Articles | Volume 6, issue 2
https://doi.org/10.5194/wcd-6-549-2025
https://doi.org/10.5194/wcd-6-549-2025
Research article
 | 
16 May 2025
Research article |  | 16 May 2025

Temporally and zonally varying atmospheric waveguides – climatologies and connections to quasi-stationary waves

Rachel H. White and Lualawi Mareshet Admasu

Related authors

The Role of Topography, Land and Sea Surface Temperature on Quasi-Stationary Waves in Northern Hemisphere Winter: Insights from CAM6 Simulations
Cuiyi Fei and Rachel H. White
EGUsphere, https://doi.org/10.5194/egusphere-2025-1462,https://doi.org/10.5194/egusphere-2025-1462, 2025
Short summary
Evaluation of reanalysis data and dynamical downscaling for surface energy balance modeling at mountain glaciers in western Canada
Christina Draeger, Valentina Radić, Rachel H. White, and Mekdes Ayalew Tessema
The Cryosphere, 18, 17–42, https://doi.org/10.5194/tc-18-17-2024,https://doi.org/10.5194/tc-18-17-2024, 2024
Short summary
Reconstructing winter climate anomalies in the Euro-Atlantic sector using circulation patterns
Erica Madonna, David S. Battisti, Camille Li, and Rachel H. White
Weather Clim. Dynam., 2, 777–794, https://doi.org/10.5194/wcd-2-777-2021,https://doi.org/10.5194/wcd-2-777-2021, 2021
Short summary

Related subject area

Dynamical processes in midlatitudes
Weather type reconstruction using machine learning approaches
Lucas Pfister, Lena Wilhelm, Yuri Brugnara, Noemi Imfeld, and Stefan Brönnimann
Weather Clim. Dynam., 6, 571–594, https://doi.org/10.5194/wcd-6-571-2025,https://doi.org/10.5194/wcd-6-571-2025, 2025
Short summary
Moisture transport axes: a unifying definition for tropical moisture exports, atmospheric rivers, and warm moist intrusions
Clemens Spensberger, Kjersti Konstali, and Thomas Spengler
Weather Clim. Dynam., 6, 431–446, https://doi.org/10.5194/wcd-6-431-2025,https://doi.org/10.5194/wcd-6-431-2025, 2025
Short summary
On the movement of atmospheric blocking systems and the associated temperature responses
Jonna van Mourik, Hylke de Vries, and Michiel Baatsen
Weather Clim. Dynam., 6, 413–429, https://doi.org/10.5194/wcd-6-413-2025,https://doi.org/10.5194/wcd-6-413-2025, 2025
Short summary
An ERA5 climatology of synoptic-scale negative potential vorticity–jet interactions over the western North Atlantic
Alexander Lojko, Andrew C. Winters, Annika Oertel, Christiane Jablonowski, and Ashley E. Payne
Weather Clim. Dynam., 6, 387–411, https://doi.org/10.5194/wcd-6-387-2025,https://doi.org/10.5194/wcd-6-387-2025, 2025
Short summary
Quantifying the spread in sudden stratospheric warming wave forcing in CMIP6
Verónica Martínez-Andradas, Alvaro de la Cámara, Pablo Zurita-Gotor, François Lott, and Federico Serva
Weather Clim. Dynam., 6, 329–343, https://doi.org/10.5194/wcd-6-329-2025,https://doi.org/10.5194/wcd-6-329-2025, 2025
Short summary

Cited articles

Ali, S. M., Martius, O., and Röthlisberger, M.: Recurrent Rossby wave packets modulate the persistence of dry and wet spells across the globe, Geophys. Res. Lett., 48, e2020GL091452, https://doi.org/10.1029/2020GL091452, 2021. a
Ali, S. M., Röthlisberger, M., Parker, T., Kornhuber, K., and Martius, O.: Recurrent Rossby waves and south-eastern Australian heatwaves, Weather Clim. Dynam., 3, 1139–1156, https://doi.org/10.5194/wcd-3-1139-2022, 2022. a
Ambrizzi, T., Hoskins, B. J., and Hsu, H.-H.: Rossby Wave Propagation and Teleconnection Patterns in the Austral Winter, J. Atmos. Sci., 52, 3661–3672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2, 1995. a, b, c
Andrews, D. G.: Wave–Mean-Flow Interaction in the Middle Atmosphere, Adv. Geophys., 28, 249–275, https://doi.org/10.1016/S0065-2687(08)60226-5, 1985. a
Benjamini, Y. and Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency, Ann. Stat., 29, 1165–1188, https://doi.org/10.1214/aos/1013699998, 2001. a
Download
Short summary
Mid-latitude atmospheric jet streams sometimes create "waveguides", which are thought to increase the chance of quasi-stationary waves – atmospheric circulation patterns that can lead to extreme weather events. We compare two methods of identifying atmospheric waveguides, finding that one method seems to be less impacted by the presence of waves and provides much stronger correlations with enhanced quasi-stationary waves, and recommend this method for future studies.
Share