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Abstract. Here we study
:::::
present

::
a
::::
pilot

:::::
study

::
of the sensitivity of summer monsoon precipitation in the Yangtze River Valley

(YRV, 110–122° E and 27–33° N, East China) to climatic boundary conditions from the last glacial maximum (LGM), pre-

industrial conditions, and the RCP6.0 emission scenario based on
::::::::::::
Representative

::::::::::::
Concentration

:::::::
Pathway

::
6
::::::::
emission

:::::::
scenario

::::
from two different climate models. Using a quantitative Lagrangian moisture source diagnostic based on backward trajectories,

we are able to interpret changes in precipitation amount and seasonality in terms of processes at the source regions and during5

transport that contribute to YRV precipitation. Thereby, we gain insight into influential processes and characteristics related to

precipitation variability and the sensitivity of the summer monsoon hydroclimate in East Asia to boundary condition changes

in models. Comparing 10-year time slices similar to present-day conditions from the NorESM1-M and CAM5.1 models to

ERA-Interim reanalysis data reveals overall similar moisture source regions, albeit with a tendency to more local precipitation

origin in the climate models. The general characteristics of the moisture sources and moisture transport to the YRV are rela-10

tively stable across different climate forcings, both concerning the mean location of source regions, transport distance, and the

relative contributions of moisture from land and ocean areas. Changes regarding regional precipitation contributions from the

East Asian continent indicate that precipitation recycling responds to different climate forcings. These findings indicate
:::
We

:::::::
interpret

:::::
these

:::::::
findings

::::
such

:
that models to first order respond with a scaling rather than reorganisation of the hydroclimate

to climatic forcing, while land-atmosphere interactions play an important
:
,
:::
but secondary role. If

::
the

::::::
model

::::::::::
simulations

:::
are15

accurate, the moisture source regions, and thus the general processes of precipitation in the YRV could remain relatively stable

across different climatic conditions
:::::::
climates. However, some differences in moisture source conditions are larger between the

different climate models than between different climatic boundary conditions in the same model. It may therefore be pos-

sible that current climate models underestimate the potential for non-linear responses to changing boundary conditions, for

example due to precipitation recycling. Our findings thereby underline
:::::
Albeit

::::::
limited

:::
by

:::
the

::::::::
relatively

::::
short

::::::::
analysis

::::::
period,20

:::
our

:::::::
findings

::::::::::
demonstrate

:
that the diagnosis of moisture sources provides a useful additional perspective for understanding

and quantifying precipitation mechanisms and the hydroclimate simulated by models, and enables more detailed evaluation of

model simulations, for example using paleoclimate records.
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1 Introduction

Climate variations on inter-annual to millennial time scales are intimately linked to hydroclimate variability. Hydroclimate25

variability in the East Asian summer monsoon (EASM) region is of particularly wide
:::::::
particular

:
relevance, as changes in this

region can have important consequences for other parts of Earth’s climate. Furthermore, the livelihood of a large population

is adapted on the present climatic conditions in this region (Zong and Chen, 2000). In light of such relevance of monsoonal

variability, paleoclimate
::::::::::
Paleoclimate

:
archives in East Asia have been pivotal for the general understanding of monsoon sys-

tems, and their variability on long time scales (Thompson et al., 2000; Wang et al., 2001; Dykoski et al., 2005; Hu et al.,30

2008; Wang et al., 2017). Stable
:::
For

::::::::
example,

:::::
stable

:
isotope parameters, such as δ18O

::::
δ18O

:
in carbonates, ice cores, and tree

rings have commonly been
:::
are

:::::::::
commonly interpreted as monsoon strength or monsoon precipitation intensity, thus reflecting

regional precipitation amount (Wang et al., 2001).

However, some studies show that the isotopic information stored in these records may at times be influenced or even dom-

inated by other effects, such as circulation-induced moisture source changes (Maher and Thompson, 2012). Changes in land35

surface parameters are a further factor that has not yet been thoroughly explored, but could potentially play an important role

(Fremme and Sodemann, 2019). Adopting a moisture source perspective has been shown to be potentially valuable for inter-

preting the paleoclimate information contained in stable water isotopes from different archives in the East Asian Monsoon

region using reanalysis data (Liu et al., 2014; Baker et al., 2015). Insight into what consequences model-simulated hydrocli-

mate variability for different climates has with regard to moisture source changes, and thus both evaporation conditions and40

atmospheric transport conditions, could therefore be also be highly beneficial for the interpretation of paleoclimate records, and

provide ground truth for model-simulated hydroclimate, and enable more reliable future projections. However, the complex

interaction of land , ocean, topography, and
:::
and

::::::
ocean,

:::
the

:::::::::
orography,

::::
and

::
the

:
atmospheric dynamics in this region render the

identification of mechanisms that underly precipitation changes challenging. Here, we apply a robust diagnostic for precipi-

tation sources and transport based on backward trajectories, which has so far only been used with reanalysis data, to general45

circulation model (GCM) output. Our aim is to understand which mechanisms impact simulated hydroclimate variability in the

EASM region across different climatic conditions,
::::::::::
specifically

::
in

:::
the

:::::::
Yangtze

:::::
River

:::::
Valley

::::::
(YRV).

Simulating the hydroclimate in the global monsoon regions has been notoriously challenging, both for past and present

climates. In addition to variability on different time scales, climate models struggle to reproduce the spatial details of precip-

itation and other relevant variables (Braconnot et al., 2012). For example, a weaker meridional temperature gradient in the50

troposphere, arising from the differential heating over the Tibetan Himalayas and the Indian Ocean, leads in many models to a

later onset and weaker monsoon circulation with less precipitation (Ashfaq et al., 2017). A major reason for model deficiencies

clearly lies in the limited horizontal resolution in common GCMs, which requires a large share of processes to be handled

by sub-grid scale parameterisations. Furthermore
::
At

:::::
these

::::
grid

:::::
scales, the complex interplay of physical and dynamical factors

is often represented poorly, including convection, low-level jets, topography
::::::::
orography, and land-surface processes (Webster55

et al., 1998; Hoyos and Webster, 2007; Seo et al., 2013). Hydroclimate variability may be particularly sensitive to such interplay

of different factors, as the atmospheric water cycle is
::
for

:::::::
example

:
connected to the land and ocean surface by surface fluxes

2



and precipitation, involving for example precipitation recycling (Fremme and Sodemann, 2019; Gimeno et al., 2021). Since

water vapour is a central feedback mechanism of the climate system, better understanding of the interplay between different

mechanisms
::
in a model’s hydroclimate also benefits further GCM development.60

Small-scale variability of precipitation in space and time, both in observations and simulations, renders precipitation a

particularly challenging variable for studying processes contributing to hydroclimate variability. While precipitation is a key

target variable of climate models, its representation in the grid-scale microphysics and in moist convection parameterisations

differ markedly between models. In this context, more robust means for hydroclimate evaluation than simulated precipitation

can be
:
a
:
valuable asset in evaluation studies. For example, the horizontal moisture flux, expressed as integrated vapour transport,65

has been shown to more reliably predict extreme precipitation than simulated precipitation itself (Lavers and Villarini, 2013).

Horizontal moisture flux and integrated vapour transport can effectively map moisture transport. However, the evaporation

sources corresponding to precipitation, often referred to as the moisture sources, are most readily obtained from Lagrangian

backward trajectory calculations (Stohl et al., 2008; Sodemann et al., 2008; Bohlinger et al., 2017; Fremme and Sodemann,

2019). We hypothesize that by combining diagnosed moisture sources from Lagrangian methods with model precipitation70

allows to identify causes for hydroclimatic variability more readily than precipitation alone.

Previous studies that investigated the contribution for land and ocean areas as moisture sources to the EASM region from

reanalyses differ markedly in their results. The most important oceanic source regions appear to be the Arabian Sea, the Bay of

Bengal, the South China Sea, and the Western Pacific (Wei et al., 2012; Wang et al., 2018), with southwesterly moisture trans-

port providing a large fraction of the water vapour for the East Asian monsoon. While some authors emphasise the importance75

of oceanic regions over land areas ((Zhou and Yu, 2005; Chen et al., 2013))
:::::::::::::::::::::::::::::::
(Zhou and Yu, 2005; Chen et al., 2013), several au-

thors also have identified that land areas contribute substantial amounts (Wei et al., 2012; Sun and Wang, 2015). It appears that

quantification of contributions from different source areas is strongly influenced by the respective methods. In a study based

on ERA-Interim reanalysis data, Fremme and Sodemann (2019) analysed the processes leading to seasonal and inter-annual

variability of the Yangtze River Valley (YRV )
:::::
YRV precipitation variability using a Lagrangian moisture source and transport80

diagnostic that determines source regions without the need to pre-specify the atmospheric lifetime of water vapour (Sodemann,

2020). Based on the quantification of moisture sources for the period 1980–2016, the study of Fremme and Sodemann (2019)

revealed a major role of land surface processes, leading to several cycles of precipitation recycling for 50-65 % of the rainfall in

the YRV. Since previous studies mapping the moisture sources for precipitation in East China only covered present-day periods

from reanalyses, moisture source changes across different climates, and in particular the respective role of land contributions,85

have so far not been assessed with such a method.

Here we use the Lagrangian moisture source diagnostic of Sodemann et al. (2008) to obtain the moisture sources of the YRV

as a core region of the East Asian monsoon system using simulations from two climate models for different climatic periods.

In this pilot study, we use the moisture diagnostic for the first time with free-running model simulations, thereby avoiding the

influence from data assimilation present in reanalysis data. To this end, we first assess how different climate models transport90

moisture to the YRV during the monsoon season in a present-day climate, using results obtained previously from reanalyses

as a reference (Fremme and Sodemann, 2019). From simulations with different climatic boundary conditions, we then identify
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how models represent hydroclimate variability during the simulated East Asian Summer monsoon to orbital forcing and ice-

sheet topography from analysing time slices of an uncoupled simulation of the last glacial maximum (LGM). Furthermore,

the changes of the monsoon system in a future climate scenario with increased atmospheric CO2 concentrations are assessed95

in a coupled model run for a time slice near end of the 21st century. Based on our findings, we then discuss in particular the

role of land-surface processes, and conclude with remarks on the potential of a moisture source perspective for understanding

hydroclimate variability, and for interpreting paleoclimate records from the East-Asian monsoon region, and future model

studies.

2 Methods and Data100

The aim of our study is to investigate the response of the hydroclimate to different climate model configurations for the East

Asian monsoon from a moisture source perspective. As in the study of Fremme and Sodemann (2019), we use the YRV as

a focus region, defined here as the lower reaches of the Yangtze River 110–122° E and 27–33° N, East China. We apply the

widely used quantitative Lagrangian moisture source and transport diagnostic by Sodemann et al. (2008) based on FLEXPART

(Flexible Particle Transport Model, Stohl et al. (2005); Pisso et al. (2019)) backward air parcel trajectories to find the moisture105

sources of the YRV in different climate model simulations and time slices. We first describe the setup of the climate model

simulations, followed by an explanation of the trajectory calculation setup, and a description of the moisture source diagnostics

and with the parameter choises for the climate model data.

2.1 Climate model simulations

In total we analyse moisture transport and sources for the YRV in four climate model simulations, contributed by two different110

climate models (Fig. 1a, Table 1). The two models are the atmosphere-only Community Atmosphere Model CAM5.1 (Neale

et al., 2012), and the fully coupled ocean-atmosphere Norwegian Earth System Model (NorESM1-M; Bentsen et al., 2013).

For each model, we analyse a control simulation for present climate conditions to assess how precipitation is represented in

comparison to reanalysis data, and one simulation of a different climate (Fig. 1a). For the uncoupled, atmosphere-only simu-

lations with CAM5.1, we analyse a simulation of the preindustrial period (PIN) as reference, and then evaluate the sensitivity115

by comparing to a simulation of the Last Glacial Maximum (LGM) climate. For the coupled ocean-atmosphere simulations

with NorESM1-M, a time slice from a control run with present-day conditions (CTL) is used as reference, and time slice from

a transient simulation with the CMIP5 Representative Concentration Pathway (RCP) 6.0 emission scenario (RCP
:::::::
emission

:::::::
scenario

:::::::
reaching

:
a
::::::::

radiative
::::::
forcing

::
of

:::::
about

::
6
::
W

:::::
m−2

::
by

:::
the

:::
end

:::
of

:::
the

:::
21st

:::::::
century

::::::
(RCP6) allows to assess sensitivity to a

future climate.
:::
The

::::::
RCP6

:::::::
scenario

::
is

::
an

:::::::::::
intermediate

:::::::
emission

:::::::
scenario

:::
of

:::
the

::::::
CMIP5

:::
tier

::
1

:::::::
category,

:::::::::::::
supplementing

:::
the

::::
core120

:::::::
scenarios

:::::::
RCP4.5

::::
and

:::::::
RCP8.5

::::::::::::::::
(Taylor et al., 2012).

::::
We

:::::
make

:::
use

::
of

:::
this

::::
less

:::::::::
commonly

::::
used

::::::::
emission

:::::::
scenario

:::::
here,

::::
since

::
a

:::::::::::
NorESM1-M

:::::::::
simulation

::::
with

:::::::
3-hourly

::::::
output

::
of

::::::::::::
3-dimensional

::::::
model

:::::
fields

::::::
needed

:::
by

:::
the

::::::::
moisture

:::::
source

::::::::::
diagnostics

::::
was

:::::::
available

:::
for

::::
this

:::::
study.

::::::::::
Throughout

:::
the

::::::::::
manuscript,

:::
we

::::
refer

::::
here

::
to
:::

the
::::::::

emission
:::::::
scenario

:::::
itself

::
as

::::::
RCP6,

:::::
while

:::
we

:::::
refer

::
to

::
the

::::::::::::
NorESM1-M

:::::::::
simulation

::::
with

:::
the

:::::
RCP6

:::::::
emission

::::::::
scenario

:::
and

::::::::::::
corresponding

::::::
results

::
as

::::::
’RCP’.
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Figure 1. Overview of the study set-up. (a) Schematic for the comparison between the simulations with NorESM1-M (red) for near-present

(Control, CTL) and a future climate (Representative Concentration Pathway 6.0
:
6, RCP), with CAM5.1 (blue) for near-present (Pre-Industrial,

PIN) and a past climate (Last Glacial Maximum, LGM), and the reference present-day climate from ERA-Interim (ERAI, black). (b) Com-

pilation of surface air temperatures from all datasets for global mean (thick lines) and the Yangtze River Valley (thin lines). Global mean

and spread of surface air temperatures from the CMIP5 multi-model mean for RCP6 .0 from 1860 to 2075 (Taylor et al., 2012) are shown in

grey, and green line shows the mean for the YRV domain. The duration of simulations with CAM5.1 and NorESM1-M are shown with blue

and red thin lines on top. Thick blue lines show the years for which moisture sources have been analysed. Note the broken time axis between

1850 and 21 thousand years ago (21ka).

By comparing moisture source results from reanalysis
::::::::
reanalyses

:
with the near present-day simulations, and the near present-125

day with a different climate from the corresponding model, these four model simulations enable an assessment of how models

represent moisture source changes for changing climate conditions (Fig. 1a,
::::::::
horizontal arrows). For the calculation of trajecto-

ries and diagnosis of moisture sources, it was necessary to output and archive 3-dimensional model fields of wind, temperature

and humidity were required at a 3-hour time interval (Cassiani et al., 2016). This requirement poses severe limitations on the

duration and number of climate simulations that can be performed and archived over longer time for such analyses.
:
In

::::
this

::::
pilot130

:::::
study,

:::
we

:::
use

::::::
10-year

::::
time

:::::
slices

:::
for

:::
the

::::::::
trajectory

::::::::::
calculation

:::
and

:::::::
analysis.

:
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The two atmosphere-only CAM5.1 simulations PIN and LGM were run with a resolution of 0.9×1.25°, with 30 vertical

levels, using the finite-volume dynamical core (Neale et al., 2012). Both simulations were run for 30 years each, starting after a

3-year spin-up period (Table 1). The PIN simulation used climatological SSTs and sea ice from the merged Hadley-NOAA/OI

Sea Surface Temperature and Sea-Ice Concentration dataset (Hurrell et al., 2013), averaged for the period of 1870–1899. Atmo-135

spheric carbon dioxide was prescribed at a mixing ratio 284.7 ppmv, and atmospheric methane at a mixing ratio of 791.6 ppbv.

The LGM simulation used the topography and ice sheets specified as in PMIP3 (Braconnot et al., 2012; Abe-Ouchi et al., 2015)

and CMIP5 (Taylor et al., 2012) experiments for 21 kya. LGM SSTs and sea ice climatology were obtained from 21 kya simu-

lations performed at NCAR for the LGM (https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.b40.lgm21ka.1deg.003M.

html). Sea level was kept at PIN conditions during the LGM simulations, potentially introducing unrealistic land-atmosphere140

interaction in the region of the Maritime continent and Western Pacific Warm Pool region. Mixing ratios of atmospheric green-

house gases were 185 ppmv for CO2, and 185 ppmv for methane during the LGM simulation. In the YRV region, temperatures

are simulated to be on average 13.0 ◦C, which is 4.8K warmer than the global average of 8.2 ◦C (Fig. 1b, thick and thin blue

lines). This global average LGM temperature change is larger than estimates from reconstructions (4.0K, Annan and Harg-

reaves, 2013). During PIN, in comparison, the global mean surface air temperature is 13.4 ◦C, which is 3.6K colder than in the145

YRV (17.0 ◦C). The changes between LGM and PIN detected here for surface air temperature and precipitation are comparable

to those in the PMIP3 simulations conducted as part of CMIP5 (Harrison et al., 2014). We also note an increase in zonal wind

speed of about 1 m
::
ms−1 across a broad band from northern India to the Phillipines in the LGM (Appendix A).

The coupled NorESM1-M simulations CTL and RCP had a horizontal resolution of 1.88°×2.50° with 26 vertical levels, and

were run as a continuous simulation for a 80-year period from 1990-2070 (Table 1). NorESM1-M is based on CCSM version 4150

(Gent et al., 2011), with the atmospheric component being CAM4-Oslo (Kirkevåg et al., 2013) and the CLM4 land component

(Lawrence et al., 2011). In these simulations, greenhouse gases (CO2,CH4,N2O,CFC-11 and CFC-12), volcanic SO4, total

solar irrandiance and the ozone distribution were prescribed for the historical period (Lamarque et al., 2010), and simulated

from 2005 onwards (Stohl et al., 2015). The climate simulations with NorESM1-M are separated into a control simulation

(CTL) for present-day, and a future climate simulation (RCP). For the observational period, the CTL model simulations are155

substantially colder than ERA-Interim (14.4 ◦C globally, and 16.8 in the YRV). The global average surface air temperature

between CTL and RCP increase by 0.7K for the RCP6 .0 scenario, from 13.7 to 14.5 ◦C. NorESM1-M is thereby near the

lower end of the range of climate model simulations contributed to CMIP5 (Fig. 1b, grey shading). In the YRV region, the

temperature difference between CTL and RCP is 1.1K. Notably, during CTL, the YRV region is only 2.1K warmer than the

global average, and 2.4K during RCP, in close agreement with the CMIP5 mean (Fig. 1b, green line).160

A general cold bias over land in NorESM1-M has been documented earlier (Seland et al. (2020), their Fig. 14), and .
::::::
While

::
the

:::::::
ultimate

::::::
reason

:::::::
remains

::::::::
unknown,

:::
this

::::
cold

::::
bias could be related to aerosol properties; the ultimate reason remains however

unknown. Clearly, some differences
:::::::
between

::::::::::
simulations

:::
and

:::::::::
reanalyses

:
are always expected, as denoted

::::::::
illustrated

:
by the

spread of the CMIP5 models, and
:::::
which

:
may be due to differences in the boundary conditions, model resolution, atmospheric

dynamics, physics parameterisations, and ocean model. We will return to some of the differences noted here when discussing165

the moisture source results.
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2.2 Setup for moisture source analysis

The moisture sources for each climate model simulation were identified using the Lagrangian moisture source diagnostic

WaterSip (Sodemann et al., 2008). The diagnostic identifies the evaporation sources and transport pathways of precipitation

falling in a target domain from specific humidity changes along backward trajectories. A particular advantage of this offline170

method is that it can be applied to meteorological fields and trajectories from different sources. Here, we calculated a large

number of air parcel backward trajectories using FLEXPART-NorESM/CAM (V1) (Cassiani et al., 2016) for the 3-hourly

model level output from the climate models NorESM1-M and CAM5.1. This
::::
pilot

:::::
study is the first use of the moisture source

diagnostic with climate model output data.

By means of the so-called domain-filling mode, FLEXPART constantly released new particles in proportion to the mass175

flux into the domain. For the FLEXPART setup, the initial 50’000 air parcels of equal mass (∼4.54×1011 kg per parcel)

in PIN and LGM, and 25’000 air parcels of equal mass (∼1.15×1012 kg per parcel) in CTL and RCP were initiated in the

atmosphere over the YRV region (108–124° E and 25–35° N). Using 3-hourly, three-dimensional wind fields from the climate

models, FLEXPART-NorESM/CAM then calculated air parcel movements backward for at least 16 days, starting from the

YRV domain defined above. A sensitivity study revealed only very minor differences between the results using 25’000 or180

50’000 air parcel trajectories (not shown). Running for one time slice at a time, the FLEXPART model then stored air parcel

trajectories including their horizontal and vertical position, air temperature, specific humidity, and surface characteristics at the

position of each air parcel at a 3-hour time interval for processing with the moisture source diagnostic WaterSip (Sec. 2.3).

Due to the substantial computational requirements regarding the post-processing for moisture source identification and

storage constraints, the trajectory calculation
::::::::::
calculations covered 10-year time slices for each climate model simulation (Table185

1). For PIN and LGM, the 10-year periods were chosen such that the YRV precipitation mean was similar to that of the full

simulation period. Due to the climatological SST forcing, the PIN and LGM simulations are not affected by ocean-induced

inter-annual variability. The time slice from both the PIN and LGM simulation thus covered the model simulation years 0010–

0019. For CTL, the latest 10-year period overlapping with the ERA-Interim period was chosen (1996-2005). Since this included

the strong El Niño/La Niña event of 1997/98, we compared the results with and without including the years 1997 and 1998190

in the analysis. If was found that the differences with and without the 1997/98 years were substantially smaller than the MJJ-

mean standard deviation. As the analysis leads to the same results in both cases, we decided to include the years 1997/1998.

For the RCP time slice, we chose the 10-year period at the end of the future climate simulation (2061–2070).
::::::::::
Nonetheless,

:::
the

::::::::
reliability

::
of

:::
our

::::::
results

::::
from

::::
this

::::
pilot

:::::
study

::
is

::::::
limited

:::
due

::
to

:::
the

::::::::
relatively

:::::
short

:::::::
analysis

:::::::
periods,

::
in

::::::::
particular

::::
with

::::::
regard

::
to

::::::
impacts

:::::
from

::::::
climate

:::::::::
variability.

::::::
Future

::::::::::::
climatological

::::::
studies

::::::
should

:::
aim

::
to

:::::::
perform

:::
the

::::::::
moisture

:::::
source

::::::::::
diagnostics

::::
over

:::
the195

::::::::::
conventional

:::::::
duration

:::
of

::
30

:::::
years.

:

2.3 Parameters for moisture source diagnostics

Next, the moisture source diagnostic WaterSip was used to evaluate the trajectories corresponding to each individual precipi-

tation event in the YRV domain (for technical reasons here expanded to 110–122° E and 27–33° N). Evaluating each air parcel
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trajectory backward in time, specific humidity changes along the way provide an estimate of either a contribution of water200

vapour from surface evaporation to the air parcel, or the loss of water vapour due to precipitation along the way (Sodemann

et al., 2008). Thereby, either evaporation or precipitation is assumed to dominate within a given time interval. Importantly,

the contribution of surface evaporation at each moisture source is quantified relative to the water vapour already contained

within an air parcel at a given time. Assuming well-mixed conditions within the air parcel (
::
but

:
not within the column), all

water vapour in the air parcel contributes to precipitation according to their relative share
::
the

:::::::
relative

:::::
share

::
of

:::
the

::::::::
moisture205

::::::
sources. Finally, the contribution of each individual source to total precipitation in the YRV is found from the precipitation

amount-weighted integral of all trajectories within a given time interval. In addition to the sources’ location, characteris-

tics of the moisture sources and transport are identified, such as the moisture source distance, temperature, or surface type

(see Sodemann et al., 2008; Fremme and Sodemann, 2019, for further details)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for further details see Sodemann et al., 2008; Fremme and Sodemann, 2019).

A particular advantage of the WaterSip method is that there is no need to pre-specify the life time of water vapour (Sodemann,210

2020; Gimeno et al., 2021).

The WaterSip diagnostic has here been adapted to the target region and climate model input data used here by evaluating and

adjusting several threshold parameters. Sensitivity to different time step lengths and thresholds for specific humidity changes

(∆qc) and relative humidity (RHc) was assessed in detail for a sub-set of the data (Appendix B). Based on these sensitivity

tests, the threshold for identifying significant changes in specific humidity per time step (∆qc) was set to 0.1 g kg−1 at a 6 h−1215

time step. Precipitating trajectories in the target region were identified from a relative humidity threshold (RHc >80%).

We diagnosed the moisture transport for 15 days along each trajectory. No distinction has been made between moisture

sources identified in the boundary layer or within the free troposphere for this study. On average, the combination of parameter

choices allows the WaterSip diagnostic tool to assign moisture sources to about 95–98% of the precipitation estimated by the

WaterSip diagnostic. This percentage is larger than usually obtained with trajectories from reanalysis data, possibly because220

there are no inconsistencies introduced from data assimilation in the free-running climate simulations.

Table 1. Characteristics of the four climate model simulations with CAM5.1 and NorESM1-M, and the ERA-Interim reference dataset.

Name Description Model Grid resolution Levels Configuration Years analysed

LGM Last Glacial Maximum CAM5.1 1.25×0.94 30 prescribed ocean 0010–0019*

PIN Pre-Industrial (Control) CAM5.1 1.25×0.94 30 prescribed ocean 0010–0019*

CTL Historical Control NorESM1-M 2.50×1.88 26 fully coupled 2001–2010

RCP IPCC RCP6 scenario NorESM1-M 2.50×1.88 26 fully coupled 2061–2070

ERAI ERA-Interim reference IFS T255 (interpolated to 1.0×1.0) 61 prescribed ocean 1980–2016

*Model years.
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2.4 Reference analysis

Since each climate model may have its own, model-specific representation of the hydrological cycle, we evaluate their perfor-

mance using data from the European Centre for Medium-range Weather Forecast’s (ECMWF) ERA-Interim reanalysis (Dee

et al., 2011) as a reference (Table 1). Several studies have shown that the ERA-Interim reanalysis provides a realistic represen-225

tation of the climatic conditions in the YRV region (Lin et al., 2014; Huang et al., 2016).

We furthermore compare moisture sources
::::::::
identified from the climate models to the results of Fremme and Sodemann (2019)

:::::::
moisture

::::::
sources

::::
from

:::::::::
reanalysis

::::
data. Fremme and Sodemann (2019) analysed YRV moisture sources based on ERA-Interim data and

the WaterSip diagnostic from a global trajectory dataset (Läderach and Sodemann (2016)), spanning the period 1980–2016

(ERAI; Table 1). The WaterSip parameters for the reanalysis climatology were the same as used here for the climate model230

simulations. In the reference analysis, 95% of the estimated precipitation could be attributed to corresponding moisture sources.

3 Results

Now, we first evaluate the performance of the two climate models in representing East Asian Monsoon precipitation. To this

end, the near-present control simulations of CTL and PIN are compared to the reference climatology based on the ERA-Interim

reanalysis (Fig. 1a, vertical column and arrows). Then, precipitation in the paleo-simulation (LGM) and in the future scenario235

simulation (RCP) are compared to precipitation from the corresponding control simulation from the same climate model.

3.1 Summer-time YRV precipitation in the near-present simulations PIN and CTL

In our analysis, we focus at
::
on

:
the YRV summer monsoon precipitation, which peaks during May, June and July (MJJ).

According to the ERA-Interim dataset, summer precipitation is at a maximum in a broad region between the Bay of Bengal

:::::
(BoB) and the southern border of the Tibetan Plateau (Fig. 2a). A distinct orographic precipitation gradient is apparent along the240

western edge of the Indian peninsula. A further precipitation maximum is apparent over the Philippines and Western Pacific as

part of the northwards displaced ITCZ. In the YRV region (Fig. 2a, red box), precipitation shows a relatively weak north-south

gradient with average values of 5–9 mm day−1 and with the highest values south and west within the region.

In comparison, the CTL simulation exhibits a similar range of precipitation values (Fig. 2b). The maximum along the

southern edge of the Tibetan Plateau and western India are more spread out, and reach well above 12 mm day−1. However,245

there is a clear lack of precipitation over the Bay of Bengal (BoB ),
::::
BoB and the Philippines. Precipitation underestimation

dominates in the CTL simulation (Fig. 2c, red shading), with an overall bias of -1.0 mm day−1 for the displayed EASM

domain, and -1.4 mm day−1 in the YRV (Table 2). Overestimation of precipitation is apparent to the southern edge of the

Tibetan Plateau (>6 mm day−1overestimation)
:
)
::
is

:::::::
apparent

::
at

:::
the

:::::::
southern

:::::
edge

::
of

:::
the

::::::
Tibetan

:::::::
Plateau and to the west of the

Tibetan plateau. In the YRV, MJJ precipitation is between 0–3 mm day−1 lower than ERA-Interim. Here, the CTL simulation250

has a precipitation range of 4–6 mm day−1, clearly missing the finer details of spatial variability. Despite such local biases, we
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Figure 2. East Asian summer monsoon (MJJ) 10-year mean precipitation for (a) ERA-Interim (1980–2016), (b) CTL (NorESM1-M, 2001–

2010), (d) PIN (CAM5.1, 0010-0019) in mm day−1 (shading). Solid precipitation contours are shown every 5 mm day−1. Precipitation

anomalies in comparison to ERA-Interim are shown in (c) for CTL-ERAI and (e) PIN-ERAI (shading, mm day−1). The YRV domain is

outlined by a red box. The Yangtze river is denoted as a thick blue line, and elevation above 4000 m a.s.l. is indicated by a grey contour.

at first order consider the CTL simulation to reasonably reproduce most of the large-scale features of summer precipitation in

East Asia when compared to the ERA-Interim reanalysis.

Similar precipitation characteristics as in the CTL simulation are present in the PIN model run (Fig. 2d). The overall bias in

the EASM domain is lower than in CTL with -0.2 mm day−1, but comparable in the YRV (-1.3 mm day−1, Table 2). With an255

overall RMSE of 2.9 mm day−1 in PIN, the precipitation field is more different to ERAI than CTL (RMSE of 2.4 mm day−1).

The precipitation maximum along the southern edge of the Tibetan Plateau is more confined in the PIN run compared to CTL,

but lacks the maximum
::::
over

::::::::::
Bangladesh (≥12 mm day−1) apparent over Bangladesh in ERA-Interim. The PIN simulation

shows a precipitation maximum in the BoB similar to ERAI (Fig. 2d). Over the YRV and large parts of Southeast Asia and the

Western Pacific, precipitation in the PIN simulation is underestimated (Fig. 2e, red shading), partly exceeding 3.0 mm day−1.260
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In the YRV, the PIN simulation shows values of 3–7 mm day−1 (Fig. 2d), with slightly overestimated precipitation in the North,

and underestimated precipitation south of the Yangtze River compared to ERA-Interim.

The seasonal cycle of precipitation in the YRV region has a precipitation mean above 5 mm day−1 from April to August,

and a clear precipitation peak in June according to ERA-Interim (Fig. 3a, black dashed line). Precipitation in the CTL (red)

and PIN (blue) simulations peaks during May and June, with a marked decrease from July. Precipitation in May to June is265

overestimated, while precipitation in July and August is underestimated. Taking into account inter-annual variations (shading),

the overall magnitudes and timing of mean precipitation are rather similar in the YRV region for both model runs compared

to ERA-Interim with an RMSE of -1.1 mm day−1 for CTL and 1.5 mm day−1 for PIN. However, given the coarser resolution,

different parameterisations, and absence of data assimilation, a perfect match between the climate models and reanalysis can

not be expected. In addition, only 10-year periods of the CTL and PIN simulations are compared to the longer reanalysis data.270

In summary, the representation of summer precipitation in South Asia by the climate model simulations is slightly under-

estimated, especially in July. The PIN simulation, which has a higher resolution than CTL, correctly shows a precipitation

peak during June. Generally, the precipitation maximum south of the Tibetan Plateau is overestimated, while at the same time,

precipitation over South China, the Indochina Peninsula, the BoB and Western Pacific is underestimated. In particular the

precipitation differences over land should be kept in mind for the later analysis, as they can contribute to the YRV through275

continental recycling of moisture from land evaporation (Fremme and Sodemann, 2019). Nonetheless, the mean precipitation

differences in the YRV are generally smaller than in the surrounding regions, providing a suitable basis for the following

analysis of the moisture sources in both climate model simulations.

Table 2. Differences of MJJ precipitation and moisture source contribution between model simulations and time slices for YRV and entire

analysis domain expressed in terms of RMSE and bias (mm day−1).

YRV RMSE YRV bias EASM domain RMSE EASM domain bias

PCTL-ERAI 1.536 -1.391 2.395 -0.989

PPIN-ERAI 1.861 -1.340 2.917 -0.220

PLGM-PIN 0.839 0.298 2.236 -0.768

PRCP-CTL 0.441 -0.154 0.588 0.123

ϵCTL-ERAI 0.081 0.015 0.046 -0.006

ϵPIN-ERAI 0.150 -0.128 0.051 -0.021

ϵLGM-PIN 0.034 0.030 0.020 0.001

ϵRCP-CTL 0.049 -0.027 0.019 -0.004

3.2 Precipitation estimate from the WaterSip method for CTL and PIN

The above comparison of climate model precipitation with the ERA-Interim reanalysis shows the skill and shortcomings of280

both climate models in representing YRV precipitation. However, as described in Sec. 2.3, the moisture sources are obtained
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Figure 3. YRV monthly mean precipitation in the near-present time period. (a) Mean precipitation seasonality for ERA-Interim (black), CTL

(red), and PIN (blue) in mm day−1. (b) Comparison between simulated CTL precipitation in the YRV (red solid) and the corresponding

precipitation estimate from the WaterSip diagnostic (red dashed). (c) Comparison between simulated PIN precipitation in the YRV (blue

solid) and the corresponding precipitation estimate from the WaterSip diagnostic (blue dashed). Shaded areas indicate the inter-annual 1-σ

standard deviation of the mean.

from specific humidity
:::::
fields, rather than the precipitation field

:::::
using

:::::::::::
precipitation calculated by the climate models. From

the specific humidity decrease
:::::::::::
Furthermore,

:::
the

::::::::
WaterSip

::::::
method

::::::::
provides

::
an

::::::::
estimate

::
of

:::
the

:::::::::::
precipitation

::::::
amount

:::::
from

:::
the

:::::::
decrease

::
in

::::::
specific

::::::::
humidity during the last time step before a trajectory end point, the WaterSip method provides an estimate of

the precipitation amount, denoted here as the Lagrangian precipitation estimate Π (in units of mm day−1). Differences between285

this precipitation estimate from WaterSip and the model-derived precipitation field allow us to assess the representativeness of

the results from the moisture source diagnostic. Past studies found that Π often has a positive bias of up to 20%, which could

be due to both the neglect of microphysical processes and uncertainty from interpolation during trajectory calculations (Stohl

et al., 2005; Sodemann et al., 2008; Sodemann and Zubler, 2010; Sodemann, 2020). Being used as a measure of consistency,

the precipitation estimate Π should primarily be compared to
::::::::::
precipitation

:::::
from each respective model simulation.290
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For the CTL simulation, mean estimated precipitation (Fig. 3b, red solid line) is underestimated from April to June compared

to simulated precipitation (red dashed line), with an average bias of of 0.7 mm day−1. All other months show a good corre-

spondence, with an annual average overestimation of about 0.1 mm day−1. Estimated precipitation peaks in the same month

(May) as the climate model precipitation. For the PIN simulation, estimated precipitation from WaterSip (Fig. 3c, blue line) is

again similar to CAM5.1 precipitation (blue dashed line) with and
::
an

:
average bias of 1.2 mm day−1. As for the CTL simula-295

tion, the summer precipitation is underestimated more than the winter months
:::::
winter

:::::::::::
precipitation. On average, CAM5.1 and

WaterSip-estimated precipitation differ by 0.5 mm day−1, which is within the range seen in previous studies using Lagrangian

moisture source diagnostics. Note that also in terms of spatial distribution, the WaterSip-estimated precipitation is also similar

to both CTL and PIN precipitation (not shown). The overall good correspondence between the precipitation estimate and cli-

mate model precipitation, apart from expected biases, confirms that the choice of parameters for the moisture source diagnostic300

(Appendix B) allows to obtain representative insight into the moisture transport and moisture sources of precipitation in the

YRV
:::::::
simulated

:::::
YRV

:::::::::::
precipitation.

3.3 Moisture source locations for near-present simulations

Now we compare the moisture source locations between different climate simulations for present-day and the preindustrial

period. Moisture source area maps can be interpreted as the share of total evaporation in the shaded regions that will contribute305

to precipitation in the target region YRV (Fig. 4, red box). These evaporation contributions, or moisture sources, are denoted

here by the symbol ϵ (mm day−1). The 35-year mean moisture sources obtained from ERAI during summer (MJJ) serve again as

a reference in a comparison between the near-present simulations. Based on ERAI, the moisture sources pertaining to the YRV

precipitation are distributed over a fairly large region, reaching across the Indian subcontinent (Fig. 4a). Note that evaporation

contributions are everywhere clearly lower (<0.9 mm day−1, Fig. 4a) than mean precipitation (≈6 mm day−1), indicating that310

only a fraction of the precipitation is recycled into the YRV region. For ERAI, the source maximum is just southwest of the

YRV. This maximum region contributes with a summer average of 0.8 mm day−1 to YRV precipitation. The dotted contour

lines denote the 50th and 80th percentiles of ϵ (Fig. 4c). The innermost dotted contour shows that 50% of the moisture comes

from land regions south and southwest of the YRV and nearby ocean regions. The cyan contour shows that additional 30% of

moisture comes from more distant land regions as well as parts of the Western Pacific, the South China Sea and the Bay of315

Bengal. Here, contributions from evaporation to YRV precipitation are generally low (<0.2 mm day−1), but spread out over a

wide area.

At first glance, the moisture sources for CTL are quite similar to the ERAI results (Fig. 4b). The overall bias compared to

ERAI in the EASM domain and the YRV is 0.0 mm day−1. Highest values are within or close to the YRV, and the sources ex-

tend further south than north, and more to the west than to the east, especially over land. Moisture sources for the CTL run show320

a maximum contribution from a single region of <0.9 mm day−1 (Fig. 4b), similar to ERAI. However, some important differ-

ences can be seen. For CTL, the 50th percentile extends less south over the Indochina peninsula than for the reference run, and

the 80th percentile covers extends less to the west and south but more east. For the PIN case, the average moisture contribution

from a particular region does not exceed 0.7 mm day−1 (Fig. 4c), which is lower than for CTL and ERAI (<0.9 mm day−1).
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The 50th percentile for PIN is similar to the CTL run, encompassing land regions to the south and southwest as well as nearby325

ocean regions. The 80th percentile in PIN, compared to both CTL and ERAI, is shifted from the Western Pacific towards India

and into the Arabian sea compared to CTL, albeit extending less west and south than ERAI.

Comparing moisture sources for the CTL run to ERAIin more detail in terms of differences
:::::::::
differences

:::::::
between

:::
the

:::::
CTL

:::
and

:::::
ERAI, it is apparent that the YRV region itself contributes almost the same in CTL as in ERAI (Fig. 4c). The overall

bias compared to ERAI in the EASM domain is 0.0 mm day−1 and -0.1 mm day−1 in the YRV. The largest relative differences330

are located to the south, outside the YRV region. Using the 80th percentile contour, we focus on differences within the most

relevant moisture sources regions. For the CTL simulation, evaporation contributions are higher over the South China Sea

and the Western Pacific and Bangladesh (Fig. 4c), reaching above 0.2 mm day−1 near Hong Kong. There are also regions that

contribute less in CTL than in ERAI, in particular over the Indochina Peninsula, and to a lesser degree over southern India. For

PIN, there is only a small area with increased evaporation contribution over the Bay of Bengal (Fig. 4e). ϵ is lower by more335

than 0.2 mm day−1 in PIN than in ERAI over the Indochina Peninsula, stretching all the way into the southern YRV. Pacific

contributions during PIN are more similar to ERAI than the CTL simulation, and thus show only negligible differences.

The larger contribution of eastern sources and smaller land contributions in CTL and PIN could be due to a weaker influence

by the Indian monsoon circulation on the YRV in that simulation. Such a circulation difference could explain the smaller

contribution from distant western sources and the lower precipitation in summer. However, the larger contribution from the340

BoB does not fit to this hypothesis. Instead, it is possible that both CTL and PIN are associated with lower rainout over

Indochina along the transport pathway, resulting in larger intermediate transport from the BoB. Correspondingly, precipitation

recycling could be stronger in ERAI than both climate models, as indicated by Fig. 2, thereby deprecating some of the more

remote moisture sources. Finally, larger contributions from easterly sources could also be related to circulation differences in

terms of a stronger influence by the North Western Pacific Subtropical High in the CTL simulation.345

It should
:::
here

:
also be noted here again, as mentioned in Sec. 2.1, that the CTL simulation is about 1 K colder than ERAI

over the YRV, while PIN is similar or slightly warmer than ERAI (Fig. 1b). The relatively low temperatures in the YRV persist

throughout the entire simulation covering the 2006–2070 period, thus the comparison between simulations for CTL and RCP

(see Sec.3.6 below) will be internally consistent, but potentially influence the moisture sources during both runs.

3.4 Moisture source characteristics for near-present simulations350

We now compare the seasonal cycle of several geographical, meteorological and method characteristics at the moisture sources

on a monthly time scale for the CTL and PIN simulations, using ERAI as a reference. The first characteristic is the fraction of

land area at the moisture sources, weighted by the relative contribution to YRV precipitation (Fig. 5a). On average, the land

fraction is close to 70% for all three simulations. During August and September, the fraction of moisture sources on land is

slightly lower for CTL (50%, red) than for ERAI (55%, black) and PIN (62%, blue). The overall bias between CTL and ERAI355

is -4.8%, compared to -3.0% between PIN and ERAI. The substantially larger contribution from the Western Pacific in CTL,

as noted above, appears to have a small influence on the balance between land and ocean sources during July and August (red

line).
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Figure 4. Comparison of summer monsoon (MJJ) moisture sources for near-present climate in the YRV. (a) Moisture source contributions

for ERA-Interim, ϵERAI (shading, mm day−1). (b) Moisture source contributions for CTL, ϵCTL (shading, mm day−1), (d) moisture source

contributions for PIN, ϵPIN (shading, mm day−1), (c) moisture source anomaly for CTL, (ϵCTL − ϵERAI, %), and (e) moisture source anomaly

for PIN, (ϵPIN−ϵERAI, shading, mm day−1). Solid contours denote the 50th (blue) and 80th percentile (cyan) of the total water mass. The YRV

domain is outlined by a red box. The Yangtze river is denoted as a thick blue line, and elevation above 4000 m a.s.l. is indicated by a grey

contour.

The mean source longitude and latitude of the moisture sources show a clear seasonality, albeit weaker for CTL (Fig. 5c

and e). In June and July, the moisture sources are located furthest south and west in all three runs. While the mean moisture360

source longitude is similar in all runs (RMSE < 2.5° E), ranging between 95 to 115° E, the mean source latitude shows a

bias of 1.2° latitude for PIN and for 2.0° for CTL compared to ERAI (black dashed line), with moisture sources being further

south in ERAI. This difference partly translate into differences of the mean moisture source distance (Fig. 5d). Here, ERAI

moisture sources are more distant than in CTL (bias -133 km) and PIN (bias -201 km), with the largest differences apparent in

February to March and August to September, when the PIN sources (1250 km) are closer than for CTL (1700 km) and ERAI365

(1750 km), and in June, when the moisture sources are closer in CTL (2000 km) than in PIN (2350 km) and ERAI (2500 km).

The WaterSip diagnostic was able to attribute a markedly higher fraction of the estimated precipitation of CTL (bias 2%) and

PIN (bias 1.4%) to sources than for ERAI, in particular during May to November (Fig. 5f). The lower accounted fraction in

15



ERAI can be due to interpolation errors from the trajectory calculation, and a fraction of moisture evaporated more than 15

days back in time, and, most importantly from updates to the humidity field during data assimilation.370

Overall, we note a relatively high degree of consistency between the two simulations CTL and PIN with the ERAI data set.

The most substantial differences for CTL are a tendency towards more local sources, and a smaller land contribution. PIN has

overall very similar transport characteristics as ERAI, but a shorter monsoon season with less long-range transport.
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Figure 5. Seasonal mean moisture source characteristics for the YRV. (a) Land source fraction (%) for CTL (red), PIN (blue) and ERAI

(black) with inter-annual 1-σ standard deviation of the mean (shading). (b) Estimated precipitation amount (mm day−1), (c) moisture source

longitude (° E), (d) moisture source distance (km), (e) moisture source latitude (° N), and (f) fraction of estimated precipitation accounted for

by corresponding moisture sources (%).

3.5 Precipitation and moisture sources in the LGM simulation

During LGM,
:
the global mean temperature was approximately 4° C colder than pre-industrial temperature (Annan and Harg-375

reaves, 2013). In the CAM5.1 runs, YRV temperature is 4.0 ° C colder during LGM than pre-industrial (Fig. 1b). Given these
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temperature changes, the hydroclimate of the YRV in terms of atmospheric circulation, moisture transport and precipitation

amounts can
:::
also

:
be expected to differ markedly. In previous LGM simulations, the East Asian summer monsoon has been

found to be weaker as a resulting from circulation changes (Jiang and Lang, 2010). Furthermore, the precipitation response

to a change in monsoon circulation strength can be expected to vary for different locations and time (Wan et al., 2011). The380

moisture source perspective adopted here will shed light from a different viewpoint on such expected changes.

Summer precipitation over south and east Asia in the LGM simulation from CAM5.1 is highest along the southern slope of

the Himalayas (Fig. 6a). The LGM simulation shows lower precipitation along a belt extending from East to West the Arabian

Sea, India, and the BoB compared to PIN (Fig. 6c). At the Indian west coast, LGM precipitation is more than 10 mm day−1

lower than in PIN. Closer to the YRV, over South China and nearby ocean regions, LGM precipitation is up to 4 mm day−1385

higher than in PIN.

Summer precipitation values within the YRV region range between 5–7 mm day−1 (Fig. 6a), similar to the PIN simulation.

While precipitation differences in the YRV are small between LGM and PIN (bias 0.3 mm day−1, Table 2), a southward shift

of the precipitation maximum can be noted (Fig. 6c). This southward shift is probably related to the overall precipitation

increase south of the YRV in the LGM simulation. In the EASM domain, there is an overall decrease in precipitation (bias390

-0.8 mm day−1). YRV precipitation from the LGM and PIN run shows little change in the seasonal cycle of CAM5.1 precipita-

tion (Fig. 6e). Interestingly, LGM precipitation is higher during July and August than the PIN run, reflecting a slower onset, and

overall broader monsoon season. The possible reasons behind this unexpected change in precipitation seasonality and length

of the monsoon season are further discussed in Sec. 4.1.

The moisture sources for the LGM case show the same general features as seen for the near-present simulations (Fig. 6b).395

The region with highest contributions is located southwest in the YRV region, extending further in a southwesterly direction.

When comparing the LGM sources with moisture sources during PIN, the strongest absolute increase can be seen over the

South China Sea (Fig. 6d). Moisture sources over the Bay of Bengal increase, whereas a decrease in ϵ can be seen over land

regions west of the YRV. The bias in the entire EASM domain and in the YRV are very close to 0.0 mm day−1. Comparing

LGM and PIN differences as a percentage of moisture sources at each grid point underlines the change to more ocean and less400

land during the LGM run. Most regions show local increases in moisture contribution ϵ to the YRV of 20% and more (Fig. 6f,

blue shading). The strongest increase within the 80th percentile occurs south of India, where contributions to YRV precipitation

almost double compared to PIN. In contrast, land regions to the west of YRV and a part of the Western Pacific show a 20–50%

decrease.

We now compare the seasonal cycle of the YRV moisture source characteristics between LGM and PIN (Fig. 7). While405

land fraction is overall similar for LGM and PIN (bias 0.7% and RMSE 3.9%), notable changes include a slightly lower land

fraction in the LGM run than in PIN from June to October, and an increase in November and December (Fig. 7a). The mean

moisture source position is located further South throughout the year in the LGM simulation (bias -0.7° latitude), and during

August also further East (bias -1.2° longitude, Fig. 7b and d). These shifts in location result in more distant moisture sources

during August and September (Fig. 7c). On an annual average, moisture sources are therefore slightly more distant in LGM410

than PIN (bias 57.7 km). Overall, differences in LGM and PIN moisture source characteristics are remarkably small in relation
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to the seasonality of each characteristic during the summer monsoon, despite the pronounced temperature changes between

both runs.
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Figure 6. Precipitation and moisture source changes for the summer monsoon (MJJ) during the LGM simulation. (a) LGM precipitation

mean during MJJ (shading, mm day −1 and contours every 5 mm day −1), (b) LGM moisture source contributions (ϵLGM, shading, mm day
−1) for MJJ, (c) precipitation difference PLGM−PPIN (shading, mm day −1 and contours every 5 mm day −1) for MJJ, (d) change in moisture

source contributions between LGM and PIN (∆ϵ, mm day −1). (e) Mean YRV precipitation seasonality for PIN (red) and LGM (solid). (f)

relative change in moisture source contributions between LGM and PIN (%, shading) for areas where ϵPINorϵLGM > 0.025mm day −1). Solid

contours in (b) and (f) denote the 50th (blue) and 80th percentile (cyan) of the total water mass. The YRV domain is outlined by a red box.

The Yangtze river is denoted as a thick blue line, and elevation above 4000 m a.s.l. is indicated by a grey contour.
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Figure 7. As Fig. 5, but for the moisture source characteristics diagnosed from the simulations LGM and PIN. (a) Land source fraction (%)

for PIN (black dashed) and LGM (blue solid) with inter-annual 1-σ standard deviation of the mean (shadings). (b) Moisture source longitude

(° E), (c) moisture source distance (km), and (d) moisture source latitude (° N).

3.6 Precipitation and moisture sources in the RCP simulation

Next, we shift our focus to the simulations of a warmer climate. Multi-model mean CMIP5 results show a wetter East Asian415

monsoon region towards the end of the century under the RCP6 .0 scenario, with a 7% average precipitation increase over the

whole East Asian monsoon domain, and 10–15% locally over the major monsoonal front region (Seo et al., 2013). However,

such a change in precipitation is not found consistently between different models (Kitoh, 2017; Yu et al., 2018).

For the future climate simulation RCP analysed here, the general picture of summer precipitation over South and East Asia

shows maxima at the southern edge of the Tibetan plateau and the west coast of India, with second-order maxima over the420

Indochina peninsula, and the Western Pacific, similar to the CTL simulation (Fig. 8a). In absolute terms, summer precipitation

decreases in nearby land regions, and increases across a wide belt stretching from India to the Philippines (Fig. 8c). For the

EASM domain, there are some regional differences, that mostly balance out (RMSE 0.6 mm day −1, bias 0.1 mm day −1). In

the YRV, there is less precipitation in RCP than CTL (bias -0.2 mm day −1). Interestingly, it is hardly possible to detect changes

in the seasonality of monthly mean precipitation between CTL and RCP, both with respect to amount and timing (Fig. 8e).425

Moisture sources for the RCP are centred southwest of and within the YRV, similar to the CTL simulation (Fig. 8b). The

largest absolute increase can be seen southeast of the YRV towards the Taiwan Strait (Fig. 8d). There are small negative
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biases close to 0.0 mm day −1 in both the EASM domain and the YRV, corresponding to smaller moisture source contributions.

Comparing the percentage change between CTL and RCP within the 80th percentile contour further highlights the most marked

differences, namely an increase of up to 50% from the Taiwan Strait east towards the ocean regions of the Western Pacific430

(Fig. 8f). The largest decreases are identified northeast of the YRV (20–50%), and over the southern BoB (20–50%).

Comparing the moisture source characteristics of the RCP run to CTL show that the 10-year climatologies remain mostly

within inter-annual standard deviations (Fig. 9). Changes in contribution from moisture sources on land and ocean in the RCP

run during summer appear to balance each other, leading only to a slight increase of land contribution the RCP run in the

later half of the year (Fig. 9a). The most notable change can be seen for the moisture source distance (bias -71.5 km, Fig. 9c).435

During the second half of the year (July to November), average moisture distance decreases from around 1800 km to 1500 km,

indicating a stronger role local evaporation, and thus of local recycling over land in the RCP run. This is also reflected in more

easterly moisture source locations during RCP (bias 0.7° longitude, Fig. 9b), and the slightly more southerly moisture sources

in CTL (bias 0.1° latitude, Fig. 9d).

In summary, changes in simulated YRV precipitation are surprisingly small between the RCP and CTL simulations. To first440

order, this indicates no major reorganisations of the hydroclimate in response to the RCP6 .0 forcings. However, the moisture

source characteristics reveal underlying changes in mechanisms, pointing towards a larger contribution of land sources during

the second half of the year in RCP. Such a change could be due to circulation changes, possibly connected to stronger conti-

nental rainout (and recycling) upstream of the YRV. The moisture sources analysis indicates that the small changes in absolute

amount may be the result of a shift from more distant to more local land and ocean source regions. Wet soils have previously445

been shown to be important in inducing more efficient rainout of inflowing air masses in the soil moisture-precipitation feed-

back (Schär et al., 1999), and could also cause the more local source contributions in RCP detected here. Still, the moisture

source regime in the YRV region only shows marginal changes according to our simulation with an RCP6 .0 emission scenario

until 2070. A more pessimistic emission scenario, as
:::::::::::::
higher-emission

::::::::
scenario,

::::
such

:::
as

:::::::
RCP8.5,

::
as

:
well as analysis of more

years and different
:::
full

:::::::
30-year

::::::
climate

:::::::
periods

:::
and

:
a
:::::
wider

:::::
range

:::
of models would be needed to corroborate such a shift from450

remote to more local source contributions
:::
(see

::::
also

:::::::::
discussion

::
in

:::
4.2).

4 Discussion

4.1 Differences of the monsoon seasonality during the LGM

During the analysis of the LGM simulation (Sec. 3.5), an increase in the late summer precipitation was observed, leading to

and overall broader seasonality of the monsoon (Fig. 6d). Here we explore two hypotheses that potentially could explain the455

simulated changes in precipitation by means of the corresponding moisture sources (Fig. 7).

A first hypothesis is that the increase in LGM precipitation in the YRV could be caused by a shift in local moisture transport

pathways, specifically by increasing moisture transport from regions south of the YRV to the target area. Such a shift in

atmospheric circulation can for example be caused by downstream effects of the ice sheet topography changes between PIN

and the LGM simulation, or other circulation changes in response to different climate forcings. Stronger southwesterly winds460
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Figure 8. Precipitation and moisture source changes for the summer monsoon (MJJ) during the RCP simulation. (a) RCP precipitation mean

during MJJ (shading, mm day −1 and contours every 5 mm day −1), (b) RCP moisture source contributions (ϵRCP, shading, mm day −1)

for MJJ, (c) precipitation difference PRCP−PCTL (shading, mm day −1 and contours every 5 mm day −1) for MJJ, (d) change in moisture

source contributions between RCP and CTL (∆ϵ, mm day −1 ). (e) Mean YRV precipitation seasonality for CTL (red) and RCP (solid). (f)

relative change in moisture source contributions between RCP and CTL (%, shading) for areas where ϵRCPorϵCTL > 0.025mm day −1). Solid

contours in (b) and (e) denote the 50th (blue) and 80th percentile (cyan) of the total water mass. The YRV region is outlined by a red square,

and a thick blue contour denotes the Yangtze River.

could increase the moisture flux from the South China Sea, Indochina Peninsula and Bay of Bengal
:::
the

::::
BoB. The higher water

vapour flux could be further amplified by more local recycling, and thus lead to a general increase in
::
of precipitation in the

region.

A second hypothesis stems from the apparent opposite relation between the changes in precipitation between LGM and

PIN (Fig. 6b) and the moisture contributed from those regions (Fig. 6d). More specifically, India and the surrounding oceans465
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Figure 9. As Fig. 5, but for the moisture source characteristics diagnosed from the simulations CTL and RCP. (a) Land source fraction (%)

for CTL (black dashed) and RCP (red solid) with inter-annual 1-σ standard deviation of the mean (shadings). (b) Moisture source longitude

(° E), (c) moisture source distance (km), and (d) moisture source latitude (° N)

receive less precipitation, but contribute more as sources to YRV. Instead, the Western Pacific and West China receive more

precipitation, but contribute less as moisture sources to the YRV. This finding is most pronounced for the more remote moisture

sources. A potential explanation is the soil moisture-precipitation feedback (Schär et al., 1999), where overall colder air masses

and land regions during the LGM would be less efficient in raining out the precipitation underway from India and the BoB

region, and thus lead to increased moisture source contributions from these regions. In other words, the changes in moisture470

sources could be caused by a decreased efficiency of precipitation processes, leading to a larger contribution from southwestern

distant sources.

This second hypothesis is consistent with observations of seasonal variations of moisture transport over central Europe and

other regions. For example, Sodemann and Zubler (2010) find that moisture sources are more distant during winter time than

during summer, resulting from both changes in circulation pattern and lower evapotranspiration during the winter. Fremme and475

Sodemann (2019) highlighted the important role of land regions south of the YRV in the summertime moisture supply during

the present-day climate by repeated precipitation recycling. In a colder climate, such indirect recycling processes, as well as

evapotranspiration are expected to weaken. Since the first hypothesis would imply stronger evaporation both for recycling and
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higher water vapour fluxes in the atmosphere, we consider the second hypothesis as the more plausible explanation for the

observed changes from LGM to PIN.480

4.2 Moisture sources as an indicator for hydroclimatic changes

The comparison between the moisture sources during the near present climate with LGM (Fig. 6) and the near-present with

RCP (Fig. 8) showed mostly scaling of the present-day hydroclimate, rather than major reorganisations in response to different

climate states. Second-order changes were related to feedbacks with land processes. Here we investigate the implications

of this finding more closely. A direct comparison of the 80th-percentile contours for all near-present simulations shows that485

PIN has a moisture source footprint that in terms of extension and shape resembles quite closely to ERAI (Fig.10a). CTL in

contrast has a smaller 80th percentile footprint, in particular over the Indian Ocean, India, and the BoB. Also the 50th percentile

contour of CTL extends less to the southwest compared to PIN and ERAI. When comparing in addition the LGM and RCP

percentile contours, it becomes apparent that the shapes appear to be characteristic for each model (Fig.10b). In other words,

the differences between different models are similarly large as the differences between different boundary conditions.490

This implies that NorESM1-M generally simulates the hydroclimate over the YRV differently than CAM5.1 specifically

with less long-range transport. Using ERAI as a reference, it appears that NorESM1-M has a bias towards more local moisture

sources of the YRV. The reasons for such a bias may have a range of different causes, such as a differences in the land surface

model, and the
:::::::::
convection

:::::::::::::::
parameterisations,

:::
and

::
a
:
coupled versus a slab oceanused in the simulations. Further sensitivity

studies regarding model configuration would be needed to identify the underlying causes for such variability with more cer-495

tainty.
::::::
Longer

:::::::::
simulation

:::::
times

::::
than

::::::
feasible

:::
for

::::
this

::::
pilot

:::::
study

::
are

:::::::
needed

::
to

:::::
reduce

:::
the

::::::::
potential

::::::
impact

::
of

::::::
climate

:::::::::
variability

::
on

:::::
these

:::::::
findings.

:::::::::::
Furthermore,

:::::::
stronger

::::::::
emission

::::::::
scenarios

::::
may

::
be

:::::
used

::
to

:::::
detect

:::
the

::::
full

:::::
range

::
of

::::::::
sensitivity

:::
of

:::
the

:::::::
models’

::::::::::::
hydroclimates.

Finally, the strong resemblance of moisture sources for each model across boundary condition changes seems to indicate

that the models respond primarily by scaling the present-day hydroclimate, and to a lesser degree with feedbacks involving the500

land surface. More substantial reorganisations, such as additional source regions, or the shift of the moisture source maximum,

are not
::::::
clearly apparent in our results. This raises the question to what degree the models are in fact able to reorganise the

hydroclimate, and if there are regime shifts to be expected for stronger forcings. If, however, the actual YRV summer monsoon

:::::
indeed

:
primarily responds to boundary-condition changes by scaling, this knowledge would be

::::::::
immensely

:
valuable to interpret

past climate records, and to adapt to future climate change.505

5 Conclusions

We have investigated the changes in moisture sources and transport processes for precipitation in the Yangtze River Valley

(YRV) in climate model simulations across different climates, including a last glacial maximum (LGM) climate with CAM5.1,

and an RCP6 .0 scenario with NorESM1-M, using a quantitative Lagrangian moisture source diagnostic. The changes in

the moisture source regions are different from precipitation differences between the model runs, and thus provide additional510
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Figure 10. Comparison of moisture source changes for (a) present-day climates (CTL, dark red; PIN, dark blue; ERAI, black) and (b) past

and future climate (LGM, blue; RCP, red). Lines show the 50th and 80th percentile of the MJJ mean moisture sources for each respective

10-year simulation. Black box denotes the YRV region, Yangtze river in thick blue. The grey contour denotes and elevation of 4000 m a.s.l.

information. Thereby, we gain insight into the how the water cycle in different models responds to boundary condition changes

in the East Asian summer monsoon region,
:::::
with

:
a
:::::
focus

::
on

:::
the

:::::
YRV.

Being a first application of this moisture source diagnostic to climate model data rather than reanalysis data, we see that the

same thresholds of the moisture source diagnostic of Sodemann et al. (2008) work for a dataset without increments in humidity

from data assimilation. We note an on average larger faction of precipitation that is accounted for in terms of moisture sources,515

possibly due to better consistency of model fields in absence of data assimilation. While for this pilot study time slices of
::::
only

10 years have been selected, a more detailed climatology would benefit from longer analysis times
::::
using

:::::::::::
conventional

:::::::
30-year

::::::
analysis

:::::::
periods

::
to

::::::
reduce

:::
the

::::::
impacts

:::
of

::::::
climate

:::::::::
variability

::
on

:::
the

::::::
results.

Comparison of a present-day control climate simulation (CTL) with a coupled NorESM1-M, and of a pre-industrial climate

simulation with an uncoupled CAM5.1 provide
:
a
:
moisture source extent and regional contribution that is

::::::::::
contributions

::::
that520

::
are

:
overall consistent with the sources found from ERA-Interim reanalyses. Land contributions from areas south of the YRV

and over Indochina are the most important moisture source, whereas ocean areas over the Bay of Bengal (BoB) and the South

China Sea and adjacent Pacific are responsible for most of the remaining contributions. The climate model runs show thereby

slightly more local moisture origin
::::::
origins than ERA-Interim.

For the CAM5.1 LGM simulation, moisture sources show small differences to near-present simulation of the same climate525

model during summer. These differences could be caused by an increased efficiency in the moisture transport form southwestern

distant sources caused by less rain-out en-route. A more detailed investigation of the respective contribution of forcing changes

on the atmospheric circulation would be needed to corroborate these indicative findings.

For the coupled NorESM1-M simulation using the future climate scenario RCP6.0, the moisture sources show only small

differences to the control run. Differences in the moisture source characteristics do not exceed the inter-annual standard devi-530
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ation of the time slices analysed. The small change between the moisture sources of the control and future climate could be

connected to the in general limited change seen in precipitation over the East Asian monsoon region.

The first-order response the in terms of moisture sources and moisture transport to the YRV across different climate forcings,

from LGM to RCP runs, is a scaling of the hydroclimate, rather than a major reorganisation for the different 10-year time

slices analysed here. Moisture sources thereby remain to first order similar with respect to the location, magnitudes, and535

the relative contributions of moisture from land and ocean areas. A second-order effect notable from the LGM through to

the RCP simulation is a larger emphasis of local land sources in warmer climates. Albeit relatively small, the more local

origins could indicate more efficient rainout of transported water vapour in a warmer climate, with subsequent precipitation

recycling. Sensitivity
::::::::
Additional

:::::::::
sensitivity

:
studies would be needed to quantify the relative contributions of, among others,

grid resolution, the land model, ocean models, and convection parameterisations on the location of moisture source regions. In540

addition, simulations with a more pessimistic emission
::::::::::::
higher-emission

:
scenario could provide stronger forcing to potentially

emphasize responses of the hydroclimate. We expect that the moisture source perspective introduced here to climate model

data will also provide valuable insight during such sensitivity studies.

Interestingly, some moisture source characteristics show similar or even larger differences the different climate models than

between different simulations using the same model. If we assume the models adequately represent relevant aspects of the545

Earth system, our study suggests that the hydroclimate responds with scaling rather than major reorganisation to moderate

climatic changes , in particular over the YRV, while changes in land-atmosphere interaction play a detectable, but secondary

role. Alternatively, we can pose the question how realistic the representation of climate and of response to boundary condition

changes by the different models are. It is possible that model responses underestimate the potential of larger hydroclimatic

reorganisations, for example due to limited feedbacks involving the land surface. It would be valuable to decipher if there are550

potentially stabilising factors in the East Asian summer monsoon system, or if models potentially lack feedbacks that enable

more substantial changes in hydroclimate. Comparison and interpretation of moisture source information with paleoclimate

records of stable isotopes could enable to tie simulated hydroclimatic model responses to observational evidence.

Appendix A: Changes in CAM5.1 between LGM and PIN

The changes between LGM and PIN during the 10-year time slice considered here for surface air temperature in the EASM555

region are between -2 and -4 K over most of the region (Fig. A1a). Some ocean areas over the Indian Ocean and the West

Pacific show a temperature decrease of less than 2 K. These changes are similar to those in PMIP2 and CMIP5 (Harrison et al.,

2014). Annual mean anomalies of zonal wind speed at 850 hPa shows an increase in zonal wind speed of around 1 ms−1 across

a broad band from northern India to the Philippines in the LGM simulation (Fig. A1b).

25



(a) LGM-PIN

72oE 90oE 108oE 126oE 144oE
0o

10oN

20oN

30oN

40oN

50oN

-10
-8
-6
-4
-2
0
2
4
6
8
10

SA
T
/°
C

(b) LGM-PIN

72oE 90oE 108oE 126oE 144oE
0o

10oN

20oN

30oN

40oN

50oN

-4

-2

0

2

4

U
85
0
/m

s-1

Figure A1. Annual mean differences between LGM and PIN simulations in (a) surface air temperature (shading, K) and (b) zonal wind speed

at 850 hPa (shading, ms−1) as simulated by CAM5.1. Differences are based on the 10-year time slices from simulation year 0010-0019.

Appendix B: Sensitivity to WaterSip thresholds and time step length560

An important advantage when diagnosing moisture sources from the climate model simulations over the ERA-Interim reanal-

ysis is that they are not affected by data assimilation. The absence of humidity increments from data assimilation allows us

to analyse the effect of the choice of certain parameters of the WaterSip diagnostic. In this section, the effect of a change of

thresholds and time step length on the moisture sources is exemplified for backward trajectories obtained for one year (2002)

from the CTL simulation (NorESM1-M). We consider this as a representative example for trajectories from either set of cli-565

mate model trajectories. The thresholds tested are the threshold value for the minimum change in specific humidity per time

step ∆qc, the time step ∆t, and the relative humidity threshold RHc. From these threshold tests, we are able to evaluate the

robustness of the overall findings presented above.

Throughout this study, the threshold for ∆qc and ∆t have been set to 0.1 g kg−16 h−1 and 6 h, respectively. These parameters

are the same as for the study of Fremme and Sodemann (2019) using ERAI data, thus making the results directly comparable.570

The specific humidity change threshold ∆qc determines the limit above which changes in specific humidity in air parcels are

recorded as due to either precipitation and evaporation events. Humidity changes below the threshold are considered due to

interpolation errors, and are not taken into account for the moisture source diagnostic. The time steps tested here are for 3, 6,

9, and 12 hour duration, and for the specific humidity thresholds shown in Table B1.

B1 Sensitivity to specific humidity threshold changes575

The effect of the specific humidity threshold change together with changes of the time step length on moisture sources be-

comes apparent from the mean distance of the moisture sources for YRV precipitation (Fig. B1). For comparison, the ∆qc are

converted to the unit g kg−11 h−1. With the setting chosen here for 6 h as a reference (red symbols), it is apparent that longer

∆t result in more distant sources for the same ∆qc. The moisture source distance is approximately 300 km larger for a 6 h than

for a 3 h time step. Similarly, the sensitivity runs with a 12 h time step have also about 300 km more distant source regions than580

the 6 h run. Long ∆t can invalidate the assumption that all humidity changes in an air parcel are due to either evaporation or
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precipitation only, and that the other process can be disregarded. While this would suggest that the 3 h time step gives the most

accurate results, such short time steps can introduce larger errors as ∆qc reaches a similar magnitude as numerical noise and

interpolation errors. Values of above 6 h are likely to lead to degraded trajectory calculation, and to overlooking the influence

of diurnal variation. From the above discussion, it appears that the moisture source distance has an error margin of several585

hundred km, or on the order of 10–20%, depending on the exact parameter choice for the time step. For the same time step,

changes in ∆qc give a less distant source for higher thresholds. However, threshold values above 0.1 g kg−11 h−1 are hardly

typical, and only include very strong evaporation and precipitation events. For ∆qc below 0.1 g kg−11 h−1, the source distance

is much less sensitive to the threshold value than to the time step.

B2 Sensitivity to relative humidity threshold changes590

The relative humidity threshold RHc is another influential parameter of the moisture source diagnostics. RHc sets the minimum

RH at which a moisture decrease within the target region is considered as a precipitation event. Therefore, RHc has a large effect

on the precipitation estimated by the WaterSip method. However, RHc can also affect the moisture sources, as the weight of

individual uptakes corresponds to estimated precipitation in the target region. Throughout this study, we use a threshold value of

RHc = 80%. In the sensitivity tests discussed in this section, the effect varying the RHc between of 0–100% is tested. Note that595

we thereby only consider the results using RHc between 70–90% as physically consistent with the model parameterisations.

We evaluate the effect of the RHc changes with respect to the impact on the precipitation estimate for the target region,

and the moisture source distance. As expected, a more restrictive, higher, RHc leads to a lower precipitation estimate for the

target region (Fig. B2a). A change of RHc from 80% to 70% and to 90% lead to a change in the all-year precipitation mean

(3.2 mm day−1) by +32% and −43% respectively. The value of RHc = 80% used throughout this study gives the precipitation600

estimate closest to the all-year mean precipitation from NorESM.

Changes in precipitation with changing RHc are accompanied by change in source distance (Fig. B2b). When RHc is changed

from 80% to either 70% or 90%, the mean source distance changes from and average of 1740 km by only −5% and 4%,

respectively. Even with a more extreme change in the RHc to as much as 30%, source distance only changes by around 20%

compared to RHc = 90%.605

The small changes in source distance suggests that the RHc only has a minor impact on the moisture source results presented

here, and leads to a uniform scaling of the moisture sources, rather than a shift. Therefore, we do not find a need to modify

the RHc of 80%, in particular as the precipitation estimated by WaterSip follows the original climate model precipitation

reasonably well (Fig. 3). We conclude from this sensitivity study that the moisture source results are overall robust regarding

specific parameter changes within physical reasonable limits. This finding confirms the sensitivity experiments of the same610

method by Läderach and Sodemann (2016) based on ERAI data.
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Figure B1. Sensitivity of the moisture source distance with respect to changes in the specific humidity threshold (∆qc) and time step (∆t)

for a range of 3 to 12 h. Markers denote the average distance from moisture source to the target region in km. All sensitivity runs were done

for the year 2002 of the CTL simulation.

Table B1. Range of parameters for the sensitivity tests for NorESM1-M for year 2002, including the time steps ∆t, specific humidity

thresholds ∆qc, and the relative humidity threshold RHc. Numbers in brackets for ∆qc are in units of g kg−1h−1 to enable an easier

comparison.

Time step length Specific humidity thresholds (g kg−1)

3 h 0.05 (0.0167) 0.5 (0.167) 1.0 (0.333)

6 h 0.1 (0.0167) 0.5 (0.083) 1.0 (0.167) 2.0 (0.667)

9 h 0.1 (0.0111) 1.0 (0.111) 2.0 (0.222) 3.0 (0.333)

12 h 0.1 (0.008) 1.0 (0.083) 2.0 (0.167) 3.0 (0.250)

Relative humidity thesholds (%)

0 30 50 60 70 80 90
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Figure B2. Sensitivity of the precipitation estimate and moisture source distance to changes in the relative humidity threshold (RHc). (a)

Sensitivity of the precipitation estimate (mm day−1) in response to RHc (%). Anticipated realistic range of P indicated by dashed lines.

Blue line shows precipitation simulated by NorESM1-M. (b) Response of moisture source distance (km) to changes in RHc (%). Value for

threshold RHc adopted in this study is highlighted by a red circle. All sensitivity runs are based on the year 2002 of the CTL simulation.
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