynamics is primarily related to the evolution of the ocean surface zonal wind stress (7, ), thermo-

cline depth and the SSFs-SST in the tropical Pacific (e.g., Wang, 2018)—Theirrelationship-is-demonstrated-with-map-phase

eompeosites-of IMF13-, we demonstrate their relationship with phase composite maps of IMF12 (Fig. 5). Shading in Fig. 5
where-shading-represents SST anomalies, contours represent the thermocline depth anomalies (solid contours represent posi-

tive values and deeper thermocline), yellow arrows represent 7,, anomalies, and grey shading represents grid points of the SSTs
SST that do not pass the red noise threshold. All values are standardised (i.e., divided by standard deviation).

The phase composites are computed using instantaneous phase of the IMF12’s eastern Pacific SST (Nifio3) timeseries (front
IMER3)ie, IMF12 (SST (Nifio3))) that we can obtain via Hilbert Transform (Appendix B1, Eq. (B4)). This ‘assigns’ every
point in the eastern Pacific SST (Nifio3) timeseries a phase between 0 and 360 degrees, which can then be split into 12 phases
(marked phase O through 11; e.g., phase 0 is 0-30°, ..., phase 11 is 330-360°) and all points in timeseries (of 1-D or 3-D fields)
belonging to a specific phase are then averaged to form map phase composites shown in Fig. 5 (see also Fig. S2-feorEIMFI2S3
for IMF11). Line phase composites shown-betow-in Fig. 6 (see also Fig. S4 for IMF11) are constructed similarly. Eastern
Pacific SST (Nifio3) is chosen as in i i i i
here to focus on East-Pacific (EP) ENSO events and related dynamics.

Fig. 5 shows a typical cycle of EP ENSO in the tropical Pacific (on a ~3-year timescale) --which-can-be-summarised-also
as composited over the IMF12’s Nifio3 index. This cycle can also be summarised with line phase composites (Fig. 6a,c) of
timesertes-averaged-by averaging over specific regions {astabetedof the tropical Pacific (as labelled; see also Table 1)of-the
tropical-Pacifie(e-g5-Wang;2018). Here, we analyse SSTs-eastern Pacific SST (Nifio3), central Pacific 7, (Nifio4), western
Pacific 7, (Nifio5), off-equatorial western Pacific thermocline depth (Nifio6), and thermochine-depth-(Paetfie-mean—Pacific

mean thermocline depth as they have historically been considered important for ENSO dynamics and have been used in ENSO
conceptual oscillator models (e.g., Jin, 1997a; Burgers et al., 2005; Wang, 2018).

Together the two figures (Figs. 5, 6a,c) suggest the following sequence of events: (-

(i) during La Nifia (phases 5-7) we have negative SST anomalies and shallower thermocline in Nifio3 region, stronger

easterly wind stress in Nifio4 region, and deeper thermocline in the western Pacific (including Nifio6 region); i)~

(ii) as La Nifia weakens (phases 8-10), the westerly wind stress in Nifio5 region and thermocline depth averaged across the
tropical Pacific peak, starting the El Nifio cycle; (iit)-SSTs-warm;-

(iii) SST warm, eastern Pacific thermocline (Nifio3) becomes deeper, central Pacific wind stress (Nifio4) becomes westerly,

and thermocline in the western Pacific (including Nifio6 region) becomes shallower (phases 11,0,1); Gv)-

(iv) El Nifio weakens (phases 2-4) and western Pacific 7, (Nifio5) becomes easterly as well as the thermocline averaged

across the Pacific becomes shallower, starting a La Nifia event (phases 5-7); ¢v)-
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580

585 The evolution described above is also seen in the band-pass (25-52-5-menths;2-4-5-29-53 months; 2.5-4.5 years) filtered
data (Fig. 6b). Note that the values in Fig. 6b are slightly larger than in Fig. 6a, because slightly different frequency ranges
are ultimately represented in the two panels, but they remain qualitatively similar. Simiarresults—ean-also-be-obtained-for
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705

Fig-6-and-Eas—(2)-(2D-deseribe-an-describes an average evolution of the parameters{+;72545)-but-variables considered,

not all individual events have this exact behaviour—. This is partly reflected in the reduced amplitudes of 7, and thermo-
cline depth in Fig. 6a compared with the SST amplitude. The full timeseries of these parameters from IMF12 (Fig. 7; line
types/colours are the same as in Fig. 6) show that the relationshiprelationships from Fig. 6 a;b;e-oeeurs-occur often in the anal-
ysed period, especially for strong events. However, for weak events (middle panel in Fig. 7) the relationship-is-relationships

are harder to establish —— every event seems to be slightly different. This is somewhat consistent with Crespo et al. (2022),

who noted that the dynamics of ENSO was different prior to 1970 relative to after 1970 with a dominant recharge-discharge

oscillator (Jin, 1997a, b; Burgers et al., 2005) in the latter period. Nete-that-below-we-show-that-there-is-likely-arelationship

for-the-variability-en-sherterSimilar results (phase composites) can also be obtained for the 16-33 months band-passed data and
IMF11 (Figs. S3, S4 in the supplement). This suggests that on average the QB and LF/lenger-timeseales—On-shorter/longer

armachine (NGH A ddition i o

........ . ho one 0 ~

may-be-omittedS4) is lower in IMF11 case than in IMF12 case. This may be indicative of other processes that could be relevant
for the QB ENSO.
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es-The results presented here

710
c
implications for the dynamics of ENSO and conceptual oscillator models. The out-of-phase relationship between Pacific mean
thermocline depth an
d [ T —2v  wo T
dt hPac —Wwo 0 hPac
715
720

ith-is a typical feature of the recharge-discharge oscil-
Jin, 1997a, b; Burgers et al., 2005). This

725 suggests that IMFs that emerge from MEMD analysis can capture physical processes in the tropical Pacific. Furthermore
co-variability of the Pacific mean thermocline depth and the western Pacific wind stress N1noSHgmwehd«lme}%hews

730 the-same-overtime-(Fie—H—

;. grey solid line)
suggests that wind forcing in the western Pacific {ﬁ%eew&fy—thu&ﬂi&appfe*ﬁﬂa&mﬁheu}d%&ﬁﬁeﬁp—tﬂeme%e

735
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Wthe recharge-discharge eseillatorJtmay-also-be

740 —process or in the onset of ENSO in
eneral as it precedes ENSO events (see also Roulston and Neelin, 2000; Capotondi et al., 2018; Lopez et al., 2013; Lopez and Kirtman, 2|
745
less-elear-on-theselonger/shorter-timeseales(Fig—8)—This-On the other hand, the co-variability between central Pacific wind
stress (Nifio4; grey dashed line), off-equatorial western Pacific thermocline depth (Nifio6; black dashed line) and eastern
750
inrg-unified oscillator proposed
Wang (2001a) may need to be revised (see also Graham et al., 2015) This is because: 1) in the unified oscillator model
755
760
765
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{black-selidline-for-SST-(Nifto3)-and-blue-dottedline for-the-tropical-these three quantities should all be somewhat out-of-phase

but here we show that only western Pacific wind stress and Pacific mean thermocline depth exhibit out-of-phase relationshi
with eastern Pacific SST (on average); and (ii) Pacific mean thermocline depth }—ﬂi&SWP—GserHa{ef{efhef%meHﬁd%}aek

Thﬁ—sugges&%&ﬂssu&m%) rendering the unified model’s fepfe%eﬂ%aﬁe&efJeheENSGdynaﬁﬂe%e&%-%—yeafﬂmesea}&
recharge-discharge
oscillator simplification, which uses off-equatorial western Pacific thermocline depth (Nifio6)tend-te-have phase-lagrelationship

27



810
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820

825

830

835

a

on-tieseales ~2-4-years(left-for-future-workThat the central Pacific wind stress may be omitted in the unified model (due
to_co-variability with the eastern Pacific SST) was also mentioned in Graham etal. (2015). However, they suggested that
western Pacific wind stress (Nifio5) could also be omitted from the unified model, but Fig. 6 suggests that on 1.5-4.5 year
timescale this variable should be kept. This may be because Graham et al. (2015) used 1-year low-pass filtered data, which

could have obscured the signal on 1.5-4.5 year timescale (see section 6.1). Additionally, Graham et al. (2015) suggested usin

the thermocline depth in the western Pacific averaged over a region that lies on the equator, rather than off-equator. From Fig.

5 we can see that this would likely yield similar results as off-equatorial western Pacific thermocline depth (Nifo6) (to 41

phase).

6.1 PredictionOther timescales

Fwith-three-(Gaputy-timesertes:-ENSO is a phenomenon that occurs on timescales of 2-8 years and previous work has often
used 1-year low pass filter to obtain ENSO. Thus, we now test the relationships between eastern Pacific SST (Nifio3), central
lifi and-thermocline depth-(Nin edict-the Nifto3—We-incladed-Nifio4), western Pacific 7, (Nino5)

Pacific mean thermocline depth are-s

—on slightly shorter
and slightly longer timescales. We do this to test how relationships between different variables change across timescales that
are still somewhat within the ENSO range.

Fig. 8 shows phase composites similar to
those in Fig. 6b, but for band-passed data over 12-19 months range (shorter periods; Fig. 8a) and over 42-135 months range
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840 (longer periods; Fig. 8b). These timescale bands are consistent with IMF10 (shorter periods) and IMFs 13,14 (longer periods)
which are the modes that together with IMF11,12 explain the majority of variance in, e.g., eastern Pacific SST (Nifo3)-and

845

850

855

860 range{(notshewm—
Fig2?areveals-that-we-cangetagoodprediction-of-SST-Interestingly, on these shorter and longer timescales the evolution is

different than on quasi-oscillatory timescales (1.5-4.5-year periods of IMF11,12). Namel

closely follows western Pacific off-equatorial thermocline depth (Nifio6) (Nifte3)frem-SST(Nifte3)-alone-byusing7past

N d o o d d h alad
a a

western Pacific wind stress (Nifio5

865

prediction-of SST-(Nifio3)from-SST-(Nifio3)-alone-with-7-past timesteps-(Fig. 22a; id-Hine) e 8a,b). This

suggests a very different role of the western Pacific wind stress on different timescales, which may be relevant for ENSO
870 diversity/asymmetry. However, other variables remain similar across timescales (to £+ 1 menthlead-timetess-inFig—2?b(black

29



875

880

885

890

895

900

905

impertanee—of-phase). Thus, recharge-discharge processes operate throughout the ENSO timescale range (2-8 years), since
Pacific mean thermocline depth and eastern Pacific SST (Nifio3) aleﬁeﬁﬂayﬂlr%e%eflﬁe«t&efheﬁafeeesse%ﬂaa&e&nﬂffeef

remain out of phase also on these shorter/longer
timescales. Also, the results from these shorter/longer timescales indicate that the western Pacific wind stress (affeeted%ay

The above analysis shows that it is important to filter the data to “correct” frequency bands as there may be different
behaviour present on different timescales, even within the ENSO range of 2-8 years.

7 Conclusions

a recently developed
nonlinear and non-stationary method for identifying intrinsic variability of multivariate systems, the multivariate empirical
mode decomposition (MEMD; Rehman and Mandic 2010). The method can objectively identify modes of variability on

different timescales within a nonlinear and non-stationary dataset describing a complex system such as the climate system.

The timescale identification is objective as it is done without any pre-selection of a timescale window in which we expect

the quasi-periodic behaviour. It finds a signal that is synchronised across input timeseries (here PC timeseries of combined

fields, i.e., it-works-as-an-objective-band-pass—fitter—Then:-SST, wind stress, thermocline depth over the tropical Pacific) for
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every timescale within the given system. Also, the multivariate modes of variability that emerge from MEMD analysis have

non-stationary (i.e.

evolvin atterns of variabilit 4)—a clear advantage over some other multivariate

2

910 timeseries analysis tools whose patterns are stationary.
Additionally, a red noise significance test has been used-to-extract-developed to robustly identify quasi-periodic modes of

variability in the given data—, which had not been used before in the framework of MEMD. This means that MEMD can now

Since the red noise test can be applied on every grid point separately, MEMD together with the red noise test can also be used
915 for identifyin

MWWMW%ldennﬁed a clear quasi- perlodlc behaviour on a timescale of about 3-years
i tons)2-3 years (16-53

months) in the tropical Pacific. This timescale falls within the typical timescale range of ENSO, i.e., 2-8 years —While-the-and
920  the dynamics of this quasi-periodic variability is consistent with ENSO dynamics, While ENSO quasi-periodic variability is a

well-knownfeature, an identification (via MEMD) of a range-of-timeseales-of-the-frequency range linked to the two dominant

quasi-periodic modes (e-g+25-52-5-0of variability (i.e., 16-53 months) has still led to a few interesting results.

By analysing composites (e.g., Figs. 5, 6) of the thermocline depth, surface-wind stress and fhe%eavsuff—aeefempefafufe
(SST%SST we have shown that the ~

925
2-3-year (Eastern Pacific) ENSO
variabilit enerally consistent with the recharge dlscharge eseﬁlafefsa—We%fﬁﬂse—}éamﬁeeHhe—reehafge-dﬁerge
930
935

onceptual oscillator model of ENSO (e.g., Jin, 1997a; Burgers et al., -
940 . This oscillator describes an interplay between Pacific mean thermocline depth and eastern Pacific SST (Nifio3)—Fhissuggests
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beeause-the-years. However, the unified model (Wang, 2001a) may need to be revised (see also Graham et al., 2015) as most

of the variables relevant for the unified oscillator model co-vary. In particular, western Pacific off-equatorial thermocline depth

Nifi06), central Pacific wind stress (Nifio4), and eastern Pacific SST (Nifio3) exhibit the same phase relation and thus describe

2

the same dynamics. As also western Pacific wind stress (Nifio5)-and-the; relevant for the unified oscillator) and Pacific mean

thermocline depth co-varyand-are-tikelyrelated-to-each-othe heirrelationship-should-be-explored-furthern-the-futare:

of ENSO-(phases4-6-inFig—5)the-eyeclereverses-and-ultimately-repeats—and unified oscillator models, but it may be different
than previously thought.

On shorter and longer timescales

. 8) the relationships between variables are different, specifically the western Pacific wind

32



980 with eastern Pacific SST (Nifio3). This suggests that the role of the western Pacific atmosphere-ocean processes —

wind stress) in tropical Pacific variability (and ENSO) can be very different on different timescales, whereas other variables
and in other regions) largely keep their relationships across timescales. This means that recharge-discharge eseillator-welt
985 and-thatit-exhibits-periodie-variability-on-oscillator model operates on all timescales 2-4-years;—we-believe-that-it-should-be

Therefore;-a-betterunderstanding of ENSO-variability-considered (12-135 months), even if it has a characteristic timescale.
However, the relations underlying the unified oscillator model exhibit different behaviour on different timescalesis-importantfor

on-of ENSO-dviram o tha o ata 1l A o-nnde A ENSO-tmp an

995 - : an-be-achieved-throuch-similaranalysis-asin-this-stady neluding-other-fields-and-other(remote) resionsin
the-analysis(e-g—mean-sea-level-pressure-in-the Buro-Atlantie region)-, implications of which should be explored further in

the future.

MEMD analysis could be extended in several ways. For example: (i) to assess ENSO dynamics in models as they typically

le with the representation of the western Pacific processes (i.e., relevant for Nifio5 wind stress; Guilyardi et al., 2020; Planton et al., ~

1000 ;and (ii) to study ENSO teleconnections on different timescales (e.g., Bronnimann, 2007; Fereday et al., 2008; Jiménez-Esteve and Domesis

. Also, future studies should involve an examination of sensitivity and causal links (not established here) between different vari-
ables fand their links across scales »-within-the Tropies-and-beyond-(e.g., Runge et al., 2015; Jajcay et al., 2018; Jenney et al.,
2019; Kretschmer et al., 2021), as well as dedicated model-experiments.
Overall, this study has analysed the variability in the tropical Pacific -identified-a-(using MEMD with a red noise test),
1005 identified two quasi-periodic mede-modes of variability (on ~3-year-timesealeyand-related-its-2-3-year timescale), related their
physics to the SWP-and-recharge-discharge eset S—-whi i is—t tabth
oscillator, and suggested a revision to the unified oscillator model (somewhat consistent with Graham et al.,, 2013). As the
variability on this timescale is quasi-periodic, it may be predictable far in advance, which calls for further investigations of the
tropical Pacific variability and related teleconnections, their prediction, and for further model improvements (see also Chen
1010 et al., 2021; Lee et al., 2021).
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Code availability. EMD and MEMD Python codes are available on Github (https://github.com/laszukdawid/PyEMD,
https://github.com/mariogrune/MEMD-Python-). Other scripts are available upon request.

Data availability. SODA2 data can be downloaded from http://apdrc.soest.hawaii.edu/dods/public_data/SODA/soda_pop2.2.4;
HadISST data can be downloaded from https://www.metoffice.gov.uk/hadobs/hadisst.

Appendix A: MEMD for 3-D fields

To find the intrinsic variability of our 3-D field, i.e., AM#452-A' (L, Ly, L,) mentioned in section 33.3, we first reduce
dimensionality of our data by decomposing it using the singular value decomposition (SVD), which yields spatial patterns of
our data (empirical orthogonal functions, EOFs) and corresponding timeseries (principal components, PCs). First, we multiply
A’ by /cos¢ (area weighting; with ¢ latitude), divide by standard deviation (o) at each grid point (and for each variable

~#43-D array (L, Ly, L,) to 2-D array (L, L, - L,). Then A’ can

separately, if relevant), and reshape A’ from

be expressed with a singular value decomposition as

0" (wyLy - Ly)A'(tLy,2yL, - L,) = USVT (A1)

where U and 'V represent left and right singular vectors i-e--the-nermalised-related to PCs and EOFs, =~ /AN—HA
3= 3(§L; -1 jA is a diagonal matrix with square roots of variance explained of each mode (denoted A, i.e., eigenvalues)
along the dlagonal AH&%h&nufnb%&P&pﬂﬂﬁ%p@m&L is the length of timeseries, and superscrlpt T denotes transpose. T

defined as Uy/L; — 1 and EOFs as ¥V’ /\/L, — 1, such that G—WMCM be represented as a function of
PCs and EOFs recall EOFs-are-in-V-

m=20
o NayLy - Ly)A'(tLy,2yLy - Ly)= /N =1~ >~ EOF(m,zyL, - L,)PC(m,tL) (A2)

m=1
where m corresponds to PC-number and is ordered according to the eigenvalues (m = 1 for the largest eigenvalue). We retain
only the leading 20 PCs for the analysis (they generally describe the majority of the variance in A’).

Now we can use the 20 PCs (PC{##}(m. L;)) as input to MEMD algorithm (for details on algorithm itself see Rehman and
Mandic 2010). This algorithm finds common timescales (i.e., Intrinsic Mode Functions, IMFs) within the 20 PCs and splits
each PC into several IMFs (the number of IMFs is not predetermined). Thus, each PC can be represented as a sum of IMFs

S=Smax

PC(m,tL) = > IMF(s,m,tL;) (A3)

s=1
where s corresponds to IMF-number and is ordered according to the timescale (s = 1 for the shortest timescale, 5,4, for the
longest timescale, which is usually a trend or a residual). Eq. (A3) shows that each PC is a superposition of different IMFs (see

also Table S2) and with it also a superposition of modes of variability in the selected field(s) with different timescales.
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Each PC is associated with a spatial pattern (EOF(#;4)}(m, L, - L)), which allows a reconstruction of the time-space
{5299-(Ly, Ly, - Ly) structure/evolution for each IMF, yielding IMFs of initial dataset A’ (IMFA). We do this by multiplying
PCs for each IMF with corresponding EOFs and summing over all 20 PCs/EOFs (similar to Eq. A2)

m=20
0~ (wyLy - L) IMFA(s,tLy,yzLy - Ly) = VN —1 Y IMF(s,m,tL;)EOF(m, zyL, - L,). (Ad)
m=1

Here note that to get IMFA in the units of the input field we must multiply it by the field’s standard deviation as the input data
for the SVD algorithm was-were standardised (Eq. A1). Again, IMFAs are ordered by timescale, i.e., IMFA1 with the shortest

timescale and IMFAss,, ., with the longest timescale (trend). From here we can reconstruct %AL by summing over all IMFA

o N(wyLy - Ly)A'(tLy,2yLy - L) ~ > IMFA(s,tLy,yx L, - Ly) (A5)
A~~~ ~T — A~~~ = NN a~~AT

and ultimately one can also reshape A’ from {24 -te-{#5472)2-D array (Ls, L, - L) to 3-D array (L, L., L,,)). The importance

of each IMFA for A’ can be assessed by computing variance explained of each IMFA or other significance methods. To find

IMFA modes (and grid-points) that correspond to potentially oscillatory behaviour we must perform a red noise test (see

Appendix B).

Note that from here on (and in the main text) IMFAs are referred to as IMFs for simplicity.

Appendix B: Significance tests

Typically we can test if the modes (IMFs) are different from white or red noise, i-we-expeet-such-distribution-in-depending
on the distribution of our data. In the climate system, more-often-than-not-we-expeet-the-variables-to-behave-as-variables often
exhibit behaviour that resembles white or red noise. The IMFs that are significant (i.e., different from both red and white noise)
are-likely representing-oscillations-instead;—which-ean-suggest-likely represent quasi-oscillations, indicating higher potential
for predictability of processes that correspond to the timescale of the significant IMF. Thus, this distinction is very important
in climate system-science. Therefore, we discuss the white and red noise tests (for 1-D data, i.e., timeseries) below, whereas
the robustness of IMFs and-the-from MEMD analysis and the relevant significance tests are briefty-mentioned-where relevant
discussed in the main text (sections 4, 5).

Note that the white and red noise tests are performed on 1-D timeseries, hence EMD (univariate decomposition; see main

text) is first used to test their-performanee-the performance of IMFs that arise from the EMD analysis. The multivariate data (via
MEMD) is-tater-in the main text is analysed with the simplest and most relevant test (i.e., theoretical red noise test described

below).
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B1 White noise test

The white noise significance test has been derived by Wu and Huang (2004), who showed that the energy density function of
st" IMF (FE,; i.e., average squared amplitude of the s** IMF) is

L Lt
B.= - S UGG IME )P, ®1)

~~ j=1

where-C<{4}where IMF,(j) is the s** IMF at time-step j (=t;-4j = 1,..., L), and &L, is the length of the timeseries.
Wu and Huang (2004) further showed that the total energy density of the s** IMF can then be expressed as

LB, = / S(v)odv (B2)
where v is frequency, and S(v)s is the power spectrum of the s*”* IMF. From this they showed that for white noise
InE,~—InT, (B3)

where T is the average period of the s*” IMF, and In denotes natural logarithm.
Note that frequency (and thus also period) of each IMF is computed using Hilbert transform by first generating an analytical

signal (e.g., Huang et al., 1998)
Z(t) = X(t) +1Y (t) = | Z(t)]e®) (B4)

where ¢ is time dimension, X (¢) is our IMF timeseries, Y (¢) is its Hilbert transform, Z(¢) is the analytical signal, and 6(t) =
arctan (Y (¢)/ X (t)) is instantaneous phase. Instantaneous frequency can then be computed by taking a time-derivative of the
phase, i.e., v = d6(t)/d¢/2n, and the average frequency of each IMF is computed by averaging instantaneous frequency in
time (note that period = 1/v, i.e., T}).

The relationship between the logarithms of energy density and average period of the IMFs (Eq. B3) is then used in Fig.
2B1a (black solid line) to test whether an IMF (using EMD decomposition of Nifio3 index; blue dots in Fig. 2B1a; see also
section 3) is different from white noise or not. The mode is significant with respect to white noise if it exceeds one-tailed 95"

percentile threshold (denoted by black dotted line). The percentile range serves as a significance test, i.e., if IMFs from our data

Sth Sth

are above, e.g., 9
as (Wu and Huang, 2004)

2 /2
InE;=—-InT, :I:p\/i\/iexp (InT,/2) (B5)
VLY Lt

where p denotes a threshold (p = 1.645 for one-tailed 95" percentile of Gaussian distribution). Note that typically the number

percentile they are significant at 95°" percentile level. The percentile range can be expressed analytically

of degrees of freedom (DoF) for white noise data is expected to be equal to the total energy density of the st IMF (i.e.,
+£#5DoF, = L, E; Wu and Huang 2004).
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Alternatively, we can test whether the input data is different from white noise by constructing multiple (I) realisations of
synthetic white noise timeseries w; (i*" random normally distributed timeseries with standard deviation o of 1). Then we can
compute its IMFs via EMD (section 3) and we can repeat the process I-times. Employing Eq. B1 on these IMFs yields scattered
grey dots in Fig. 2Bla (constructed in the same way as blue dots; see also section 4, Fig. 2), where their mean and 5th_gs5th
percentile are shown as grey solid and dotted lines, respectively.

A comparison with the IMFs from the input data (Nifio3 index; blue dots in Fig. 2B1a) reveals that many IMFs lie outside
the white noise range and that overall the data (blue dots) distribution does not resemble the white noise (grey dots) distribution
(not noted in Wu and Huang 2004). This suggests that a white noise test for such data is not a good test. Indeed, atmosphere-
ocean coupled systems, such as ENSO, can often be represented as a red noise process (e.g., Hasselmann 1976; Frankignoul

and Hasselmann 1977), thus we now turn to a similar test, but for data distributed as red noise.
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B2 Red noise test
B2.1 Synthetic red noise data

To test if our data (e.g., Nifio3 index) is purely red noise or it has inherent oscillations that we can identify through the (M)EMD

analysis, we generate [-realisations of synthetic red noise timeseries « (AR(1) process) as (e.g., Gilman et al. 1963)
Tij+1 =1Ti;+V1—r? Wi (B6)

where r is lag-1 auto-correlation from our data (e.g., Nifio3 index), w is white noise (as in Appendix B1), ¢ runs over 1
realisations of synthetic red noise data, and j (j > 1 and 5<ZF+with+—j < L;; with L, length of our data, e.g., the length
of Nifio3 record) is an index that runs over the time-steps (one time step is one time unit, e.g., 1 month). For 7 = 1 (the first
time-step) we set x; 1 = w; 1.

Once we obtain the red noise timeseries x; we can compute its IMFs via EMD (section 3) and we can repeat the process
I-times (as for the white noise; Appendix B1). This yields the pink scattered dots in Fig. 2B 1b. The mean over [ cases for each

IMF (frequency band) is shown by pink solid line and the (one-tailed) 95"

percentile across the I cases are shown by pink
dotted line. Note that we plot logarithmic values in Fig. 2B1, as mentioned above.

Note that Franzke (2009) used a similar approach for indices such as the North Atlantic Oscillation, and found a simple
relationship between the power spectrum and frequency, consistent with Kolotkov, D. Y. et al. (2016). However, we follow
Gilman et al. (1963) to define a relationship between the power spectrum and frequency. This incorporates the lag-1 auto-

correlation of the timeseries into the theoretical red noise power spectrum (see below).
B2.2 Theoretical red noise test

Alternatively, one can compute a theoretical power spectrum of the red noise (cf., Gilman et al. 1963)

1—r2

1= 2rcos2my + 12

S(v) (B7)

where S is the power spectrum of red noise, ¥ = 1/t is frequency, and r is again lag-1 auto-correlation from our data. For
each frequency estimate we must multiply S(v) by frequency range (Av) (cf. Eq. (B2)) to obtain a theoretical estimate of the
(mean) energy of the red noise (E7°?) (cf. Kolotkov, D. Y. et al. 2016)

Ev) = S(w)(va—v/B) (B8)

where 8 = \/vs/vVs+1 and a = /vs_1/vs with s running over frequencies (from higher to lower frequency). Note that since
EMD is a dyadic filter (each lower frequency is a half of the previous one; e.g., Flandrin et al. 2004; Rehman and Mandic
2011) both « and 3 typically take a value of /2 (consistent with, e.g., Kolotkov, D. Y. et al. 2016). Note-that However, when

mode-mixing is present (e.g., in-this-study-here it is generally present at higher frequeneiesand lower frequencies of IMFs
from MEMD analysis) this is not necessarily true, hence the use of o and 3 in Eq. (BS). Finally, Zr=7E"? for every s IMF
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(i.e.. £7°%) must be scaled such that its total energy is the same as the total energy of our data (e.g., Madden and Julian 1971;
Bretherton et al. 1999)

Smaz—1
max ES
E;ed _ E;"ed ZS:Q (B9)

where 5,4, is the number of IMFs (as above), and s represents the s* IMF of frequency v, and E, was defined above (Eq.
(B1)). Note that we scale E7°? from total energies of IMFs between s = 2 and s = $,,,4 — 1 as the last IMF is typically a
trend/residual and the first IMF does not necessarily follow the distribution correctly (but including the two usually does not
significantly alter the results). E7°? is shown in Fig. 2B1b as red solid line.

This red noise test is typically used in climate science to determine the significance of power spectra peaks in our data
(using S(v) from Eq. (B7)), and it differs from the red noise test of Kolotkov, D. Y. et al. (2016) as it takes into consideration
the lag-1 auto-correlation of the data. If the cosine function in the S(v) (Eq. (B7)) is expanded into Taylor series (cos2mv =
1—(27v)?/2+ ..) one can realise that for large v (high frequencies) S(v) indeed reduces to the spectrum v 2 (with 7 a
constant) suggested by Kolotkov, D. Y. et al. (2016); Franzke (2009). However, for low frequencies (small v) they do not
agree well and ultimately S(v) also becomes a constant (see Fig. B2 for comparison). Furthermore, as S(v) depends on lag-1
auto-correlation (1) we can see from Eq. (B7) that for » = 0, S(v) = 1, i.e., it reduces to the power spectrum of the white noise.
This means that this theoretical test can potentially be used for testing the significance of the data that corresponds to either
white or red noise.

The significance of the IMFs from the input data is tested using x2-test, where 5" IMF’s x? value for the (one-tailed) 95"
percentile is computed from DoF; = L.f ¢ F degrees of freedom (instead of £4F5-L; I/, as was the case for white noise, due
to strong correlations between neighbouring data-points; Bretherton et al. 1999; Wu and Huang 2004; Kolotkov, D. Y. et al.
2016), where (Bretherton-et-al;1999)-

1—7?

Tl (B10)

Lepy =

Then we multiply the expected red noise curve E7° by y2/DoF; (e.g., Madden and Julian 1971; Bretherton et al. 1999) to
ultimately obtain a threshold for 95th percentile (red dotted line in Fig. 2B1b). Note that for DoFy < 1 we set DoFy =1 (to
avoid numerical issues). The IMFs derived from the data (blue dots in Fig. 2B1b) that exceed the red noise threshold (i.e., lie

above the red/pink dotted line in Fig. 2B 1b) are considered significant at 95

percentile (one-tailed).

Fig. 2B1b shows that the two (synthetic and theoretical) red noise tests (for Nifio3 index via EMD) are somewhat comparable
and that the majority of the input (e.g., Nifio3 index) data (blue dots) lies within the red noise range (i.e., within the pink-dots,
and below the pink/red dotted line). However, we can identify one IMF (period ~31 months or ~2.5 years) that is above the
red noise threshold and well within the typical ENSO timescale (2-8 years), suggesting quasi-periodic behaviour (oscillations).

Similarly, we can 1
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Nete) index (see the main text). Note, however, that we do not necessarily expect exactly the same results from EMD
(Fig. 2B1b) and MEMD (Fig. 2¢) methods since the MEMD finds a “synchronised” signal within the tropical Pacific and
across different variables, whereas EMD only analyses the 1-D Nifio3 timeseries. This is also true for the number of IMFs
obtained via the two different methods. MEMD yields significantly more IMFs as EMD (22-21 versus 10), which is likely a
result of inputting several different timeseries with different timescales, especially in the high-frequeney-range-here-high- and
low-frequency range (i.e., periods shorter than about 8 months }and longer than about 700 months).

Alternatively, one can also compute significant modes by computing red noise test at each grid-point and then average the
results over all grid-points, but we have not used this here. Instead, we use an additional test on map-plots in section 3 (Fig.

in supplement), where we identify potentially “oscillatory” grid points and use grey shading on areas that are well represented
with red noise alone (i.e., not significant).
NeonethelessDespite some differences between the MEMD and EMD modes of variability (primarily due to different input

timeseries), the two methods agree on the quasi-periodic timescale of 2-3 years in the Nifio3 region. This is also consistent
with the significant periods inferred from the usual 1-D wavelet transform (not shown) and the power spectrum analysis of the
Nifio3 index (1-D) obtained via Fourier Transform (Fig. B3:-). The latter confirms that 2-3 year timescale is quasi-periodic as
there is a significant peak in the power spectrum of the Nifio3 index on those timescales, i.e., black solid line {pewerspeetrum
ofin Fig. B3 (Nifio3 index) is above the red dashed line (red noise one-tailed 95% threshold));-as-wel-as—viaa+-D-wavelet
transform-(not-showm—,
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Hovmoller of Tropical Pacific SST from significant IMFs
(a) IMF11 (b) IMF12 () IMF11 +IMF12 (d) HadISST
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Figure 4. Time-longitude Hovmoller diagram of tropical Pacific SST anomalies (in K) averaged between 5°S and 5°N from (a) IMF11, (b

IMF12, (c) IMF11 + IMF12, and (d) 1-year low-passed (via 5th order Butterworth filter) SST data. Black arrows help visualise the direction

of propagation of SST anomalies in some periods (other periods are more stationary). We show the time period around year 1970 (1950-2000
d).

where a change in propagation direction has been identified in previous work. Note that colourscale in (a)-(b) is smaller than in (c)-
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Figure 5. Latitude-longitude phase composite (phases 0 to 11 as labelled) of IMFEI3IMF12: shading for SSTsSST, contours for thermocline
depth (contour interval is the same as in the colourbar with solid contours representing positive values, and dashed contours represent negative
values), and arrows for 7, (the scale is shown in the bottom left corner of panels for phases 10,11). All data is standardised and all fields

were composited based on the phase of the eastern Pacific SST (Nifio3) index.
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(a) Phase composite, standardised data (b) Phase composite, band pass data
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Figure 6. Phase composites of eastern Pacific SST (Nifio3) (black solid line), off-equatorial western Pacific isotherm/thermocline depth
(Nifio6) (black dashed line), Pacific mean isotherm/thermocline depth (across-tropicat-Pactfie)-tblue dotted line), central Pacific 7, (Nifio4)
(grey dashed line), western Pacific 7. (Nifio5) (grey solid line). All fields are composited over the phases of eastern Pacific SST (Nifio3), such
that they fit the phases in Fig. 5. (a) composites of B?MF13-IMF12 for data divided by the standard deviation of corresponding timeseries (e.g.,
BMF3-IMF12 (thermocline)/o (thermocline)); (b) composites of band-pass filtered (25-52:5-29-53 months) standardised timeseries; (c) as
in (a) but IMF-timeseries are divided by IMF’s standard deviation (e.g., ?MF+3-IMF12 (thermocline)/o (vF+3-IMF12 of thermocline));<d)
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(a) Phase composite, high pass data (b) Phase composite, low pass data
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Figure 8. As in Fig. 6b, but for (a) higher frequency (band-pass filter over 12-19 months) data and (b) lower frequency (band-pass filter over

42-135 months) data, Note that higher and lower frequency timescale bands were chosen based on timescale ranges of 10" and 13*"-14*"

IMFs, i.e., the IMFs with slightly smaller or larger (respectively) timescales than IMF11, IMF12.
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Figure B1. Significance tests for EMD modes:

a) EMD Nino3 and white noise test
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a) white noise significance test and (b) red noise significance test for EMD-IMFs of Nino3

whereas grey solid and dotted lines represent their mean and the 595" percentile, respectively. (b) Red solid line represents the theoretical
red spectrum energy density (Egs. (B7-B9)), red dotted line represents the 95" percentile (via y2-test); light pink dots represent I = L,

realisations of IMFs of red noise timeseries (Eq. B6; length L, is the same as for Nifio3 index), whereas pink solid and dotted lines represent

their mean and the 95" ercentile, respectively. Note that x-axis shows the logarithms of period (log (7)) ordered from shortest period
highest frequency) to longest period (trend). For further descriptions of the figure see text.
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Red noise power spectrum
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Figure B2. Red noise for (black line) S(v)=~r~2 i ; . (B7) for r=0.9.

was estimated as a ratio between the integrated power spectra of the two spectra for frequencies higher than 0.02/month

= v 2 S(v,r)) where the two power spectra generally agree well.
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and then averaged over all cases (grey solid line). The black solid line represents a 10-point running mean of the black dotted line (to increase

the number of degrees of freedom, which is foF/0-5Eemmr=10-<1686/256-~-67

et al. 2021). The red solid and dashed lines represent the theoretical red noise test and its (one-tailed) 95" percentile, respectively.
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=10 x 1680/250 = 67; see also Boljka
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Figure S1. Power spectra of (a) IME+2-IMF11 and (b) BMF3-fromreanalysisfobservationat-datalME12, their eastern Pacific SST (Nifio3

index. Black dotted lines represent raw power spectra of IMFs, black solid line is 10-point smoothing of the raw power spectra, and red
dashed lines represent averaged-average frequencies of BMF+2-IMF11 and BMFE13-IMF12 (as labelled) — for values see the main text or

Table S1 (second column).
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Figure S2. As Fig. 2 in the main text but for BMF12IMFs of PC1 of the combined field (via MEMD; blue dots) instead of eastern Pacific
SST (Nifo3) index.
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(a) Phase composite, standardised data (b) Phase composite, band pass data
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Figure S6. Timeseries of eastern Pacific SST (Nine3Nifo3) from input data (top left panel) and IMFs as inferred via MEMD analysis for
the same variable (see other panels as labelled). For clarity only values between 1965 and 2010 are shown. Note that amplitudes of different

modes vary, i.e., y-axis is not the same in all panels. For characteristic periods of IMFs see Table S1 (second column).
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Figure S7. As Fig. S6 but for central Pacific 7, (Nine4Nifio4). For characteristic periods of IMFs see Table S1 (third column).
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Figure S8. As Fig. S6 but for western Pacific 7., (NineSNifo5). For characteristic periods of IMFs see Table S1 (fourth column).
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Figure S9. As Fig. S6 but for western Pacific off-equatorial thermocline depth (Nire6Nifio6). For characteristic periods of IMFs see Table
S1 (fifth column).
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Figure S10. As Fig. S6 but for thermeeline-depth(Pacific mean ythermocline depth. For characteristic periods of IMFs see Table S1 (right

column).
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S.2 Supplementary Tables

’ H SSFNine3Nifo3 SST Nifod 7, Nined)- | Niflo5 7, (Ninre5)y- | thermeetine-depth-(Nino6)Nifo6 thermocline depth thermeeline-depth

IMFI 2.9 2.9 2.9 2.9
IMF2 3.1 3432 3.0 3432
IMF3 3.2 3.2 3233 3233
IMF4 3638 3537 3638 363.7
IMF5 4443 442 443 4643
IMF6 4452 4552 4552 4552
IMF7 5463 5463 5464 5464
IMF8 6475 6575 6775 6675
IMF9 7998 8610 8498 8210
IMF10 1015 1015 9914 1014
IMF11 23 423 424 424
IMF12 2239 2239 2+37 2237
IMF13 3458 3556 3554 3554
IMF14 6589 6285 66-90 5890
IMFI15 89-141 95152 9152 95152
IMF16 +4206_ +HH274 456239 +53239
IMF17 277370 274358 333336 286336
IMFI8 423590 448624 398582 469582
IMF19 62713 6481120 F44879 858879
IMF20 9641965 +049-1988 10081844 8861845
IMF21 H312013 15872013 1740-1764_ 1754-1764
B L A

Table S1. Characteristic timescales of all IMFs for eastern Pacific SST (Nine3Nifo3), central Pacific 7. (Nine4Nifo4), western Pacific
T (Nire3Nifo5), western Pacific off-equatorial thermocline depth (Nine6Nifio6), thermoetine-depth-(Pacific mean jthermocline depth. All

values are given as approximate average periods in months. For corresponding timeseries of each variable’s IMFs see Figs. S6-S10. Note
that BMF22-IMF21 is a trend by definition and similarly BF+9-BVME2+IMF18-IMF20 have long timescale, thus periods of these IMFs are

harder to establish using Hilbert transform (text below Eq. B4).
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S.3 Simple Example for MEMD

—As an example, we describe how
MEMD works on a few simple periodic timeseries. We define four timeseries that have a shared angular frequency of 7 /2 with
other harmonics or phase shifts added on top. We input these timeseries into the MEMD and expect the MEMD to isolate the

shared mode with angular frequency of 7 /2 in all four timeseries, i.c., find the synchronised signal within the timeseries. We

also expect MEMD to find other harmonics in the timeseries.

To do this, we construct 4-the four timeseries as follows
Xinp = Sin <7T2t> (S.1)
Yinp = sin (7;15) + sin (272Tt> + sin <427rt> (S.2)
Zinp = Sin (7;t> + sin (32“) (8.3)

t
Winp = sin (” + ”) (84)

2 2

where ¢ is time and X;pp, Yinp» Zinp> Winp are timeseries with a common periodic signal sin (7t/2) and a few additional timescales
or phase shifts. Thus, wi,, is the same as Xj,p but 90-degrees phase shifted, whereas Yinp and z;,, have additional timesecales
that are double, tripple or quadruple of x;,,’s timescale. These four timeseries are-plotted-in-(Fig. S11¢, top left) and-are-then
are input into MEMD algorithm. The algorithm then returns 5 IMFs. IMF3 (Fig. S11, middle right) can be considered as the
goal of this data, i.e., identification of common timescales across the 4 different timeseries/datasets, i.e., angular frequency
7/2 (as mentioned above). The algorithm identifies the same mode in all four timeseries despite phase shifting or presence of
other timescales in these simple timeseries. Such a mode is robustly identified across different parameter sweeps of MEMD
(not shown). Thus, IMF3 can be considered here as equivalent of the ENSO’s LF/QQ mode that has been shown in the past to
exist across the tropical Pacific and a similar mode is identified again in the main text via MEMD as well.

IMFI (Fig. S11, top right) represents the fastest ‘waves’ (shortest period/timescale) that we can find in y;,, and ziyy, i.e.,
related to angular frequencies 37/2 and 47 /2. The latter two frequencies are identified by the MEMD as similar thus they
appear in the same IMF, although one could change the parameters of the MEMD algorithm to split the two modes into
separate IMFs. However, that can then lead to splitting up other modes as well (especially IMF2), leading to unrealistic results
(i.e., mode mixing; not shown). IMF2 (Fig. S11, middle left) shows intermediate angular frequency present in y;,,, i.e., 27 /2,
but this IMF’s output is not perfect, resulting in varying amplitudes of the wave throughout the analysis period, and thus IMF4
and IMF5 (bottom panels in Fig. S11) then compensate for the loss of amplitude in IMF2 in this case. Note that a longer
timeseries somewhat helps mitigating this issue as any timeseries analysis tool has issues at the edges of the data and thus
only data sufficiently far from the edges should be considered in analysis (there amplitude can be somewhat stable in IMF2).
This means that longer datasets are preferred for MEMD analysis to ensure stability. Also, IMF4 and IMF5 should technically

be zero (given the chosen input timeseries), but due to edge effects and other issues with (M)EMD method (see main text for
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details) they are still present though their amplitudes are small. This suggests that IMFs of the longest periods can sometimes
35 Dbe rather artificial constructs of the data and should be treated with caution especially when the trend of the data is essentially
zero (as here or in the main text where trend has been removed prior to MEMD analysis).

This example only shows that signals that are well synchronized across timeseries will show up clearly in MEMD analysis,
however other signals that exist in, e.g., only one mode (e.g., ¥inp’s 27/2 wave) can be problematic as the method may
struggle with keeping zeros in other timeseries (see IMF2). Then, leaking can occur both within, e.g., IMF2 and into other

40 modes, causing mode-mixing again (like here IMF2 leaks into IMF4,5, especially at the edges). Similar issues can exist with

trends as shown here. Thus, caution and verification with other methods is advised when using MEMD.

Input o

0.10

0.05 1
IMF4
0.00

—0.05 A

Figure S11. MEMD analysis of simple timeseries (Egs. S.1-S.4). Top left panel shows input timeseries and the rest of the panels show the
five IMFs that MEMD produces. IMF5 typically represents the trend of the data. See text for more details. Note that amplitudes of IMF4,5

are smaller than for IMF1,2,3 (i.e., y-axes are not the same across panels).
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