Articles | Volume 3, issue 3
https://doi.org/10.5194/wcd-3-937-2022
https://doi.org/10.5194/wcd-3-937-2022
Research article
 | 
16 Aug 2022
Research article |  | 16 Aug 2022

Jet stream variability in a polar warming scenario – a laboratory perspective

Costanza Rodda, Uwe Harlander, and Miklos Vincze

Related authors

Anatomy of a Flash Flood in a Hyperarid Environment: From Atmospheric Masses to Sediment Dispersal in the Sea
Akos Kalman, Timor Katz, Miklos Vincze, Jake Longenecker, Alysse Mathalon, Paul Hill, and Beverly Goodman-Tchernov
EGUsphere, https://doi.org/10.5194/egusphere-2024-3354,https://doi.org/10.5194/egusphere-2024-3354, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Global coarse-grained mesoscale eddy statistics based on integrated kinetic energy and enstrophy correlations
Imre M. Jánosi, Holger Kantz, Jason A. C. Gallas, and Miklós Vincze
Ocean Sci., 18, 1361–1375, https://doi.org/10.5194/os-18-1361-2022,https://doi.org/10.5194/os-18-1361-2022, 2022
Short summary
Laboratory experiments on the influence of stratification and a bottom sill on seiche damping
Karim Medjdoub, Imre M. Jánosi, and Miklós Vincze
Ocean Sci., 17, 997–1009, https://doi.org/10.5194/os-17-997-2021,https://doi.org/10.5194/os-17-997-2021, 2021
Short summary
Single super-vortex as a proxy for ocean surface flow fields
Imre M. Jánosi, Miklós Vincze, Gábor Tóth, and Jason A. C. Gallas
Ocean Sci., 15, 941–949, https://doi.org/10.5194/os-15-941-2019,https://doi.org/10.5194/os-15-941-2019, 2019
Short summary
An experimental study of regime transitions in a differentially heated baroclinic annulus with flat and sloping bottom topographies
M. Vincze, U. Harlander, Th. von Larcher, and C. Egbers
Nonlin. Processes Geophys., 21, 237–250, https://doi.org/10.5194/npg-21-237-2014,https://doi.org/10.5194/npg-21-237-2014, 2014

Related subject area

Dynamical processes in polar regions, incl. polar–midlatitude interactions
Concurrent Bering Sea and Labrador Sea ice melt extremes in March 2023: a confluence of meteorological events aligned with stratosphere–troposphere interactions
Thomas J. Ballinger, Kent Moore, Qinghua Ding, Amy H. Butler, James E. Overland, Richard L. Thoman, Ian Baxter, Zhe Li, and Edward Hanna
Weather Clim. Dynam., 5, 1473–1488, https://doi.org/10.5194/wcd-5-1473-2024,https://doi.org/10.5194/wcd-5-1473-2024, 2024
Short summary
Arctic climate response to European radiative forcing: a deep learning study on circulation pattern changes
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024,https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Using variable-resolution grids to model precipitation from atmospheric rivers around the Greenland ice sheet
Annelise Waling, Adam Herrington, Katharine Duderstadt, Jack Dibb, and Elizabeth Burakowski
Weather Clim. Dynam., 5, 1117–1135, https://doi.org/10.5194/wcd-5-1117-2024,https://doi.org/10.5194/wcd-5-1117-2024, 2024
Short summary
Circulation responses to surface heating and implications for polar amplification
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, Etienne Dunn-Sigouin, and Mingfang Ting
Weather Clim. Dynam., 5, 985–996, https://doi.org/10.5194/wcd-5-985-2024,https://doi.org/10.5194/wcd-5-985-2024, 2024
Short summary
The study of the impact of polar warming on global atmospheric circulation and mid-latitude baroclinic waves using a laboratory analog
Andrei Sukhanovskii, Andrei Gavrilov, Elena Popova, and Andrei Vasiliev
Weather Clim. Dynam., 5, 863–880, https://doi.org/10.5194/wcd-5-863-2024,https://doi.org/10.5194/wcd-5-863-2024, 2024
Short summary

Cited articles

Belmonte, A. and Libchaber, A.: Thermal signature of plumes in turbulent convection: the skewness of the derivative, Phys. Rev. E, 53, 4893–4898, 1996. a, b
Benzi, R., Salzmann, B., and Wiin-Nielsen, A. C.: Anomalous Atmospheric Flows and Blocking, Academic Press, OSTI 6442922, 1986. a
Blackport, R. and Screen, J. A.: Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves, Science, 6, eaay2880, https://doi.org/10.1126/sciadv.aay2880, 2020. a
Dai, A. and Deng, J.: Arctic amplification weakens the variability of daily temperatures over northern middle-high latitudes, J. Climate, 34, 2591–2609, 2021. a, b, c
Dai, A. and Song, M.: Little influence of Arctic amplification on mid-latitude climate, Nat. Clim. Change, 10, 231–237, 2020. a
Download
Short summary
We report on a set of laboratory experiments that reproduce a global warming scenario. The experiments show that a decreased temperature difference between the poles and subtropics slows down the eastward propagation of the mid-latitude weather patterns. Another consequence is that the temperature variations diminish, and hence extreme temperature events might become milder in a global warming scenario. Our experiments also show that the frequency of such events increases.
Share