Articles | Volume 4, issue 4
https://doi.org/10.5194/wcd-4-981-2023
https://doi.org/10.5194/wcd-4-981-2023
Research article
 | 
20 Nov 2023
Research article |  | 20 Nov 2023

Identification of high-wind features within extratropical cyclones using a probabilistic random forest – Part 2: Climatology over Europe

Lea Eisenstein, Benedikt Schulz, Joaquim G. Pinto, and Peter Knippertz

Data sets

Identification of high-wind features within extratropical cyclones using a probabilistic random forest - Part 2: Climatology - Dataset L. Eisenstein, B. Schulz, J. G. Pinto, and P. Knippertz https://doi.org/10.5281/zenodo.8370478

Model code and software

RAMEFI (RAndom-forest based MEsoscale wind Feature Identification) L. Eisenstein, B. Schulz, G. A. Qadir, J. G. Pinto, and P. Knippertz https://doi.org/10.5281/zenodo.6541303

RAMEFI L. Eisenstein, B. Schulz, G. A. Qadir, J. G. Pinto, and P. Knippertz https://gitlab.physik.uni-muenchen.de/Lea.Eisenstein/ramefi

Video supplement

Identification of high-wind features within extratropical cyclones using a probabilistic random forest - Part 2: Climatology - Video Supplement L. Eisenstein, B. Schulz, J. G. Pinto, and P. Knippertz https://doi.org/10.5281/zenodo.7729357

Download
Short summary
Mesoscale high-wind features within extratropical cyclones can cause immense damage. In Part 1 of this work, we introduced RAMEFI (RAndom-forest-based MEsoscale wind Feature Identification), an objective, flexible identification tool for these wind features based on a probabilistic random forest. Here, we use RAMEFI to compile a climatology of the features over 19 extended winter seasons over western and central Europe, focusing on relative occurrence, affected areas and further characteristics.