Bui, H. X. and Maloney, E. D.: Changes in Madden-Julian Oscillation
Precipitation and Wind Variance Under Global Warming, Geophys. Res. Lett., 45, 7148–7155,
https://doi.org/10.1029/2018GL078504,
2018.
a,
b,
c,
d,
e
Bui, H. X. and Maloney, E. D.: Transient Response of MJO Precipitation and
Circulation to Greenhouse Gas Forcing, Geophys. Res. Lett., 7, 847,
https://doi.org/10.1029/2019GL085328, 2019b.
a,
b
Chang, C.-W. J., Tseng, W.-L., Hsu, H.-H., Keenlyside, N., and Tsuang, B.-J.:
The Madden-Julian Oscillation in a warmer world, Geophys. Res. Lett., 42,
6034–6042, 2015.
a,
b
Cui, J. and Li, T.: Changes of MJO propagation characteristics under global
warming, Clim. Dyn., 53, 5311–5327, 2019. a
Deng, Y. and Jiang, T.: Intraseasonal Modulation of the North Pacific Storm
Track by Tropical Convection in Boreal Winter, J. Clim., 24, 1122–1137,
2011. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.
a
Goss, M. and Feldstein, S. B.: Testing the sensitivity of the extratropical
response to the location, amplitude, and propagation speed of tropical
convection, J. Atmos. Sci., 75, 639–655,
https://doi.org/10.1175/JAS-D-17-0132.1, 2017.
a
Guo, Y., Shinoda, T., Lin, J., and Chang, E. K. M.: Variations of Northern
Hemisphere Storm Track and Extratropical Cyclone Activity Associated with the
Madden–Julian Oscillation, J. Clim., 30, 4799–4818, 2017. a
Henderson, S. A., Maloney, E. D., and Son, S. W.: Madden-Julian oscillation
Pacific teleconnections: The impact of the basic state and MJO
representation in general circulation models, J. Clim., 30, 4567–4587,
https://doi.org/10.1175/JCLI-D-16-0789.1, 2017.
a,
b,
c,
d,
e,
f,
g
Hoskins, B. J. and Ambrizzi, T.: Rossby Wave Propagation on a Realistic
Longitudinally Varying Flow, J. Atmos. Sci., 50, 1661–1671,
https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2, 1993.
a,
b,
c,
d
Jenney, A. M., Randall, D. A., and Barnes, E. A.: Quantifying Regional
Sensitivities to Periodic Events: Application to the MJO, J. Geophys. Res.-Atmos., 44, 7528,
https://doi.org/10.1029/2018JD029457, 2019.
a,
b
Jenney, A. M., Randall, D. A., and Barnes, E. A.: Drivers of uncertainty in future projections of MJO teleconnections: Data for figures (Version 02), Zenodo [data set],
https://doi.org/10.5281/zenodo.4737438, 2021.
a
Jiang, X., Maloney, E., and Su, H.: Large-scale controls of propagation of the
Madden-Julian Oscillation, npj Clim. Atmos. Sci., 3, 1–8,
https://doi.org/10.1038/s41612-020-00134-x, 2020.
a,
b
Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L.,
Knutti, R., and Hawkins, E.: Partitioning climate projection uncertainty with
multiple large ensembles and CMIP5/6, Earth System Change: Climate
Scenarios, 11, 491–508, 2020. a
Li, Y., Li, J., Jin, F. F., and Zhao, S.: Interhemispheric Propagation of
Stationary Rossby Waves in a Horizontally Nonuniform Background Flow, J.
Atmos. Sci., 72, 3233–3256, 2015. a
Lin, H. and Brunet, G.: Extratropical Response to the MJO: Nonlinearity and
Sensitivity to the Initial State, J. Atmos. Sci., 75, 219–234, 2018.
a,
b,
c,
d
Maloney, E. D. and Xie, S.-P.: Sensitivity of tropical intraseasonal
variability to the pattern of climate warming, J. Adv. Model. Earth Syst., 5,
32–47,
https://doi.org/10.1029/2012MS000171, 2013.
a
Maloney, E. D., Adames, Á. F., and Bui, H. X.: Madden–Julian oscillation
changes under anthropogenic warming, Nat. Clim. Chang., 9, 26–33,
https://doi.org/10.1038/s41558-018-0331-6, 2019.
a,
b,
c,
d
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K.,
Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
socioeconomic pathways describing world futures in the 21st century, Glob.
Environ. Change, 42, 169–180, 2017. a
Robertson, A. W., Kumar, A., Peña, M., and Vitart, F.: Improving and
promoting subseasonal to seasonal prediction, Bull. Am. Meteorol. Soc., 96,
ES49–ES53,
https://doi.org/10.1175/BAMS-D-14-00139.1, 2015.
a
Rushley, S. S., Kim, D., and Adames, Á. F.: Changes in the MJO under
Greenhouse Gas–Induced Warming in CMIP5 Models, J. Clim., 32, 803–821,
https://doi.org/10.1175/JCLI-D-18-0437.1, 2019.
a,
b,
c,
d
Samarasinghe, S. M., Connolly, C., Barnes, E. A., Ebert‐Uphoff, I., and Sun,
L.: Strengthened causal connections between the MJO and the north Atlantic
with climate warming, Geophys. Res. Lett., 48, e2020GL091168,
https://doi.org/10.1029/2020gl091168, 2021.
a,
b,
c,
d,
e,
f
Santer, B. D., Wigley, T. M. L., Mears, C., Wentz, F. J., Klein, S. A., Seidel,
D. J., Taylor, K. E., Thorne, P. W., Wehner, M. F., Gleckler, P. J., Boyle,
J. S., Collins, W. D., Dixon, K. W., Doutriaux, C., Free, M., Fu, Q., Hansen,
J. E., Jones, G. S., Ruedy, R., Karl, T. R., Lanzante, J. R., Meehl, G. A.,
Ramaswamy, V., Russell, G., and Schmidt, G. A.: Amplification of surface
temperature trends and variability in the tropical atmosphere, Science, 309,
1551–1556, 2005.
a,
b
Seo, K.-H. and Son, S.-W.: The Global Atmospheric Circulation Response to
Tropical Diabatic Heating Associated with the Madden–Julian Oscillation
during Northern Winter, J. Atmos. Sci., 69, 79–96,
https://doi.org/10.1175/2011JAS3686.1, 2012.
a,
b
Subramanian, A., Jochum, M., Miller, A. J., Neale, R., Seo, H., Waliser, D.,
and Murtugudde, R.: The MJO and global warming: A study in CCSM4, Clim.
Dyn., 42, 2019–2031,
https://doi.org/10.1007/s00382-013-1846-1, 2014.
a
Takahashi, C. and Shirooka, R.: Storm track activity over the North Pacific
associated with the Madden-Julian Oscillation under ENSO conditions
during boreal winter, J. Geophys. Res., 119, 10663–10683, 2014. a
Ting, M. and Held, I. M.: The Stationary Wave Response to a Tropical SST
Anomaly in an Idealized GCM, J. Atmos. Sci., 47, 2546–2566, 1990. a
Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A.,
Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D., Roskies, R., Scott,
J. R., and Wilkins-Diehr, N.: XSEDE: Accelerating Scientific Discovery,
Comput. Sci. Eng., 16, 62–74, 2014. a
Tseng, K.-C., Maloney, E., and Barnes, E.: The Consistency of MJO
Teleconnection Patterns: An Explanation Using Linear Rossby Wave Theory, J.
Clim., 32, 531–548,
https://doi.org/10.1175/JCLI-D-18-0211.1, 2019.
a
Tseng, K.-C., Maloney, E., and Barnes, E. A.: The Consistency of MJO
Teleconnection Patterns on Interannual Time Scales, J. Clim., 33, 3471–3486,
https://doi.org/10.1175/JCLI-D-19-0510.1, 2020b.
a,
b,
c,
d,
e
Wang, J., Kim, H., Kim, D., Henderson, S. A., Stan, C., and Maloney, E. D.:
MJO Teleconnections over the PNA Region in Climate Models. Part II:
Impacts of the MJO and Basic State, J. Clim., 33, 5081–5101, 2020.
a,
b,
c,
d,
e,
f,
g
Wolding, B. O., Maloney, E. D., and Branson, M.: Vertically resolved weak
temperature gradient analysis of the Madden-Julian Oscillation in
SP-CESM, J. Adv. Model. Earth Syst., 8, 1586–1619,
https://doi.org/10.1002/2016MS000724, 2016.
a,
b
Wolding, B. O., Maloney, E. D., Henderson, S., and Branson, M.: Climate change
and the Madden-Julian Oscillation: A vertically resolved weak temperature
gradient analysis, J. Adv. Model. Earth Syst., 9,
307–331,
https://doi.org/10.1002/2016MS000843, 2017.
a,
b,
c
Zheng, C. and Chang, E. K. M.: The role of MJO propagation, lifetime, and
intensity on modulating the temporal evolution of the MJO extratropical
response, J. Geophys. Res., 124, 5352–5378, 2019.
a,
b
Zheng, C. and Chang, E. K.-M.: The Role of Extratropical Background Flow in
Modulating the MJO Extratropical Response, J. Clim., 33, 4513–4536, 2020.
a,
b,
c,
d,
e,
f,
g,
h
Zhou, S., L'Heureux, M., Weaver, S., and Kumar, A.: A composite study of the
MJO influence on the surface air temperature and precipitation over the
Continental United States, Clim. Dyn., 38, 1459–1471, 2012. a
Zhou, W., Yang, D., Xie, S.-P., and Ma, J.: Amplified Madden–Julian
oscillation impacts in the Pacific–North America region, Nat. Clim.
Chang., 10, 654–660,
https://doi.org/10.1038/s41558-020-0814-0, 2020.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m