Articles | Volume 3, issue 3
https://doi.org/10.5194/wcd-3-845-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-845-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pacific Decadal Oscillation modulates the Arctic sea-ice loss influence on the midlatitude atmospheric circulation in winter
UMR LOCEAN, Sorbonne Université/IRD/MNHN/CNRS, Paris,
France
Instituto Dom Luiz (IDL), Faculdade de Ciências,
Universidade de Lisboa, Lisbon, Portugal
Guillaume Gastineau
UMR LOCEAN, Sorbonne Université/IRD/MNHN/CNRS, Paris,
France
Claude Frankignoul
UMR LOCEAN, Sorbonne Université/IRD/MNHN/CNRS, Paris,
France
Vladimir Lapin
Barcelona Supercomputing Center, Barcelona, Spain
Pablo Ortega
Barcelona Supercomputing Center, Barcelona, Spain
Related authors
Amélie Simon, Pierre Tandeo, Florian Sévellec, and Camille Lique
EGUsphere, https://doi.org/10.5194/egusphere-2025-704, https://doi.org/10.5194/egusphere-2025-704, 2025
Short summary
Short summary
This paper presents a new way to describe the Arctic sea-ice changes based on the shape of the observed seasonal cycles and using machine learning techniques. We show that the East Siberian and Laptev seas have lost their typical permanent sea-ice seasonal cycle while the Kara and Chukchi seas are experiencing a new typical seasonal cycle, corresponding to a partial winter-freezing.
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024, https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
Short summary
Identifying causes of specific processes is crucial in order to better understand our climate system. Traditionally, correlation analyses have been used to identify cause–effect relationships in climate studies. However, correlation does not imply causation, which justifies the need to use causal methods. We compare two independent causal methods and show that these are superior to classical correlation analyses. We also find some interesting differences between the two methods.
Amélie Simon, Coline Poppeschi, Sandra Plecha, Guillaume Charria, and Ana Russo
Ocean Sci., 19, 1339–1355, https://doi.org/10.5194/os-19-1339-2023, https://doi.org/10.5194/os-19-1339-2023, 2023
Short summary
Short summary
In the coastal northeastern Atlantic and for three subregions (the English Channel, Bay of Brest and Bay of Biscay) over the period 1982–2022, marine heatwaves are more frequent and longer and extend over larger areas, while the opposite is seen for marine cold spells. This result is obtained with both in situ and satellite datasets, although the satellite dataset underestimates the amplitude of these extremes.
Eneko Martin-Martinez, Amanda Frigola, Eduardo Moreno-Chamarro, Daria Kuznetsova, Saskia Loosveldt-Tomas, Margarida Samsó Cabré, Pierre-Antoine Bretonnière, and Pablo Ortega
Earth Syst. Dynam., 16, 1343–1364, https://doi.org/10.5194/esd-16-1343-2025, https://doi.org/10.5194/esd-16-1343-2025, 2025
Short summary
Short summary
We investigate the impact of model resolution on different processes in the North Atlantic using three different resolutions of the same climate model. The higher resolutions allow for the explicit simulation of smaller-scale processes. We found differences across resolutions in how denser waters are formed and transported southward, impacting the large-scale circulation of the Atlantic Ocean.
Florian Sauerland, Pierre-Vincent Huot, Sylvain Marchi, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, François Klein, François Massonnet, Bianca Mezzina, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Charles Pelletier, Deborah Verfaillie, Lars Zipf, and Nicole van Lipzig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2889, https://doi.org/10.5194/egusphere-2025-2889, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
We simulated the Antarctic climate from 1985 to 2014. Our model is driven using the ERA-5 reanalysis for one simulation and the EC-Earth global climate model for three others. Most of the simulated trends, such as sea ice extent and precipitation over land, have opposite signs for the two drivers, but agree between the three EC-Earth driven simulations. We conclude that these opposing trends must be due to the different drivers, and that the climate over land is less predictable than over sea.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Teresa Carmo-Costa, Roberto Bilbao, Jon Robson, Ana Teles-Machado, and Pablo Ortega
Earth Syst. Dynam., 16, 1001–1028, https://doi.org/10.5194/esd-16-1001-2025, https://doi.org/10.5194/esd-16-1001-2025, 2025
Short summary
Short summary
Climate models can be used to skilfully predict decadal changes in North Atlantic ocean heat content. However, significant regional differences among these models reveal large uncertainties in the influence of external forcings. This study examines eight climate models to understand the differences in their predictive capacity for the North Atlantic, investigating the importance of external forcings and key model characteristics such as ocean stratification and the local atmospheric forcing.
M. Andrea Orihuela-García, Yohan Ruprich-Robert, Vladimir Lapin, Saskia Loosveldt Tomas, Raffaele Bernardello, Margarida Samsó-Cabré, Pierre-Antoine Bretonnière, Miguel Castrillo, and Marti Gali
EGUsphere, https://doi.org/10.22541/essoar.174481514.42345660/v1, https://doi.org/10.22541/essoar.174481514.42345660/v1, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Tiny oceanic algae absorb carbon using sunlight. When they die, some sink as "detritus" that oceanic creatures eat or bacteria decompose. This "biological carbon pump" stores carbon in the deep ocean. Our study found that in warm southern waters, particles decompose quickly but more survive deeper trips. In cold northern waters, creatures eat more particles. Winter water mixing moves carbon down before spring algae bloom. Understanding these processes helps predict future ocean carbon storage.
Mehdi Pasha Karami, Torben Koenigk, Shiyu Wang, René Navarro Labastida, Tim Kruschke, Aude Carreric, Pablo Ortega, Klaus Wyser, Ramon Fuentes Franco, Agatha M. de Boer, Marie Sicard, and Aitor Aldama Campino
EGUsphere, https://doi.org/10.5194/egusphere-2025-2653, https://doi.org/10.5194/egusphere-2025-2653, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
This study uses a high-resolution global climate model to simulate future climate, focusing on the Arctic and North Atlantic. The model captures observed sea ice loss and Atlantic circulation trends, projecting a nearly ice-free Arctic by 2040. It introduces a new method to quantify deep water formation, revealing how different ocean regions contribute to the weakening of overturning circulation in a warming climate.
Pedro José Roldán-Gómez, Pablo Ortega, and Markus G. Donat
EGUsphere, https://doi.org/10.5194/egusphere-2025-1784, https://doi.org/10.5194/egusphere-2025-1784, 2025
Short summary
Short summary
The overshoot scenarios, in which temperatures exceed the targets of the Paris Agreement and are brought back afterwards with a net-negative emission strategy, are known to activate irreversible processes in the climate system. This work analyses in detail the impact of some of these mechanisms, with a particular focus on those associated with ocean circulation and sea ice changes.
Alba Santos-Espeso, María Gonçalves Ageitos, Pablo Ortega, Carlos Pérez García-Pando, Markus G. Donat, Margarida Samso Cabré, and Saskia Loosveldt Tomas
EGUsphere, https://doi.org/10.5194/egusphere-2025-1286, https://doi.org/10.5194/egusphere-2025-1286, 2025
Short summary
Short summary
Short-lived air pollutants (e.g., aerosols and ozone) affect climate differently than greenhouse gases. Using climate models, we found that during 1950–2014, these pollutants caused global cooling, stronger in the Arctic, increased vertical mixing in the Labrador Sea, and southward displacement of the tropical rain belt. These regional impacts oppose those of greenhouse gases. Hence, future reductions in pollution for better air quality must be accompanied by stricter greenhouse gas mitigation.
Rashed Mahmood, Markus G. Donat, Roberto Bilbao, Pablo Ortega, Vladimir Lapin, Etienne Tourigny, and Francisco Doblas-Reyes
EGUsphere, https://doi.org/10.5194/egusphere-2025-1208, https://doi.org/10.5194/egusphere-2025-1208, 2025
Short summary
Short summary
We present 30 year long initialized climate predictions run with the EC-Earth3 model. The predictions show high skill in most regions for near-surface temperatures, with some added skill from initialization for the first decade, but only very limited added skill beyond. The predictions exhibit drift associated with a persistent slowdown in Atlantic Meridonial Overturning Circulation , leaving the initialised predictions in a different climate state than the historical climate simulations.
Roberto Bilbao, Thomas J. Aubry, Matthew Toohey, and Pablo Ortega
EGUsphere, https://doi.org/10.5194/egusphere-2025-609, https://doi.org/10.5194/egusphere-2025-609, 2025
Short summary
Short summary
Large volcanic eruptions are unpredictable and can have significant climatic impacts. If one occurs, operational decadal forecasts will become invalid and must be rerun including the volcanic forcing. By analyzing the climate response in EC-Earth3 retrospective predictions, we show that idealised forcings produced with two simple models could be used in operational decadal forecasts to account for the radiative impacts of the next major volcanic eruption.
Amélie Simon, Pierre Tandeo, Florian Sévellec, and Camille Lique
EGUsphere, https://doi.org/10.5194/egusphere-2025-704, https://doi.org/10.5194/egusphere-2025-704, 2025
Short summary
Short summary
This paper presents a new way to describe the Arctic sea-ice changes based on the shape of the observed seasonal cycles and using machine learning techniques. We show that the East Siberian and Laptev seas have lost their typical permanent sea-ice seasonal cycle while the Kara and Chukchi seas are experiencing a new typical seasonal cycle, corresponding to a partial winter-freezing.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Amanda Frigola, Eneko Martin-Martinez, Eduardo Moreno-Chamarro, Margarida Samsó, Saskia Loosvelt-Tomas, Pierre-Antoine Bretonnière, Daria Kuznetsova, Xia Lin, and Pablo Ortega
EGUsphere, https://doi.org/10.5194/egusphere-2025-547, https://doi.org/10.5194/egusphere-2025-547, 2025
Short summary
Short summary
We examine the performance of coupled climate models at unprecedented resolutions, capable of resolving ocean eddies in extensive areas of the North Atlantic. Eddy-resolving models present more realistic density profiles and stronger deep water convection in the subpolar North Atlantic. The strength and structure of the Gulf Stream, North Atlantic Current, and subpolar gyre are also improved at high resolution, and so is the Atlantic Meridional Overturning Circulation.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Raffaele Bernardello, Valentina Sicardi, Vladimir Lapin, Pablo Ortega, Yohan Ruprich-Robert, Etienne Tourigny, and Eric Ferrer
Earth Syst. Dynam., 15, 1255–1275, https://doi.org/10.5194/esd-15-1255-2024, https://doi.org/10.5194/esd-15-1255-2024, 2024
Short summary
Short summary
The ocean mitigates climate change by absorbing about 25 % of the carbon that is emitted to the atmosphere. However, ocean CO2 uptake is not constant in time, and improving our understanding of the mechanisms regulating this variability can potentially lead to a better predictive capability of its future behavior. In this study, we compare two ocean modeling practices that are used to reconstruct the historical ocean carbon uptake, demonstrating the abilities of one over the other.
Roberto Bilbao, Pablo Ortega, Didier Swingedouw, Leon Hermanson, Panos Athanasiadis, Rosie Eade, Marion Devilliers, Francisco Doblas-Reyes, Nick Dunstone, An-Chi Ho, William Merryfield, Juliette Mignot, Dario Nicolì, Margarida Samsó, Reinel Sospedra-Alfonso, Xian Wu, and Stephen Yeager
Earth Syst. Dynam., 15, 501–525, https://doi.org/10.5194/esd-15-501-2024, https://doi.org/10.5194/esd-15-501-2024, 2024
Short summary
Short summary
In recent decades three major volcanic eruptions have occurred: Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991. In this article we explore the climatic impacts of these volcanic eruptions with a purposefully designed set of simulations from six CMIP6 decadal prediction systems. We analyse the radiative and dynamical responses and show that including the volcanic forcing in these predictions is important to reproduce the observed surface temperature variations.
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024, https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
Short summary
Identifying causes of specific processes is crucial in order to better understand our climate system. Traditionally, correlation analyses have been used to identify cause–effect relationships in climate studies. However, correlation does not imply causation, which justifies the need to use causal methods. We compare two independent causal methods and show that these are superior to classical correlation analyses. We also find some interesting differences between the two methods.
Amélie Simon, Coline Poppeschi, Sandra Plecha, Guillaume Charria, and Ana Russo
Ocean Sci., 19, 1339–1355, https://doi.org/10.5194/os-19-1339-2023, https://doi.org/10.5194/os-19-1339-2023, 2023
Short summary
Short summary
In the coastal northeastern Atlantic and for three subregions (the English Channel, Bay of Brest and Bay of Biscay) over the period 1982–2022, marine heatwaves are more frequent and longer and extend over larger areas, while the opposite is seen for marine cold spells. This result is obtained with both in situ and satellite datasets, although the satellite dataset underestimates the amplitude of these extremes.
Guillaume Gastineau, Claude Frankignoul, Yongqi Gao, Yu-Chiao Liang, Young-Oh Kwon, Annalisa Cherchi, Rohit Ghosh, Elisa Manzini, Daniela Matei, Jennifer Mecking, Lingling Suo, Tian Tian, Shuting Yang, and Ying Zhang
The Cryosphere, 17, 2157–2184, https://doi.org/10.5194/tc-17-2157-2023, https://doi.org/10.5194/tc-17-2157-2023, 2023
Short summary
Short summary
Snow cover variability is important for many human activities. This study aims to understand the main drivers of snow cover in observations and models in order to better understand it and guide the improvement of climate models and forecasting systems. Analyses reveal a dominant role for sea surface temperature in the Pacific. Winter snow cover is also found to have important two-way interactions with the troposphere and stratosphere. No robust influence of the sea ice concentration is found.
David Docquier, Stéphane Vannitsem, Alessio Bellucci, and Claude Frankignoul
EGUsphere, https://doi.org/10.5194/egusphere-2022-1340, https://doi.org/10.5194/egusphere-2022-1340, 2022
Preprint withdrawn
Short summary
Short summary
Understanding whether variations in ocean heat content are driven by air-sea heat fluxes or by ocean dynamics is of crucial importance to enhance climate projections. We use a relatively novel causal method to quantify interactions between ocean heat budget terms based on climate models. We find that low-resolution models overestimate the influence of ocean dynamics in the upper ocean, and that changes in ocean heat content are dominated by air-sea fluxes at high resolution.
Rashed Mahmood, Markus G. Donat, Pablo Ortega, Francisco J. Doblas-Reyes, Carlos Delgado-Torres, Margarida Samsó, and Pierre-Antoine Bretonnière
Earth Syst. Dynam., 13, 1437–1450, https://doi.org/10.5194/esd-13-1437-2022, https://doi.org/10.5194/esd-13-1437-2022, 2022
Short summary
Short summary
Near-term climate change projections are strongly affected by the uncertainty from internal climate variability. Here we present a novel approach to reduce such uncertainty by constraining decadal-scale variability in the projections using observations. The constrained ensembles show significant added value over the unconstrained ensemble in predicting global climate 2 decades ahead. We also show the applicability of regional constraints for attributing predictability to certain ocean regions.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
Short summary
Deep Labrador Sea densities are receiving increasing attention because of their link to many of the processes that govern decadal climate oscillations in the North Atlantic and their potential use as a precursor of those changes. This article explores those links and how they are represented in global climate models, documenting the main differences across models. Models are finally compared with observational products to identify the ones that reproduce the links more realistically.
Roberto Bilbao, Simon Wild, Pablo Ortega, Juan Acosta-Navarro, Thomas Arsouze, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Rubén Cruz-García, Ivana Cvijanovic, Francisco Javier Doblas-Reyes, Markus Donat, Emanuel Dutra, Pablo Echevarría, An-Chi Ho, Saskia Loosveldt-Tomas, Eduardo Moreno-Chamarro, Núria Pérez-Zanon, Arthur Ramos, Yohan Ruprich-Robert, Valentina Sicardi, Etienne Tourigny, and Javier Vegas-Regidor
Earth Syst. Dynam., 12, 173–196, https://doi.org/10.5194/esd-12-173-2021, https://doi.org/10.5194/esd-12-173-2021, 2021
Short summary
Short summary
This paper presents and evaluates a set of retrospective decadal predictions with the EC-Earth3 climate model. These experiments successfully predict past changes in surface air temperature but show poor predictive capacity in the subpolar North Atlantic, a well-known source region of decadal climate variability. The poor predictive capacity is linked to an initial shock affecting the Atlantic Ocean circulation, ultimately due to a suboptimal representation of the Labrador Sea density.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Cited articles
Acosta Navarro, J. c., García-Serrano, J., Lapin, V., and Ortega, P.:
Added value of assimilating springtime Arctic sea ice concentration in
summer-fall climate predictions, Environ. Res. Lett., 17, 064008, https://doi.org/10.1088/1748-9326/ac6c9b, 2022.
Andrews, D. G., Leovy, C. B., and Holton, J. R.: Middle atmosphere dynamics
Vol. 40, New York, Academic Press, https://www.elsevier.com/books/middle-atmosphere-dynamics/andrews/978-0-12-058575-5 (last access: 18 March 2022), 1987.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Baldwin, M. P. and Dunkerton, T. J.: Propagation of the Arctic Oscillation
from the stratosphere to the troposphere, J. Geophys. Res.-Atmos., 104, 30937–30946, 1999.
Blackport, R. and Kushner, P. J.: The transient and equilibrium climate
response to rapid summertime sea-ice loss in CCSM4, J. Climate,
29, 401–417, 2016.
Blackport, R. and Kushner, P. J.: Isolating the atmospheric circulation
response to Arctic sea ice loss in the coupled climate system, J.
Climate, 30, 2163–2185, 2017.
Blackport, R. and Screen, J. A.: Influence of Arctic sea-ice loss in
autumn compared to that in winter on the atmospheric circulation,
Geophys. Res. Lett., 46, 2213–2221, 2019.
Blackport, R. and Screen, J. A.: Weakened evidence for mid-latitude
impacts of Arctic warming, Nat. Clim. Change, 10, 1065–1066, 2020.
Bonnet, R., Boucher, O., Deshayes, J., Gastineau, G., Hourdin, F., Mignot, J., Servonnat, J., and Swingedouw, D.: Presentation and evaluation of the IPSL-CM6A-LR ensemble of extended historical simulations, J. Adv. Model. Earth Sy., 13, e2021MS002565, https://doi.org/10.1029/2021MS002565, 2021.
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., and Vuichard, N.: Presentation and evaluation of the
IPSL-CM6A-LR climate model, J. Adv. Model. Earth Sy.,
12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020.
Cassano, E. N., Cassano, J. J., Higgins, M. E., and Serreze, M. C.:
Atmospheric impacts of an Arctic sea-ice minimum as seen in the Community
Atmosphere Model, Int. J. Climatol., 34, 766–779,
2014.
Cheruy, F., Ducharne, A., Hourdin, F., Musat, I., Vignon, É., Gastineau,
G., and Zhao, Y.: Improved near-surface continental climate in
IPSL-CM6A-LR by combined evolutions of atmospheric and land surface physics,
J. Adv. Model. Earth Sy., 12, e2019MS002005, https://doi.org/10.1029/2019MS002005, 2020.
Coburn, J. and Pryor, S. C.: Differential Credibility of Climate Modes in
CMIP6, J. Climate, 34, 8145–8164, 2021.
Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D.,
Coumou, D., and Jones, J.: Recent Arctic amplification and extreme
mid-latitude weather, Nat. Geosci., 7, 627, https://doi.org/10.1038/ngeo2234, 2014.
Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J.,
Ballinger, T. J., Bhatt, U. S., Chen, H. W., Coumou, D., Feldstein, S., Gu,
H., Handorf, D., Henderson, G., Ionita, M., Kretschmer, M., Laliberte, F.,
Lee, S., Linderholm, H. W., and Yoon, J.: Divergent consensus on Arctic
amplification influence on midlatitude severe winter weather, Nat. Clim.
Change, 10, 20–29, https://doi.org/10.1038/s41558-019-0662-y, 2020.
Cvijanovic, I., Santer, B. D., Bonfils, C., Lucas, D. D., Chiang, J. C.,
and Zimmerman, S.: Future loss of Arctic sea-ice cover could drive a
substantial decrease in California's rainfall, Nat. Commun., 8,
1–10, 2017.
Czaja, A. and Frankignoul, C.: Influence of the North Atlantic SST on the
atmospheric circulation. Geophys. Res. Lett., 26, 2969–2972, https://doi.org/10.1029/1999GL900613, 1999.
Czaja, A. and Frankignoul, C.: Observed impact of Atlantic SST anomalies
on the North Atlantic Oscillation, J. Climate, 15, 606–623, 2002.
Dai, A. and Song, M.: Little influence of Arctic amplification on
mid-latitude climate, Nat. Clim. Change, 10, 231–237, https://doi.org/10.1038/s41558-020-0694-3,
2020.
Deser, C., Tomas, R. A., and Sun, L.: The role of ocean–atmosphere
coupling in the zonal-mean atmospheric response to Arctic sea-ice loss,
J. Climate, 28, 2168–2186, 2015.
Domeisen, D. I., Garfinkel, C. I., and Butler, A. H.: The teleconnection of
El Niño Southern Oscillation to the stratosphere, Rev. Geophys., 57, 5–47, 2019.
England, M., Polvani, L., Sun, L., and Deser, C.,: Tropical climate responses
to projected Arctic and Antarctic sea-ice loss, Nat. Geosci., 13,
275–281, https://doi.org/10.1038/s41561-020-0546-9, 2020.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Garcia-Serrano, J., Frankignoul, C., Gastineau, G. and de la Camara, A,: On
the predictability of the winter Euro-Atlantic climate: lagged influence of
autumn Arctic sea-ice, J. Climate, 28, 5195–5216,
doi.org/10.1175/JCLI-D-14-00472.1, 2015.
Garfinkel, C. I., Hartmann, D. L., and Sassi, F.: Tropospheric precursors
of anomalous Northern Hemisphere stratospheric polar vortices, J. Climate, 23,
3282–3299, 2010.
Gastineau, G., Garcia-Serrano, J., and Frankignoul, C.: The influence of
autumnal Eurasian snow cover on climate and its links with Arctic sea-ice
cover, J. Climate, 30, 7599–7619, https://doi.org/10.1175/JCLI-D-16-0623.1, 2017.
Hay, S., Kushner, P., Blackport, R., McCusker, K., Oudar, T., Sun, L.,
England, M., Deser C., Screen J., and Polvani, L.: Separating the influences
of low-latitude warming and sea ice loss on Northern Hemisphere climate
change, J. Climate, 35, 2327–2349, https://doi.org/10.1175/JCLI-D-21-0180.1, 2022.
Hourdin, F., Rio, C., Grandpeix, J.-Y., Madeleine, J.-B., Cheruy, F., Rochetin, N., Jam, A., Musat, I., Idelkadi, A., Fairhead, L., Foujols, M.-A., Mellul, L., Traore, A. T., Dufresne, J.-L., Boucher, O., Lefebvre, M.-P., Millour, E., Vignon, E., Jouhaud, J., Diallo, B., Lott, F., Gastineau, G., Caubel, A., Meurdesoif, Y., and Ghattas, J.: LMDZ6A: The atmospheric component of the
IPSL climate model with improved and better tuned physics, J.
Adv. Model. Earth Sy., 12, e2019MS001892, https://doi.org/10.1029/2019MS001892, 2020.
Hoshi, K., Ukita, J., Honda, M., Nakamura, T., Yamazaki, K., Miyoshi, Y.,
and Jaiser, R.: Weak Stratospheric Polar Vortex Events Modulated by the
Arctic Sea-Ice Loss, J. Geophys. Res.-Atmos., 124,
858–869,
https://doi.org/10.1029/2018JD029222, 2019.
Hurwitz, M. M., Newman, P. A., and Garfinkel, C. I.: On the influence of
North Pacific sea surface temperature on the Arctic winter climate, J.
Geophys. Res., 117, D19110, https://doi.org/10.1029/2012JD017819, 2012.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I.,
Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University
Press, in press, 2021.
Jiang, W., Gastineau, G., and Codron, F.: Multicentennial variability
driven by salinity exchanges between the Atlantic and the arctic ocean in a
coupled climate model, J. Adv. Model. Earth Sy., 13, e2020MS002366,
https://doi.org/10.1029/2020MS002366, 2021.
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N., Baldwin, M. P., and Gray, L. J.: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather, Nat. Geosci., 8, 433–440, https://doi.org/10.1038/ngeo2424, 2015.
King, M. P., Hell, M., and Keenlyside, N.: Investigation of the atmospheric
mechanisms related to the autumn sea-ice and winter circulation link in the
Northern Hemisphere, Clim. Dynam., 46, 1185–1195, 2016.
Kim, B. M., Son, S. W., Min, S. K., Jeong, J. H., Kim, S. J., Zhang, X.,
and Yoon, J. H.: Weakening of the stratospheric polar vortex by Arctic
sea-ice loss, Nat. Commun., 5, 1–8, 2014.
Kren, A. C., Marsh, D. R., Smith, A. K., and Pilewskie, P.: Wintertime
Northern Hemisphere Response in the Stratosphere to the Pacific Decadal
Oscillation Using the Whole Atmosphere Community Climate Model, J.
Climate, 29, 1031–1049, 2016.
Kretschmer, M., Coumou, D., Donges, J. F., and Runge, J.: Using causal
effect networks to analyze different Arctic drivers of midlatitude winter
circulation, J. Climate, 29, 4069–4081, 2016.
Labe, Z., Peings, Y., and Magnusdottir, G.: The effect of QBO phase on the
atmospheric response to projected Arctic sea-ice loss in early winter,
Geophys. Res. Lett., 46, 7663–7671, 2019.
Lang, A., Yang, S., and Kaas, E.: Sea-ice thickness and recent Arctic
warming, Geophys. Res. Lett., 44, 409–418, https://doi.org/10.1002/2016GL071274, 2017.
Levine, X. J., Cvijanovic, I., Ortega, P., Donat, M. G., and Tourigny, E.:
Atmospheric feedback explains disparate climate response to regional Arctic
sea-ice loss, npj Clim. Atmos. Sci., 4, 1–8, 2021.
Li, F., Orsolini, Y. J., Wang, H., Gao, Y., and He, S.: Atlantic
multidecadal oscillation modulates the impacts of Arctic sea-ice decline,
Geophys. Res. Lett., 45, 2497–2506, 2018.
Liang, Y. C., Frankignoul, C., Kwon, Y. O., Gastineau, G., Manzini, E.,
Danabasoglu, G., and Zhang, Y.: Impacts of Arctic sea-ice on Cold
Season Atmospheric Variability and Trends Estimated from Observations and a
Multimodel Large Ensemble, J. Climate, 34, 8419–8443, 2021.
Lique, C., Johnson, H. L., and Plancherel, Y.: Emergence of deep convection
in the Arctic Ocean under a warming climate, Clim. Dynam., 50,
3833–3847, 2018.
Liu, W. and Fedorov, A. V.: Global impacts of Arctic sea-ice loss mediated
by the Atlantic meridional overturning circulation, Geophys. Res.
Lett., 46, 944–952, 2019.
Madec, G., Bourdallé-Badie, R., Bouttier, P. A., Bricaud, C.,
Bruciaferri, D., Calvert, D., and Vancoppenolle, M.: NEMO ocean engine, Zenodo [report], https://doi.org/10.5281/zenodo.3248739,
2017.
Maher, N., Matei, D., Milinski, S., and
Marotzke, J.: ENSO change in
climate projections: Forced response
or internal variability?, Geophys.
Res. Lett., 45, 11390–11398,
https://doi.org/10.1029/2018GL079764, 2018.
Mantua, N. J. and Hare, S. R.: The Pacific decadal oscillation, J. Oceanogr., 58,
35–44, https://doi.org/10.1023/A:1015820616384, 2002.
Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., and Roeckner, E.:
The influence of sea surface temperatures on the northern winter
stratosphere: Ensemble simulations with the MAECHAM5 model, J.
Climate, 19, 3863–3881, 2006.
McCusker, K. E., Kushner, P. J., Fyfe, J. C., Sigmond, M., Kharin, V. V.,
and Bitz, C. M.: Remarkable separability of circulation response to Arctic
sea ice loss and greenhouse gas forcing, Geophys. Res. Lett., 44, 7955–7964, 2017.
Nakamura, H. and Honda, M.: Interannual seesaw between the Aleutian and
Icelandic lows Part III: Its influence upon the stratospheric variability,
J. Meteorol. Soc. Jpn. Ser. II, 80, 1051–1067,
2002.
Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di
Lorenzo, E., and Smith, C. A.: The Pacific decadal oscillation,
revisited, J. Climate, 29, 4399–4427, 2016.
Ogawa, F., Keenlyside, N., Gao, Y., Koenigk, T., Yang, S., Suo, L., Wang, T., Gastineau, G., Nakamura, T., Cheung, H. N., Omrani, N. E., Ukita, J., and Semenov, V.: Evaluating impacts of recent sea-ice loss
on the northern hemisphere winter climate change, Geophys. Res. Lett., 45,
3255–3263, https://doi.org/10.1002/2017GL076502, 2016.
Osborne, J. M., Screen, J. A., and Collins, M.: Ocean–atmosphere state
dependence of the atmospheric response to Arctic sea-ice loss, J.
Climate, 30, 1537–1552, 2017.
Oudar, T., Sanchez-Gomez, E., Chauvin, F., Cattiaux, J., Terray, L., and
Cassou, C.: Respective roles of direct GHG radiative forcing and induced
Arctic sea ice loss on the Northern Hemisphere atmospheric circulation,
Clim. Dynam., 49, 3693–3713, 2017.
Park, H. J. and Ahn, J. B.: Combined effect of the Arctic Oscillation and the Western Pacific pattern on East Asia winter temperature, Clim. Dynam., 46, 3205–3221, https://doi.org/10.1007/s00382-015-2763-2, 2016.
Peings, Y.: Ural blocking as a
driver of early‐winter stratospheric
warmings, Geophys. Res. Lett.,
46, 5460–5468, https://doi.org/10.1029/2019GL082097, 2019.
Peings, Y. and Magnusdottir, G.,: Response of the wintertime Northern
Hemispheric atmospheric circulation to current and projected Arctic sea-ice
decline: a numerical study with CAM5, J. Climate, 27, 244–264,
doi.org/10.1175/JCLI-D-13-00272.1, 2014.
Peings, Y., Labe, Z. M., and Magnusdottir, G.: Are 100 ensemble members
enough to capture the remote atmospheric response to + 2 ∘C
Arctic sea-ice loss?, J. Climate, 34, 3751–3769, 2021.
Polyak, I.: Computational Statistics in Climatology.
Oxford University Press, 358 pp., 1996.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global Analyses of SST, Sea Ice and Night Marine Air Temperature since the Late Nineteenth Century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., and Vivier, F.: The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities, Geosci. Model Dev., 8, 2991–3005, https://doi.org/10.5194/gmd-8-2991-2015, 2015.
Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T.,
Dunstone, N., and Williams, A.: Skillful long-range prediction of
European and North American winters, Geophys. Res. Lett., 41,
2514–2519, 2014.
Scaife, A. A. and Smith, D.: A signal-to-noise paradox in climate science.
npj Clim. Atmos. Sci., 1, 1–8, 2018.
Screen, J. A.: Simulated atmospheric response to regional and pan-Arctic
sea-ice loss, J. Climate, 30, 3945–3962, https://doi.org/10.1175/JCLI-D-16-0197.1,
2017.
Screen, J. A. and Francis, J. A.: Contribution of sea-ice loss to Arctic
amplification is regulated by Pacific Ocean decadal variability, Nat.
Clim. Change, 6, 856–860, 2016.
Screen, J. A., Deser, C., Simmonds, I., and Tomas, R.: Atmospheric impacts
of Arctic sea-ice loss, 1979–2009: Separating forced change from
atmospheric internal variability, Clim. Dynam., 43, 333–344, https://doi.org/10.1007/s00382-013-1830-9, 2014.
Screen, J. A., Deser, C., Smith, D. M., Zhang, X., Blackport, R., Kushner,
P. J., and Sun, L.: Consistency and discrepancy in the atmospheric
response to Arctic sea-ice loss across climate models, Nat. Geosci.,
11, 155–163, https://doi.org/10.1038/s41561-018-0059-y, 2018.
Seidenglanz, A., Athanasiadis, P., Ruggieri, P., Cvijanovic, I., Li, C.,
and Gualdi, S.: Pacific circulation response to eastern Arctic sea-ice
reduction in seasonal forecast simulations, Clim. Dynam., 57, 2687–2700, https://doi.org/10.1007/s00382-021-05830-9, 2021.
Sévellec, F., Fedorov, A. V., and Liu, W.: Arctic sea-ice decline
weakens the Atlantic meridional overturning circulation, Nat. Clim.
Change, 7, 604, https://doi.org/10.1038/nclimate3353, 2017.
Sheffield, J., Camargo, S. J., Fu, R., Hu, Q., Jiang, X., Johnson, N.,
Karnauskas, K. B., Kim, S. T., Kinter, J., Kumar, S., Langenbrunner, B.,
Maloney, E., Mariotti, A., Meyerson, J. E., Neelin, J. D., Nigam, S., Pan,
Z., Ruiz-Barradas, A., Seager, R., Serra, Y. L., Sun, D., Wang, C., Xie, S.,
Yu, J., Zhang, T., and Zhao, M.: North American Climate in CMIP5
Experiments. Part II: Evaluation of Historical Simulations of Intraseasonal
to Decadal Variability, J. Climate, 26, 9247–9290, 2013.
SIMIP Community: Arctic sea-ice in CMIP6, Geophys. Res. Lett., 47,
e2019GL086749, https://doi.org/10.1029/2019GL086749, 2020.
Simon, A., Frankignoul, C., Gastineau, G., and Kwon, Y. O.: An
Observational Estimate of the Direct Response of the Cold-Season Atmospheric
Circulation to the Arctic sea-ice Loss, J. Climate, 33,
3863–3882, 2020.
Simon, A., Gastineau, G., Frankignoul, C., Rousset, C., and Codron, F.:
Transient climate response to Arctic sea-ice loss with two ice-constraining
methods, J. Climate, 34, 3295–3310, https://doi.org/10.1175/JCLI-D-20-0288.1, 2021.
Smith, K. L., Fletcher, C. G., and Kushner, P. J.: The role of linear interference in the annular mode response to extratropical surface forcing, J. Climate, 23, 6036–6050, https://doi.org/10.1175/2010JCLI3606.1, 2010.
Smith, D. M., Screen, J. A., Deser, C., Cohen, J., Fyfe, J. C., García-Serrano, J., Jung, T., Kattsov, V., Matei, D., Msadek, R., Peings, Y., Sigmond, M., Ukita, J., Yoon, J.-H., and Zhang, X.: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification, Geosci. Model Dev., 12, 1139–1164, https://doi.org/10.5194/gmd-12-1139-2019, 2019.
Smith, D. M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., Bilbao, R., Borchert, L. F., Caron, L.-P., Counillon, F., Danabasoglu, G., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Estella-Perez, V., Flavoni, S., Hermanson, L., Keenlyside, N., Kharin, V., Kimoto, M., Merryfield, W. J., Mignot, J., Mochizuki, T., Modali, K., Monerie, P.-A., Müller, W. A., Nicolí, D., Ortega, P., Pankatz, K., Pohlmann, H., Robson, J., Ruggieri, P., Sospedra-Alfonso, R., Swingedouw, D., Wang, Y., Wild, S., Yeager, S., Yang, X., and Zhang, L.: North Atlantic climate far more
predictable than models imply, Nature, 583, 796–800, https://doi.org/10.1038/s41586-020-2525-0, 2020.
Smith, D. M., Eade, R., Andrews, M. B., Ayres, H., Clark, A., Chripko, S.,
and Walsh, A.: Robust but weak winter atmospheric circulation response
to future Arctic sea-ice loss, Nat. Commun., 13, 1–15, 2022.
Sun, L., Deser C., and Tomas, R. A.: Mechanisms of stratospheric and
tropospheric circulation response to projected Arctic sea-ice loss, J.
Climate, 28, 7824–7845, https://doi.org/10.1175/JCLI-D-15-0169.1, 2015.
Sun, L., Alexander, M., and Deser, C.: Evolution of the Global Coupled
Climate Response to Arctic Sea Ice Loss during 1990–2090 and Its
Contribution to Climate Change, J. Climate, 31, 7823–7843, 2018.
Trenberth, K. E. and Hurrell, J. W.: Decadal atmosphere-ocean variations
in the Pacific, Clim. Dynam., 9, 303–319, 1994.
Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N. C., and
Ropelewski, C.: Progress during TOGA in understanding and modeling global
teleconnections associated with tropical sea surface temperatures, J. Geophys. Res.-Oceans,
103, 14291–14324, 1998.
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and
Maqueda, M. A. M.: Simulating the mass balance and salinity of Arctic and
Antarctic sea-ice. 1. Model description and validation, Ocean Model.,
27, 33–53, 2009.
Von Storch, H. and Zwiers, F. W.: Statistical analysis in climate
research, Cambridge university press, 2002.
Wilks, D. S.: The Stippling Shows Statistically Significant Grid Points: How Research Results are Routinely Overstated and Overinterpreted, and What to Do about It, B. Am. Meteorol. Soc., 97, 2263–2273, https://doi.org/10.1175/BAMS-D-15-00267.1, 2016.
Woo, S. H., Sung, M. K., Son, S. W., and Kug, J. S.: Connection between
weak stratospheric vortex events and the Pacific decadal oscillation,
Clim. Dynam., 45, 3481–3492, 2015.
Zhang, J., Tian, W., Chipperfield, M. P., Xie, F., and Huang, J.:
Persistent shift of the Arctic polar vortex towards the Eurasian continent
in recent decades, Nat. Clim. Change, 6, 1094–1099, 2016.
Zhang, W. and Kirtman, B.: Understanding the Signal-to-Noise Paradox with
a Simple Markov Model, Geophys. Res. Lett, 46, 13308–13317, https://doi.org/10.1029/2019GL085159,
2019.
Short summary
The influence of the Arctic sea-ice loss on atmospheric circulation in midlatitudes depends on persistent sea surface temperatures in the North Pacific. In winter, Arctic sea-ice loss and a warm North Pacific Ocean both induce depressions over the North Pacific and North Atlantic, an anticyclone over Greenland, and a stratospheric anticyclone over the Arctic. However, the effects are not additive as the interaction between both signals is slightly destructive.
The influence of the Arctic sea-ice loss on atmospheric circulation in midlatitudes depends on...