Articles | Volume 2, issue 3
https://doi.org/10.5194/wcd-2-713-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-713-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution stable isotope signature of a land-falling atmospheric river in southern Norway
Yongbiao Weng
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Aina Johannessen
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Related authors
No articles found.
Manfred Wendisch, Benjamin Kirbus, Davide Ori, Matthew D. Shupe, Susanne Crewell, Harald Sodemann, and Vera Schemann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2062, https://doi.org/10.5194/egusphere-2025-2062, 2025
Short summary
Short summary
Aircraft observations of air parcels moving into and out of the Arctic are reported. From the data, heating and cooling as well as drying and moistening of the air masses along their way into and out of the Arctic could be measured for the first time. These data enable to evaluate if numerical weather prediction models are able to accurately represent these air mass transformations. This work helps to model the future climate changes in the Arctic, which are important for mid-latitude weather.
Harald Sodemann
EGUsphere, https://doi.org/10.5194/egusphere-2025-574, https://doi.org/10.5194/egusphere-2025-574, 2025
Short summary
Short summary
The WaterSip software locates regions where precipitation comes from. WaterSip evaluates of the water budget of the air masses, providing information on the conditions during evaporation, transport, and arrival at the target area. WaterSip can be easily configured and writes gridded output files. Guidance is given on where uncertainties arise using a case study, and best practices are recommended. This manuscript supports the comparison of different methods to find precipitation sources.
Astrid B. Gjelsvik, Robert O. David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1617–1637, https://doi.org/10.5194/acp-25-1617-2025, https://doi.org/10.5194/acp-25-1617-2025, 2025
Short summary
Short summary
Ice formation in clouds has a substantial impact on radiation and precipitation and must be realistically simulated in order to understand present and future Arctic climate. Rare aerosols known as ice-nucleating particles can play an important role in cloud ice formation, but their representation in global climate models is not well suited for the Arctic. In this study, the simulation of cloud phase is improved when the representation of these particles is constrained by Arctic observations.
Daniele Zannoni, Hans Christian Steen-Larsen, Harald Sodemann, Iris Thurnherr, Cyrille Flamant, Patrick Chazette, Julien Totems, Martin Werner, and Myriam Raybaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-3394, https://doi.org/10.5194/egusphere-2024-3394, 2025
Short summary
Short summary
High resolution airborne observations reveal that mixing between the free troposphere and surface evapotranspiration flux primarly modulates the water vapor isotopic composition in the lower troposphere. Water vapor isotopes structure variations occur on the scale of 100s of m, underlying the utility of stable isotopes for studying microscale atmospheric dynamics. This study also provides the basis for better validation of water vapor isotopes remote sensing retrievals with surface observations.
Andrew W. Seidl, Aina Johannessen, Alena Dekhtyareva, Jannis M. Huss, Marius O. Jonassen, Alexander Schulz, Ove Hermansen, Christoph K. Thomas, and Harald Sodemann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-293, https://doi.org/10.5194/essd-2024-293, 2024
Preprint under review for ESSD
Short summary
Short summary
ISLAS2020 set out to measure the stable water isotopic composition of Arctic moisture. By not only measuring at different sites around Ny-Ålesund, Svalbard, but also measuring at variable heights above surface level, we aim to characterize processes that produce or modify the isotopic composition. We also collect precipitation samples from sites that were typically downstream of Ny-Ålesund, so as to capture the isotopic composition during removal from the atmospheric water cycle.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Harald Sodemann, Alena Dekhtyareva, Alvaro Fernandez, Andrew Seidl, and Jenny Maccali
Atmos. Meas. Tech., 16, 5181–5203, https://doi.org/10.5194/amt-16-5181-2023, https://doi.org/10.5194/amt-16-5181-2023, 2023
Short summary
Short summary
We describe a device that allows one to produce a continuous stream of water vapour with a specified level of humidity. As a main innovation, we can mix waters with different water isotope composition. Through a series of tests we show that the performance characteristics of the device are in line with specifications. We present two laboratory applications where the device proves useful, first in characterizing instruments, and second for the analysis of water contained in stalagmites.
Astrid Fremme, Paul J. Hezel, Øyvind Seland, and Harald Sodemann
Weather Clim. Dynam., 4, 449–470, https://doi.org/10.5194/wcd-4-449-2023, https://doi.org/10.5194/wcd-4-449-2023, 2023
Short summary
Short summary
We study the atmospheric moisture transport into eastern China for past, present, and future climate. Hence, we use different climate and weather prediction model data with a moisture source identification method. We find that while the moisture to first order originates mostly from similar regions, smaller changes consistently point to differences in the recycling of precipitation over land between different climates. Some differences are larger between models than between different climates.
Andrew W. Seidl, Harald Sodemann, and Hans Christian Steen-Larsen
Atmos. Meas. Tech., 16, 769–790, https://doi.org/10.5194/amt-16-769-2023, https://doi.org/10.5194/amt-16-769-2023, 2023
Short summary
Short summary
It is challenging to make field measurements of stable water isotopes in the Arctic. To this end, we present a modular stable-water-isotope analyzer profiling system. The system operated for a 2-week field campaign on Svalbard during the Arctic winter. We evaluate the system’s performance and analyze any potential impact that the field conditions might have had on the isotopic measurements and the system's ability to resolve isotope gradients in the lowermost layer of the atmosphere.
Jonas Hamperl, Clément Capitaine, Jean-Baptiste Dherbecourt, Myriam Raybaut, Patrick Chazette, Julien Totems, Bruno Grouiez, Laurence Régalia, Rosa Santagata, Corinne Evesque, Jean-Michel Melkonian, Antoine Godard, Andrew Seidl, Harald Sodemann, and Cyrille Flamant
Atmos. Meas. Tech., 14, 6675–6693, https://doi.org/10.5194/amt-14-6675-2021, https://doi.org/10.5194/amt-14-6675-2021, 2021
Short summary
Short summary
Laser active remote sensing of tropospheric water vapor is a promising technology for enhancing our understanding of processes governing the global hydrological cycle. We investigate the potential of a ground-based lidar to monitor the main water vapor isotopes at high spatio-temporal resolutions in the lower troposphere. Using a realistic end-to-end simulator, we show that high-precision measurements can be achieved within a range of 1.5 km, in mid-latitude or tropical environments.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Cited articles
Aemisegger, F.: On the link between the North Atlantic storm track and
precipitation deuterium excess in Reykjavik, Atmos. Sci. Lett.,
19, e865, https://doi.org/10.1002/asl.865, 2018. a
Aemisegger, F. and Papritz, L.: A climatology of strong large-scale ocean
evaporation events. Part I: Identification, global distribution, and
associated climate conditions, J. Climate, 31, 7287–7312,
https://doi.org/10.1175/JCLI-D-17-0591.1, 2018. a
Aemisegger, F. and Sjolte, J.: A climatology of strong large-scale ocean
evaporation events. Part II: Relevance for the deuterium excess signature
of the evaporation flux, J. Climate, 31, 7313–7336, 2018. a
Aemisegger, F., Pfahl, S., Sodemann, H., Lehner, I., Seneviratne, S. I., and Wernli, H.: Deuterium excess as a proxy for continental moisture recycling and plant transpiration, Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, 2014. a, b
Aemisegger, F., Spiegel, J., Pfahl, S., Sodemann, H., Eugster, W., and Wernli,
H.: Isotope meteorology of cold front passages: A case study combining
observations and modeling, Geophys. Res. Lett., 42, 5652–5660,
2015. a
Azad, R. and Sorteberg, A.: Extreme daily precipitation in coastal western
Norway and the link to atmospheric rivers, J. Geophys.
Res.-Atmos., 122, 2080–2095, https://doi.org/10.1002/2016JD025615, 2017. a, b
Barras, V. and Simmonds, I.: Observation and modeling of stable water isotopes
as diagnostics of rainfall dynamics over southeastern Australia, J.
Geophys. Res.-Atmos., 114,
D23308, https://doi.org/10.1029/2009JD012132, 2009. a, b
Battan, L. J.: Radar observation of the atmosphere, Q. J.
Roy. Meteor. Soc., 99, 793–793, https://doi.org/10.1002/qj.49709942229,
1973. a
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,
Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., et al.: The
HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system,
Mon. Weather Rev., 145, 1919–1935, https://doi.org/10.1175/MWR-D-16-0417.1, 2017. a
Bony, S., Risi, C., and Vimeux, F.: Influence of convective processes on the
isotopic composition (δ18O and δD) of precipitation and
water vapor in the tropics: 1. Radiative-convective equilibrium and
Tropical Ocean–Global Atmosphere–Coupled Ocean-Atmosphere Response
Experiment (TOGA-COARE) simulations, J. Geophys. Res.-Atmos., 113, D19305, https://doi.org/10.1029/2008JD009942, 2008. a, b
Coplen, T. B., Neiman, P. J., White, A. B., Landwehr, J. M., Ralph, F. M., and
Dettinger, M. D.: Extreme changes in stable hydrogen isotopes and
precipitation characteristics in a landfalling Pacific storm, Geophys.
Res. Lett., 35, L21808, https://doi.org/10.1029/2008GL035481, 2008. a, b, c, d, e, f, g, h, i, j, k, l, m
Coplen, T. B., Neiman, P. J., White, A. B., and Ralph, F. M.: Categorisation of
northern California rainfall for periods with and without a radar
brightband using stable isotopes and a novel automated precipitation
collector, Tellus B, 67, 28574,
https://doi.org/10.3402/tellusb.v67.28574, 2015. a, b, c, d, e
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964. a
Dütsch, M., Pfahl, S., and Sodemann, H.: The impact of nonequilibrium and
equilibrium fractionation on two different deuterium excess definitions,
J. Geophys. Res.-Atmos., 122, 12732–12746,
https://doi.org/10.1002/2017JD027085, 2017. a
Graf, P.: The effect of below-cloud processes on short-term variations of
stable water isotopes in surface precipitation, PhD thesis, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-b-000266387, 2017. a
Guan, H., Zhang, X., Skrzypek, G., Sun, Z., and Xu, X.: Deuterium excess
variations of rainfall events in a coastal area of South Australia and its
relationship with synoptic weather systems and atmospheric moisture sources,
J. Geophys. Res.-Atmos., 118, 1123–1138, 2013. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
IAEA: Reference Sheet for VSMOW2 and SLAP2 international measurement standards, International Atomic Energy Agency, Vienna, Austria, 5 pp., available at: https://nucleus.iaea.org/sites/ReferenceMaterials/Shared Documents/ReferenceMaterials/StableIsotopes/VSMOW2/VSMOW2_SLAP2.pdf (last access: 8 July 2021), 2009. a, b, c
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J.,
Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L.,
Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A.,
Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen,
J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff,
E. W.: Orbital and millennial Antarctic climate variability over the past
800,000 years, Science, 317, 793–796, 2007. a
Lavers, D. A., Pappenberger, F., and Zsoter, E.: Extending medium-range
predictability of extreme hydrological events in Europe, Nat.
Commun., 5, 5382, https://doi.org/10.1038/ncomms6382, 2014. a, b
Lavers, D. A., Waliser, D. E., Ralph, F. M., and Dettinger, M. D.:
Predictability of horizontal water vapor transport relative to precipitation:
Enhancing situational awareness for forecasting western U.S. extreme
precipitation and flooding, Geophys. Res. Lett., 43, 2275–2282,
https://doi.org/10.1002/2016GL067765, 2016. a, b
Liotta, M., Favara, R., and Valenza, M.: Isotopic composition of the
precipitations in the central Mediterranean: Origin marks and orographic
precipitation effects, J. Geophys. Res.-Atmos., 111,
D19302, https://doi.org/10.1029/2005JD006818,
2006. a
Lowenthal, D. H., Borys, R. D., Cotton, W., Saleeby, S., Cohn, S. A., and
Brown, W. O.: The altitude of snow growth by riming and vapor deposition in
mixed-phase orographic clouds, Atmos. Environ., 45, 519–522,
https://doi.org/10.1016/j.atmosenv.2010.09.061, 2011. a
Madonna, E.: Warm conveyor belts. Climatology and forecast performance, PhD
thesis, ETH Zurich, Zürich, https://doi.org/10.3929/ethz-a-009976676, 2013. a
Majoube, M.: Fractionnement en oxygéne 18 et en deutérium entre l'eau et
sa vapeur, J. Chem. Phys., 10, 1423–1436, 1971. a
METEK Meteorologische Messtechnik GmbH: MRR-2 Micro Rain Radar user manual,
available at: https://www.manualslib.com/manual/1479875/Metek-Mrr-2.html (last access: 1 August 2021), 2012. a
Miyake, Y., Matsubaya, O., and Nishihara, C.: An isotopic study on meteoric
precipitation, Pap. Meteorol. Geophys., 19, 243–266, 1968. a
Mook, W. G. and De Vries, J.: Introduction: Theory, methods, review,
Environmental isotopes in the hydrological cycle: Principles and
applications, International Hydrological Programme (IHP-V), Technical
Documents in Hydrology (IAEA/UNESCO), 1, 1–164, 2001. a
Muller, C. L., Baker, A., Fairchild, I. J., Kidd, C., and Boomer, I.:
Intra-event trends in stable isotopes: Exploring midlatitude precipitation
using a vertically pointing Micro Rain Radar, J. Hydrometeorol.,
16, 194–213, https://doi.org/10.1175/JHM-D-14-0038.1, 2015. a, b, c
Munksgaard, N. C., Wurster, C. M., Bass, A., and Bird, M. I.: Extreme
short-term stable isotope variability revealed by continuous rainwater
analysis, Hydrol. Process., 26, 3630–3634, https://doi.org/10.1002/hyp.9505,
2012. a
Nayak, M. A., Villarini, G., and Lavers, D. A.: On the skill of numerical
weather prediction models to forecast atmospheric rivers over the central
United States, Geophys. Res. Lett., 41, 4354–4362,
https://doi.org/10.1002/2014GL060299, 2014. a
OTT Hydromet GmbH: Operating instructions: Present weather sensor OTT
Parsivel2, available at: https://www.ott.com/download/operating-instructions-present-weather-sensor-ott-parsivel2-with-screen-heating-1/ (last access: 1 August 2021), 2015. a
Papritz, L. and Sodemann, H.: Characterizing the local and intense water cycle
during a cold air outbreak in the Nordic Seas, Mon. Weather Rev., 146,
3567–3588, 2018. a
Papritz, L. and Spengler, T.: A Lagrangian climatology of wintertime cold air
outbreaks in the Irminger and Nordic Seas and their role in shaping
air–sea heat fluxes, J. Climate, 30, 2717–2737,
https://doi.org/10.1175/JCLI-D-16-0605.1, 2017. a
Pfahl, S. and Sodemann, H.: What controls deuterium excess in global precipitation?, Clim. Past, 10, 771–781, https://doi.org/10.5194/cp-10-771-2014, 2014. a, b, c, d
Pfahl, S., Wernli, H., and Yoshimura, K.: The isotopic composition of precipitation from a winter storm – a case study with the limited-area model COSMOiso, Atmos. Chem. Phys., 12, 1629–1648, https://doi.org/10.5194/acp-12-1629-2012, 2012. a
Ralph, F. M., Neiman, P. J., and Wick, G. A.: Satellite and CALJET aircraft
observations of atmospheric rivers over the eastern North Pacific Ocean
during the winter of 1997/98, Mon. Weather Rev., 132, 1721–1745, 2004. a
Risi, C., Bony, S., Vimeux, F., and Jouzel, J.: Water-stable isotopes in the
LMDZ4 general circulation model: Model evaluation for present-day and
past climates and applications to climatic interpretations of tropical
isotopic records, J. Geophys. Res.-Atmos., 115, D12118,
https://doi.org/10.1029/2009JD013255, 2010. a
Rozanski, K. and Sonntag, C.: Vertical distribution of deuterium in atmospheric
water vapour, Tellus A, 34, 135–141, https://doi.org/10.1111/j.2153-3490.1982.tb01800.x, 1982. a
Scholl, M. A., Giambelluca, T. W., Gingerich, S. B., Nullet, M. A., and Loope,
L. L.: Cloud water in windward and leeward mountain forests: The stable
isotope signature of orographic cloud water, Water Resour. Res., 43, W12411,
https://doi.org/10.1029/2007WR006011, 2007. a
Sodemann, H.: Beyond Turnover Time: Constraining the Lifetime Distribution of
Water Vapor from Simple and Complex Approaches, J. Atmos.
Sci., 77, 413–433, https://doi.org/10.1175/JAS-D-18-0336.1, 2020. a
Sodemann, H. and Stohl, A.: Moisture origin and meridional transport in
atmospheric rivers and their association with multiple cyclones, Mon.
Weather Rev., 141, 2850–2868, 2013. a
Sodemann, H., Schwierz, C., and Wernli, H.: Interannual variability of
Greenland winter precipitation sources: Lagrangian moisture diagnostic
and North Atlantic Oscillation influence, J. Geophys. Res.-Atmos., 113, D03107, https://doi.org/10.1029/2007JD008503, 2008. a, b, c, d
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005. a
Stohl, A., Forster, C., and Sodemann, H.: Remote sources of water vapor forming
precipitation on the Norwegian west coast at 60∘ N – a tale of
hurricanes and an atmospheric river, J. Geophys. Res.-Atmos., 113, D05102, https://doi.org/10.1029/2007JD009006, 2008. a
Thurnherr, I., Kozachek, A., Graf, P., Weng, Y., Bolshiyanov, D., Landwehr, S., Pfahl, S., Schmale, J., Sodemann, H., Steen-Larsen, H. C., Toffoli, A., Wernli, H., and Aemisegger, F.: Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean, Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020, 2020. a
Toride, K., Yoshimura, K., Tada, M., Diekmann, C., Ertl, B., Khosrawi, F., and
Schneider, M.: Potential of mid-tropospheric water vapor isotopes to improve
large-scale circulation and weather predictability, Geophys. Res. Lett., 48, e2020GL091698, https://doi.org/10.1029/2020GL091698, 2021. a
Uemura, R., Matsui, Y., Yoshimura, K., Motoyama, H., and Yoshida, N.: Evidence
of deuterium excess in water vapor as an indicator of ocean surface
conditions, J. Geophys. Res.-Atmos., 113, D19114, https://doi.org/10.1029/2008JD010209, 2008.
a
Wang, S., Zhang, M., Che, Y., Zhu, X., and Liu, X.: Influence of below-cloud
evaporation on deuterium excess in precipitation of arid central Asia and its
meteorological controls, J. Hydrometeorol., 17, 1973–1984, 2016. a
Weng, Y., Touzeau, A., and Sodemann, H.: Correcting the impact of the isotope composition on the mixing ratio dependency of water vapour isotope measurements with cavity ring-down spectrometers, Atmos. Meas. Tech., 13, 3167–3190, https://doi.org/10.5194/amt-13-3167-2020, 2020. a
Wernli, H. and Schwierz, C.: Surface cyclones in the ERA-40 dataset
(1958–2001). Part I: Novel identification method and global climatology,
J. Atmos. Sci., 63, 2486–2507, 2006. a
White, A. B., Gottas, D. J., Strem, E. T., Ralph, F. M., and Neiman, P. J.: An
automated brightband height detection algorithm for use with Doppler radar
spectral moments, J. Atmos. Ocean. Tech., 19,
687–697, 2002. a
White, A. B., Neiman, P. J., Ralph, F. M., Kingsmill, D. E., and Persson, P.
O. G.: Coastal orographic rainfall processes observed by radar during the
California Land-Falling Jets Experiment, J. Hydrometeorol., 4,
264–282, 2003. a
Winschall, A., Sodemann, H., Pfahl, S., and Wernli, H.: How important is
intensified evaporation for Mediterranean precipitation extremes?, J. Geophys. Res.-Atmos., 119, 5240–5256,
https://doi.org/10.1002/2013JD021175, 2014. a
Yankee Environmental Systems, Inc.: TPS-3100 Total Precipitation Sensor
installation and user guide (version 2.0), available at: https://www.arm.gov/publications/tech_reports/handbooks/tps_handbook.pdf (last access: 1 August 2021), 2011. a
Yoshimura, K., Miyoshi, T., and Kanamitsu, M.: Observation system simulation
experiments using water vapor isotope information, J. Geophys.
Res.-Atmos., 119, 7842–7862, 2014. a
Zhu, Y. and Newell, R. E.: A proposed algorithm for moisture fluxes from
atmospheric rivers, Mon. Weather Rev., 126, 725–735,
https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2, 1998. a
Short summary
High-resolution measurements of stable isotopes in near-surface vapour and precipitation show a
W-shaped evolution during a 24 h land-falling atmospheric river event in southern Norway. We distinguish contributions from below-cloud processes, weather system characteristics, and moisture source conditions during different stages of the event. Rayleigh distillation models need to be expanded by additional processes to accurately predict isotopes in surface precipitation from stratiform clouds.
High-resolution measurements of stable isotopes in near-surface vapour and precipitation show a...