Articles | Volume 2, issue 3
https://doi.org/10.5194/wcd-2-653-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-653-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drivers of uncertainty in future projections of Madden–Julian Oscillation teleconnections
Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
David A. Randall
Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
Elizabeth A. Barnes
Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
Related authors
Cristiana Stan, Saisri Kollapaneni, Andrea M. Jenney, Jiabao Wang, Zheng Wu, Cheng Zheng, Hyemi Kim, Chaim I. Garfinkel, and Ayush Singh
Geosci. Model Dev., 18, 7969–7985, https://doi.org/10.5194/gmd-18-7969-2025, https://doi.org/10.5194/gmd-18-7969-2025, 2025
Short summary
Short summary
The diagnostics package is an open-source Python software package used for evaluating the Madden–Julian Oscillation teleconnections to the extratropics, as predicted by subseasonal-to-seasonal (S2S) forecast systems.
Cristiana Stan, Saisri Kollapaneni, Andrea M. Jenney, Jiabao Wang, Zheng Wu, Cheng Zheng, Hyemi Kim, Chaim I. Garfinkel, and Ayush Singh
Geosci. Model Dev., 18, 7969–7985, https://doi.org/10.5194/gmd-18-7969-2025, https://doi.org/10.5194/gmd-18-7969-2025, 2025
Short summary
Short summary
The diagnostics package is an open-source Python software package used for evaluating the Madden–Julian Oscillation teleconnections to the extratropics, as predicted by subseasonal-to-seasonal (S2S) forecast systems.
Andrew Feder, David Randall, and Donald Dazlich
EGUsphere, https://doi.org/10.5194/egusphere-2024-3526, https://doi.org/10.5194/egusphere-2024-3526, 2024
Preprint archived
Short summary
Short summary
We studied the effect of solar geoengineering on the intensity and distribution of tropical cyclones in global climate models, as compared to a historical baseline and a comparable, non-engineered warming scenario. We find that, while the given geoengineering approach does not completely bring cyclones back to their typical historical behavior, it restores important elements of cyclone behavior to baseline with some important regional deviations.
Cited articles
Adames, Á. F. and Wallace, J. M.: Three-Dimensional Structure and
Evolution of the MJO and Its Relation to the Mean Flow, J. Atmos. Sci., 71,
2007–2026, https://doi.org/10.1175/JAS-D-13-0254.1, 2014. a, b, c
Adames, Á. F., Kim, D., Sobel, A. H., Del Genio, A., and Wu, J.: Changes in
the structure and propagation of the MJO with increasing CO 2, J. Adv.
Model. Earth Syst., 9, 1251–1268, https://doi.org/10.1002/2017MS000913, 2017. a
Ahn, M., Kim, D., Kang, D., Lee, J., Sperber, K. R., Gleckler, P. J., Jiang,
X., Ham, Y., and Kim, H.: MJO propagation across the maritime continent:
Are CMIP6 models better than CMIP5 models?, Geophys. Res. Lett., 47, e2020GL08725,
https://doi.org/10.1029/2020gl087250,
2020. a, b, c
Arnold, N. P., Kuang, Z., and Tziperman, E.: Enhanced MJO-like Variability at
High SST, J. Clim., 26, 988–1001, 2013. a
Bladé, I. and Hartmann, D. L.: The Linear and Nonlinear Extratropical
Response of the Atmosphere to Tropical Intraseasonal Heating, J. Atmos. Sci.,
52, 4448–4471, https://doi.org/10.1175/1520-0469(1995)052<4448:TLANER>2.0.CO;2, 1995. a, b, c
Bui, H. X. and Maloney, E. D.: Mechanisms for Global Warming Impacts on
Madden–Julian Oscillation Precipitation Amplitude, J. Clim., 32,
6961–6975, https://doi.org/10.1175/JCLI-D-19-0051.1, 2019a. a, b
Bui, H. X. and Maloney, E. D.: Transient Response of MJO Precipitation and
Circulation to Greenhouse Gas Forcing, Geophys. Res. Lett., 7, 847,
https://doi.org/10.1029/2019GL085328, 2019b. a, b
Cui, J. and Li, T.: Changes of MJO propagation characteristics under global
warming, Clim. Dyn., 53, 5311–5327, 2019. a
Deng, Y. and Jiang, T.: Intraseasonal Modulation of the North Pacific Storm
Track by Tropical Convection in Boreal Winter, J. Clim., 24, 1122–1137,
2011. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Goss, M. and Feldstein, S. B.: Testing the sensitivity of the extratropical
response to the location, amplitude, and propagation speed of tropical
convection, J. Atmos. Sci., 75, 639–655,
https://doi.org/10.1175/JAS-D-17-0132.1, 2017. a
Guo, Y., Shinoda, T., Lin, J., and Chang, E. K. M.: Variations of Northern
Hemisphere Storm Track and Extratropical Cyclone Activity Associated with the
Madden–Julian Oscillation, J. Clim., 30, 4799–4818, 2017. a
Hoskins, B. J. and Ambrizzi, T.: Rossby Wave Propagation on a Realistic
Longitudinally Varying Flow, J. Atmos. Sci., 50, 1661–1671,
https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2, 1993. a, b, c, d
Jenney, A. M., Randall, D. A., and Barnes, E. A.: Quantifying Regional
Sensitivities to Periodic Events: Application to the MJO, J. Geophys. Res.-Atmos., 44, 7528, https://doi.org/10.1029/2018JD029457, 2019. a, b
Jenney, A. M., Randall, D. A., and Barnes, E. A.: Drivers of uncertainty in future projections of MJO teleconnections: Data for figures (Version 02), Zenodo [data set], https://doi.org/10.5281/zenodo.4737438, 2021. a
Jiang, X., Maloney, E., and Su, H.: Large-scale controls of propagation of the
Madden-Julian Oscillation, npj Clim. Atmos. Sci., 3, 1–8,
https://doi.org/10.1038/s41612-020-00134-x, 2020. a, b
Karoly, D. J.: Rossby wave propagation in a barotropic atmosphere, Dyn. Atmos.
Oceans, 7, 111–125, https://doi.org/10.1016/0377-0265(83)90013-1, 1983. a, b, c
Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L.,
Knutti, R., and Hawkins, E.: Partitioning climate projection uncertainty with
multiple large ensembles and CMIP5/6, Earth System Change: Climate
Scenarios, 11, 491–508, 2020. a
Li, Y., Li, J., Jin, F. F., and Zhao, S.: Interhemispheric Propagation of
Stationary Rossby Waves in a Horizontally Nonuniform Background Flow, J.
Atmos. Sci., 72, 3233–3256, 2015. a
Maloney, E. D. and Xie, S.-P.: Sensitivity of tropical intraseasonal
variability to the pattern of climate warming, J. Adv. Model. Earth Syst., 5,
32–47, https://doi.org/10.1029/2012MS000171, 2013. a
Maloney, E. D., Adames, Á. F., and Bui, H. X.: Madden–Julian oscillation
changes under anthropogenic warming, Nat. Clim. Chang., 9, 26–33,
https://doi.org/10.1038/s41558-018-0331-6, 2019. a, b, c, d
Mori, M. and Watanabe, M.: The Growth and Triggering Mechanisms of the PNA: A
MJO-PNA Coherence, J. Meteorol. Soc. Japan, 86, 213–236,
https://doi.org/10.2151/jmsj.86.213, 2008. a, b, c
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van
Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A.,
Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer,
R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next
generation of scenarios for climate change research and assessment, Nature,
463, 747–756, 2010. a
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K.,
Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
socioeconomic pathways describing world futures in the 21st century, Glob.
Environ. Change, 42, 169–180, 2017. a
Robertson, A. W., Kumar, A., Peña, M., and Vitart, F.: Improving and
promoting subseasonal to seasonal prediction, Bull. Am. Meteorol. Soc., 96,
ES49–ES53, https://doi.org/10.1175/BAMS-D-14-00139.1, 2015. a
Rushley, S. S., Kim, D., and Adames, Á. F.: Changes in the MJO under
Greenhouse Gas–Induced Warming in CMIP5 Models, J. Clim., 32, 803–821,
https://doi.org/10.1175/JCLI-D-18-0437.1, 2019. a, b, c, d
Santer, B. D., Wigley, T. M. L., Mears, C., Wentz, F. J., Klein, S. A., Seidel,
D. J., Taylor, K. E., Thorne, P. W., Wehner, M. F., Gleckler, P. J., Boyle,
J. S., Collins, W. D., Dixon, K. W., Doutriaux, C., Free, M., Fu, Q., Hansen,
J. E., Jones, G. S., Ruedy, R., Karl, T. R., Lanzante, J. R., Meehl, G. A.,
Ramaswamy, V., Russell, G., and Schmidt, G. A.: Amplification of surface
temperature trends and variability in the tropical atmosphere, Science, 309,
1551–1556, 2005. a, b
Sardeshmukh, P. D. and Hoskins, B. J.: The Generation of Global Rotational Flow
by Steady Idealized Tropical Divergence, Atmos. Sci., 45, 1228–1251,
https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2, 1988. a, b, c
Seo, K.-H. and Lee, H.-J.: Mechanisms for a PNA-Like Teleconnection Pattern
in Response to the MJO, J. Atmos. Sci., 74, 1767–1781,
https://doi.org/10.1175/JAS-D-16-0343.1, 2017. a
Seo, K.-H. and Son, S.-W.: The Global Atmospheric Circulation Response to
Tropical Diabatic Heating Associated with the Madden–Julian Oscillation
during Northern Winter, J. Atmos. Sci., 69, 79–96,
https://doi.org/10.1175/2011JAS3686.1, 2012. a, b
Subramanian, A., Jochum, M., Miller, A. J., Neale, R., Seo, H., Waliser, D.,
and Murtugudde, R.: The MJO and global warming: A study in CCSM4, Clim.
Dyn., 42, 2019–2031, https://doi.org/10.1007/s00382-013-1846-1, 2014. a
Takahashi, C. and Shirooka, R.: Storm track activity over the North Pacific
associated with the Madden-Julian Oscillation under ENSO conditions
during boreal winter, J. Geophys. Res., 119, 10663–10683, 2014. a
Ting, M. and Held, I. M.: The Stationary Wave Response to a Tropical SST
Anomaly in an Idealized GCM, J. Atmos. Sci., 47, 2546–2566, 1990. a
Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A.,
Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D., Roskies, R., Scott,
J. R., and Wilkins-Diehr, N.: XSEDE: Accelerating Scientific Discovery,
Comput. Sci. Eng., 16, 62–74, 2014. a
Tseng, K.-C., Maloney, E., and Barnes, E.: The Consistency of MJO
Teleconnection Patterns: An Explanation Using Linear Rossby Wave Theory, J.
Clim., 32, 531–548, https://doi.org/10.1175/JCLI-D-18-0211.1, 2019. a
Tseng, K.-C., Barnes, E. A., and Maloney, E.: The Importance of Past MJO
Activity in Determining the Future State of the Midlatitude Circulation, J.
Clim., 33, 2131–2147, 2020a. a
Watanabe, M. and Kimoto, M.: Atmosphere-ocean thermal coupling in the North
Atlantic: A positive feedback, Q. J. Roy. Met. Soc., 126, 3343–3369,
https://doi.org/10.1002/qj.49712657017, 2000. a, b, c
World Climate Research Programme (WCRP): CMIP6 data, available at: https://esgf-node.llnl.gov/search/cmip6/, last access: 10 November 2020. a
Wolding, B. O., Maloney, E. D., and Branson, M.: Vertically resolved weak
temperature gradient analysis of the Madden-Julian Oscillation in
SP-CESM, J. Adv. Model. Earth Syst., 8, 1586–1619,
https://doi.org/10.1002/2016MS000724, 2016. a, b
Wolding, B. O., Maloney, E. D., Henderson, S., and Branson, M.: Climate change
and the Madden-Julian Oscillation: A vertically resolved weak temperature
gradient analysis, J. Adv. Model. Earth Syst., 9,
307–331, https://doi.org/10.1002/2016MS000843, 2017. a, b, c
Yadav, P. and Straus, D. M.: Circulation Response to Fast and Slow MJO
Episodes, Mon. Weather Rev., 145, 1577–1596, 2017. a
Zhou, S., L'Heureux, M., Weaver, S., and Kumar, A.: A composite study of the
MJO influence on the surface air temperature and precipitation over the
Continental United States, Clim. Dyn., 38, 1459–1471, 2012. a
Short summary
Storm activity in the tropics is one of the key phenomena that provide weather predictability on an extended timescale of about 10–40 d. The influence of tropical storminess on places like North America is sensitive to the overall average state of the climate system. In this study, we try to unpack the reasons why climate models do not agree on how the influence of these storms on weather over the North Pacific and North America will change in the future.
Storm activity in the tropics is one of the key phenomena that provide weather predictability on...