Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-1283-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-1283-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamical and surface impacts of the January 2021 sudden stratospheric warming in novel Aeolus wind observations, MLS and ERA5
Centre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, UK
Richard J. Hall
School of Geographical Sciences and Cabot Institute for the Environment, University of Bristol, Bristol, UK
Timothy P. Banyard
Centre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, UK
Neil P. Hindley
Centre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, UK
Isabell Krisch
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Daniel M. Mitchell
School of Geographical Sciences and Cabot Institute for the Environment, University of Bristol, Bristol, UK
William J. M. Seviour
College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
Global Systems Institute, University of Exeter, Exeter, UK
Related authors
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Xue Wu, Lars Hoffmann, Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Silvio Kalisch, Xin Wang, Bing Chen, Yinan Wang, and Daren Lyu
EGUsphere, https://doi.org/10.5194/egusphere-2023-3008, https://doi.org/10.5194/egusphere-2023-3008, 2024
Short summary
Short summary
This study identified a noteworthy time-lagged correlation between hurricane intensity and stratospheric gravity wave intensities during hurricane intensification. Meanwhile, the study reveals distinct frequencies, horizontal wavelengths, and vertical wavelengths in the inner core region during hurricane intensification, offering essential insights for monitoring hurricane intensity via satellite observations of stratospheric gravity waves.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Neil P. Hindley, Nicholas J. Mitchell, Neil Cobbett, Anne K. Smith, Dave C. Fritts, Diego Janches, Corwin J. Wright, and Tracy Moffat-Griffin
Atmos. Chem. Phys., 22, 9435–9459, https://doi.org/10.5194/acp-22-9435-2022, https://doi.org/10.5194/acp-22-9435-2022, 2022
Short summary
Short summary
We present observations of winds in the mesosphere and lower thermosphere (MLT) from a recently installed meteor radar on the remote island of South Georgia (54° S, 36° W). We characterise mean winds, tides, planetary waves, and gravity waves in the MLT at this location and compare our measured winds with a leading climate model. We find that the observed wintertime winds are unexpectedly reversed from model predictions, probably because of missing impacts of secondary gravity waves in the model.
Isabell Krisch, Neil P. Hindley, Oliver Reitebuch, and Corwin J. Wright
Atmos. Meas. Tech., 15, 3465–3479, https://doi.org/10.5194/amt-15-3465-2022, https://doi.org/10.5194/amt-15-3465-2022, 2022
Short summary
Short summary
The Aeolus satellite measures global height resolved profiles of wind along a certain line-of-sight. However, for atmospheric dynamics research, wind measurements along the three cardinal axes are most useful. This paper presents methods to convert the measurements into zonal and meridional wind components. By combining the measurements during ascending and descending orbits, we achieve good derivation of zonal wind (equatorward of 80° latitude) and meridional wind (poleward of 70° latitude).
Phoebe Noble, Neil Hindley, Corwin Wright, Chihoko Cullens, Scott England, Nicholas Pedatella, Nicholas Mitchell, and Tracy Moffat-Griffin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-150, https://doi.org/10.5194/acp-2022-150, 2022
Revised manuscript not accepted
Short summary
Short summary
We use long term radar data and the WACCM-X model to study the impact of dynamical phenomena, including the 11-year solar cycle, ENSO, QBO and SAM, on Antarctic mesospheric winds. We find that in summer, the zonal wind (both observationally and in the model) is strongly correlated with the solar cycle. We also see important differences in the results from the other processes. In addition we find important and large biases in the winter model zonal winds relative to the observations.
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021, https://doi.org/10.5194/amt-14-5873-2021, 2021
Short summary
Short summary
Measuring atmospheric gravity waves in low vertical-resolution data is technically challenging, especially when the waves are significantly longer in the vertical than in the length of the measurement domain. We introduce and demonstrate a modification to the existing Stockwell transform methods of characterising these waves that address these problems, with no apparent reduction in the other capabilities of the technique.
Neil P. Hindley, Corwin J. Wright, Alan M. Gadian, Lars Hoffmann, John K. Hughes, David R. Jackson, John C. King, Nicholas J. Mitchell, Tracy Moffat-Griffin, Andrew C. Moss, Simon B. Vosper, and Andrew N. Ross
Atmos. Chem. Phys., 21, 7695–7722, https://doi.org/10.5194/acp-21-7695-2021, https://doi.org/10.5194/acp-21-7695-2021, 2021
Short summary
Short summary
One limitation of numerical atmospheric models is spatial resolution. For atmospheric gravity waves (GWs) generated over small mountainous islands, the driving effect of these waves on atmospheric circulations can be underestimated. Here we use a specialised high-resolution model over South Georgia island to compare simulated stratospheric GWs to colocated 3-D satellite observations. We find reasonable model agreement with observations, with some GW amplitudes much larger than expected.
Neil P. Hindley, Corwin J. Wright, Nathan D. Smith, Lars Hoffmann, Laura A. Holt, M. Joan Alexander, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Atmos. Chem. Phys., 19, 15377–15414, https://doi.org/10.5194/acp-19-15377-2019, https://doi.org/10.5194/acp-19-15377-2019, 2019
Short summary
Short summary
In this study, a 3–D Stockwell transform is applied to AIRS–Aqua satellite observations in the first extended 3–D study of stratospheric gravity waves over the Southern Ocean during winter. A dynamic environment is revealed that contains some of the most intense gravity wave sources on Earth. A particularly striking result is a large–scale meridional convergence of gravity wave momentum flux towards latitudes near 60 °S, something which is not normally considered in model parameterisations.
Young-Ha Kim, George N. Kiladis, John R. Albers, Juliana Dias, Masatomo Fujiwara, James A. Anstey, In-Sun Song, Corwin J. Wright, Yoshio Kawatani, François Lott, and Changhyun Yoo
Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, https://doi.org/10.5194/acp-19-10027-2019, 2019
Short summary
Short summary
Reanalyses are widely used products of meteorological variables, generated using observational data and assimilation systems. We compare six modern reanalyses, with focus on their representation of equatorial waves which are important in stratospheric variability and stratosphere–troposphere exchange. Agreement/spreads among the reanalyses in the spectral properties and spatial distributions of the waves are examined, and satellite impacts on the wave representation in reanalyses are discussed.
Corwin J. Wright and Neil P. Hindley
Atmos. Chem. Phys., 18, 13703–13731, https://doi.org/10.5194/acp-18-13703-2018, https://doi.org/10.5194/acp-18-13703-2018, 2018
Short summary
Short summary
Reanalyses (RAs) are models which assimilate observations and are widely used as proxies for the true atmospheric state. Here, we resample six leading RAs using the weighting functions of four high-res satellite instruments, allowing a like-for-like comparison. We find that the RAs generally reproduce the satellite data well, except at high altitudes and in the tropics. However, we also find that the RAs more tightly correlate with each other than with observations, even those they assimilate.
Corwin J. Wright, Neil P. Hindley, Lars Hoffmann, M. Joan Alexander, and Nicholas J. Mitchell
Atmos. Chem. Phys., 17, 8553–8575, https://doi.org/10.5194/acp-17-8553-2017, https://doi.org/10.5194/acp-17-8553-2017, 2017
Short summary
Short summary
We introduce a novel 3-D method of measuring atmospheric gravity waves, based around a 3-D Stockwell transform. Our method lets us measure new properties, including wave intrinsic frequencies and phase and group velocities. We apply it to data from the AIRS satellite instrument over the Southern Andes for two consecutive winters. Our results show clear evidence that the waves measured are primarily orographic in origin, and that their group velocity vectors are focused into the polar night jet.
Neil P. Hindley, Nathan D. Smith, Corwin J. Wright, D. Andrew S. Rees, and Nicholas J. Mitchell
Atmos. Meas. Tech., 9, 2545–2565, https://doi.org/10.5194/amt-9-2545-2016, https://doi.org/10.5194/amt-9-2545-2016, 2016
Short summary
Short summary
Gravity waves are medium-sized momentum-carrying atmospheric waves that nearly all weather and climate models struggle to represent. Thus, the accurate global measurement of gravity-wave properties in the real atmosphere is of key importance. Here we use a new two-dimensional Stockwell transform (2-DST) method to measure key GW properties in 2-D satellite data. We show that our 2-DST approach greatly improves upon current methods, particularly if a new elliptical spectral window is used.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Leanne Archer, Jeffrey Neal, Paul Bates, Emily Vosper, Dereka Carroll, Jeison Sosa, and Daniel Mitchell
Nat. Hazards Earth Syst. Sci., 24, 375–396, https://doi.org/10.5194/nhess-24-375-2024, https://doi.org/10.5194/nhess-24-375-2024, 2024
Short summary
Short summary
We model hurricane-rainfall-driven flooding to assess how the number of people exposed to flooding changes in Puerto Rico under the 1.5 and 2 °C Paris Agreement goals. Our analysis suggests 8 %–10 % of the population is currently exposed to flooding on average every 5 years, increasing by 2 %–15 % and 1 %–20 % at 1.5 and 2 °C. This has implications for adaptation to more extreme flooding in Puerto Rico and demonstrates that 1.5 °C climate change carries a significant increase in risk.
Xue Wu, Lars Hoffmann, Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Silvio Kalisch, Xin Wang, Bing Chen, Yinan Wang, and Daren Lyu
EGUsphere, https://doi.org/10.5194/egusphere-2023-3008, https://doi.org/10.5194/egusphere-2023-3008, 2024
Short summary
Short summary
This study identified a noteworthy time-lagged correlation between hurricane intensity and stratospheric gravity wave intensities during hurricane intensification. Meanwhile, the study reveals distinct frequencies, horizontal wavelengths, and vertical wavelengths in the inner core region during hurricane intensification, offering essential insights for monitoring hurricane intensity via satellite observations of stratospheric gravity waves.
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Short summary
Quasi-biennial oscillation (QBO) of the stratospheric tropical winds is an important mode of climate variability but is not well reproduced in free-running climate models. We use the novel global wind observations by the Aeolus satellite and radiosondes to show that the QBO is captured well in three modern reanalyses (ERA-5, JRA-55, and MERRA-2). Good agreement is also found also between Aeolus and reanalyses for large-scale tropical wave modes in the upper troposphere and lower stratosphere.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Neil P. Hindley, Nicholas J. Mitchell, Neil Cobbett, Anne K. Smith, Dave C. Fritts, Diego Janches, Corwin J. Wright, and Tracy Moffat-Griffin
Atmos. Chem. Phys., 22, 9435–9459, https://doi.org/10.5194/acp-22-9435-2022, https://doi.org/10.5194/acp-22-9435-2022, 2022
Short summary
Short summary
We present observations of winds in the mesosphere and lower thermosphere (MLT) from a recently installed meteor radar on the remote island of South Georgia (54° S, 36° W). We characterise mean winds, tides, planetary waves, and gravity waves in the MLT at this location and compare our measured winds with a leading climate model. We find that the observed wintertime winds are unexpectedly reversed from model predictions, probably because of missing impacts of secondary gravity waves in the model.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Isabell Krisch, Neil P. Hindley, Oliver Reitebuch, and Corwin J. Wright
Atmos. Meas. Tech., 15, 3465–3479, https://doi.org/10.5194/amt-15-3465-2022, https://doi.org/10.5194/amt-15-3465-2022, 2022
Short summary
Short summary
The Aeolus satellite measures global height resolved profiles of wind along a certain line-of-sight. However, for atmospheric dynamics research, wind measurements along the three cardinal axes are most useful. This paper presents methods to convert the measurements into zonal and meridional wind components. By combining the measurements during ascending and descending orbits, we achieve good derivation of zonal wind (equatorward of 80° latitude) and meridional wind (poleward of 70° latitude).
Phoebe Noble, Neil Hindley, Corwin Wright, Chihoko Cullens, Scott England, Nicholas Pedatella, Nicholas Mitchell, and Tracy Moffat-Griffin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-150, https://doi.org/10.5194/acp-2022-150, 2022
Revised manuscript not accepted
Short summary
Short summary
We use long term radar data and the WACCM-X model to study the impact of dynamical phenomena, including the 11-year solar cycle, ENSO, QBO and SAM, on Antarctic mesospheric winds. We find that in summer, the zonal wind (both observationally and in the model) is strongly correlated with the solar cycle. We also see important differences in the results from the other processes. In addition we find important and large biases in the winter model zonal winds relative to the observations.
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021, https://doi.org/10.5194/amt-14-5873-2021, 2021
Short summary
Short summary
Measuring atmospheric gravity waves in low vertical-resolution data is technically challenging, especially when the waves are significantly longer in the vertical than in the length of the measurement domain. We introduce and demonstrate a modification to the existing Stockwell transform methods of characterising these waves that address these problems, with no apparent reduction in the other capabilities of the technique.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Markus Geldenhuys, Peter Preusse, Isabell Krisch, Christoph Zülicke, Jörn Ungermann, Manfred Ern, Felix Friedl-Vallon, and Martin Riese
Atmos. Chem. Phys., 21, 10393–10412, https://doi.org/10.5194/acp-21-10393-2021, https://doi.org/10.5194/acp-21-10393-2021, 2021
Short summary
Short summary
A large-scale gravity wave (GW) was observed spanning the whole of Greenland. The GWs proposed in this paper come from a new jet–topography mechanism. The topography compresses the flow and triggers a change in u- and
v-wind components. The jet becomes out of geostrophic balance and sheds energy in the form of GWs to restore the balance. This topography–jet interaction was not previously considered by the community, rendering the impact of the gravity waves largely unaccounted for.
Neil P. Hindley, Corwin J. Wright, Alan M. Gadian, Lars Hoffmann, John K. Hughes, David R. Jackson, John C. King, Nicholas J. Mitchell, Tracy Moffat-Griffin, Andrew C. Moss, Simon B. Vosper, and Andrew N. Ross
Atmos. Chem. Phys., 21, 7695–7722, https://doi.org/10.5194/acp-21-7695-2021, https://doi.org/10.5194/acp-21-7695-2021, 2021
Short summary
Short summary
One limitation of numerical atmospheric models is spatial resolution. For atmospheric gravity waves (GWs) generated over small mountainous islands, the driving effect of these waves on atmospheric circulations can be underestimated. Here we use a specialised high-resolution model over South Georgia island to compare simulated stratospheric GWs to colocated 3-D satellite observations. We find reasonable model agreement with observations, with some GW amplitudes much larger than expected.
Isabell Krisch, Manfred Ern, Lars Hoffmann, Peter Preusse, Cornelia Strube, Jörn Ungermann, Wolfgang Woiwode, and Martin Riese
Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020, https://doi.org/10.5194/acp-20-11469-2020, 2020
Short summary
Short summary
In 2016, a scientific research flight above Scandinavia acquired various atmospheric data (temperature, gas composition, etc.). Through advanced 3-D reconstruction methods, a superposition of multiple gravity waves was identified. An in-depth analysis enabled the characterisation of these waves as well as the identification of their sources. This work will enable a better understanding of atmosphere dynamics and could lead to improved climate projections.
Hideo Shiogama, Ryuichi Hirata, Tomoko Hasegawa, Shinichiro Fujimori, Noriko N. Ishizaki, Satoru Chatani, Masahiro Watanabe, Daniel Mitchell, and Y. T. Eunice Lo
Earth Syst. Dynam., 11, 435–445, https://doi.org/10.5194/esd-11-435-2020, https://doi.org/10.5194/esd-11-435-2020, 2020
Short summary
Short summary
Based on climate simulations, we suggested that historical warming increased chances of drought exceeding the severe 2015 event in equatorial Asia due to El Niño. The fire and fire emissions of CO2/PM2.5 will largely increase at 1.5 and 2 °C warming. If global warming reaches 3 °C, as is expected from the current mitigation policies, chances of fire and CO2/PM2.5 emissions exceeding the 2015 event become approximately 100 %. Future climate policy has to consider these climate change effects.
Neil P. Hindley, Corwin J. Wright, Nathan D. Smith, Lars Hoffmann, Laura A. Holt, M. Joan Alexander, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Atmos. Chem. Phys., 19, 15377–15414, https://doi.org/10.5194/acp-19-15377-2019, https://doi.org/10.5194/acp-19-15377-2019, 2019
Short summary
Short summary
In this study, a 3–D Stockwell transform is applied to AIRS–Aqua satellite observations in the first extended 3–D study of stratospheric gravity waves over the Southern Ocean during winter. A dynamic environment is revealed that contains some of the most intense gravity wave sources on Earth. A particularly striking result is a large–scale meridional convergence of gravity wave momentum flux towards latitudes near 60 °S, something which is not normally considered in model parameterisations.
Young-Ha Kim, George N. Kiladis, John R. Albers, Juliana Dias, Masatomo Fujiwara, James A. Anstey, In-Sun Song, Corwin J. Wright, Yoshio Kawatani, François Lott, and Changhyun Yoo
Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, https://doi.org/10.5194/acp-19-10027-2019, 2019
Short summary
Short summary
Reanalyses are widely used products of meteorological variables, generated using observational data and assimilation systems. We compare six modern reanalyses, with focus on their representation of equatorial waves which are important in stratospheric variability and stratosphere–troposphere exchange. Agreement/spreads among the reanalyses in the spectral properties and spatial distributions of the waves are examined, and satellite impacts on the wave representation in reanalyses are discussed.
Lukas Krasauskas, Jörn Ungermann, Stefan Ensmann, Isabell Krisch, Erik Kretschmer, Peter Preusse, and Martin Riese
Atmos. Meas. Tech., 12, 853–872, https://doi.org/10.5194/amt-12-853-2019, https://doi.org/10.5194/amt-12-853-2019, 2019
Short summary
Short summary
Many limb sounder measurements from the same atmospheric region taken at different angles can be combined into a 3-D tomographic image of the atmosphere. Mathematically, this is a complex, computationally expensive, underdetermined problem that needs additional constraints (regularisation). We introduce an improved regularisation method based on physical properties of the atmosphere with a new irregular grid implementation. Simulated data tests show improved results and lower computational cost.
Wolfgang Woiwode, Andreas Dörnbrack, Martina Bramberger, Felix Friedl-Vallon, Florian Haenel, Michael Höpfner, Sören Johansson, Erik Kretschmer, Isabell Krisch, Thomas Latzko, Hermann Oelhaf, Johannes Orphal, Peter Preusse, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 18, 15643–15667, https://doi.org/10.5194/acp-18-15643-2018, https://doi.org/10.5194/acp-18-15643-2018, 2018
Short summary
Short summary
GLORIA observations during two crossings of the polar front jet stream resolve the fine mesoscale structure of a tropopause fold in high detail. Tracer–tracer correlations of H2O and O3 are presented as a function of potential temperature and reveal an active mixing region. Our study confirms conceptual models of tropopause folds, validates the high quality of ECMWF IFS forecasts, and suggests that mountain waves are capable of modulating exchange processes in the vicinity of tropopause folds.
Corwin J. Wright and Neil P. Hindley
Atmos. Chem. Phys., 18, 13703–13731, https://doi.org/10.5194/acp-18-13703-2018, https://doi.org/10.5194/acp-18-13703-2018, 2018
Short summary
Short summary
Reanalyses (RAs) are models which assimilate observations and are widely used as proxies for the true atmospheric state. Here, we resample six leading RAs using the weighting functions of four high-res satellite instruments, allowing a like-for-like comparison. We find that the RAs generally reproduce the satellite data well, except at high altitudes and in the tropics. However, we also find that the RAs more tightly correlate with each other than with observations, even those they assimilate.
Isabell Krisch, Jörn Ungermann, Peter Preusse, Erik Kretschmer, and Martin Riese
Atmos. Meas. Tech., 11, 4327–4344, https://doi.org/10.5194/amt-11-4327-2018, https://doi.org/10.5194/amt-11-4327-2018, 2018
Short summary
Short summary
Three-dimensional temperature measurements of the atmosphere are required to address current research questions concerning the propagation of gravity waves. Limited angle tomography (LAT) with measurements from an airborne infrared limb imager can provide such 3-D temperature measurements. Wave parameters derived from such LAT measurements achieve an accuracy similar to that derived from full angle tomography, if the orientation of the flight path is optimized with respect to the gravity wave.
Anne Kleinert, Isabell Krisch, Jörn Ungermann, Albert Adibekyan, Berndt Gutschwager, and Christian Monte
Atmos. Meas. Tech., 11, 3871–3882, https://doi.org/10.5194/amt-11-3871-2018, https://doi.org/10.5194/amt-11-3871-2018, 2018
Short summary
Short summary
This study investigates the required accuracy of radiometric calibration sources for remote sensing instruments to properly resolve decadal trends of climate relevant trace species like ozone, water vapor and temperature. The required temperature knowledge of the calibration source is in the order of 100 mK. This is demonstrated by a Monte Carlo simulation. The results are confirmed using real measurements acquired by the GLORIA instrument.
Camille Li, Clio Michel, Lise Seland Graff, Ingo Bethke, Giuseppe Zappa, Thomas J. Bracegirdle, Erich Fischer, Ben J. Harvey, Trond Iversen, Martin P. King, Harinarayan Krishnan, Ludwig Lierhammer, Daniel Mitchell, John Scinocca, Hideo Shiogama, Dáithí A. Stone, and Justin J. Wettstein
Earth Syst. Dynam., 9, 359–382, https://doi.org/10.5194/esd-9-359-2018, https://doi.org/10.5194/esd-9-359-2018, 2018
Short summary
Short summary
This study investigates the midlatitude atmospheric circulation response to 1.5°C and 2.0°C of warming using modelling experiments run for the HAPPI project (Half a degree Additional warming, Prognosis & Projected Impacts). While the chaotic nature of the atmospheric flow dominates in these low-end warming scenarios, some local changes emerge. Case studies explore precipitation impacts both for regions that dry (Mediterranean) and regions that get wetter (Europe, North American west coast).
Michael Wehner, Dáithí Stone, Dann Mitchell, Hideo Shiogama, Erich Fischer, Lise S. Graff, Viatcheslav V. Kharin, Ludwig Lierhammer, Benjamin Sanderson, and Harinarayan Krishnan
Earth Syst. Dynam., 9, 299–311, https://doi.org/10.5194/esd-9-299-2018, https://doi.org/10.5194/esd-9-299-2018, 2018
Short summary
Short summary
The United Nations Framework Convention on Climate Change challenged the scientific community to describe the impacts of stabilizing the global temperature at its 21st Conference of Parties. A specific target of 1.5 °C above preindustrial levels had not been seriously considered by the climate modeling community prior to the Paris Agreement. This paper analyzes heat waves in simulations designed for this target. We find there are reductions in extreme temperature compared to a 2 °C target.
Isabell Krisch, Peter Preusse, Jörn Ungermann, Andreas Dörnbrack, Stephen D. Eckermann, Manfred Ern, Felix Friedl-Vallon, Martin Kaufmann, Hermann Oelhaf, Markus Rapp, Cornelia Strube, and Martin Riese
Atmos. Chem. Phys., 17, 14937–14953, https://doi.org/10.5194/acp-17-14937-2017, https://doi.org/10.5194/acp-17-14937-2017, 2017
Short summary
Short summary
Using the infrared limb imager GLORIA, the 3-D structure of mesoscale gravity waves in the lower stratosphere was measured for the first time, allowing for a complete 3-D characterization of the waves. This enables the precise determination of the sources of the waves in the mountain regions of Iceland with backward ray tracing. Forward ray tracing shows oblique propagation, an effect generally neglected in global atmospheric models.
Craig S. Long, Masatomo Fujiwara, Sean Davis, Daniel M. Mitchell, and Corwin J. Wright
Atmos. Chem. Phys., 17, 14593–14629, https://doi.org/10.5194/acp-17-14593-2017, https://doi.org/10.5194/acp-17-14593-2017, 2017
Short summary
Short summary
As part of the SPARC Reanalysis Intercomparison Project, we evaluate the temperature and wind structure of all the recent and past reanalyses with 2.5-degree monthly zonal mean data sets from 1979–2014. There is a distinct change in the temperature structure in the stratosphere in 1998. Zonal winds are in greater agreement than temperatures. All reanalyses have issues analysing the tropical stratospheric winds. Caution is advised for using reanalysis temperatures for trend detection.
Corwin J. Wright, Neil P. Hindley, Lars Hoffmann, M. Joan Alexander, and Nicholas J. Mitchell
Atmos. Chem. Phys., 17, 8553–8575, https://doi.org/10.5194/acp-17-8553-2017, https://doi.org/10.5194/acp-17-8553-2017, 2017
Short summary
Short summary
We introduce a novel 3-D method of measuring atmospheric gravity waves, based around a 3-D Stockwell transform. Our method lets us measure new properties, including wave intrinsic frequencies and phase and group velocities. We apply it to data from the AIRS satellite instrument over the Southern Andes for two consecutive winters. Our results show clear evidence that the waves measured are primarily orographic in origin, and that their group velocity vectors are focused into the polar night jet.
Daniel Mitchell, Krishna AchutaRao, Myles Allen, Ingo Bethke, Urs Beyerle, Andrew Ciavarella, Piers M. Forster, Jan Fuglestvedt, Nathan Gillett, Karsten Haustein, William Ingram, Trond Iversen, Viatcheslav Kharin, Nicholas Klingaman, Neil Massey, Erich Fischer, Carl-Friedrich Schleussner, John Scinocca, Øyvind Seland, Hideo Shiogama, Emily Shuckburgh, Sarah Sparrow, Dáithí Stone, Peter Uhe, David Wallom, Michael Wehner, and Rashyd Zaaboul
Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, https://doi.org/10.5194/gmd-10-571-2017, 2017
Short summary
Short summary
This paper provides an experimental design to assess impacts of a world that is 1.5 °C warmer than at pre-industrial levels. The design is a new way to approach impacts from the climate community, and aims to answer questions related to the recent Paris Agreement. In particular the paper provides a method for studying extreme events under relatively high mitigation scenarios.
Manfred Ern, Quang Thai Trinh, Martin Kaufmann, Isabell Krisch, Peter Preusse, Jörn Ungermann, Yajun Zhu, John C. Gille, Martin G. Mlynczak, James M. Russell III, Michael J. Schwartz, and Martin Riese
Atmos. Chem. Phys., 16, 9983–10019, https://doi.org/10.5194/acp-16-9983-2016, https://doi.org/10.5194/acp-16-9983-2016, 2016
Short summary
Short summary
Sudden stratospheric warmings (SSWs) influence the atmospheric circulation over a large range of altitudes and latitudes. We investigate the global distribution of small-scale gravity waves (GWs) during SSWs as derived from 13 years of satellite observations.
We find that GWs may play an important role for triggering SSWs by preconditioning the polar vortex, as well as during long-lasting vortex recovery phases after SSWs. The GW distribution during SSWs displays strong day-to-day variability.
Neil P. Hindley, Nathan D. Smith, Corwin J. Wright, D. Andrew S. Rees, and Nicholas J. Mitchell
Atmos. Meas. Tech., 9, 2545–2565, https://doi.org/10.5194/amt-9-2545-2016, https://doi.org/10.5194/amt-9-2545-2016, 2016
Short summary
Short summary
Gravity waves are medium-sized momentum-carrying atmospheric waves that nearly all weather and climate models struggle to represent. Thus, the accurate global measurement of gravity-wave properties in the real atmosphere is of key importance. Here we use a new two-dimensional Stockwell transform (2-DST) method to measure key GW properties in 2-D satellite data. We show that our 2-DST approach greatly improves upon current methods, particularly if a new elliptical spectral window is used.
M. Fujiwara, T. Hibino, S. K. Mehta, L. Gray, D. Mitchell, and J. Anstey
Atmos. Chem. Phys., 15, 13507–13518, https://doi.org/10.5194/acp-15-13507-2015, https://doi.org/10.5194/acp-15-13507-2015, 2015
Short summary
Short summary
This paper evaluates the temperature response in the troposphere and the stratosphere to the three major volcanic eruptions between the 1960s and the 1990s by comparing nine reanalysis data sets. It was found that the volcanic temperature response patterns differ among the major eruptions and that in general, more recent reanalysis data sets show a more consistent response pattern.
Related subject area
Dynamical processes in polar regions, incl. polar–midlatitude interactions
Arctic climate response to European radiative forcing: a deep learning study on circulation pattern changes
Using variable-resolution grids to model precipitation from atmospheric rivers around the Greenland ice sheet
Circulation responses to surface heating and implications for polar amplification
The study of the impact of polar warming on global atmospheric circulation and mid-latitude baroclinic waves using a laboratory analog
A comparison of the atmospheric response to the Weddell Sea Polynya in atmospheric general circulation models (AGCMs) of varying resolutions
Simultaneous Bering Sea and Labrador Sea ice melt extremes in March 2023: A confluence of meteorological events aligned with stratosphere-troposphere interactions
European summer weather linked to North Atlantic freshwater anomalies in preceding years
On the linkage between future Arctic sea ice retreat, Euro-Atlantic circulation regimes and temperature extremes over Europe
The role of boundary layer processes in summer-time Arctic cyclones
Reconciling conflicting evidence for the cause of the observed early 21st century Eurasian cooling
The role of Rossby waves in polar weather and climate
Reanalysis representation of low-level winds in the Antarctic near-coastal region
The composite development and structure of intense synoptic-scale Arctic cyclones
Improved teleconnection between Arctic sea ice and the North Atlantic Oscillation through stochastic process representation
Jet stream variability in a polar warming scenario – a laboratory perspective
Pacific Decadal Oscillation modulates the Arctic sea-ice loss influence on the midlatitude atmospheric circulation in winter
Summertime changes in climate extremes over the peripheral Arctic regions after a sudden sea ice retreat
A global climatology of polar lows investigated for local differences and wind-shear environments
Characteristics of long-track tropopause polar vortices
Identification, characteristics and dynamics of Arctic extreme seasons
Interaction between Atlantic cyclones and Eurasian atmospheric blocking drives wintertime warm extremes in the high Arctic
Moisture origin, transport pathways, and driving processes of intense wintertime moisture transport into the Arctic
The role of tropopause polar vortices in the intensification of summer Arctic cyclones
Dynamical drivers of Greenland blocking in climate models
Interactive 3-D visual analysis of ERA5 data: improving diagnostic indices for marine cold air outbreaks and polar lows
Polar lows – moist-baroclinic cyclones developing in four different vertical wind shear environments
Lagrangian detection of precipitation moisture sources for an arid region in northeast Greenland: relations to the North Atlantic Oscillation, sea ice cover, and temporal trends from 1979 to 2017
Stratospheric influence on North Atlantic marine cold air outbreaks following sudden stratospheric warming events
A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017
Intermittency of Arctic–mid-latitude teleconnections: stratospheric pathway between autumn sea ice and the winter North Atlantic Oscillation
The role of wave–wave interactions in sudden stratospheric warming formation
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024, https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Short summary
This study introduces a novel deep learning (DL) approach to analyze how regional radiative forcing in Europe impacts the Arctic climate. By integrating atmospheric poleward energy transport with DL-based clustering of atmospheric patterns and attributing anomalies to specific clusters, our method reveals crucial, nuanced interactions within the climate system, enhancing our understanding of intricate climate dynamics.
Annelise Waling, Adam Herrington, Katharine Duderstadt, Jack Dibb, and Elizabeth Burakowski
Weather Clim. Dynam., 5, 1117–1135, https://doi.org/10.5194/wcd-5-1117-2024, https://doi.org/10.5194/wcd-5-1117-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) are channel-shaped features within the atmosphere that carry moisture from the mid-latitudes to the poles, bringing warm temperatures and moisture that can cause melt in the Arctic. We used variable-resolution grids to model ARs around the Greenland ice sheet and compared this output to uniform-resolution grids and reanalysis products. We found that the variable-resolution grids produced ARs and precipitation that were more similar to observation-based products.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, Etienne Dunn-Sigouin, and Mingfang Ting
Weather Clim. Dynam., 5, 985–996, https://doi.org/10.5194/wcd-5-985-2024, https://doi.org/10.5194/wcd-5-985-2024, 2024
Short summary
Short summary
The atmospheric circulation response to surface heating at various latitudes was investigated within an idealized framework. We confirm previous results on the importance of temperature advection for balancing heating at lower latitudes. Further poleward, transient eddies become increasingly important, and eventually radiative cooling also contributes. This promotes amplified surface warming for high-latitude heating and has implications for links between sea ice loss and polar amplification.
Andrei Sukhanovskii, Andrei Gavrilov, Elena Popova, and Andrei Vasiliev
Weather Clim. Dynam., 5, 863–880, https://doi.org/10.5194/wcd-5-863-2024, https://doi.org/10.5194/wcd-5-863-2024, 2024
Short summary
Short summary
One of the intriguing problems associated with recent climate trends is the rapid temperature increase in the Arctic. In this paper, we address the Arctic warming problem using a laboratory atmospheric general circulation model. We show that variations in polar cooling lead to significant changes in polar-cell structure, resulting in a substantial increase in temperature. Our modeling results provide a plausible explanation for Arctic warming amplification.
Holly C. Ayres, David Ferreira, Wonsun Park, Joakim Kjellsson, and Malin Ödalen
Weather Clim. Dynam., 5, 805–820, https://doi.org/10.5194/wcd-5-805-2024, https://doi.org/10.5194/wcd-5-805-2024, 2024
Short summary
Short summary
The Weddell Sea Polynya (WSP) is a large, closed-off opening in winter sea ice that has opened only a couple of times since we started using satellites to observe sea ice. The aim of this study is to determine the impact of the WSP on the atmosphere. We use three numerical models of the atmosphere, and for each, we use two levels of detail. We find that the WSP causes warming but only locally, alongside an increase in precipitation, and shows some dependence on the large-scale background winds.
Thomas J. Ballinger, Kent Moore, Qinghua Ding, Amy H. Butler, James E. Overland, Richard L. Thoman, Ian Baxter, Zhe Li, and Edward Hanna
EGUsphere, https://doi.org/10.5194/egusphere-2024-925, https://doi.org/10.5194/egusphere-2024-925, 2024
Short summary
Short summary
The month of March marks the Arctic sea ice maximum when the ice cover extent reaches its peak within the annual cycle. This study chronicles the meteorological conditions that led to the anomalous, tandem March 2023 ice melt event in the Labrador and Bering seas. A sudden stratospheric warming event initiated the development of anticyclonic circulation patterns over these areas which aided northward transport of anomalously warm, moist air and drove their unusual sea ice melt.
Marilena Oltmanns, N. Penny Holliday, James Screen, Ben I. Moat, Simon A. Josey, D. Gwyn Evans, and Sheldon Bacon
Weather Clim. Dynam., 5, 109–132, https://doi.org/10.5194/wcd-5-109-2024, https://doi.org/10.5194/wcd-5-109-2024, 2024
Short summary
Short summary
The melting of land ice and sea ice leads to freshwater input into the ocean. Based on observations, we show that stronger freshwater anomalies in the subpolar North Atlantic in winter are followed by warmer and drier weather over Europe in summer. The identified link indicates an enhanced predictability of European summer weather at least a winter in advance. It further suggests that warmer and drier summers over Europe can become more frequent under increased freshwater fluxes in the future.
Johannes Riebold, Andy Richling, Uwe Ulbrich, Henning Rust, Tido Semmler, and Dörthe Handorf
Weather Clim. Dynam., 4, 663–682, https://doi.org/10.5194/wcd-4-663-2023, https://doi.org/10.5194/wcd-4-663-2023, 2023
Short summary
Short summary
Arctic sea ice loss might impact the atmospheric circulation outside the Arctic and therefore extremes over mid-latitudes. Here, we analyze model experiments to initially assess the influence of sea ice loss on occurrence frequencies of large-scale circulation patterns. Some of these detected circulation changes can be linked to changes in occurrences of European temperature extremes. Compared to future global temperature increases, the sea-ice-related impacts are however of secondary relevance.
Hannah L. Croad, John Methven, Ben Harvey, Sarah P. E. Keeley, and Ambrogio Volonté
Weather Clim. Dynam., 4, 617–638, https://doi.org/10.5194/wcd-4-617-2023, https://doi.org/10.5194/wcd-4-617-2023, 2023
Short summary
Short summary
The interaction between Arctic cyclones and the sea ice surface in summer is investigated by analysing the friction and sensible heat flux processes acting in two cyclones with contrasting evolution. The major finding is that the effects of friction on cyclone strength are dependent on a particular feature of cyclone structure: whether they have a warm or cold core during growth. Friction leads to cooling within both cyclone types in the lower atmosphere, which may contribute to their longevity.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Tim Woollings, Camille Li, Marie Drouard, Etienne Dunn-Sigouin, Karim A. Elmestekawy, Momme Hell, Brian Hoskins, Cheikh Mbengue, Matthew Patterson, and Thomas Spengler
Weather Clim. Dynam., 4, 61–80, https://doi.org/10.5194/wcd-4-61-2023, https://doi.org/10.5194/wcd-4-61-2023, 2023
Short summary
Short summary
This paper investigates large-scale atmospheric variability in polar regions, specifically the balance between large-scale turbulence and Rossby wave activity. The polar regions are relatively more dominated by turbulence than lower latitudes, but Rossby waves are found to play a role and can even be triggered from high latitudes under certain conditions. Features such as cyclone lifetimes, high-latitude blocks, and annular modes are discussed from this perspective.
Thomas Caton Harrison, Stavroula Biri, Thomas J. Bracegirdle, John C. King, Elizabeth C. Kent, Étienne Vignon, and John Turner
Weather Clim. Dynam., 3, 1415–1437, https://doi.org/10.5194/wcd-3-1415-2022, https://doi.org/10.5194/wcd-3-1415-2022, 2022
Short summary
Short summary
Easterly winds encircle Antarctica, impacting sea ice and helping drive ocean currents which shield ice shelves from warmer waters. Reanalysis datasets give us our most complete picture of how these winds behave. In this paper we use satellite data, surface measurements and weather balloons to test how realistic recent reanalysis estimates are. The winds are generally accurate, especially in the most recent of the datasets, but important short-term variations are often misrepresented.
Alexander F. Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Weather Clim. Dynam., 3, 1097–1112, https://doi.org/10.5194/wcd-3-1097-2022, https://doi.org/10.5194/wcd-3-1097-2022, 2022
Short summary
Short summary
Understanding the location and intensity of hazardous weather across the Arctic is important for assessing risks to infrastructure, shipping, and coastal communities. This study describes the typical lifetime and structure of intense winter and summer Arctic cyclones. Results show the composite development and structure of intense summer Arctic cyclones are different from intense winter Arctic and North Atlantic Ocean extra-tropical cyclones and from conceptual models.
Kristian Strommen, Stephan Juricke, and Fenwick Cooper
Weather Clim. Dynam., 3, 951–975, https://doi.org/10.5194/wcd-3-951-2022, https://doi.org/10.5194/wcd-3-951-2022, 2022
Short summary
Short summary
Observational data suggest that the extent of Arctic sea ice influences mid-latitude winter weather. However, climate models generally fail to reproduce this link, making it unclear if models are missing something or if the observed link is just a coincidence. We show that if one explicitly represents the effect of unresolved sea ice variability in a climate model, then it is able to reproduce this link. This implies that the link may be real but that many models simply fail to simulate it.
Costanza Rodda, Uwe Harlander, and Miklos Vincze
Weather Clim. Dynam., 3, 937–950, https://doi.org/10.5194/wcd-3-937-2022, https://doi.org/10.5194/wcd-3-937-2022, 2022
Short summary
Short summary
We report on a set of laboratory experiments that reproduce a global warming scenario. The experiments show that a decreased temperature difference between the poles and subtropics slows down the eastward propagation of the mid-latitude weather patterns. Another consequence is that the temperature variations diminish, and hence extreme temperature events might become milder in a global warming scenario. Our experiments also show that the frequency of such events increases.
Amélie Simon, Guillaume Gastineau, Claude Frankignoul, Vladimir Lapin, and Pablo Ortega
Weather Clim. Dynam., 3, 845–861, https://doi.org/10.5194/wcd-3-845-2022, https://doi.org/10.5194/wcd-3-845-2022, 2022
Short summary
Short summary
The influence of the Arctic sea-ice loss on atmospheric circulation in midlatitudes depends on persistent sea surface temperatures in the North Pacific. In winter, Arctic sea-ice loss and a warm North Pacific Ocean both induce depressions over the North Pacific and North Atlantic, an anticyclone over Greenland, and a stratospheric anticyclone over the Arctic. However, the effects are not additive as the interaction between both signals is slightly destructive.
Steve Delhaye, Thierry Fichefet, François Massonnet, David Docquier, Rym Msadek, Svenya Chripko, Christopher Roberts, Sarah Keeley, and Retish Senan
Weather Clim. Dynam., 3, 555–573, https://doi.org/10.5194/wcd-3-555-2022, https://doi.org/10.5194/wcd-3-555-2022, 2022
Short summary
Short summary
It is unclear how the atmosphere will respond to a retreat of summer Arctic sea ice. Much attention has been paid so far to weather extremes at mid-latitude and in winter. Here we focus on the changes in extremes in surface air temperature and precipitation over the Arctic regions in summer during and following abrupt sea ice retreats. We find that Arctic sea ice loss clearly shifts the extremes in surface air temperature and precipitation over terrestrial regions surrounding the Arctic Ocean.
Patrick Johannes Stoll
Weather Clim. Dynam., 3, 483–504, https://doi.org/10.5194/wcd-3-483-2022, https://doi.org/10.5194/wcd-3-483-2022, 2022
Short summary
Short summary
Polar lows are small but intense cyclones and constitute one of the major natural hazards in the polar regions. To be aware of when and where polar lows occur, this study maps polar lows globally by utilizing new atmospheric datasets. Polar lows develop in all marine areas adjacent to sea ice or cold landmasses, mainly in the winter half year. The highest frequency appears in the Nordic Seas. Further, it is found that polar lows are rather similar in the different ocean sub-basins.
Matthew T. Bray and Steven M. Cavallo
Weather Clim. Dynam., 3, 251–278, https://doi.org/10.5194/wcd-3-251-2022, https://doi.org/10.5194/wcd-3-251-2022, 2022
Short summary
Short summary
Tropopause polar vortices (TPVs) are a high-latitude atmospheric phenomenon that impact weather inside and outside of polar regions. Using a set of long-lived TPVs to gain insight into the conditions that are most supportive of TPV survival, we describe patterns of vortex formation and movement. In addition, we analyze the characteristics of these TPVs and how they vary by season. These results help us to better understand TPVs which, in turn, may improve forecasts of related weather events.
Katharina Hartmuth, Maxi Boettcher, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 3, 89–111, https://doi.org/10.5194/wcd-3-89-2022, https://doi.org/10.5194/wcd-3-89-2022, 2022
Short summary
Short summary
In this study, we introduce a novel method to objectively define and identify extreme Arctic seasons based on different surface variables. We find that such seasons are resulting from various combinations of unusual seasonal conditions. The occurrence or absence of different atmospheric processes strongly affects the character of extreme Arctic seasons. Further, changes in sea ice and sea surface temperature can strongly influence the formation of such a season in distinct regions.
Sonja Murto, Rodrigo Caballero, Gunilla Svensson, and Lukas Papritz
Weather Clim. Dynam., 3, 21–44, https://doi.org/10.5194/wcd-3-21-2022, https://doi.org/10.5194/wcd-3-21-2022, 2022
Short summary
Short summary
This study uses reanalysis data to investigate the role of atmospheric blocking, prevailing high-pressure systems and mid-latitude cyclones in driving high-Arctic wintertime warm extreme events. These events are mainly preceded by Ural and Scandinavian blocks, which are shown to be significantly influenced and amplified by cyclones in the North Atlantic. It also highlights processes that need to be well captured in climate models for improving their representation of Arctic wintertime climate.
Lukas Papritz, David Hauswirth, and Katharina Hartmuth
Weather Clim. Dynam., 3, 1–20, https://doi.org/10.5194/wcd-3-1-2022, https://doi.org/10.5194/wcd-3-1-2022, 2022
Short summary
Short summary
Water vapor profoundly impacts the Arctic, for example by contributing to sea ice melt. A substantial portion of water vapor in the Arctic originates at mid-latitudes and is transported poleward in a few episodic and intense events. This transport is accomplished by low- and high-pressure systems occurring in specific regions or following particular tracks. Here, we explore how the type of weather system impacts where the water vapor is coming from and how it is transported poleward.
Suzanne L. Gray, Kevin I. Hodges, Jonathan L. Vautrey, and John Methven
Weather Clim. Dynam., 2, 1303–1324, https://doi.org/10.5194/wcd-2-1303-2021, https://doi.org/10.5194/wcd-2-1303-2021, 2021
Short summary
Short summary
This research demonstrates, using feature identification and tracking, that anticlockwise rotating vortices at about 7 km altitude called tropopause polar vortices frequently interact with storms developing in the Arctic region, affecting their structure and where they occur. This interaction has implications for the predictability of Arctic weather, given the long lifetime but a relatively small spatial scale of these vortices compared with the density of the polar observation network.
Clio Michel, Erica Madonna, Clemens Spensberger, Camille Li, and Stephen Outten
Weather Clim. Dynam., 2, 1131–1148, https://doi.org/10.5194/wcd-2-1131-2021, https://doi.org/10.5194/wcd-2-1131-2021, 2021
Short summary
Short summary
Climate models still struggle to correctly represent blocking frequency over the North Atlantic–European domain. This study makes use of five large ensembles of climate simulations and the ERA-Interim reanalyses to investigate the Greenland blocking frequency and one of its drivers, namely cyclonic Rossby wave breaking. We particularly try to understand the discrepancies between two specific models, out of the five, that behave differently.
Marcel Meyer, Iuliia Polkova, Kameswar Rao Modali, Laura Schaffer, Johanna Baehr, Stephan Olbrich, and Marc Rautenhaus
Weather Clim. Dynam., 2, 867–891, https://doi.org/10.5194/wcd-2-867-2021, https://doi.org/10.5194/wcd-2-867-2021, 2021
Short summary
Short summary
Novel techniques from computer science are used to study extreme weather events. Inspired by the interactive 3-D visual analysis of the recently released ERA5 reanalysis data, we improve commonly used metrics for measuring polar winter storms and outbreaks of cold air. The software (Met.3D) that we have extended and applied as part of this study is freely available and can be used generically for 3-D visualization of a broad variety of atmospheric processes in weather and climate data.
Patrick Johannes Stoll, Thomas Spengler, Annick Terpstra, and Rune Grand Graversen
Weather Clim. Dynam., 2, 19–36, https://doi.org/10.5194/wcd-2-19-2021, https://doi.org/10.5194/wcd-2-19-2021, 2021
Short summary
Short summary
Polar lows are intense meso-scale cyclones occurring at high latitudes. The research community has not agreed on a conceptual model to describe polar-low development. Here, we apply self-organising maps to identify the typical ambient sub-synoptic environments of polar lows and find that they can be described as moist-baroclinic cyclones that develop in four different environments characterised by the vertical wind shear.
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021, https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Short summary
Precipitation and moisture sources over an arid region in northeast Greenland are investigated from 1979 to 2017 by a Lagrangian moisture source diagnostic driven by reanalysis data. Dominant winter moisture sources are the North Atlantic above 45° N. In summer local and north Eurasian continental sources dominate. In positive phases of the North Atlantic Oscillation, evaporation and moisture transport from the Norwegian Sea are stronger, resulting in more precipitation.
Hilla Afargan-Gerstman, Iuliia Polkova, Lukas Papritz, Paolo Ruggieri, Martin P. King, Panos J. Athanasiadis, Johanna Baehr, and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, https://doi.org/10.5194/wcd-1-541-2020, 2020
Short summary
Short summary
We investigate the stratospheric influence on marine cold air outbreaks (MCAOs) in the North Atlantic using ERA-Interim reanalysis data. MCAOs are associated with severe Arctic weather, such as polar lows and strong surface winds. Sudden stratospheric events are found to be associated with more frequent MCAOs in the Barents and the Norwegian seas, affected by the anomalous circulation over Greenland and Scandinavia. Identification of MCAO precursors is crucial for improved long-range prediction.
Mauro Hermann, Lukas Papritz, and Heini Wernli
Weather Clim. Dynam., 1, 497–518, https://doi.org/10.5194/wcd-1-497-2020, https://doi.org/10.5194/wcd-1-497-2020, 2020
Short summary
Short summary
We find, by tracing backward in time, that air masses causing extensive melt of the Greenland Ice Sheet originate from further south and lower altitudes than usual. Their exceptional warmth further arises due to ascent and cloud formation, which is special compared to near-surface heat waves in the midlatitudes or the central Arctic. The atmospheric systems and transport pathways identified here are crucial in understanding and simulating the atmospheric control of the ice sheet in the future.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, and Martin Peter King
Weather Clim. Dynam., 1, 261–275, https://doi.org/10.5194/wcd-1-261-2020, https://doi.org/10.5194/wcd-1-261-2020, 2020
Short summary
Short summary
Arctic sea ice loss has been linked to changes in mid-latitude weather and climate. However, the literature offers differing views on the strength, robustness, and even existence of these linkages. We use a statistical tool (Causal Effect Networks) to show that one proposed pathway linking Barents–Kara ice and mid-latitude circulation is intermittent in observations and likely only active under certain conditions. This result may help explain apparent inconsistencies across previous studies.
Erik A. Lindgren and Aditi Sheshadri
Weather Clim. Dynam., 1, 93–109, https://doi.org/10.5194/wcd-1-93-2020, https://doi.org/10.5194/wcd-1-93-2020, 2020
Short summary
Short summary
Sudden stratospheric warmings (SSWs) are extreme events that influence surface weather up to 2 months after onset. We remove wave–wave interactions (WWIs) in vertical sections of a general circulation model to investigate the role of WWIs in SSW formation. We show that the effects of WWIs depend strongly on the pressure levels where they occur and the zonal structure of the wave forcing in the troposphere. Our results highlight the importance of upper-level processes in stratospheric dynamics.
Cited articles
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous
Weather Regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001. a, b
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H.,
Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H.,
Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden
Stratospheric Warmings, Rev. Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020rg000708, 2021. a, b
Banyard, T. P., Wright, C. J., Hindley, N. P., Halloran, G., Krisch, I.,
Kaifler, B., and Hoffmann, L.: Atmospheric Gravity Waves in Aeolus Wind Lidar
Observations, available at: https://agupubs.onlinelibrary.wiley.com/action/showCitFormats?doi=10.1029;2021GL092756, last access: 18 December 2021. a
Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden
stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63–76,
https://doi.org/10.5194/essd-9-63-2017, 2017. a, b, c
Chanin, M., Garnier, A., Hauchecorne, A., and Porteneuve, J.: A Doppler lidar
for measuring winds in the middle atmosphere, Geophys. Res. Lett., 16, 1273–1276, https://doi.org/10.1029/GL016i011p01273, 1989. a
Charlton, A. J. and Polvani, L. M.: A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks, J. Climate, 20, 449–469, https://doi.org/10.1175/jcli3996.1, 2007. a, b
Charlton-Perez, A. J., Huang, W. T. K., and Lee, S. H.: Impact of sudden
stratospheric warmings on United Kingdom mortality, Atmos. Sci. Lett., 22, e1013, https://doi.org/10.1002/asl.1013, 2021. a
Copernicus: Copernicus Climate Data Store, available at: https://cds.climate.copernicus.eu/, last access: 18 December 2021. a
C3S: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, available at: https://cds.climate.copernicus.eu/cdsapp#!/home, last access: 18 December 2021. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal
Prediction: 2. Predictability Arising From Stratosphere-Troposphere Coupling,
J. Geophys. Res.-Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019jd030923, 2020. a, b, c
ESA: ADM-Aeolus Science Report, ESA SP-1311, p. 121, available at: https://www.esa.int/About_Us/ESA_Publications/ESA_SP-1311_i_ADM-Aeolus_i (last access: 18 December 2021), 2008. a
European Space Agency: Aeolus Data, available at: https://aeolus.services/, last access: 18 December 2021. a
France, J. A. and Harvey, V. L.: A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause, J. Geophys. Res.-Atmos., 118, 2241–2254, https://doi.org/10.1002/jgrd.50218, 2013. a
France, J. A., Harvey, V. L., Randall, C. E., Hitchman, M. H., and Schwartz, M. J.: A climatology of stratopause temperature and height in the polar vortex and anticyclones, J. Geophys. Res.-Atmos., 117, D06116, https://doi.org/10.1029/2011jd016893, 2012. a
Gerber, E. P., Martineau, P., Ayarzagüena, B., Barriopedro, D., Bracegirdle,
T. J., Butler, A. H., Calvo, N., Hardiman, S. C., Hitchcock, P., Iza, M.,
Langematz, U., Lu, H., Marshall, G., Orr, A., Palmeiro, F. M., Son, S.-W.,
and Taguchi, M.: Chapter 6: Extratropical Stratosphere–troposphere Coupling, Tech. rep., Stratospheric Reanalysis Intercomparison Report, submitted, 2021. a
Hall, R. J., Mitchell, D. M., Seviour, W. J., and Wright, C. J.: Tracking the
stratosphere-to-surface impact of Sudden Stratospheric Warmings, J. Geophys. Res.-Atmos., 126, e2020JD033881, https://doi.org/10.1029/2020jd033881, 2021. a
Harvey, V. L., Randall, C. E., Goncharenko, L., Becker, E., and France, J.: On the Upward Extension of the Polar Vortices Into the Mesosphere, J. Geophys. Res.-Atmos., 123, 9171–9191, https://doi.org/10.1029/2018jd028815, 2018. a
Harvey, V. L., Randall, C. E., Becker, E., Smith, A. K., Bardeen, C. G.,
France, J. A., and Goncharenko, L. P.: Evaluation of the Mesospheric Polar
Vortices in WACCM, J. Geophys. Res.-Atmos., 124, 10626–10645, https://doi.org/10.1029/2019jd030727, 2019. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Karpechko, A. Y., Hitchcock, P., Peters, D. H. W., and Schneidereit, A.:
Predictability of downward propagation of major sudden stratospheric warmings, Q. J. Roy. Meteorol. Soc., 143, 1459–1470, https://doi.org/10.1002/qj.3017,
2017. a
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N.,
Baldwin, M. P., and Gray, L. J.: Stratospheric influence on tropospheric jet
streams, storm tracks and surface weather, Nat. Geosci., 8, 433–440,
https://doi.org/10.1038/ngeo2424, 2015. a, b
King, A. D., Butler, A. H., Jucker, M., Earl, N. O., and Rudeva, I.: Observed
Relationships Between Sudden Stratospheric Warmings and European Climate
Extremes, J. Geophys. Res.-Atmos., 124, 13943–13961, https://doi.org/10.1029/2019jd030480, 2019. a
Kodera, K., Mukougawa, H., and Fujii, A.: Influence of the vertical and zonal
propagation of stratospheric planetary waves on tropospheric blockings, J. Geophys. Res.-Atmos., 118, 8333–8345, https://doi.org/10.1002/jgrd.50650, 2013. a
Kolstad, E. W., Breiteig, T., and Scaife, A. A.: The association between
stratospheric weak polar vortex events and cold air outbreaks in the Northern
Hemisphere, Q. J. Roy. Meteorol. Soc., 136, 886–893, https://doi.org/10.1002/qj.620, 2010. a
Kretschmer, M., Cohen, J., Matthias, V., Runge, J., and Coumou, D.: The
different stratospheric influence on cold-extremes in Eurasia and North
America, npj Clim. Atmo. Sci., 1, 44, https://doi.org/10.1038/s41612-018-0054-4, 2018. a, b, c
Lawrence, Z. D. and Manney, G. L.: Characterizing Stratospheric Polar Vortex
Variability With Computer Vision Techniques, J. Geophys. Res.-Atmos., 123, 1510–1535, https://doi.org/10.1002/2017JD027556, 2018. a
Lee, S. H., Furtado, J. C., and Charlton-Perez, A. J.: Wintertime North
American Weather Regimes and the Arctic Stratospheric Polar Vortex, Geophys. Res. Lett., 46, 14892–14900, https://doi.org/10.1029/2019gl085592, 2019. a, b, c
Livesey, N., Snyder, W. V., Read, W., and Wagner, P.: Retrieval algorithms for the EOS Microwave limb sounder (MLS), IEEE T. Geosci. Remote, 44, 1144–1155, https://doi.org/10.1109/tgrs.2006.872327, 2006. a
Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Santee, M. L.,
Schwartz, M. J., Lambert, A., Millán Valle, L., Pumphrey, H. C., Manney, G. L., Fuller, R. A., Jarnot, R. F., Knosp, B. W., and Lay, R.: Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) Data Quality
and Description, version 5.0, available at: https://mls.jpl.nasa.gov/data/v5-0_data_quality_document.pdf, last accessed 18/12/2021 (last access: 18 December 2021), 2020. a, b
Long, C. S., Fujiwara, M., Davis, S., Mitchell, D. M., and Wright, C. J.:
Climatology and interannual variability of dynamic variables in multiple
reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP),
Atmos. Chem. Phy., 17, 14593–14629, https://doi.org/10.5194/acp-17-14593-2017, 2017. a
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Rahm, S.,
Geiß, A., and Reitebuch, O.: Intercomparison of wind observations from
the European Space Agency's Aeolus satellite mission and the ALADIN Airborne Demonstrator, Atmos. Meas. Tech., 13, 2075–2097, https://doi.org/10.5194/amt-13-2075-2020, 2020. a
Manney, G. L., Krüger, K., Pawson, S., Minschwaner, K., Schwartz, M. J.,
Daffer, W. H., Livesey, N. J., Mlynczak, M. G., Remsberg, E. E., Russell, J. M., and Waters, J. W.: The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses, J. Geophys. Res., 113, D11115, https://doi.org/10.1029/2007jd009097, 2008. a, b, c
Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S., Lee, J. N., Daffer, W. H., Fuller, R. A., and Livesey, N. J.: Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming, Geophys. Res. Lett., 36, L12815, https://doi.org/10.1029/2009gl038586, 2009. a
Manney, G. L., Lawrence, Z. D., Santee, M. L., Livesey, N. J., Lambert, A., and Pitts, M. C.: Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013, Atmos. Chem. Phys., 15, 5381–5403,
https://doi.org/10.5194/acp-15-5381-2015, 2015a. a
Manney, G. L., Lawrence, Z. D., Santee, M. L., Read, W. G., Livesey, N. J.,
Lambert, A., Froidevaux, L., Pumphrey, H. C., and Schwartz, M. J.: A minor
sudden stratospheric warming with a major impact: Transport and polar
processing in the 2014/2015 Arctic winter, Geophys. Res. Lett., 42, 7808–7816, https://doi.org/10.1002/2015gl065864, 2015b. a, b, c
Martin, A., Weissmann, M., Reitebuch, O., Rennie, M., Geiß, A., and Cress, A.: Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents, Atmos. Meas. Tech., 14,
2167–2183, https://doi.org/10.5194/amt-14-2167-2021, 2021. a
Ming, A.: Stratosphere-troposphere coupling in the Earth system: Where next?,
Weather, 70, 232–233, https://doi.org/10.1002/wea.2517, 2015. a
Mitchell, D. M., Gray, L. J., Anstey, J., Baldwin, M. P., and Charlton-Perez,
A. J.: The Influence of Stratospheric Vortex Displacements and Splits on
Surface Climate, J. Climate, 26, 2668–2682, https://doi.org/10.1175/JCLI-D-12-00030.1,
2013. a, b
Nakagawa, K. I. and Yamazaki, K.: What kind of stratospheric sudden warming
propagates to the troposphere?, Geophys. Res. Lett., 33, 3–6, https://doi.org/10.1029/2005GL024784, 2006. a
National Aeronautics and Space Administration: NASA DISC, available at: https://disc.gsfc.nasa.gov/, last access: 18 December 2021. a
Pedatella, N., Chau, J., Schmidt, H., Goncharenko, L., Stolle, C., Hocke, K.,
Harvey, V., Funke, B., and Siddiqui, T.: How Sudden Stratospheric Warming
Affects the Whole Atmosphere, Eos Trans. Am. Geophys. Union, 99, 6, https://doi.org/10.1029/2018eo092441, 2018. a
Reitebuch, O.: The spaceborne wind lidar mission ADM-Aeolus, Atmos. Phys., 2012, 815–827, https://doi.org/10.1007/978-3-642-30183-4_49, 2012. a
Rennie, M. P., Isaksen, L., Weiler, F., Kloe, J., Kanitz, T., and Reitebuch,
O.: The impact of Aeolus wind retrievals in ECMWF global weather forecasts,
Q. J. Roy. Meteorol. Soc., 147, 3555–3586, https://doi.org/10.1002/qj.4142, 2021. a
Safieddine, S., Bouillon, M., Paracho, A.-C., Jumelet, J., Tencé, F.,
Pazmino, A., Goutail, F., Wespes, C., Bekki, S., Boynard, A., Hadji-Lazaro,
J., Coheur, P.-F., Hurtmans, D., and Clerbaux, C.: Antarctic Ozone Enhancement During the 2019 Sudden Stratospheric Warming Event, Geophys. Res. Lett., 47, e2020GL087810, https://doi.org/10.1029/2020gl087810, 2020. a
Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J.,
Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E., Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jarnot, R. F.,
Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K., Li, J.-L. F.,
Mlynczak, M. G., Pawson, S., Russell, J. M., Santee, M. L., Snyder, W. V.,
Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A.,
Waters, J. W., and Wu, D. L.: Validation of the Aura Microwave Limb Sounder
temperature and geopotential height measurements, J. Geophys. Res., 113, D15S11, https://doi.org/10.1029/2007jd008783, 2008. a
Siskind, D. E., Eckermann, S. D., Coy, L., McCormack, J. P., and Randall, C. E.: On recent interannual variability of the Arctic winter mesosphere: Implications for tracer descent, Geophys. Res. Lett., 34, L09806, https://doi.org/10.1029/2007gl029293, 2007. a
Smith, A. K., Garcia, R. R., Moss, A. C., and Mitchell, N. J.: The Semiannual
Oscillation of the Tropical Zonal Wind in the Middle Atmosphere Derived from
Satellite Geopotential Height Retrievals, J. Atmos. Sci., 74, 2413–2425, https://doi.org/10.1175/jas-d-17-0067.1, 2017. a
Stoffelen, A., Pailleux, J., Källén, E., Vaughan, J., Isaksen, L., Flamant, P., Wergen, W., Andersson, E., Schyberg, H., Culoma, A., and Meynart, R.: The atmospheric dynamics mission for global wind field measurement, B. Am. Meteorol. Soc., 86, 73–88, https://doi.org/10.1175/BAMS-86-1-73, 2005. a
Stoffelen, A., Benedetti, A., Borde, R., Dabas, A., Flamant, P., Forsythe, M., Hardesty, M., Isaksen, L., Källén, E., Körnich, H., Lee, T.,
Reitebuch, O., Rennie, M., Riishøjgaard, L.-P., Schyberg, H., Straume, A. G., and Vaughan, M.: Wind Profile Satellite Observation Requirements and
Capabilities, B. Am. Meteorol. Soc., 101, E2005–E2021, https://doi.org/10.1175/bams-d-18-0202.1, 2020. a
Tao, M., Konopka, P., Ploeger, F., Grooß, J.-U., Müller, R., Volk, C. M., Walker, K. A., and Riese, M.: Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere, Atmos. Chem. Phys., 15, 8695–8715, https://doi.org/10.5194/acp-15-8695-2015, 2015.
a
Waters, J. W., Froidevaux, L., Harwood, R., Jarnot, R., Pickett, H., Read, W., Siegel, P., Cofield, R., Filipiak, M., Flower, D., Holden, J., Lau, G.,
Livesey, N., Manney, G., Pumphrey, H., Santee, M., Wu, D., Cuddy, D.,
Lay, R., and Walch, M.: The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite, IEEE T. Geosci. Remote, 44, 1075–1092, https://doi.org/10.1109/TGRS.2006.873771, 2006. a
Weiler, F., Kanitz, T., Wernham, D., Rennie, M., Huber, D., Schillinger, M., Saint-Pe, O., Bell, R., Parrinello, T., and Reitebuch, O.: Characterization of dark current signal measurements of the ACCDs used on board the Aeolus satellite, Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021, 2021. a
Witschas, B., Lemmerz, C., Geiß, A., Lux, O., Marksteiner, U., Rahm, S.,
Reitebuch, O., and Weiler, F.: First validation of Aeolus wind observations
by airborne Doppler wind lidar measurements, Atmos. Meas. Tech., 13, 2381–2396, https://doi.org/10.5194/amt-13-2381-2020, 2020. a
Wright, C.: Detection of stratospheric gravity waves using HIRDLS data, PhD thesis, University of Oxford, Oxford, 2010. a
Wright, C.: corwin365/20210106AeolusSSW: As-submitted (1.01), Zenodo [code], https://doi.org/10.5281/zenodo.4638273, 2021. a
Wright, C. J. and Banyard, T. P.: Multidecadal Measurements of UTLS Gravity
Waves Derived From Commercial Flight Data, J. Geophys. Res.-Atmos., 125, e2020JD033445, https://doi.org/10.1029/2020jd033445, 2020. a
Wright, C. J. and Hindley, N. P.: How well do stratospheric reanalyses
reproduce high-resolution satellite temperature measurements?, Atmos. Chem. Phys., 18, 13703–13731, https://doi.org/10.5194/acp-18-13703-2018, 2018. a
Wright, C. J., Osprey, S. M., Barnett, J. J., Gray, L. J., and Gille, J. C.:
High Resolution Dynamics Limb Sounder measurements of gravity wave activity
in the 2006 Arctic stratosphere, J. Geophys. Res., 115, D02105, https://doi.org/10.1029/2009jd011858, 2010. a
Wright, C. J., Hindley, N. P., Moss, A. C., and Mitchell, N. J.:
Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage – Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes, Atmos. Meas. Tech., 9, 877–908, https://doi.org/10.5194/amt-9-877-2016, 2016. a
Short summary
Major sudden stratospheric warmings (SSWs) are some of the most dramatic events in the atmosphere and are believed to help cause extreme winter weather events such as the 2018 Beast from the East in Europe and North America. Here, we use unique data from the European Space Agency's new Aeolus satellite to make the first-ever measurements at a global scale of wind changes due to an SSW in the lower part of the atmosphere to help us understand how SSWs affect the atmosphere and surface weather.
Major sudden stratospheric warmings (SSWs) are some of the most dramatic events in the...