Articles | Volume 2, issue 3
https://doi.org/10.5194/wcd-2-653-2021
https://doi.org/10.5194/wcd-2-653-2021
Research article
 | 
23 Jul 2021
Research article |  | 23 Jul 2021

Drivers of uncertainty in future projections of Madden–Julian Oscillation teleconnections

Andrea M. Jenney, David A. Randall, and Elizabeth A. Barnes

Related subject area

Dynamical processes in the tropics, incl. tropical–extratropical interactions
Can low-resolution CMIP6 ScenarioMIP models provide insight into future European post-tropical-cyclone risk?
Elliott Michael Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, Kieran T. Bhatia, and Stella Bourdin
Weather Clim. Dynam., 3, 1359–1379, https://doi.org/10.5194/wcd-3-1359-2022,https://doi.org/10.5194/wcd-3-1359-2022, 2022
Short summary
Non-linear intensification of monsoon low-pressure systems by the BSISO
Kieran M. R. Hunt and Andrew G. Turner
Weather Clim. Dynam., 3, 1341–1358, https://doi.org/10.5194/wcd-3-1341-2022,https://doi.org/10.5194/wcd-3-1341-2022, 2022
Short summary
Investigation of dynamical scenarios leading to particularly high impact of Aeolus on NWP forecasts
Anne Martin, Martin Weissmann, and Alexander Cress
EGUsphere, https://doi.org/10.5194/egusphere-2022-1150,https://doi.org/10.5194/egusphere-2022-1150, 2022
Short summary
Dynamics of gap winds in the Great Rift Valley, Ethiopia: emphasis on strong winds at Lake Abaya
Cornelius Immanuel Weiß, Alexander Gohm, Mathias Walter Rotach, and Thomas Torora Minda
Weather Clim. Dynam., 3, 1003–1019, https://doi.org/10.5194/wcd-3-1003-2022,https://doi.org/10.5194/wcd-3-1003-2022, 2022
Short summary
Metrics of the Hadley circulation strength and associated circulation trends
Matic Pikovnik, Žiga Zaplotnik, Lina Boljka, and Nedjeljka Žagar
Weather Clim. Dynam., 3, 625–644, https://doi.org/10.5194/wcd-3-625-2022,https://doi.org/10.5194/wcd-3-625-2022, 2022
Short summary

Cited articles

Adames, Á. F. and Wallace, J. M.: Three-Dimensional Structure and Evolution of the MJO and Its Relation to the Mean Flow, J. Atmos. Sci., 71, 2007–2026, https://doi.org/10.1175/JAS-D-13-0254.1, 2014. a, b, c
Adames, Á. F., Kim, D., Sobel, A. H., Del Genio, A., and Wu, J.: Changes in the structure and propagation of the MJO with increasing CO 2, J. Adv. Model. Earth Syst., 9, 1251–1268, https://doi.org/10.1002/2017MS000913, 2017. a
Ahn, M., Kim, D., Kang, D., Lee, J., Sperber, K. R., Gleckler, P. J., Jiang, X., Ham, Y., and Kim, H.: MJO propagation across the maritime continent: Are CMIP6 models better than CMIP5 models?, Geophys. Res. Lett., 47, e2020GL08725, https://doi.org/10.1029/2020gl087250, 2020. a, b, c
Arnold, N. P., Kuang, Z., and Tziperman, E.: Enhanced MJO-like Variability at High SST, J. Clim., 26, 988–1001, 2013. a
Bladé, I. and Hartmann, D. L.: The Linear and Nonlinear Extratropical Response of the Atmosphere to Tropical Intraseasonal Heating, J. Atmos. Sci., 52, 4448–4471, https://doi.org/10.1175/1520-0469(1995)052<4448:TLANER>2.0.CO;2, 1995. a, b, c
Download
Short summary
Storm activity in the tropics is one of the key phenomena that provide weather predictability on an extended timescale of about 10–40 d. The influence of tropical storminess on places like North America is sensitive to the overall average state of the climate system. In this study, we try to unpack the reasons why climate models do not agree on how the influence of these storms on weather over the North Pacific and North America will change in the future.