Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-1263-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-1263-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Winter thermodynamic vertical structure in the Arctic atmosphere linked to large-scale circulation
Finnish Meteorological Institute, Helsinki, Finland
Michael Tjernström
Department of Meteorology, Bolin Centre for Climate Research,
Stockholm University, Stockholm, Sweden
Tuomas Naakka
Finnish Meteorological Institute, Helsinki, Finland
Related authors
Tiina Nygård, Lukas Papritz, Tuomas Naakka, and Timo Vihma
Weather Clim. Dynam., 4, 943–961, https://doi.org/10.5194/wcd-4-943-2023, https://doi.org/10.5194/wcd-4-943-2023, 2023
Short summary
Short summary
Despite the general warming trend, wintertime cold-air outbreaks in Europe have remained nearly as extreme and as common as decades ago. In this study, we identify six principal cold anomaly types over Europe in 1979–2020. We show the origins of various physical processes and their contributions to the formation of cold wintertime air masses.
Manu Anna Thomas, Abhay Devasthale, and Tiina Nygård
Atmos. Chem. Phys., 21, 16593–16608, https://doi.org/10.5194/acp-21-16593-2021, https://doi.org/10.5194/acp-21-16593-2021, 2021
Short summary
Short summary
The impact of transported pollutants and their spatial distribution in the Arctic are governed by the local atmospheric circulation or weather states. Therefore, we investigated eight different atmospheric circulation types observed during the spring season in the Arctic. Using satellite and reanalysis datasets, this study provides a comprehensive assessment of the typical circulation patterns that can lead to enhanced or reduced pollution concentrations in the different sectors of the Arctic.
A. Tetzlaff, C. Lüpkes, G. Birnbaum, J. Hartmann, T. Nygård, and T. Vihma
The Cryosphere, 8, 1757–1762, https://doi.org/10.5194/tc-8-1757-2014, https://doi.org/10.5194/tc-8-1757-2014, 2014
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
T. Nygård, T. Valkonen, and T. Vihma
Atmos. Chem. Phys., 14, 1959–1971, https://doi.org/10.5194/acp-14-1959-2014, https://doi.org/10.5194/acp-14-1959-2014, 2014
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Tiina Nygård, Lukas Papritz, Tuomas Naakka, and Timo Vihma
Weather Clim. Dynam., 4, 943–961, https://doi.org/10.5194/wcd-4-943-2023, https://doi.org/10.5194/wcd-4-943-2023, 2023
Short summary
Short summary
Despite the general warming trend, wintertime cold-air outbreaks in Europe have remained nearly as extreme and as common as decades ago. In this study, we identify six principal cold anomaly types over Europe in 1979–2020. We show the origins of various physical processes and their contributions to the formation of cold wintertime air masses.
Ines Bulatovic, Julien Savre, Michael Tjernström, Caroline Leck, and Annica M. L. Ekman
Atmos. Chem. Phys., 23, 7033–7055, https://doi.org/10.5194/acp-23-7033-2023, https://doi.org/10.5194/acp-23-7033-2023, 2023
Short summary
Short summary
We use numerical modeling with detailed cloud microphysics to investigate a low-altitude cloud system consisting of two cloud layers – a type of cloud situation which was commonly observed during the summer of 2018 in the central Arctic (north of 80° N). The model generally reproduces the observed cloud layers and the thermodynamic structure of the lower atmosphere well. The cloud system is maintained unless there are low aerosol number concentrations or high large-scale wind speeds.
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023, https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Short summary
In this study, we show that recent versions of two atmospheric models – the Unified Model and Integrated Forecasting System – overestimate Arctic cloud fraction within the lower troposphere by comparison with recent remote-sensing measurements made during the Arctic Ocean 2018 expedition. The overabundance of cloud is interlinked with the modelled thermodynamic structure, with strong negative temperature biases coincident with these overestimated cloud layers.
Elena Shevnina, Miguel Potes, Timo Vihma, Tuomas Naakka, Pankaj Ramji Dhote, and Praveen Kumar Thakur
The Cryosphere, 16, 3101–3121, https://doi.org/10.5194/tc-16-3101-2022, https://doi.org/10.5194/tc-16-3101-2022, 2022
Short summary
Short summary
The evaporation over an ice-free glacial lake was measured in January 2018, and the uncertainties inherent to five indirect methods were quantified. Results show that in summer up to 5 mm of water evaporated daily from the surface of the lake located in Antarctica. The indirect methods underestimated the evaporation over the lake's surface by up to 72 %. The results are important for estimating the evaporation over polar regions where a growing number of glacial lakes have recently been evident.
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057, https://doi.org/10.5194/acp-22-8037-2022, https://doi.org/10.5194/acp-22-8037-2022, 2022
Short summary
Short summary
In winter when solar radiation is absent in the Arctic, the poleward transport of heat and moisture into the high Arctic becomes the main contribution of Arctic warming. Over completely frozen ocean sectors, total surface energy budget is dominated by net long-wave heat, while over the Barents Sea, with an open ocean to the south, total net surface energy budget is dominated by the surface turbulent heat.
Manu Anna Thomas, Abhay Devasthale, and Tiina Nygård
Atmos. Chem. Phys., 21, 16593–16608, https://doi.org/10.5194/acp-21-16593-2021, https://doi.org/10.5194/acp-21-16593-2021, 2021
Short summary
Short summary
The impact of transported pollutants and their spatial distribution in the Arctic are governed by the local atmospheric circulation or weather states. Therefore, we investigated eight different atmospheric circulation types observed during the spring season in the Arctic. Using satellite and reanalysis datasets, this study provides a comprehensive assessment of the typical circulation patterns that can lead to enhanced or reduced pollution concentrations in the different sectors of the Arctic.
Erik Johansson, Abhay Devasthale, Michael Tjernström, Annica M. L. Ekman, Klaus Wyser, and Tristan L'Ecuyer
Geosci. Model Dev., 14, 4087–4101, https://doi.org/10.5194/gmd-14-4087-2021, https://doi.org/10.5194/gmd-14-4087-2021, 2021
Short summary
Short summary
Understanding the coupling of clouds to large-scale circulation is a grand challenge for the climate community. Cloud radiative heating (CRH) is a key parameter in this coupling and is therefore essential to model realistically. We, therefore, evaluate a climate model against satellite observations. Our findings indicate good agreement in the seasonal pattern of CRH even if the magnitude differs. We also find that increasing the horizontal resolution in the model has little effect on the CRH.
Jutta Vüllers, Peggy Achtert, Ian M. Brooks, Michael Tjernström, John Prytherch, Annika Burzik, and Ryan Neely III
Atmos. Chem. Phys., 21, 289–314, https://doi.org/10.5194/acp-21-289-2021, https://doi.org/10.5194/acp-21-289-2021, 2021
Short summary
Short summary
This paper provides interesting new results on the thermodynamic structure of the boundary layer, cloud conditions, and fog characteristics in the Arctic during the Arctic Ocean 2018 campaign. It provides information for interpreting further process studies on aerosol–cloud interactions and shows substantial differences in thermodynamic conditions and cloud characteristics based on comparison with previous campaigns. This certainly raises the question of whether it is just an exceptional year.
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Katharina Loewe, Annica M. L. Ekman, Marco Paukert, Joseph Sedlar, Michael Tjernström, and Corinna Hoose
Atmos. Chem. Phys., 17, 6693–6704, https://doi.org/10.5194/acp-17-6693-2017, https://doi.org/10.5194/acp-17-6693-2017, 2017
Short summary
Short summary
Processes that affect Arctic mixed-phase cloud life cycle are extremely important for the surface energy budget. Three different sensitivity experiments mimic changes in the advection of air masses with different thermodynamic profiles and aerosol properties to find the potential mechanisms leading to the dissipation of the cloud. We found that the reduction of the cloud droplet number concentration was likely the primary contributor to the dissipation of the observed Arctic mixed-phase cloud.
P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström
Atmos. Meas. Tech., 8, 4993–5007, https://doi.org/10.5194/amt-8-4993-2015, https://doi.org/10.5194/amt-8-4993-2015, 2015
Short summary
Short summary
Doppler lidar wind measurements were obtained during a 3-month Arctic cruise in summer 2014. Ship-motion effects were compensated by combining a commercial Doppler lidar with a custom-made motion-stabilisation platform. This enables the retrieval of wind profiles in the Arctic boundary layer with uncertainties comparable to land-based lidar measurements and standard radiosondes. The presented set-up has the potential to facilitate continuous ship-based wind profile measurements over the oceans.
E. Johansson, A. Devasthale, T. L'Ecuyer, A. M. L. Ekman, and M. Tjernström
Atmos. Chem. Phys., 15, 11557–11570, https://doi.org/10.5194/acp-15-11557-2015, https://doi.org/10.5194/acp-15-11557-2015, 2015
Short summary
Short summary
Both radiative and latent heat components of total diabatic heating influence Indian monsoon dynamics. This study investigates radiative component in detail, focusing on various cloud types that have largest radiative impact during summer monsoon over the Indian subcontinent. The vertical structure of radiative heating and its intra-seasonal variability is investigated with particular emphasis on the upper troposphere and lower stratosphere (UTLS) region.
G. Sotiropoulou, J. Sedlar, M. Tjernström, M. D. Shupe, I. M. Brooks, and P. O. G. Persson
Atmos. Chem. Phys., 14, 12573–12592, https://doi.org/10.5194/acp-14-12573-2014, https://doi.org/10.5194/acp-14-12573-2014, 2014
Short summary
Short summary
During ASCOS, clouds are more frequently decoupled from the surface than coupled to it; when coupling occurs it is primary driven by the cloud. Decoupled clouds have a bimodal structure; they are either weakly or strongly decoupled from the surface; the enhancement of the decoupling is possibly due to sublimation of precipitation. Stable clouds (no cloud-driven mixing) are also observed; those are optically thin, often single-phase liquid, with no or negligible precipitation (e.g. fog).
A. Tetzlaff, C. Lüpkes, G. Birnbaum, J. Hartmann, T. Nygård, and T. Vihma
The Cryosphere, 8, 1757–1762, https://doi.org/10.5194/tc-8-1757-2014, https://doi.org/10.5194/tc-8-1757-2014, 2014
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
M. Tjernström, C. Leck, C. E. Birch, J. W. Bottenheim, B. J. Brooks, I. M. Brooks, L. Bäcklin, R. Y.-W. Chang, G. de Leeuw, L. Di Liberto, S. de la Rosa, E. Granath, M. Graus, A. Hansel, J. Heintzenberg, A. Held, A. Hind, P. Johnston, J. Knulst, M. Martin, P. A. Matrai, T. Mauritsen, M. Müller, S. J. Norris, M. V. Orellana, D. A. Orsini, J. Paatero, P. O. G. Persson, Q. Gao, C. Rauschenberg, Z. Ristovski, J. Sedlar, M. D. Shupe, B. Sierau, A. Sirevaag, S. Sjogren, O. Stetzer, E. Swietlicki, M. Szczodrak, P. Vaattovaara, N. Wahlberg, M. Westberg, and C. R. Wheeler
Atmos. Chem. Phys., 14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, https://doi.org/10.5194/acp-14-2823-2014, 2014
C. Wesslén, M. Tjernström, D. H. Bromwich, G. de Boer, A. M. L. Ekman, L.-S. Bai, and S.-H. Wang
Atmos. Chem. Phys., 14, 2605–2624, https://doi.org/10.5194/acp-14-2605-2014, https://doi.org/10.5194/acp-14-2605-2014, 2014
T. Nygård, T. Valkonen, and T. Vihma
Atmos. Chem. Phys., 14, 1959–1971, https://doi.org/10.5194/acp-14-1959-2014, https://doi.org/10.5194/acp-14-1959-2014, 2014
G. de Boer, M. D. Shupe, P. M. Caldwell, S. E. Bauer, O. Persson, J. S. Boyle, M. Kelley, S. A. Klein, and M. Tjernström
Atmos. Chem. Phys., 14, 427–445, https://doi.org/10.5194/acp-14-427-2014, https://doi.org/10.5194/acp-14-427-2014, 2014
P. Kupiszewski, C. Leck, M. Tjernström, S. Sjogren, J. Sedlar, M. Graus, M. Müller, B. Brooks, E. Swietlicki, S. Norris, and A. Hansel
Atmos. Chem. Phys., 13, 12405–12431, https://doi.org/10.5194/acp-13-12405-2013, https://doi.org/10.5194/acp-13-12405-2013, 2013
M. D. Shupe, P. O. G. Persson, I. M. Brooks, M. Tjernström, J. Sedlar, T. Mauritsen, S. Sjogren, and C. Leck
Atmos. Chem. Phys., 13, 9379–9399, https://doi.org/10.5194/acp-13-9379-2013, https://doi.org/10.5194/acp-13-9379-2013, 2013
Related subject area
Interactions of atmospheric flows with cloud physics and/or radiation
How heating tracers drive self-lofting long-lived stratospheric anticyclones: simple dynamical models
Cloud-radiative impact on the dynamics and predictability of an idealized extratropical cyclone
Kasturi Shah and Peter H. Haynes
Weather Clim. Dynam., 5, 559–585, https://doi.org/10.5194/wcd-5-559-2024, https://doi.org/10.5194/wcd-5-559-2024, 2024
Short summary
Short summary
Long-lived rising bubbles of wildfire smoke or volcanic aerosol contained within strong vortices have been observed in the stratosphere. Heating through absorption of solar radiation has been hypothesised as driving these structures. We present simple models incorporating two-way interaction between dynamics and aerosol combined with insight from vortex dynamics to explain aspects of observed behaviours, including ascent rate and vorticity magnitude, and to suggest criteria for formation.
Behrooz Keshtgar, Aiko Voigt, Corinna Hoose, Michael Riemer, and Bernhard Mayer
Weather Clim. Dynam., 4, 115–132, https://doi.org/10.5194/wcd-4-115-2023, https://doi.org/10.5194/wcd-4-115-2023, 2023
Short summary
Short summary
Forecasting extratropical cyclones is challenging due to many physical factors influencing their behavior. One such factor is the impact of heating and cooling of the atmosphere by the interaction between clouds and radiation. In this study, we show that cloud-radiative heating (CRH) increases the intensity of an idealized cyclone and affects its predictability. We find that CRH affects the cyclone mostly via increasing latent heat release and subsequent changes in the synoptic circulation.
Cited articles
Brümmer, B.: Boundary-layer modification in wintertime cold-air
outbreaks from the Arctic sea ice, Bound.-Lay. Meteorol., 80, 109–125,
https://doi.org/10.1007/BF00119014, 1996.
Brunke, M. A., Stegall, S. T., and Zeng, X.: A climatology of tropospheric
humidity inversions in five reanalyses, Atmos. Res., 153, 165–187,
https://doi.org/10.1016/j.atmosres.2014.08.005, 2015.
C3S: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global
climate, Copernicus Climate Change Service Climate Data Store (CDS)
[data set], https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 15 December 2021), 2017.
Cassano, J. J., Uotila, P., and Lynch, A.: Changes in synoptic weather
patterns in the polar regions in the twentieth and twenty-first centuries,
part 1: Arctic, Int. J. Climatol., 26, 1027–1049, https://doi.org/10.1002/joc.1306,
2006.
Cassano, J. J., Cassano, E. N., Seefeldt, M. W., Gutowski Jr., W. J., and
Glisan, J. M.: Synoptic conditions during wintertime temperature extremes in
Alaska, J. Geophys. Res.-Atmos., 121, 3241–3262,
https://doi.org/10.1002/2015JD024404, 2016.
Curry, J. A.: On the formation of continental polar air, J. Atmos. Sci., 40,
2278–2292, 1983.
Devasthale, A., Willén, U., Karlsson, K.-G., and Jones, C. G.: Quantifying the clear-sky temperature inversion frequency and strength over the Arctic Ocean during summer and winter seasons from AIRS profiles, Atmos. Chem. Phys., 10, 5565–5572, https://doi.org/10.5194/acp-10-5565-2010, 2010.
Devasthale, A., Sedlar, J., and Tjernström, M.: Characteristics of water-vapour inversions observed over the Arctic by Atmospheric Infrared Sounder (AIRS) and radiosondes, Atmos. Chem. Phys., 11, 9813–9823, https://doi.org/10.5194/acp-11-9813-2011, 2011.
Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and Vömel, H.: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde, Atmos. Meas. Tech., 7, 4463–4490, https://doi.org/10.5194/amt-7-4463-2014, 2014.
Durre, I. and Yin, X.: Enhanced Radiosonde Data For Studies of Vertical
Structure, B. Am. Meteorol. Soc., 89, 1257–1262,
https://doi.org/10.1175/2008bams2603.1, 2008.
Durre, I., Russell, S. V., and Wuertz, D. B.: Overview of the Integrated
Global Radiosonde Archive, J. Climate, 19, 53–68, 2006.
Fearon, M. G., Doyle, J. D., Ryglicki, D. R., Finocchio, P. M., and
Sprenger, M.: The Role of Cyclones in Moisture Transport into the Arctic,
Geophys. Res. Lett., 48, e2020GL090353,
https://doi.org/10.1029/2020GL090353, 2021.
Ferreira, A. P., Nieto, R., and Gimeno, L.: Completeness of radiosonde humidity observations based on the Integrated Global Radiosonde Archive, Earth Syst. Sci. Data, 11, 603–627, https://doi.org/10.5194/essd-11-603-2019, 2019.
Gibson, P. B., Perkins-Kirkpatrick, S. E., Uotila, P., Pepler, A. S., and
Alexander, L. V.: On the use of self-organizing maps for studying climate
extremes, J. Geophys. Res.-Atmos., 122, 3891–3903, https://doi.org/10.1002/2016JD026256,
2017.
Graham, R. M., Cohen, L., Ritzhaupt, N., Segger, B., Graversen, R. G.,
Rinke, A., Walden, V. P., Granskog, M. A., and Hudson, S. R.: Evaluation of
Six Atmospheric Reanalyses over Arctic Sea Ice from Winter to Early Summer,
J. Climate, 32, 4121–4143, https://doi.org/10.1175/jcli-d-18-0643.1, 2019.
Hahn, C. J., Warren, S. G., and London, J.: The Effect of Moonlight on
Observation of Cloud Cover at Night, and Application to Cloud Climatology,
J. Climate, 8, 1429–1446, 1995.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hewitson, B. C. and Crane, R. G.: Self-organizing maps: applications to
synoptic climatology, Clim. Res., 22, 13–26, 2002.
Ingleby, B.: An assessment of different radiosonde types 2015/2016, ECMWF Technical Memoranda, Reading, England, 2017.
Jensen, M. P., Holdridge, D. J., Survo, P., Lehtinen, R., Baxter, S., Toto, T., and Johnson, K. L.: Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site, Atmos. Meas. Tech., 9, 3115–3129, https://doi.org/10.5194/amt-9-3115-2016, 2016.
Johnson, N. C., Feldstein, S. B., and Tremblay, B.: The Continuum of
Northern Hemisphere Teleconnection Patterns and a Description of the NAO
Shift with the Use of Self-Organizing Maps, J. Climate, 21, 6354–6371,
https://doi.org/10.1175/2008jcli2380.1, 2008.
Kohonen, T.: Self-Organizing Maps, Springer-Verlag, Berlin, Heidelberg, 501 pp., 2001.
Kolstad, E. W., Bracegirdle, T. J., and Seierstad, I. A.: Marine cold-air
outbreaks in the North Atlantic: temporal distribution and associations with
large-scale atmospheric circulation, Clim. Dynam., 33, 187–197,
https://doi.org/10.1007/s00382-008-0431-5, 2009.
LeMone, M. A., Angevine, W. M., Bretherton, C. S., Chen, F., Dudhia, J.,
Fedorovich, E., Katsaros, K. B., Lenschow, D. H., Mahrt, L., Patton, E. G.,
Sun, J., Tjernström, M., and Weil, J.: 100 Years of Progress in Boundary
Layer Meteorology, Meteorological Monographs, 59, 9.1–9.85,
https://doi.org/10.1175/amsmonographs-d-18-0013.1, 2019.
Liu, Y., Key, J. R., Vavrus, S., and Woods, C.: Time Evolution of the Cloud
Response to Moisture Intrusions into the Arctic during Winter, J. Climate, 31,
9389–9405, https://doi.org/10.1175/jcli-d-17-0896.1, 2018.
Mattingly, K. S., Ramseyer, C. A., Rosen, J. J., Mote, T. L., and Muthyala,
R.: Increasing water vapor transport to the Greenland Ice Sheet revealed
using self-organizing maps, Geophys. Res. Lett., 43, 9250–9258,
https://doi.org/10.1002/2016GL070424, 2016.
Messori, G., Woods, C., and Caballero, R.: On the Drivers of Wintertime
Temperature Extremes in the High Arctic, J. Climate, 31, 1597–1618,
https://doi.org/10.1175/jcli-d-17-0386.1, 2018.
Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and
Sulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat.
Geosci., 5, 11–17, 2012.
Naakka, T., Nygård, T., and Vihma, T.: Arctic Humidity Inversions:
Climatology and Processes, J. Climate, 31, 3765–3787,
https://doi.org/10.1175/jcli-d-17-0497.1, 2018.
Naakka, T., Nygård, T., Tjernström, M., Vihma, T., Pirazzini, R.,
and Brooks, I. M.: The Impact of Radiosounding Observations on Numerical
Weather Prediction Analyses in the Arctic, Geophys. Res. Lett., 46,
8527–8535, https://doi.org/10.1029/2019gl083332, 2019.
Nygård, T., Valkonen, T., and Vihma, T.: Characteristics of Arctic low-tropospheric humidity inversions based on radio soundings, Atmos. Chem. Phys., 14, 1959–1971, https://doi.org/10.5194/acp-14-1959-2014, 2014.
Nygård, T., Graversen, R. G., Uotila, P., Naakka, T., and Vihma, T.:
Strong dependence of wintertime Arctic moisture and cloud distributions on
atmospheric large-scale circulation J. Climate, 32, 8771–8790,
https://doi.org/10.1175/JCLI-D-19-0242.1, 2019.
Papritz, L.: Arctic Lower-Tropospheric Warm and Cold Extremes: Horizontal
and Vertical Transport, Diabatic Processes, and Linkage to Synoptic
Circulation Features, J. Climate, 33, 993–1016, https://doi.org/10.1175/jcli-d-19-0638.1,
2020.
Park, H.-S., Lee, S., Son, S.-W., Feldstein, S. B., and Kosaka, Y.: The
Impact of Poleward Moisture and Sensible Heat Flux on Arctic Winter Sea Ice
Variability, J. Climate, 28, 5030–5040, https://doi.org/10.1175/jcli-d-15-0074.1, 2015.
Pithan, F., Medeiros, B., and Mauritsen, T.: Mixed-phase clouds cause
climate model biases in Arctic wintertime temperature inversions, Clim.
Dynam., 43, 289–303, https://doi.org/10.1007/s00382-013-1964-9, 2014.
Pithan, F., Svensson, G., Caballero, R., Chechin, D., Cronin, T. W., Ekman,
A. M. L., Neggers, R., Shupe, M. D., Solomon, A., Tjernström, M., and
Wendisch, M.: Role of air-mass transformations in exchange between the
Arctic and mid-latitudes, Nat. Geosci., 11, 805–812,
https://doi.org/10.1038/s41561-018-0234-1, 2018.
Renfrew, I. A., Barrell, C., Elvidge, A. D., Brooke, J. K., Duscha, C.,
King, J. C., Kristiansen, J., Cope, T. L., Moore, G. W. K., Pickart, R. S.,
Reuder, J., Sandu, I., Sergeev, D., Terpstra, A., Våge, K., and Weiss,
A.: An evaluation of surface meteorology and fluxes over the Iceland and
Greenland Seas in ERA5 reanalysis: The impact of sea ice distribution,
Q. J. Roy. Meteor. Soc., 147, 691–712,
https://doi.org/10.1002/qj.3941, 2021.
Sedlar, J. and Tjernström, M.: A Process-Based Climatological Evaluation
of AIRS Level 3 Tropospheric Thermodynamics over the High-Latitude Arctic,
J. Appl. Meteor. Climatol., 58, 1867–1886, https://doi.org/10.1175/jamc-d-18-0306.1,
2019.
Serreze, M. C., Kahl, J. D. W., and Schnell, R. C.: Low-level temperature
inversions of the Eurasian Arctic and comparisons with Soviet drifting
stations, J. Climate, 8, 719–731, 1992.
Shahi, S., Abermann, J., Heinrich, G., Prinz, R., and Schöner, W.:
Regional Variability and Trends of Temperature Inversions in Greenland, J.
Climate, 33, 9391–9407, https://doi.org/10.1175/jcli-d-19-0962.1, 2020.
Skific, N., Francis, J. A., and Cassano, J. J.: Attribution of Projected
Changes in Atmospheric Moisture Transport in the Arctic: A Self-Organizing
Map Perspective, J. Climate, 22, 4135–4153, https://doi.org/10.1175/2009JCLI2645.1, 2009.
Stramler, K., Genio, A. D. D., and Rossow, W. B.: Synoptically Driven Arctic
Winter States, J. Climate, 24, 1747–1762, https://doi.org/10.1175/2010jcli3817.1, 2011.
Sulikowska, A., Walawender, J. P., and Walawender, E.: Temperature extremes
in Alaska: temporal variability and circulation background, Theor.
Appl. Climatol., 136, 955–970, https://doi.org/10.1007/s00704-018-2528-z, 2019.
Tjernström, M. and Graversen, R. G.: The vertical structure of the lower
Arctic troposphere analysed from observations and the ERA-40 reanalysis,
Q. J. Roy. Meteor. Soc., 135, 431–443, https://doi.org/10.1002/qj.380, 2009.
Vihma, T., Pirazzini, R., Fer, I., Renfrew, I. A., Sedlar, J., Tjernström, M., Lüpkes, C., Nygård, T., Notz, D., Weiss, J., Marsan, D., Cheng, B., Birnbaum, G., Gerland, S., Chechin, D., and Gascard, J. C.: Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review, Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, 2014.
Wang, C., Graham, R. M., Wang, K., Gerland, S., and Granskog, M. A.: Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution, The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019, 2019.
Woods, C., Caballero, R., and Svensson, G.: Large-scale circulation
associated with moisture intrusions into the Arctic during winter, Geophys.
Res. Lett., 40, 4717–4721, https://doi.org/10.1002/grl.50912, 2013.
Yu, L., Yang, Q., Zhou, M., Zeng, X., Lenschow, D. H., Wang, X., and Han,
B.: The Intraseasonal and Interannual Variability of Arctic Temperature and
Specific Humidity Inversions, Atmosphere, 10, 214,
https://doi.org/10.3390/atmos10040214, 2019.
Zhang, Y., Seidel, D. J., Golaz, J. C., Deser, C., and Tomas, R. A.:
Climatological characteristics of Arctic and Antarctic Surface-Based
Inversions, J. Climate, 24, 5167–5186, https://doi.org/10.1175/2011JCLI4004.1, 2011.
Short summary
Temperature and humidity profiles in the Arctic atmosphere in winter are affected by both the large-scale dynamics and the local processes, such as radiation, cloud formation and turbulence. The results show that the influence of different large-scale flows on temperature and humidity profiles must be viewed as a progressing set of processes. Within the Arctic, there are notable regional differences in how large-scale flows affect the temperature and specific humidity profiles.
Temperature and humidity profiles in the Arctic atmosphere in winter are affected by both the...