Articles | Volume 3, issue 3
https://doi.org/10.5194/wcd-3-937-2022
https://doi.org/10.5194/wcd-3-937-2022
Research article
 | 
16 Aug 2022
Research article |  | 16 Aug 2022

Jet stream variability in a polar warming scenario – a laboratory perspective

Costanza Rodda, Uwe Harlander, and Miklos Vincze

Related authors

Anatomy of a Flash Flood in a Hyperarid Environment: From Atmospheric Masses to Sediment Dispersal in the Sea
Akos Kalman, Timor Katz, Miklos Vincze, Jake Longenecker, Alysse Mathalon, Paul Hill, and Beverly Goodman-Tchernov
Nat. Hazards Earth Syst. Sci., 25, 3201–3219, https://doi.org/10.5194/nhess-25-3201-2025,https://doi.org/10.5194/nhess-25-3201-2025, 2025
Short summary
Global coarse-grained mesoscale eddy statistics based on integrated kinetic energy and enstrophy correlations
Imre M. Jánosi, Holger Kantz, Jason A. C. Gallas, and Miklós Vincze
Ocean Sci., 18, 1361–1375, https://doi.org/10.5194/os-18-1361-2022,https://doi.org/10.5194/os-18-1361-2022, 2022
Short summary
Laboratory experiments on the influence of stratification and a bottom sill on seiche damping
Karim Medjdoub, Imre M. Jánosi, and Miklós Vincze
Ocean Sci., 17, 997–1009, https://doi.org/10.5194/os-17-997-2021,https://doi.org/10.5194/os-17-997-2021, 2021
Short summary

Cited articles

Belmonte, A. and Libchaber, A.: Thermal signature of plumes in turbulent convection: the skewness of the derivative, Phys. Rev. E, 53, 4893–4898, 1996. a, b
Benzi, R., Salzmann, B., and Wiin-Nielsen, A. C.: Anomalous Atmospheric Flows and Blocking, Academic Press, OSTI 6442922, 1986. a
Blackport, R. and Screen, J. A.: Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves, Science, 6, eaay2880, https://doi.org/10.1126/sciadv.aay2880, 2020. a
Dai, A. and Deng, J.: Arctic amplification weakens the variability of daily temperatures over northern middle-high latitudes, J. Climate, 34, 2591–2609, 2021. a, b, c
Dai, A. and Song, M.: Little influence of Arctic amplification on mid-latitude climate, Nat. Clim. Change, 10, 231–237, 2020. a
Download
Short summary
We report on a set of laboratory experiments that reproduce a global warming scenario. The experiments show that a decreased temperature difference between the poles and subtropics slows down the eastward propagation of the mid-latitude weather patterns. Another consequence is that the temperature variations diminish, and hence extreme temperature events might become milder in a global warming scenario. Our experiments also show that the frequency of such events increases.
Share