Articles | Volume 2, issue 2
https://doi.org/10.5194/wcd-2-433-2021
https://doi.org/10.5194/wcd-2-433-2021
Research article
 | 
12 May 2021
Research article |  | 12 May 2021

Subseasonal prediction of springtime Pacific–North American transport using upper-level wind forecasts

John R. Albers, Amy H. Butler, Melissa L. Breeden, Andrew O. Langford, and George N. Kiladis

Related authors

The monthly evolution of precipitation and warm conveyor belts during the central southwest Asia wet season
Melissa Leah Breeden, Andrew Hoell, John Robert Albers, and Kimberly Slinski
Weather Clim. Dynam., 4, 963–980, https://doi.org/10.5194/wcd-4-963-2023,https://doi.org/10.5194/wcd-4-963-2023, 2023
Short summary
The response of the North Pacific jet and stratosphere-to-troposphere transport of ozone over western North America to RCP8.5 climate forcing
Dillon Elsbury, Amy H. Butler, John R. Albers, Melissa L. Breeden, and Andrew O'Neil Langford
Atmos. Chem. Phys., 23, 5101–5117, https://doi.org/10.5194/acp-23-5101-2023,https://doi.org/10.5194/acp-23-5101-2023, 2023
Short summary
Subseasonal precipitation forecasts of opportunity over central southwest Asia
Melissa L. Breeden, John R. Albers, and Andrew Hoell
Weather Clim. Dynam., 3, 1183–1197, https://doi.org/10.5194/wcd-3-1183-2022,https://doi.org/10.5194/wcd-3-1183-2022, 2022
Short summary
Dynamics of ENSO-driven stratosphere-to-troposphere transport of ozone over North America
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys., 22, 13035–13048, https://doi.org/10.5194/acp-22-13035-2022,https://doi.org/10.5194/acp-22-13035-2022, 2022
Short summary
The spring transition of the North Pacific jet and its relation to deep stratosphere-to-troposphere mass transport over western North America
Melissa L. Breeden, Amy H. Butler, John R. Albers, Michael Sprenger, and Andrew O'Neil Langford
Atmos. Chem. Phys., 21, 2781–2794, https://doi.org/10.5194/acp-21-2781-2021,https://doi.org/10.5194/acp-21-2781-2021, 2021
Short summary

Related subject area

Atmospheric predictability
Understanding winter windstorm predictability over Europe
Lisa Degenhardt, Gregor C. Leckebusch, and Adam A. Scaife
Weather Clim. Dynam., 5, 587–607, https://doi.org/10.5194/wcd-5-587-2024,https://doi.org/10.5194/wcd-5-587-2024, 2024
Short summary
What determines the predictability of a Mediterranean cyclone?
Benjamin Doiteau, Florian Pantillon, Matthieu Plu, Laurent Descamps, and Thomas Rieutord
EGUsphere, https://doi.org/10.5194/egusphere-2024-675,https://doi.org/10.5194/egusphere-2024-675, 2024
Short summary
Intrinsic predictability limits arising from Indian Ocean Madden–Julian oscillation (MJO) heating: effects on tropical and extratropical teleconnections
David Martin Straus, Daniela I. V. Domeisen, Sarah-Jane Lock, Franco Molteni, and Priyanka Yadav
Weather Clim. Dynam., 4, 1001–1018, https://doi.org/10.5194/wcd-4-1001-2023,https://doi.org/10.5194/wcd-4-1001-2023, 2023
Short summary
Predictable decadal forcing of the North Atlantic jet speed by sub-polar North Atlantic sea surface temperatures
Kristian Strommen, Tim Woollings, Paolo Davini, Paolo Ruggieri, and Isla R. Simpson
Weather Clim. Dynam., 4, 853–874, https://doi.org/10.5194/wcd-4-853-2023,https://doi.org/10.5194/wcd-4-853-2023, 2023
Short summary
Exploiting the signal-to-noise ratio in multi-system predictions of boreal summer precipitation and temperature
Juan Camilo Acosta Navarro and Andrea Toreti
Weather Clim. Dynam., 4, 823–831, https://doi.org/10.5194/wcd-4-823-2023,https://doi.org/10.5194/wcd-4-823-2023, 2023
Short summary

Cited articles

Abatzoglou, J. T. and Magnusdottir, G.: Planetary wave breaking and nonlinear reflection: Seasonal cycle and interannual variability, J. Climate, 19, 6139–6152, 2006. 
Albers, J. R. and Newman, M.: A priori identification of skillful extratropical subseasonal forecasts, Geophys. Res. Lett., 46, 12527–12536, 2019. 
Albers, J. R., Perlwitz, J., Butler, A. H., Birner, T., Kiladis, G. N., Lawrence, Z. D., Manney, G. L., Langford, A. O., and Dias, J.: Mechanisms governing interannual variability of stratosphere-to-troposphere ozone transport, J. Geophys. Res., 123, 234–260, 2018. 
Appenzeller, C., Davies, H., and Norton, W.: Fragmentation of stratospheric intrusions, J. Geophys. Res., 101, 1435–1456, 1996. 
Arpe, K., Hollingsworth, A., Tracton, M., Lorenc, A., Uppala, S., and Kållberg, P.: The response of numerical weather prediction systems to FGGE level IIb data. Part II: Forecast verifications and implications for predictability, Q. J. Roy. Meteor. Soc., 111, 67–101, 1985. 
Download
Short summary
Weather variability controls the transport of ozone from the stratosphere to the Earth’s surface and water vapor from oceanic source regions to continental land masses. Forecasting these types of transport has high societal value because of the negative impacts of ozone on human health and the role of water vapor in governing precipitation variability. We use upper-level wind forecasts to assess the potential for predicting ozone and water vapor transport 3–6 weeks ahead of time.