Articles | Volume 6, issue 4
https://doi.org/10.5194/wcd-6-1107-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-6-1107-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Asymmetric response of Northern Hemisphere near-surface wind speed to CO2 removal
Zhi-Bo Li
Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
Cesar Azorin-Molina
Centro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones Científicas (CIDE, CSIC-UV-Generalitat Valenciana), Climate, Atmosphere and Ocean Laboratory (Climatoc-Lab), Moncada, Valencia, Spain
Soon-Il An
Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
Yang Zhao
Frontiers Science Center for Deep Ocean Multispheres and Earth System-Key Laboratory of Physical Oceanography – Institute for Advanced Ocean Studies-Academy of the Future Ocean, Ocean University of China, Qingdao, China
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China
Department of Atmospheric Science, Yunnan University, Kunming, China
Jongsoo Shin
Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Deliang Chen
Department of Earth System Sciences, Tsinghua University, Beijing, China
Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Related authors
Petter Stridbeck, Jesper Björklund, Fredrik Charpentier Ljungqvist, Jennie Sandström, Mauricio Fuentes, Paul J. Krusic, Zhi-Bo Li, and Kristina Seftigen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3497, https://doi.org/10.5194/egusphere-2025-3497, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Here we present the first tree-ring-based reconstruction of precipitation in sub-Arctic Sweden, extending back to medieval times. The reconstruction is derived from living and dead Scots pine growing in the rocky, drought-prone High Coast region (63°N). Unlike most high-latitude conifers that are typically limited by temperature, these trees thrive during cool, cloudy, and wet summers. This rare response enabled filling a significant gap in our understanding of historical climate variability.
Cheng Shen, Hui-Shuang Yuan, Zhi-Bo Li, Jinling Piao, Youli Chang, and Deliang Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1156, https://doi.org/10.5194/egusphere-2025-1156, 2025
Short summary
Short summary
Near-surface wind speed affects air quality, water cycles, and wind energy, but its future changes in South Asia remain uncertain. This study explores how internal climate variability, particularly the Interdecadal Pacific Oscillation, affects wind speed trends in the region. Using advanced climate simulations, we show that accounting for this variability reduces uncertainty in future projections. Our findings can improve climate adaptation strategies and wind energy planning.
Petter Stridbeck, Jesper Björklund, Fredrik Charpentier Ljungqvist, Jennie Sandström, Mauricio Fuentes, Paul J. Krusic, Zhi-Bo Li, and Kristina Seftigen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3497, https://doi.org/10.5194/egusphere-2025-3497, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Here we present the first tree-ring-based reconstruction of precipitation in sub-Arctic Sweden, extending back to medieval times. The reconstruction is derived from living and dead Scots pine growing in the rocky, drought-prone High Coast region (63°N). Unlike most high-latitude conifers that are typically limited by temperature, these trees thrive during cool, cloudy, and wet summers. This rare response enabled filling a significant gap in our understanding of historical climate variability.
Qin Tao, Cheng Shen, Raimund Muscheler, and Jesper Sjolte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3471, https://doi.org/10.5194/egusphere-2025-3471, 2025
Short summary
Short summary
Using model simulations and reconstructions over the last millennium, we identify distinct North Atlantic Oscillation-related winter climate responses following tropical versus extratropical eruptions, with improved model-data agreement in simulations that use the latest volcanic forcing. Our paleoclimate data-model comparison provides new evidence of volcanic climate impacts, which are strongly dependent on the choice of forcing dataset, model configuration, and eruption event selection.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian L. E. Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Dae-Won Kim, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana N. Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
Earth Syst. Dynam., 16, 1103–1134, https://doi.org/10.5194/esd-16-1103-2025, https://doi.org/10.5194/esd-16-1103-2025, 2025
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere and 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability, and extreme events. The 10-year-long high-resolution simulations for the 2000s, 2030s, 2060s, and 2090s were initialized from a coarser-resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Cheng Shen, Hui-Shuang Yuan, Zhi-Bo Li, Jinling Piao, Youli Chang, and Deliang Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1156, https://doi.org/10.5194/egusphere-2025-1156, 2025
Short summary
Short summary
Near-surface wind speed affects air quality, water cycles, and wind energy, but its future changes in South Asia remain uncertain. This study explores how internal climate variability, particularly the Interdecadal Pacific Oscillation, affects wind speed trends in the region. Using advanced climate simulations, we show that accounting for this variability reduces uncertainty in future projections. Our findings can improve climate adaptation strategies and wind energy planning.
Yi Liu, Lihong Zhou, Yingzuo Qin, Cesar Azorin-Molina, Cheng Shen, Rongrong Xu, and Zhenzhong Zeng
Atmos. Meas. Tech., 17, 1123–1131, https://doi.org/10.5194/amt-17-1123-2024, https://doi.org/10.5194/amt-17-1123-2024, 2024
Short summary
Short summary
Our research analyzed China's wind speed data and addressed inconsistencies caused by factors like equipment changes and station relocations. After improving data quality, China's recent wind speed decrease reduced by 41 %, revealing an increasing trend. This emphasizes the importance of rigorous data processing for accurate trend assessments in various research fields.
René R. Wijngaard, Adam R. Herrington, William H. Lipscomb, Gunter R. Leguy, and Soon-Il An
The Cryosphere, 17, 3803–3828, https://doi.org/10.5194/tc-17-3803-2023, https://doi.org/10.5194/tc-17-3803-2023, 2023
Short summary
Short summary
We evaluate the ability of the Community Earth System Model (CESM2) to simulate cryospheric–hydrological variables, such as glacier surface mass balance (SMB), over High Mountain Asia (HMA) by using a global grid (~111 km) with regional refinement (~7 km) over HMA. Evaluations of two different simulations show that climatological biases are reduced, and glacier SMB is improved (but still too negative) by modifying the snow and glacier model and using an updated glacier cover dataset.
John Erik Engström, Lennart Wern, Sverker Hellström, Erik Kjellström, Chunlüe Zhou, Deliang Chen, and Cesar Azorin-Molina
Earth Syst. Sci. Data, 15, 2259–2277, https://doi.org/10.5194/essd-15-2259-2023, https://doi.org/10.5194/essd-15-2259-2023, 2023
Short summary
Short summary
Newly digitized wind speed observations provide data from the time period from around 1920 to the present, enveloping one full century of wind measurements. The results of this work enable the investigation of the historical variability and trends in surface wind speed in Sweden for
the last century.
Chunlüe Zhou, Cesar Azorin-Molina, Erik Engström, Lorenzo Minola, Lennart Wern, Sverker Hellström, Jessika Lönn, and Deliang Chen
Earth Syst. Sci. Data, 14, 2167–2177, https://doi.org/10.5194/essd-14-2167-2022, https://doi.org/10.5194/essd-14-2167-2022, 2022
Short summary
Short summary
To fill the key gap of short availability and inhomogeneity of wind speed (WS) in Sweden, we rescued the early paper records of WS since 1925 and built the first 10-member centennial homogenized WS dataset (HomogWS-se) for community use. An initial WS stilling and recovery before the 1990s was observed, and a strong link with North Atlantic Oscillation was found. HomogWS-se improves our knowledge of uncertainty and causes of historical WS changes.
Seungmok Paik, Seung-Ki Min, Seok-Woo Son, Soon-Il An, Jong-Seong Kug, and Sang-Wook Yeh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-187, https://doi.org/10.5194/acp-2022-187, 2022
Revised manuscript not accepted
Short summary
Short summary
This paper investigates Earth’s surface climate response to volcanic eruptions at different latitudes. By analyzing last millennium ensemble simulations of a coupled climate model, we have identified physical processes associated with the diverse impacts of volcanic eruption latitudes, focusing on the tropical ocean surface warming and the stratospheric polar vortex intensification. Our results provide important global implications for atmospheric responses to future volcanic aerosols.
Cited articles
An, S.-I., Shin, J., Yeh, S.-W., Son, S.-W., Kug, J.-S., Min, S.-K., and Kim, H.-J.: Global cooling hiatus driven by an AMOC overshoot in a carbon dioxide removal scenario, Earths Future, 9, e2021EF002165, https://doi.org/10.1029/2021EF002165, 2021.
Bichet, A., Wild, M., Folini, D., and Schär, C.: Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model, Geophysical Research Letters, 39, https://doi.org/10.1029/2012GL051685, 2012.
Boucher, O., Halloran, P. R., Burke, E. J., Doutriaux-Boucher, M., Jones, C. D., Lowe, J., Ringer, M. A., Robertson, E., and Wu, P.: Reversibility in an Earth System model in response to CO2 concentration changes, Environmental Research Letters, 7, 024013, https://doi.org/10.1088/1748-9326/7/2/024013, 2012.
Cao, L., Bala, G., and Caldeira, K.: Why is there a short-term increase in global precipitation in response to diminished CO2 forcing?, Geophysical Research Letters, 38, L06703, https://doi.org/10.1029/2011GL046713, 2011.
Chemke, R., Zanna, L., and Polvani, L. M.: Identifying a human signal in the North Atlantic warming hole, Nature Communications, 11, 1–7, https://doi.org/10.1038/s41467-020-15285-x, 2020.
Deng, K., Liu, W., Azorin-Molina, C., Yang, S., Li, H., Zhang, G., Minola, L., and Chen, D.: Terrestrial stilling projected to continue in the Northern Hemisphere mid-latitudes, Earths Future, 10, e2021EF002448, https://doi.org/10.1029/2021EF002448, 2022.
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., and Horton, D. E.: Insights from Earth system model initial-condition large ensembles and future prospects, Nature Climate Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020.
Ehlert, D. and Zickfeld, K.: Irreversible ocean thermal expansion under carbon dioxide removal, Earth Syst. Dynam., 9, 197–210, https://doi.org/10.5194/esd-9-197-2018, 2018.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Field, C. B. and Mach, K. J.: Rightsizing carbon dioxide removal, Science, 356, 706–707, https://doi.org/10.1126/science.aam9726, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., and Kushner, P. J.: The community earth system model: A framework for collaborative research, Bulletin of the American Meteorological Society, 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
Hwang, J., Son, S.-W., Garfinkel, C. I., Woollings, T., Yoon, H., An, S.-I., Yeh, S.-W., Min, S.-K., Kug, J.-S., and Shin, J.: Asymmetric hysteresis response of mid-latitude storm tracks to CO2 removal, Nature Climate Change, 14, 496–503, https://doi.org/10.1038/s41558-024-01971-x, 2024.
Im, N., Kim, D., An, S.-I., Paik, S.-K., Kim, S.-K., Shin, J., Min, S.-K., Kug, J.-S., and Oh, H.: Hysteresis of European summer precipitation under a symmetric CO2 ramp-up and ramp-down pathway, Environmental Research Letters, 19, 074030, https://doi.org/10.1088/1748-9326/ad52ad, 2024.
Jin, J., Ji, D., Dong, X., Fei, K., Guo, R., He, J., Yu, Y., Chai, Z., Zhang, H., Zhang, D., Chen, K., and Zeng, Q.: CAS-ESM2.0 dataset for the Carbon Dioxide Removal Model Intercomparison Project (CDRMIP), Advances in Atmospheric Sciences, 41, 989–1000, https://doi.org/10.1007/s00376-023-3089-3, 2024.
Karnauskas, K. B., Lundquist, J. K., and Zhang, L.: Southward shift of the global wind energy resource under high carbon dioxide emissions, Nature Geoscience, 11, 38–43, https://doi.org/10.1038/s41561-017-0029-9, 2018.
Keil, P., Mauritsen, T., Jungclaus, J., Hedemann, C., Olonscheck, D., and Ghosh, R.: Multiple drivers of the North Atlantic warming hole, Nature Climate Change, 10, 667–671, https://doi.org/10.1038/s41558-020-0819-8, 2020.
Keller, D. P., Lenton, A., Scott, V., Vaughan, N. E., Bauer, N., Ji, D., Jones, C. D., Kravitz, B., Muri, H., and Zickfeld, K.: The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6, Geosci. Model Dev., 11, 1133–1160, https://doi.org/10.5194/gmd-11-1133-2018, 2018.
Kim, S.-K., Shin, J., An, S.-I., Kim, H.-J., Im, N., Xie, S., Kug, J.-S., and Yeh, S.-W.: Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing, Nature Climate Change, 12, 834–840, https://doi.org/10.1038/s41558-022-01452-z, 2022.
Kim, S.-Y., Choi, Y.-J., Son, S.-W., Grise, K. M., Staten, P. W., An, S.-I., Yeh, S.-W., Kug, J.-S., Min, S.-K., and Shin, J.: Hemispherically asymmetric Hadley cell response to CO2 removal, Science Advances, 9, eadg1801, https://doi.org/10.1126/sciadv.adg1801, 2023.
Kug, J.-S., Oh, J.-H., An, S.-I., Yeh, S.-W., Min, S.-K., Son, S.-W., Kam, J., Ham, Y.-G., and Shin, J.: Hysteresis of the intertropical convergence zone to CO2 forcing, Nature Climate Change, 12, 47–53, https://doi.org/10.1038/s41558-021-01211-6, 2022.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B., and Slater, A. G.: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model, Journal of Advances in Modeling Earth Systems, 3, 1–27, https://doi.org/10.1029/2011MS000045, 2011.
Lei, Y., Wang, Z., Wang, D., Zhang, X., Che, H., Yue, X., Tian, C., Zhong, J., Guo, L., Li, L., Zhou, H., Liu, L., and Xu, Y.: Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy, Nature Climate Change, 13, 693–700, https://doi.org/10.1038/s41558-023-01692-7, 2023.
Li, Z.-B., Sun, Y., Li, T., Hu, T., and Ding, Y.: Future changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5 °C of warming, Earths Future, 7, 1391–1406, https://doi.org/10.1029/2019EF001276, 2019.
Li, Z.-B., Xu, Y., Yuan, H.-S., Chang, Y., and Shen, C.: AMO footprint of the recent near-surface wind speed change over China, Environmental Research Letters, 19, 114031, https://doi.org/10.1088/1748-9326/ad7ee4, 2024.
Li, Z.-B., Sun, M., Shen, C., and Chen, D.: ENSO-driven seasonal variability in near-surface wind speed and wind power potential across China, Geophysical Research Letters, 52, e2025GL115537, https://doi.org/10.1029/2025GL115537, 2025.
Liu, C., An, S.-I., Jin, F., Shin, J., Kug, J.-S., Zhang, W., Stuecker, M. F., Yuan, X., Xue, A., Geng, X., and Kim, S.-K.: Hysteresis of the El Niño–Southern Oscillation to CO2 forcing, Science Advances, 9, eadh8442, https://doi.org/10.1126/sciadv.adh8442, 2023a.
Liu, C., An, S.-I., Jin, F., Stuecker, M. F., Zhang, W., Kug, J.-S., Yuan, X., Shin, J., Xue, A., Geng, X., and Kim, S.-K.: ENSO skewness hysteresis and associated changes in strong El Niño under a CO2 removal scenario, npj Climate and Atmospheric Science, 6, 117, https://doi.org/10.1038/s41612-023-00448-6, 2023b.
Ma, J., Foltz, G. R., Soden, B. J., Huang, G., He, J., and Dong, C.: Will surface winds weaken in response to global warming?, Environmental Research Letters, 11, 124012, https://doi.org/10.1088/1748-9326/11/12/124012, 2016.
MacDougall, A. H.: Reversing climate warming by artificial atmospheric carbon-dioxide removal: Can a Holocene-like climate be restored?, Geophysical Research Letters, 40, 5480–5485, https://doi.org/10.1002/2013GL057467, 2013.
Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H., Gettelman, A., Williamson, D. L., Rasch, P. J., Vavrus, S. J., Taylor, M. A., Collins, W. D., Zhang, M., and Lin, S.-J.: Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR Tech. Note NCAR/TN-486+STR, 1–12, National Center for Atmospheric Research, 2012.
Oh, J.-H., An, S.-I., Shin, J., and Kug, J.-S.: Centennial memory of the Arctic Ocean for future Arctic climate recovery in response to a carbon dioxide removal, Earths Future, 10, e2022EF002804, https://doi.org/10.1029/2022EF002804, 2022.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Pathirana, G., Oh, J.-H., Cai, W., An, S.-I., Min, S.-K., Jo, S.-Y., Shin, J., and Kug, J.-S.: Increase in convective extreme El Niño events in a CO2 removal scenario, Science Advances, 9, eadh2412, https://doi.org/10.1126/sciadv.adh2412, 2023.
Pryor, S. and Barthelmie, R. J.: A global assessment of extreme wind speeds for wind energy applications, Nature Energy, 6, 268–275, https://doi.org/10.1038/s41560-020-00773-7, 2021.
Pryor, S., Barthelmie, R. J., Bukovsky, M. S., Leung, L. R., and Sakaguchi, K.: Climate change impacts on wind power generation, Nature Reviews Earth & Environment, 1, 627–643, https://doi.org/10.1038/s43017-020-0101-7, 2020.
Rahmstorf, S.: Is the Atlantic overturning circulation approaching a tipping point?, Oceanography, 37, 16–29, https://doi.org/10.5670/oceanog.2024.501, 2024.
Shen, C., Zha, J., Zhao, D., Wu, J., Fan, W., Yang, M., and Li, Z.-B.: Estimating centennial-scale changes in global terrestrial near-surface wind speed based on CMIP6 GCMs, Environmental Research Letters, 16, 084039, https://doi.org/10.1088/1748-9326/ac1378, 2021.
Shen, C., Zha, J., Li, Z.-B., Azorin-Molina, C., Deng, K., Minola, L., and Chen, D.: Evaluation of global terrestrial near-surface wind speed simulated by CMIP6 models and their future projections, Annals of the New York Academy of Sciences, 1518, 249–263, https://doi.org/10.1111/nyas.14910, 2022.
Shen, C., Yuan, H., Li, Z.-B., Yang, X., Minola, L., Chang, Y., and Chen, D.: March near-surface wind speed hiatus over China since 2011, Geophysical Research Letters, 50, e2023GL104230, https://doi.org/10.1029/2023GL104230, 2023.
Shen, C., Li, Z.-B., Yuan, H., Yu, Y., Lei, Y., and Chen, D.: Increases of offshore wind potential in a warming world, Geophysical Research Letters, 50, e2024GL109494, https://doi.org/10.1029/2024GL109494, 2024.
Shen, C., Li, Z.-B., Liu, F., Chen, H. W., and Chen, D.: A robust reduction in near-surface wind speed after volcanic eruptions: Implications for wind energy generation, Innovation, 6, 100734, https://doi.org/10.1016/j.xinn.2024.100734, 2025.
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S., Vertenstein, M., and Yeager, S.: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM), LA-UR-01853, 1–140, Los Alamos National Laboratory, 2010.
Su, X., Huang, G., Wang, L., and Wang, T.: Global drought changes and attribution under carbon neutrality scenario, Climate Dynamics, 62, 7851–7868, https://doi.org/10.1007/s00382-024-07310-2, 2024.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, Bulletin of the American Meteorological Society, 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Wu, J., Zha, J., Zhao, D., and Yang, Q.: Changes in terrestrial near-surface wind speed and their possible causes: An overview, Climate Dynamics, 51, 2039–2078, https://doi.org/10.1007/s00382-017-3997-y, 2018.
Wu, P., Ridley, J., Pardaens, A., Levine, R., and Lowe, J.: The reversibility of CO2 induced climate change, Climate Dynamics, 45, 745–754, https://doi.org/10.1007/s00382-014-2302-6, 2014.
Wu, P., Wood, R., Ridley, J., and Lowe, J.: Temporary acceleration of the hydrological cycle in response to a CO2 rampdown, Geophysical Research Letters, 37, L043730, https://doi.org/10.1029/2010GL043730, 2010.
Yang, Y.-M., Shin, J., Park, S.-W., Park, J.-H., An, S.-I., Kug, J.-S., Yeh, S.-W., Lee, J.-Y., Wang, B., Li, T., and Im, N.: Fast reduction of Atlantic SST threatens Europe-wide gross primary productivity under positive and negative CO2 emissions, npj Climate and Atmospheric Science, 7, 117, https://doi.org/10.1038/s41612-024-00674-6, 2024.
Yeh, S.-W., Song, S.-Y., Allan, R. P., An, S.-I., and Shin, J.: Contrasting response of hydrological cycle over land and ocean to a changing CO2 pathway, npj Climate and Atmospheric Science, 4, 53, https://doi.org/10.1038/s41612-021-00206-6, 2021.
Yu, Y., Li, Z.-B., Yan, Z., Yuan, H., and Shen, C.: Projected emergence seasons of year-maximum near-surface wind speed, Geophysical Research Letters, 51, https://doi.org/10.1029/2023GL107543, 2024.
Zeng, Z., Ziegler, A. D., Searchinger, T., Yang, L., Chen, A., Ju, K., Piao, S., Li, L. Z. X., Ciais, P., Chen, D., Liu, J., Azorin-Molina, C., Chappell, A., Medvigy, D., and Wood, E. F.: A reversal in global terrestrial stilling and its implications for wind energy production, Nature Climate Change, 9, 979–985, https://doi.org/10.1038/s41558-019-0622-6, 2019.
Zha, J., Shen, C., Li, Z.-B., Wu, J., Zhao, D., Fan, W., Sun, M., Azorin-Molina, C., and Deng, K.: Projected changes in global terrestrial near-surface wind speed in 1.5 °C–4.0 °C global warming levels, Environmental Research Letters, 16, 114016, https://doi.org/10.1088/1748-9326/ac2fdd, 2021.
Zha, J., Shen, C., Wu, J., Zhao, D., Fan, W., Jiang, H., and Zhao, T.: Evaluation and projection of changes in daily maximum wind speed over China based on CMIP6, Journal of Climate, 36, 1503–1520, https://doi.org/10.1175/JCLI-D-22-0193.1, 2023.
Zhang, R., Sutton, R., Danabasoglu, G., Kwon, Y. O., Marsh, R., Yeager, S. G., Amrhein, D. E., and Little, C. M.: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts, Reviews of Geophysics, 57, 316–375, https://doi.org/10.1029/2019RG000644, 2019.
Zhang, S. and Li, X.: Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method, Energy, 217, 119321, https://doi.org/10.1016/j.energy.2020.119321, 2020.
Zhang, S., Qu, X., Huang, G., and Hu, P.: Asymmetric response of South Asian summer monsoon rainfall in a carbon dioxide removal scenario, npj Climate and Atmospheric Science, 6, 10, https://doi.org/10.1038/s41612-023-00338-x, 2023.
Short summary
Our research explores how Northern Hemisphere near-surface wind speeds respond to the removal of CO2 from the atmosphere. Using advanced CESM (Community Earth System Model) simulations, we discovered that wind speeds react differently during periods of increased and decreased carbon dioxide levels. Different responses are attributed to changes in global surface temperature and AMOC (Atlantic Meridional Overturning Circulation). This study not only advances our understanding of climate dynamics but also aids in optimizing strategies for wind energy.
Our research explores how Northern Hemisphere near-surface wind speeds respond to the removal of...