Articles | Volume 6, issue 4
https://doi.org/10.5194/wcd-6-1241-2025
https://doi.org/10.5194/wcd-6-1241-2025
Research article
 | 
27 Oct 2025
Research article |  | 27 Oct 2025

Arctic temperature and precipitation extremes in present-day and future storyline-based variable resolution Community Earth System Model simulations

René R. Wijngaard, Willem Jan van de Berg, Christiaan T. van Dalum, Adam R. Herrington, and Xavier J. Levine

Related authors

A computationally efficient method to model Stratospheric Aerosol Injection experiments
Jasper de Jong, Daniel Pflüger, Simone Lingbeek, Claudia E. Wieners, Michiel L. J. Baatsen, and René R. Wijngaard
EGUsphere, https://doi.org/10.22541/essoar.174273333.31930996/v1,https://doi.org/10.22541/essoar.174273333.31930996/v1, 2025
Short summary
Storylines of summer Arctic climate change constrained by Barents–Kara seas and Arctic tropospheric warming for climate risk assessment
Xavier J. Levine, Ryan S. Williams, Gareth Marshall, Andrew Orr, Lise Seland Graff, Dörthe Handorf, Alexey Karpechko, Raphael Köhler, René R. Wijngaard, Nadine Johnston, Hanna Lee, Lars Nieradzik, and Priscilla A. Mooney
Earth Syst. Dynam., 15, 1161–1177, https://doi.org/10.5194/esd-15-1161-2024,https://doi.org/10.5194/esd-15-1161-2024, 2024
Short summary
Exploring the ability of the variable-resolution Community Earth System Model to simulate cryospheric–hydrological variables in High Mountain Asia
René R. Wijngaard, Adam R. Herrington, William H. Lipscomb, Gunter R. Leguy, and Soon-Il An
The Cryosphere, 17, 3803–3828, https://doi.org/10.5194/tc-17-3803-2023,https://doi.org/10.5194/tc-17-3803-2023, 2023
Short summary

Cited articles

Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Hannay, C., Lauritzen, P. H., Caron, J. M., and Truesdale, J. E.: Exploratory high-resolution climate simulations using the community atmosphere model (CAM), J. Climate, 27, 3073–3099, https://doi.org/10.1175/JCLI-D-13-00387.1, 2014. a
Bambach, N. E., Rhoades, A. M., Hatchett, B. J., Jones, A. D., Ullrich, P. A., and Zarzycki, C. M.: Projecting climate change in South America using variable-resolution Community Earth System Model: An application to Chile, Int. J. Climatol., 42, 2514–2542, https://doi.org/10.1002/joc.7379, 2021. a
Batrak, Y. and Müller, M.: On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice, Nat. Commun., 10, 4170, https://doi.org/10.1038/s41467-019-11975-3, 2019. a, b, c
Beljaars, A. C., Brown, A. R., and Wood, N.: A new parametrization of turbulent orographic form drag, Q. J. Roy. Meteor. Soc., 130, 1327–1347, https://doi.org/10.1256/qj.03.73, 2004. a
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. Roy. Stat. Soc. B, 57, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x, 1995. a
Download
Short summary
We used the variable-resolution Community Earth System Model to simulate present-day and future Arctic temperature and precipitation extremes using global grids (~111 km) with and without regional refinement (~28 km) and a storyline approach. Refined grids generally perform better for precipitation extremes, while unrefined grids perform better for temperature extremes. Future projections show increases in high temperature and wet precipitation extremes and decreases in low temperature extremes.
Share